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This study provides new mechanisms for identifying and estimating explosive bubbles in mixed-root panel
autoregressions with a latent group structure. A postclustering approach is employed that combines k-means
clustering with right-tailed panel-data testing. Uniform consistency of the k-means algorithm is established.
Pivotal null limit distributions of the tests are introduced. A new method is proposed to consistently estimate
the number of groups. Monte Carlo simulations show that the proposed methods perform well in finite sam-
ples; and empirical applications of the proposed methods identify bubbles in the U.S. and Chinese housing
markets and the U.S. stock market.

1. introduction

A key characteristic of financial bubbles such as the dot-com bubble of the 1990s and early
2000s is the presence of mildly explosive deviations of asset prices from their fundamental
values during the expansive phase of the bubble. Divergence from market fundamentals can
arise whenever there is widespread belief that ongoing robust price increases will continue.
Sufficient market participants sharing this belief can drive up prices and produce expecta-
tions that ongoing price gains will continue, as argued by Shiller (2015) and others. This self-
fulfilling mechanism can lead to price growth that becomes exponential (or explosive), result-
ing in a market that is progressively misaligned from its fundamentals.

This expansive phase of a financial bubble, although not the switching mechanism to bubble
collapse, is partly captured by the standard present value model

Pt =
∞∑

i=0

(
1

1 + r f

)i

Et (Dt+i) + Bt ,(1)

where Pt is the price of an asset at time t, Dt is the payoff of the asset, r f is the risk-free in-
terest rate, and Bt represents a potential bubble component, which satisfies the following sub-
martingale property:

Et (Bt+1) = (1 + r f )Bt > Bt .
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Table 1
powers of the right-tailed df t- and J-tests when a bubble is short lived or grows slowly

Bubble Is Short Lived Bubble Grows Slowly

ρ 1.033 1.040 1.0009 1.0069
T 10 20 30 10 20 30 50 100 200 50 100 200
t-test 0.1009 0.1203 0.1676 0.1043 0.1381 0.2202 0.0590 0.0590 0.0647 0.0801 0.1127 0.2913
J-test 0.0957 0.1202 0.1716 0.1042 0.1393 0.2261 0.0597 0.0590 0.0647 0.0808 0.1142 0.2991

When there is no bubble (i.e., Bt = 0), the asset price is completely determined by the ag-
gregate of the discounted expected future payoffs,

∑∞
i=0(1 + r f )−iEt (Dt+i), which constitutes

what is known as the fundamental value. Further, if Dt+i is a martingale or more generally an
I(1) (unit root) process, then asset prices Pt cannot be explosive. However, if there is a bub-
ble (i.e., Bt �= 0), then Bt and in consequence Pt are explosive. This implication of model (1)
explains why the econometric analysis of bubble behavior has focused on implementing right-
tailed unit root tests to detect explosive behavior in asset prices adjusted by the fundamentals,
as in Phillips et al. (2015a, 2015b).

Conventional econometric methods for bubble detection, including the Dickey–Fuller (DF)
and augmented DF (ADF) tests (Diba and Grossman, 1988), the sup ADF (SADF) test
(Phillips and Yu, 2011; Phillips et al., 2011), and the generalized sup ADF (GSADF) test
(Phillips et al., 2015a, 2015b), all proceed with a single time series to assess evidence. Single
series methods do not always have good discriminatory power for bubble detection especially
with short-lived or slow-growing bubbles; and such tests neglect the presence of any prevail-
ing wider phenomena of market exuberance. In order to illustrate the low-power problem of
conventional single series tests when a bubble is short lived or grows slowly, we employed two
experiments with simulated data from the following simple AR(1) design,

yt = ρyt−1 + ut, y0 = 0, ut ∼ i.i.d. N (0, 1), t = 1, 2, . . . ,T,(2)

using the DF t-statistic [(ρ̂ − 1)/se(ρ̂)] and the DF J-statistic [T (ρ̂ − 1)], where

ρ̂ =
T∑

t=1

(yt − ȳ)(yt−1 − ȳ−1)/
T∑

t=1

(yt−1 − ȳ−1)2
,(3)

is the least-squares (LS) estimator of ρ, with ȳ = (1/T )
∑T

s=1 ys, ȳ−1 = (1/T )
∑T

s=1 ys−1, and
se(ρ̂) is the usual standard error of ρ̂ in the AR(1) model with intercept. The null hypothe-
sis H0 : ρ = 1 is tested against the explosive alternative H1 : ρ > 1 based on right-tailed nomi-
nal 95% critical values. The first experiment uses the empirical estimates of ρ found in Phillips
et al. (2011) as the true values (i.e., ρ = 1.033, 1.040) and sets T = 10, 20, 30. This experiment
has small sample sizes so the bubble is short lived but realistic, from the empirical findings in
Phillips et al. (2015a). The left panel of Table 1 reports the powers (i.e., empirical rejection
frequency under H1 : ρ > 1 from 10,000 replications) of the right-tailed t and J tests rejecting
the null hypothesis. Evidently, the power of these tests is low, ranging from 0.1009 to 0.2202
for the t-test and from 0.0957 to 0.2261 for the J-test. The second experiment uses true val-
ues of ρ that are much closer to unity (ρ = 1.0009, 1.0069), leading to very slow exponential
growth during the expansive phase of the bubble and reflecting some of the growth rates ac-
tually found in the empirical results reported later in Section 6. The right panel of Table 1 re-
ports the powers of the right-tailed t and J tests in this case. The power of these tests is again
found to be very low, ranging from 0.0590 to 0.2913 for the t-test and from 0.0597 to 0.2991 for
the J-test.

As an empirical illustration of low discriminatory power from single time-series regressions,
the t-test was applied to each of the 146 stocks of the S&P 500 market in the United States
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a panel clustering approach to analyzing bubble behavior 1349

Notes: Left panel: Adjusted U.S. equity prices (specifically, the demeaned difference in levels between the monthly
stock price and monthly dividends) for the stocks detected by the panel t-test but not by the single time-series t-test
(in red); Right panel: Adjusted U.S. house price index (specifically, the demeaned ratio of the house price index to the
rental CPI) for the cities detected by the panel t-test but not by the single time series t-test

Figure 1

panel and time series testing of u.s. stock prices and housing prices for explosive behavior

used in the empirical section of the article—see Section 6 for details. The results led to re-
jections of the unit root null in favor of an explosive alternative for 29 stocks, with tests for
all other 117 stocks failing to reject. Figure 1(a) compares these test results with those of the
new panel tests that make use of the clustering algorithm to identify clusters of stocks with
the same autoregressive coefficient reflecting group time-series behavior within the panel. The
effects of clustering individual time series into common groups reveal the additional discrim-
inatory power obtained by grouping. Our clustered panel test detects the presence of an ex-
plosive root in 11 more stocks than the time-series test, as highlighted in red in Figure 1(a).
An empirical example of the U.S. housing market is given in Figure 1(b). In this case, the clus-
tered panel t-test helps to diagnose mildly explosive price behavior in U.S. city housing mar-
kets (again shown in red), where individual time-series tests reveal no evidence of such behav-
ior, confirming the discriminatory power gains that arise from cross-section aggregation.

As indicated, behavior such as speculative exuberance in financial, commodity, and real es-
tate markets often manifests as a wider market phenomenon. Market prices of multiple assets
in the same class are often available and can therefore be used in testing for exuberance. The
primary contribution of this article is to propose the use of such panel data to enhance power
in bubble detection algorithms. When there is homogeneity in behavior over certain cross-
section units in a particular group, there are typically power advantages to pooling within that
group for estimation and testing. If the group structure in a panel is known or can be reliably
estimated and exuberance is expected, then pooling will sharpen statistical inference on the
common explosive root compared to the use of single time series.

Under certain conditions it is often reasonable to expect homogeneity over cross-sectional
units in economic and financial panel data (Hahn and Moon, 2010; Kong et al., 2019). In real
estate markets, the dynamics in house prices may be related among cities with similar char-
acteristics, including demographics, locational features, and level of urbanization. But the use
of a general aggregated homogeneous model in estimating housing prices has been criticized
due to its omission of individual elements, such as spatial correlation and heteroskedasticity
(Goodman and Thibodeau, 1998). In fact, it is well acknowledged that housing properties are
heterogeneous regarding such characteristics as location, structural characteristics, and envi-
ronmental quality. To address this feature of the data, a standard modeling strategy in urban
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1350 liu, phillips, and yu

studies is market segmentation, where a housing market is divided into different submarkets,
each of which may be considered homogeneous (Bourassa et al., 2007; Goodman and Thi-
bodeau, 1998). Empirical researchers can therefore make use of a data-driven clustering algo-
rithm to uncover the underlying submarket structure (Abraham et al., 1994).

In financial markets, individual stocks in the same industry may share similar fundamentals,
and their dynamic behavior may be closely related and can be aggregated into groups (Boller-
slev et al., 2022). Mutual funds may be grouped by the type of security, such as aggressive
growth funds and income funds (Brown and Goetzmann, 1997). In the literature, data-driven
clustering methods have been applied to stocks, bonds, hedge funds, and mutual funds in Ahn
et al. (2009), Ludvigson and Ng (2007), Ludvigson and Ng (2009), Patton and Weller (2022),
and Brown and Goetzmann (1997).

In practice, group structure is often unknown and has to be estimated from the panel it-
self. To do so in the context of asset bubble investigation, a mixed-root specification for the
panel model is specified in which the individual time series are characterized as autoregres-
sive with a mixture of roots, some mildly explosive, some near stationary, and some unit roots
(Phillips and Magdalinos, 2007a, 2007b; Phillips and Lee, 2013). In bubble detection it is typi-
cally far too restrictive to impose a homogeneous explosive root across all cross-section units
and instead more realistic to allow for some explosive bubble behavior in a proportion of
these units so that parameter homogeneity is group specific. Then any underlying group struc-
ture must be recovered empirically. To achieve this end, econometric methods have recently
been developed, including the k-means clustering algorithm (Bonhomme and Manresa, 2015;
Bonhomme et al., 2022) and the classification Lasso (C-Lasso) approach of Su et al. (2016).
This article uses the recursive k-means algorithm to uncover latent group membership. With
grouping accomplished, bubble detection procedures can be implemented in the second step.

After estimating and determining the number of the latent groups, two right-tailed tests
are proposed to detect explosive behavior. The tests are panel versions of the self-normalized
and coefficient-based tests, which we subsequently refer to as the t- and J-statistics, and these
are asymptotically pivotal with standard Gaussian distributions under the null hypothesis of
a common unit root in the group. Under the alternative of a group-specific mildly explosive
root, these postclustering panel statistics diverge and the tests are consistent. For comparison
with the single time-series tests, the panel tests are applied to the same house price and stock
market data discussed above.

The panel tests dominate the time-series tests in two aspects. First, unlike the time-series
tests that have nonstandard limit theory, the panel tests have standard asymptotic Gaussian
distributions under the null and are convenient to implement. Second, under the condition
of within-group coefficient homogeneity, the tests have the advantage faster divergence rates
than the time-series tests by virtue of cross-section information aggregation. Extensive Monte
Carlo simulations demonstrate that the empirical powers of the panel tests are considerably
higher than their time series counterparts.

This article makes six contributions. First, it extends the literature on bubble detection by
using statistical clustering and group averaging to raise test power of existing time-series tests
in a manner similar to the mechanism of the standard left-sided panel unit root tests (Bai and
Ng, 2010; Chang and Song, 2009; Im et al., 2003). An alternative approach to panel modeling
of financial bubbles is to allow for potentially explosive common factors and employ princi-
pal component analysis (PCA) to detect explosive behavior in some of the factors, as in Chen
et al. (2022) who work with a model that has a single explosive factor and no latent group-
ings. An important advantage of the factor-based panel approach is the allowance for cross-
section dependence. That work can be extended by using the clustering methods of this ar-
ticle to allow for latent groups with different factors that reflect differing behavior among
the groups.

Second, the article contributes to the literature on latent membership and clustering algo-
rithms. There are presently several clustering algorithms (Ando and Bai, 2016; Bonhomme
and Manresa, 2015; Bonhomme et al., 2022; Leng et al., 2021; Okui and Wang, 2021; Su et al.,
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a panel clustering approach to analyzing bubble behavior 1351

2016, 2019), and most of the available methods apply only to stationary data. An exception
is the C-Lasso approach (Huang et al., 2020), which is not directly applicable to the mixed-
root panel autoregressive model. To the best of our knowledge, this study is the first attempt
to extend clustering algorithms to the context of a mixed-root panel model that incorporates
the group-specific nonstationary phenomena. Our approach follows Bonhomme and Manresa
(2015) by using a two-stage procedure. In our case, the procedure combines an estimation
procedure for group identities to determine latent membership in the first stage and a bubble
testing procedure in the second stage, both in the context of a mixed-root panel model.

Third, the present work contributes to random coefficient panel modeling where coefficient
heterogeneity occurs across individuals in the panel (Arellano and Bonhomme, 2012; Hsiao
et al., 2002; Pesaran and Smith, 1995; Pesaran, 2006). One strand of that literature deals with
nonstationary panels where there is random autoregressive coefficient heterogeneity in a dy-
namic panel. In that framework, unit root testing is conducted by pooling the cross section un-
der the null hypothesis that the autoregressive coefficients have unit mean (Westerlund and
Larsson, 2012). In our model the autoregressive coefficients may deviate from unity in a way
that produces coefficient heterogeneity across groups and homogeneity within groups in the
panel, thereby leading to a mixed-root panel framework. The nonstationary elements allow
for unit roots and explosive roots in different clusters, so that subgroups of the panel can man-
ifest very different time-series behavior. The framework is therefore suited to large panels in
which some clusters may manifest wandering behavior of the unit root type and other groups
manifest various degrees of explosiveness or near stationarity.

A fourth contribution is to the literature on the estimation of the number of groups. At
present, group number is usually selected using an information criterion (IC) and model spec-
ification tests. The IC, which balances model fitness and penalty, can consistently estimate
the number of groups in both stationary panel models (Bonhomme and Manresa, 2015; Bon-
homme et al., 2022; Su et al., 2016) and panel cointegration models (Huang et al., 2020, 2021).
Model specification tests can be categorized into two cases—multiple groups (Lu and Su,
2017) and a single group (Pesaran et al., 1996; Phillips and Sul, 2003). Both IC and residual-
based inference approaches are found to underestimate the true number of groups in the
mixed-root dynamic panel model. In order to address this limitation and consistently select
the true number of groups in this setting, a novel method is proposed that combines the IC
approach with a Hausman-type specification test.

Fifth, the article adds to various existing empirical analyses by using a new clustering al-
gorithm. For example, this article contributes to the urban economics literature by confirm-
ing the existence of latent membership in the U.S. and Chinese housing markets. In fact, our
empirical results may be viewed as validating market segmentation theory (Bourassa et al.,
1999; Goodman and Thibodeau, 1998). In a further application, the article contributes to the
empirical finance literature on grouping and clustering the U.S. stock market. Although the
k-means clustering algorithm has been successfully employed in classifying hedge funds, mu-
tual funds, and individual stocks (Ahn et al., 2009; Brown and Goetzmann, 1997), to the best
of our knowledge, this article is the first to document group-specific explosive behavior in the
stock market using k-means clustering methods.

A final contribution relates to the literature of bias-corrected procedures in panel data
models. The presence of incidental parameters is well known to produce bias in many panel
settings, especially dynamic panels (Hahn and Kuersteiner, 2002) and nonlinear panels (Hahn
and Newey, 2004). Bias correction methods include the use of explicit bias approximations
(Hahn and Kuersteiner, 2002; Phillips and Moon, 1999), jackknife methods (Hahn and Newey,
2004), and indirect inference methods (Gouriéroux et al., 2010). The limit theory in this article
involves a new asymptotic bias term that originates from the demeaning process and the pres-
ence of serially correlated errors. An explicit expression of this bias is obtained under the null
hypothesis of a group-specific unit root, which enables the construction of asymptotically piv-
otal tests of explosive behavior in subgroups of the panel.
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1352 liu, phillips, and yu

The rest of this article is organized as follows. Section 2 discusses the model setup. Section 3
introduces a two-stage method consisting of the recursive k-means clustering algorithm in the
first stage and bubble testing statistics in the second stage. Section 4 derives the asymptotic
properties of the two-stage procedure and establishes pivotal limit theory for the postcluster-
ing test statistics under the null hypothesis of a group-specific unit root. Section 5 reports sim-
ulation findings that explore the finite sample performance of the two-stage procedure and
tests. Section 6 provides empirical applications of the methodology to the Chinese and U.S.
real estate markets and the U.S. stock market. Section 7 concludes. Proofs of the main results
are provided in the Appendix. Further technical details, some useful lemmas, and additional
simulation findings are available in the Supporting Information that accompanies the article.

Throughout the article, the symbols Id, �d×1, 0d×d, →p, ⇒, and Pr(A) denote the d × d
identity matrix, a d-vector of ones, a d × d matrix of zeros, convergence in probability, weak
convergence in Euclidean and function spaces, and the probability of event A. For two se-
quences AnT and BnT , the notation AnT � BnT signifies that AnT/BnT is either Op(1) or
op(1) as (n,T ) → ∞; AnT 	 BnT signifies that BnT/AnT = op(1) as (n,T ) → ∞; AnT ∼ BnT

signifies limn,T→∞ AnT/BnT = 1, AnT ∼a BnT denotes Pr(|AnT/BnT | �= 1) → 0 as (n,T ) → ∞;
the notation A 
 B denotes that both A �p B and B �p A; the notation log2(·) represents
log(log(·)), and a zero affix on a parameter, as in {a0}, refers to the true value of the cor-
responding parameter {a}. The notations Avar and Acov represent asymptotic variance and
asymptotic covariance.

2. model setup

In order to capture explosive and mildly explosive behavior in panels, we use the follow-
ing data generating process (DGP) based on the time-series model of Phillips and Magdalinos
(2007b): {

yit = μi + ρgi yi,t−1 + uit , i = 1, . . . n, t = 1, . . . ,T,

ρgi = 1 + cgi
T γ .

(4)

The rate exponent γ ∈ (0, 1)1 and the scale coefficients cgi both influence the extent of de-
parture of the autoregressive coefficients ρgi from unity, and gi denotes the group member-
ship of individual i, for which the group structure is defined later. The innovations uit follow
a stationary linear process (i.e., I(0)) for each i and are defined later in (29) of Assumption 1.
Long-run variances are given by ω2

i = ∑∞
h=−∞ E(uitui,t−h), one-sided long-run covariances by

λi(:= ∑∞
h=1 E(uitui,t−h)), and variances by σ 2

iu = E(u2
it ), so that ω2

i = 2λi + σ 2
iu for each individ-

ual unit i.
Model (4) mixes three types of potential time-series behavior depending on the sign and

value of the autoregressive coefficient, covering mildly explosive roots (with cgi > 0 and ρgi >

1), mildly integrated roots (with cgi < 0 and ρgi < 1), and unit roots (with cgi = 0 and ρgi = 1).
Since the signs of the {cgi}n

i=1 determine the presence or absence of bubble behavior, it is con-
venient to assume a common unknown value of the rate coefficient γ in (4) and then het-
erogeneity in the autoregressive coefficients ρgi arises through the localizing scale parameters
{cgi}n

i=1. Latent group membership of the ρgi is therefore determined by the value of these lo-
calizing scale coefficients. The signs of the cgi and their magnitudes determine the nature and
strength of the mildly explosive and mildly integrated character of the individual time series.

The framework we adopt lies between a homogeneous panel (where cgi = c for all i) and a
fully heterogeneous panel (where cgi �= cg� for any i �= �). Instead, we assume a group struc-
ture involving a fixed number G < n of unknown separate groups that are classified accord-

1 The case where γ = 0 is a specialization of the current model and remains suited to the two-stage algorithm de-
veloped here. The asymptotic theory of the two-stage algorithm when γ = 0 follows similar lines to that of the main
article and details are provided in the supporting information to Liu et al. (2022).
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a panel clustering approach to analyzing bubble behavior 1353

ing to the scale parameters cgi . The group membership variables are given by the {gi}n
i=1, which

map individual units (i.e., i ∈ {1, 2, . . . ,n}) into specific groups for which j ∈ {1, . . . ,G} with
G < n. This group structure allows for several possible mildly explosive and mildly integrated
groups together with a unit root group. The mixed-root groups are determined by the signs
and values of the scale coefficients and these are represented in the following diagram orga-
nized in descending order of the values of the scale coefficients:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Explosive groups:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Group 1: c1 > 0

Group 2: c2 > 0
...

...

Group g: cg > 0
Unit root group: Group (g + 1): cg+1 = 0

Stationary groups:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Group (g + 2): cg+2 < 0

Group (g + 3): cg+3 < 0
...

...

Group G: cG < 0

,(5)

where c j �= ck for any j �= k with indices j,k ∈ {1, 2, . . . ,G}. The localizing scale coefficients
are therefore homogeneous within each group but heterogeneous across groups. There are G
groups in total: g mildly explosive groups each with a different scale coefficient {c j > 0| j =
1, . . . , g}; a single unit root group; and (G − g − 1) mildly stationary groups, each with a dif-
ferent scale coefficient {c j < 0| j = g + 2, . . . ,G}.

We begin by fixing notation. Denote the full set of n individuals by In := {1, 2, . . . ,n} and
membership indicators by the parameter vector δ(:= (g1, g2, . . . , gn)′). The true membership
indicators are given by δ0(:= (g0

1, g0
2, . . . , g0

n)′). The estimated membership indicator, defined
later, is δ̂(:= (̂g1, ĝ2, . . . , ĝn)′). Hence, for any individual subscript i ∈ In, the membership in-
dicators gi, g0

i , and ĝi all map from the set of individuals In to the set of group identities G :=
{1, 2, . . . ,G} with G( j) representing the jth group for any j ∈ G. Let 	G be the set of all possi-
ble mappings from In to G, so that δ, δ0, δ̂ ∈ 	G. As indicated, the notation G( j) is used to rep-
resent the jth group, with G0( j) being the true jth group and Ĝ( j) the estimated jth group to
be defined later. We also define the collection G0 := {1, 2, . . . ,G0} where G0 denotes the true
number of groups.

Note that for any j ∈ G, the distancing parameter in the group G( j) is c j and the
slope coefficient parameter is ρ j. Let CG be a compact subset of G-dimensional Eu-
clidean space RG, c(:= (c1, . . . , c j, . . . cG)′) ∈ CG be the distancing parameter vector, and ρ :=
(ρ1, . . . , ρ j, . . . , ρG)′ = (1 + c1/T γ , . . . , 1 + c j/T γ , . . . , 1 + cG/T γ )′ be the corresponding AR
coefficient vector. Both c and ρ are G-dimensional vectors of group-specific parameters.

Within each group, we impose an identical membership structure on the variances and
covariances, so that for any i, � ∈ In with g0

i = g0
� = j ∈ G0, we have σ 2

iu = σ 2
�u(=: σ 2

j ), ω2
i =

ω2
�(=: ω2

j ) and λi = λ�(=: λ j ). For the group-specific parameters σ 2
j , λ j, and ω2

j , the oracle es-
timates, which rely on the true group identities, are denoted by σ̂ 2

j , λ̂ j, and ω̂2
j ; and the post-

clustering estimates, which rely on the estimated group identities, are denoted by σ̌ 2
j , λ̌ j, and

ω̌2
j if the estimated membership is δ̂ = (̂g1, . . . , ĝn)′. Let the group-specific variances σ 2

j , λ j,
and ω2

j have true values denoted by (σ 0
j )2, λ0

j , and (ω0
j )

2. The true cardinality of the true jth
group is given by nj and the estimated cardinality of the estimated jth group is given by ň j :=∑n

i=1 1{̂gi= j}.
This article also considers the individual distancing parameters and estimates

ci := cgi , c0
i := c0

g0
i
, ĉi := čĝi , ∀i ∈ In.(6)
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1354 liu, phillips, and yu

We define the following n-dimensional vectors of individual distancing parameters, their true
values, and their estimated values as: c := (c1, . . . , cn)′, c0 := (c0

1, . . . , c0
n)′, ĉ := (̂c1, . . . , ĉn)′.

Similar representations apply to ρ, ρ0, and ρ̂. For any i ∈ In and j ∈ G0, the estimates of indi-
vidual variances are given by σ̂

2
iu, ω̂

2
i , and λ̂i, which are time-series variance estimates based on

the postclustering estimate ρ̌ j with ĝi = j. Correspondingly, the true values of the individual-
specific variances, and individual-specific one-sided and two-sided long-run variances are de-
noted by

(
σ 0

iu

)2
:=

(
σ 0

j

)2
, λ

0
i := λ0

j ,
(
ω0

i

)2
:=

(
ω0

j

)2
.(7)

Remark 1. In the dynamic panel model (4), the mixed-root phenomenon is fully described
by the group-specific distancing parameters cgj when the rate parameter γ is assumed to take
a fixed common value. This assumption is imposed because the pair (c, γ ) cannot be jointly
identified, as discussed in Phillips (2023). An alternative modeling strategy is to let ρg j = (1 ±
1/T γg j ), a nonlinear formulation used in Phillips (2023).2 This alternative formulation requires
estimation of the nonlinear rate parameters γgi with different treatments and asymptotics for
the cases γgi < 1 and γgi ≥ 1, in the latter of which either ρg j is local to unity when γgi = 1 or
even closer to unity when γgi > 1. Use of this representation with heterogeneous rate param-
eters γgi would involve major changes in the subsequent analysis and algorithm, so it is not
pursued here. Further, in the dynamic panel model (4), the mixed-root phenomenon can be
fully described by the group-specific distancing parameters c j when the rate parameter γ is
fixed, thereby providing a simple linear parametric framework of distancing. Determining la-
tent membership via the scale parameters cgi is then empirically well suited to identifying both
stationary and bubble directions of departure as well as unit roots.

3. a two-stage approach

Econometric analysis of the model given in (4) and (5) employs a two-stage approach. The
first stage uses recursive k-means clustering to estimate the underlying group structure. In the
second stage, postclustering estimates of the parameters of interest are obtained and new tests
for bubble detection are developed. It is convenient at first to assume that the true value of
the number of groups, G0, is known. A hybrid selection method that combines an IC and a
Hausman-type specification test is designed later to enable consistent estimation of G0, and
thereby the full group structure.

3.1. Stage 1: A Recursive k-Means Clustering Algorithm. When groups are unobserved,
two types of parameters are considered in distinguishing membership—the group member-
ship variable δ, which maps cross-sectional units into groups, and the G0-dimensional distanc-
ing parameter vector c. Similar to Bonhomme and Manresa (2015), estimates ĉ∗ and δ̂ (and
hence {̂gi}n

i=1) are obtained by extremum estimation, namely,

(̂
c∗, δ̂

) = arg min
(c,δ)∈ CG0 ×	G0

1
n

n∑
i=1

1
ϒiT

[
T∑

t=1

(
ỹit − ỹi,t−1

(
1 + cgi

T γ

))2
]
,(8)

where ϒiT := ∑T
t=1 ỹ2

i,t−1. The demeaned variables ỹit (:= yit − yi) and ỹi,t−1(:= yi,t−1 − yi,−1),

using the respective sample means yi = (1/T )
∑T

t=1 yit and yi,−1 = (1/T )
∑T

t=1 yi,t−1, are em-
ployed to eliminate fixed effects.

2 Phillips (2023) shows that the model yt = ρT yt−1 + ut with ρT = 1 + c/Tα, α ∈ (0, 1), can be represented as ρT =
1 + 1/T γT with γT = α − (log |c|)/(log T ) ∈ (0, 1) when −Tα < c < −1/T 1−α .
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a panel clustering approach to analyzing bubble behavior 1355

ALGORITHM 1 recursive procedure to estimate c and δ

(i) Set s = 0. Obtain the individual time series estimates ρ̂
TS
i of the slope coefficients ρi for all

i ∈ In and the corresponding estimates of the localizing coefficients ĉ
TS
i , given γ . Using any

relevant prior information or selective quantiles of the time series estimates, or by random
assignment, choose G0 estimates of the distancing parameters c(0)

j to form a G0-dimensional

vector c(0) as the initial value.
(ii) Given c(s), for i ∈ In compute the extremum estimate of gi

(9) g(s+1)
i = arg min

j∈G0

⎡⎢⎣ T∑
t=1

⎛⎝ỹit − ỹi,t−1

⎛⎝1 +
c(s)

j

T γ

⎞⎠⎞⎠2
⎤⎥⎦.

(iii) Given {g(s+1)
i }n

i=1, compute the extremum estimate of c

(10) c(s+1) = arg min
c∈C

G0

1
n

n∑
i=1

1
ϒiT

⎡⎣ T∑
t=1

(
ỹit − ỹi,t−1

(
1 +

c
g(s+1)

i

T γ

))2
⎤⎦.

(iv) Let s = s + 1 and repeat steps 1-1 to update the estimates until convergence (say at step S).
Define ĉ∗ = c(S+1) and δ̂ = (g(S+1)

1 , . . . , g(S+1)
n )′.

Instead of estimating c and δ simultaneously as in (8), which is numerically challenging, we
follow Bonhomme and Manresa (2015) and use an iterative strategy to estimate c and δ recur-
sively, as given in Algorithm 1 below. For convenience in the following derivations, knowledge
of γ ∈ (0, 1) is treated as prior information.3 This assumption is partly justified by the fact that
in a time-series sample with an autoregressive root ρ = 1 + c

T γ the localizing rate and local-
izing scale parameters (c, γ ) are not jointly identifiable from ρ but each is clearly identified
given the other.4 Moreover, variation of c facilitates estimation and provides a full range of
possibilities for the autoregressive coefficient ρ, while ensuring near unit root behavior when
c is fixed as T → ∞.

Remark 2. Algorithm 1 requires a well-specified initial value of δ to initiate the k-means
clustering algorithm. Extensive simulations suggest that the estimated membership δ̂ is highly
accurate for different initial values in a large sample setting.5 However, when the initial value
is far from the correct value, although this does not lead to incorrect clustering outcomes,
more iterations are needed to achieve convergence in membership estimation. Typically, when
there is no prior information to guide the choice of the initial value, we recommend choosing
nearly equally spaced initial draws of the time-series estimates, as is done in our simulations
and empirics.

Remark 3. The objective function in Equation (8) is stabilized by a self-normalized rate
O(nϒiT ) that differs across units. Such a self-normalized rate presents a theoretical challenge
that is not considered in the current panel clustering literature. For instance, both Bonhomme
et al. (2022) and Su et al. (2016) applied the O(nT ) rate. However, the O(nT ) rate fails to sta-
bilize the sample moments of the mixed-root individuals. In particular, the orders of different

3 Numerical simulations show that the estimated groupings are robust to various choices of the rate parameter γ 0.
4 See Phillips (2023) for more details of parameter identification, estimation, and inference in mildly integrated and

mildly explosive models.
5 The robustness of membership estimation consistency even holds for choices such as the 0.1, 0.2, and 0.3 quantiles

of the time-series estimates.
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1356 liu, phillips, and yu

individuals in our mixed-root panel model are given below:

T∑
t=1

ỹ2
i,t−1 


⎧⎪⎨⎪⎩
(
ρ0

i

)2T
T 2γ when c0

i > 0
T 2 when c0

i = 0
T 1+γ when c0

i < 0
.(11)

The above rate conditions are derived in Phillips and Magdalinos (2007b) and Phillips (1987).
It is clear from (11) that a common unified rate fails to normalize all mixed-root individuals.
Instead, we use the self-normalized rate to address the challenge of stabilization.

3.2. Stage 2: Postclustering Estimation and Testing. Denote the true collection of members
of the jth group as

G0( j) = {
i ∈ In| g0

i = j
} ∀ j ∈ G0.

Suppose the estimated membership indicator vector is δ̂ = (̂g1, ĝ2, . . . , ĝn)′. Denote the esti-
mated members of the jth group by

Ĝ( j) = {i ∈ In| ĝi = j} ∀ j ∈ G0.

We consider two pooled LS estimators for ρ j, namely, the oracle estimator ρ̂ j and the post-
clustering estimator ρ̌ j. The oracle estimator that employs data from the true jth group G0( j)
is given by

ρ̂ j =
∑

i∈G0( j)

∑T
t=1 ỹi,t−1ỹit∑

i∈G0( j)

∑T
t=1 ỹ2

i,t−1

.(12)

The postclustering estimator that uses data from the estimated jth group Ĝ( j) is given by

ρ̌ j =
∑

i∈Ĝ( j)

∑T
t=1 ỹi,t−1ỹit∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

.(13)

Next define the following quantities:

σ̌ 2
j = 1

ň j

∑
i∈Ĝ( j)

σ̂
2
iu, ω̌

2
j = 1

ň j

∑
i∈Ĝ( j)

ω̂
2
i , λ̌ j = 1

ň j

∑
i∈Ĝ( j)

λ̂i, Ě j,nT =
∑

i∈Ĝ( j)

Ei,nT ,(14)

where

ω̂
2
i = 1

T

∑T
t=1 û2

it + 2
T

∑L
l=1

∑T
t=l+1 w(l,L)ûit ûi,t−l,(15)

σ̂
2
iu = 1

T

∑T
t=1 û2

it , λ̂i = 1
T

∑L
l=1

∑T
t=l+1 w(l,L)ûi,t−l ûit ,(16)

Ei,nT = ∑T
t=1 ϕ

2
i,t + 2

∑L
l=1

∑T
t=l+1 w(l,L)ϕi,tϕi,t−l,(17)

ϕi,t = ỹi,t−1̂̃ui,t − ϕ j, ϕ j = 1
ň jT

∑
i∈Ĝ( j)

∑T
t=1 ỹi,t−1̂̃ui,t,

ûit = yit − ρ̌ jyi,t−1,̂̃ui,t = ỹit − ρ̌ j ỹi,t−1, with i ∈ Ĝ( j),

w(l,L) = 1 − l
L+1 .
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a panel clustering approach to analyzing bubble behavior 1357

The quantities defined in (14) are variance, long-run variance, long-run one-sided covariance,
and bias estimates, constructed from the regression residuals ûit and ̂̃ui,t . The long-run quanti-
ties are constructed using the Bartlett window w(l,L).

Based on the membership and variance estimates, we proceed to implement testing proce-
dures to detect group-specific explosiveness. In order to test the null hypothesis H( j)

0 : c0
j = 0

against H( j)
1 : c0

j > 0 for any j, we provide two statistics, denoted by the following panel J- and
panel t-statistics:

J̃ j =
√

ň j

3
T

(
ρ̌ j − 1 − ň jT λ̌ j

Ď j,nT
+ ň jT ω̌2

j

2Ď j,nT

)
, t̃ j =

(
ρ̌ j − 1 − ň jT λ̌ j

Ď j,nT
+ ň jT ω̌2

j

2Ď j,nT

)
Ď j,nT

ω̌ j

√
Ě j,nT

,(18)

in which Ď j,nT := ∑
i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1, and Ě j,nT is defined in (17). Theorem 3 provides the limit
theory for these statistics under both null and alternative hypotheses, showing test consis-
tency.6

Note that there are two bias correction terms involved in these statistics, separately in-
troduced by serial correlation and demeaned variable corrections in each test. The term
−(ň jT λ̌ j )/Ď j,nT removes bias from serial correlation induced by stationary linear process er-
rors in the autoregression; and the term (ň jT ω̌2

j )/(2Ď j,nT ) eliminates the bias caused by de-
meaning to remove fixed effects. To the best of our knowledge, the explicit forms of these
bias terms are novel and are derived here for the first time in the panel context, although
they have a clear precedent in Phillips and Magdalinos (2007b) in the time-series context. The
above findings help to enhance our understanding of bias correction procedures in dynamic
panel models. In particular, beyond incidental parameter problems and the bias generated by
the presence of nonlinear functions, serial correlation in the component innovations can lead
to nonnegligible additional bias, coupled with inferential issues that need treatment to ensure
asymptotically pivotal tests. These adjustments are especially needed in near unit root cases.

A significant advantage of these panel tests is the potential power gains from cross-
section aggregation within a homogeneous cluster of individual time series that can enhance
their discriminatory power for bubble detection. By comparison, the recently developed panel
approach of Chen et al. (2022) focuses on the possible presence of a common single explosive
factor extracted by PCA. This method has the advantage of allowing for individual weight-
ing and cross-section dependence but it does not enhance discriminatory power. However, the
factor model approach might be modified by the use of clustering methods, similar to those
used here, to gain power from group aggregation.

The test statistics in (18) are based on the entire sample. But further development of the
methodology is possible to embed a real-time dating strategy for estimating the origination
and collapse dates of financial bubbles analogous to the time-series methods in Phillips et al.
(2011, 2015a). As indicated above, cross-section dependence (e.g., through interactive fixed
effects) can be added to the mixed-root dynamic panel with latent membership, similar to
second-generation panel unit root testing (Bai and Ng, 2004, 2010; Moon and Perron, 2004).
Such extensions involve nontrivial technical developments and are therefore left for future re-
search.

3.3. Estimation of the Group Number. So far we have assumed that the true number of
groups G0 is known. In practice G0 is unknown. When the group number is set to G, the es-
timated quantities δ̂, ρ̌ j, and Ĝ( j) are all dependent on G. For clarity they are therefore de-
noted by δ̂(G), ρ̌ j(G), and Ĝ( j,G). We propose to estimate the true number of groups using

6 Lemma B.1 in the Supporting Information and Lemma A10 provide supporting details for the proof of Theo-
rem 3.
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1358 liu, phillips, and yu

a new methodology that combines an IC and a Hausman-type model specification test. In par-
ticular, we use IC to select the lower bound of the group number in the first step, where the IC
function is defined as

IC(G) = ln

⎛⎝ 1
nT

G∑
j=1

∑
i∈Ĝ( j,G)

T∑
t=1

(ỹit − ỹi,t−1ρ̌ j(G))2

⎞⎠ + κnT G,(19)

with penalty κnT G depending on the number of groups G and a tuning parameter κnT that sat-
isfies the rate restriction

κnT + 1
nTκnT

→ 0.(20)

The lower bound of the group number is set to the minimizer of the IC, that is,

G̃ = arg min
G=1,2,...,Gmax

IC(G),(21)

where Gmax is a generic upper bound of G.
It is well known that the IC function defined in (19) can consistently select the true number

of groups or the true number of factors in many contexts (Bai and Ng, 2002; Bonhomme and
Manresa, 2015). But as discussed in Remark 8 and proved in Theorem 4 below, when mildly
stationary groups, a unit root group, and mildly explosive groups are all present in the panel,
it turns out that G̃ ≤ G0 with probability approaching 1, so that G̃ may underestimate G0 even
in the limit.7

Remark 4. It is well known in the clustering literature that the tuning parameter κnT , which
penalizes the overspecification of group numbers, needs to be carefully chosen. A poor choice
of κnT can lead to inconsistent estimation of group numbers, which further compromises the
performance of the postclustering inference. In theory as long as κnT + 1/(nTκnT ) → 0, the
IC estimator G̃ does not overestimate the correct number of groups. But for practical work,
we recommend setting κnT ∈ [(nT )−0.7, (nT )−0.6], as guided by our simulation findings.

In order to produce a consistent estimator of G0, after G̃ is obtained by IC, we propose
a new Hausman-type specification test to assess slope homogeneity when G is assumed to
be the number of groups for all G ∈ {G̃, G̃ + 1, . . . ,Gmax}. Assuming there are G groups,
the recursive k-means algorithm is applied to each estimated group j for j ∈ {1, 2, . . . ,G}
by assuming that each group j has at most G := (Gmax − G + 1) subgroups. In the subgroup
analysis of the estimated jth group, the variables of interest are denoted by δ̂ j(G), ρ̌ j,h(G),
Ĝ( j,h,G), ň j,h, and π j,h with h = 1, 2, . . . ,G. The notation becomes somewhat complex be-
cause of the groupings, subgroupings, and selection process. For precision, we let δ̂ j(G) =
(̂g j,1(G), ĝ j,2(G), . . . , ĝ j,ň j (G))′ be the estimated membership of subgroups in the estimated
jth group, ρ̌ j(G) = (ρ̌ j,1(G), ρ̌ j,2(G), . . . , ρ̌ j,G(G))′ be the estimated slopes in subgroups of

the estimated jth group, Ĝ( j,h,G) be the estimated individuals in the estimated hth subgroup
of the estimated jth group, and ň j,h be the estimated dimension of individuals in the estimated
hth subgroup of the estimated jth group. In a mild abuse of notation, we continue to denote
the postclustering estimate with undemeaned variables as ρ̌ j(G) and let

ρ̌ j(G) =
∑

i∈Ĝ( j,G)

∑T
t=1 yi,t−1yit∑

i∈Ĝ( j,G)

∑T
t=1 y2

i,t−1

, ρ̌ j,h(G) =
∑

i∈Ĝ( j,h,G)

∑T
t=1 yi,t−1yit∑

i∈Ĝ( j,h,G)

∑T
t=1 y2

i,t−1

, and limn,T
ň j,h

ň j
→ π j,h.(22)

7 The setting for Gmax needs to be larger than the correct group number G0. In our simulation study, we find that
when the correct group number is only 2 or 3, although Gmax is set as high as 7, G̃ still underestimates G0. This under-
estimation clearly comes from the IC procedure and not from the choice of Gmax. The simulations also show that Ĝ is
unaffected by the upper bound Gmax provided it exceeds G0.
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a panel clustering approach to analyzing bubble behavior 1359

ALGORITHM 2 recursive procedure to compute Ĝ

(i) Optimize the IC function of equation (19) and estimate the lower bound of the group number
G̃ via equation (21).

(ii) Let G = G̃.
(iii) Implement the recursive k-means algorithm in Algorithm 1. Set j = 1.
(iv) Obtain the Hausman-type statistic of Equation (26) for the estimated jth group. If the test

statistic exceeds cvnT , then set G = G + 1 and go back to Step 2. If the test statistic is smaller
than cvnT , then set j = j + 1 and re-iterate Step 2.

(v) If the null hypothesis of group-specific slope homogeneity cannot be rejected in each group
j = 1, 2, . . . ,G and G < Gmax, set Ĝ = G. If G = Gmax, set Ĝ = Gmax.

The idea behind this Hausman-type test is to detect unspecified parameter heterogene-
ity across subgroups in a recursive manner. Without losing generality, we discuss the case in
which G subgroups are specified in the estimated jth group since subgroup divisions with di-
mension smaller than G can be addressed in the same fashion as the following approach. Un-
der the null hypothesis of slope homogeneity in the jth group, the joint asymptotic theory
(i.e., (n,T ) → ∞) that will be discussed later in Section 4 shows√

ň jT 1+γ (ρ̌ j(G) · �G×1 − ρ̌ j(G)
) ⇒ N

(
0G×1, −2c0

j

(
π̃−1

j − IG

))
, if c0

j < 0;(23)

√
ň jT 2

(
ρ̌ j(G) · �G×1 − ρ̌ j(G)

) ⇒ N
(

0G×1, 2
(
π̃−1

j − IG

))
, if c0

j = 0;(24) √
ň jT 2γ

(
ρ0

j

)2T (
ρ̌ j(G) · �G×1 − ρ̌ j(G)

) ⇒ N
(

0G×1, 4
(

c0
j

)2(
π̃−1

j − IG

))
, if c0

j > 0;(25)

where π̃ j = diag{π j,1, π j,2, . . . , π j,G}. We assume that 0 < π j,h < 1 for all { j,h} under the null
hypothesis of slope homogeneity in the jth group. Therefore, the Hausman-type statistic can
be written as

Wj(G) := (
ρ̌ j(G)�G×1 − ρ̌ j(G)

)′[(−IG + π̃−1
j

)
ω̌2

j Ď
−1
j,nT

]−1(
ρ̌ j(G)�G×1 − ρ̌ j(G)

)
⇒ χ2

(
G
)
, under the null hypothesis of slope homogeneity in the jth group,(26)

where Ď j,nT := ∑
i∈Ĝ( j,G)

∑T
t=1 y2

i,t−1. Diminishing Type I error is achieved by implementing
tests of slope homogeneity in each estimated group ( j = 1, 2, . . . ,G) with a slowly diverging
critical value of the form cvnT := (1 + b log(nT ))χ2

0.95(G), where χ2
0.95(G) is the 95% critical

value of χ2(G) and b is some positive constant.8 We define the new estimator of the group
number as Ĝ defined by

Ĝ = inf
G̃≤G≤Gmax

{
G| Wj(G) ≤ cvnT , for any j = 1, 2, . . . ,G

}
.(27)

For clarity, the procedure to estimate G0 is summarized in Algorithm 2.

Remark 5. The pivotal null distribution of the Hausman specification test relies heavily
on the limit Gaussian distributions of the subgroup estimators defined in (22). Under cross-
sectional independence and an increasing number of individuals for each subgroup, the lim-
iting normal distributions of the subgroup estimators follow naturally. The condition of cross-

8 The setting b = 5 was found to work well in both the simulations and the empirical work.
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1360 liu, phillips, and yu

sectional independence is ensured by Assumption 1. Divergence of the dimension of the indi-
viduals in each subgroup is assured by the condition

lim
n,T

ň j,h

ň j
→ π j,h,

for h = 1, 2, . . . ,G and j = 1, 2, . . . ,G. Under these conditions, the group number estimator
based on IC and Hausman statistic determination is consistent for the correct group number.
Extensive simulations reported in Section 5 and the Supporting Information show that this
approach provides good finite-sample performance in group number estimation.

Remark 6. The existing literature typically imposes a high-level condition to assist in deter-
mining the true number of groups—see, for example, Assumption A.4 of Su et al. (2016). This
high-level condition can identify the signal of misspecification of the distancing parameter c j

through the mean squared errors of the residuals, thereby helping to determine the correct
number of latent groups in most cases; but it fails to do so when there is a mildly stationary
root—see Remark 8 and Lemma A11 below for details. If there are no mildly stationary in-
dividuals in the model, we can adopt this high-level condition and correctly estimate the true
group number. Nonetheless, for practical purposes in bubble detection, a panel model with
three individual types (mildly stationary, unit root, and mildly explosive) is more general and
can be empirically more relevant than a model with only unit root and mildly explosive types,
which makes a set of primitive conditions (especially Assumption 1(iv) that will be introduced
in the next section) for validity more useful. The adoption of a high-level condition such as
Assumption A.4 of Su et al. (2016) therefore places a constraint on the model and restricts
its potential for the empirical analysis of bubble behavior in this wider context with multiple
group types.

Remark 7. Consistent estimation is feasible using only Hausman statistic determination
by

Ĝ∗ = inf
1≤G≤Gmax

{
G| Wj(G) ≤ cvnT , for any j = 1, 2, . . . ,G

}
.(28)

But while consistent, we expect that Ĝ∗ has a slower convergence rate to G0 than Ĝ. The rea-
son is that Hausman statistic determination employs a slowly diverging critical value cvnT to
remove Type I errors asymptotically. A side effect of this approach is to increase Type II er-
rors, sacrifice discriminatory power, and reduce the convergence rate of Ĝ∗. For this reason,
we retain the hybrid model specification approach of Algorithm 2.

Remark 8. Consistency of the IC procedure (Bai and Ng, 2002; Bonhomme and Manresa,
2015; Su et al., 2016) and consistency of residual-based model specification tests (Lu and Su,
2017) both rely on the successful extraction of valid signals concerning potential model mis-
specifications from regression residuals. But the usual validity of these methods does not al-
ways hold for nonstationary models whose roots are close to unity. When the mixed-root
panel model contains latent memberships, these procedures tend to underestimate the true
number of groups. In particular, when individual time series follow a mildly stationary pro-
cess, the usual theory and limit results change because the error variance can still be consis-
tently estimated using an inconsistent estimate of the distance parameter ci. For instance, if

c0
i < 0 and an inconsistent time-series estimator ĉ

TS
i with ĉ

TS
i − c0

i = Op(1) is employed, we
have

1
T

∑T
t=1

(
yit − ρ̂

TS
i yi,t−1

)2
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a panel clustering approach to analyzing bubble behavior 1361

= 1
T

∑T
t=1 u2

it + 2
T 1+γ

∑T
t=1 uityi,t−1

(
c0

i − ĉ
TS
i

)
+ 1

T 1+2γ

∑T
t=1 y2

i,t−1

(
c0

i − ĉ
TS
i

)2

= 1
T

∑T
t=1 u2

it + Op

(
1

T
1+γ

2

)
+ Op

( 1
T γ

) →p
(
σ 0

iu

)2
,

where ρ̂
TS
i = 1 + ĉ

TS
i /T γ . Thus, when mildly stationary individual time series are missclus-

tered into other groups, the sample variance of regression residuals can still consistently esti-
mate the error variance. This property violates a key requirement of model selection, for ex-
ample, Assumption A.4 of Su et al. (2016), explaining the need to develop an alternative pro-
cedure based on a Hausman-type test that can correctly select the true number of groups.

Remark 9. Regarding the construction of the statistic in (26), the model selection proce-
dure and asymptotic theory are based on pooled least-squares (pooled LS hereafter) estima-
tion in (22) instead of the panel within estimator in (13). The pooled LS estimator works be-
cause of its consistency in estimating the distance parameter c. Further, as the individual fixed
effect is set to Op(1/T ), the pooled LS estimator does not suffer from incidental parameter
bias and converges to the correct value c0 under joint asymptotics with a normal limit dis-
tribution. It is possible to develop a Hausman statistic approach based on the panel within-
estimator in (13) or another estimator with an asymptotic normal distribution.

4. asymptotic theory

This section develops the asymptotic properties of the two-stage procedure for the mixed-
root panel autoregressive model given in (4) and (5). We first establish the uniform consis-
tency of the recursive k-means clustering method so that the estimated membership is asymp-
totically identical to the true membership. The postclustering estimators of the AR coeffi-
cients are then shown to be asymptotically equivalent to the oracle estimators that employ the
true group identities and the right-tailed panel J and t tests are shown to have pivotal limit
distributions under the null hypothesis of a group-specific unit root. Consistency is demon-
strated for the group number estimator based on the combined use of IC and Hausman-type
tests, so that Ĝ correctly selects the true number of groups G0 in large samples.

In order to establish the asymptotic theory of the two-stage procedure, we first impose the
following two assumptions to facilitate the development.

Assumption 1.

(i) For any i ∈ In, the individual fixed effects μi = Op(T−1).
(ii) The equation errors uit follow stationary linear processes

uit =
∞∑

h=0

Fihεi,t−h = Fi(L)εit,(29)

in which the operator Fi(z)(:= ∑∞
h=0 Fihzh) contains a series of deterministic coefficients

{Fih}∞h=0 with Fi0 = 1, for any i ∈ In. The innovations {εit} in (29) are iid(0, (σ 0)2) over
t with (σ 0)2 > 0 for each i and independent across i with uniformly bounded finite qth
(q ≥ 4) moments, supiE|εit |q < ∞. The summability restrictions

∞∑
h=0

h|Fih| < ∞,(30)

hold uniformly over i ∈ In. If g0
i = g0

� for any i, � ∈ In, then Fih = F�h for all h. For indi-
viduals i ∈ In with c0

i < 0, then Fih = 0 for all h ≥ 1 and uit = εit .
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1362 liu, phillips, and yu

(iii) Assume yi0 = 0 for any i ∈ In and uis = 0 for any i ∈ In and s ≤ 0.
(iv) There exist clow, cup > 0 for which c0

j ∈ C := [−cup,−clow] ∪ {0} ∪ [clow, cup],∀ j ∈ G0.
(v) There exists a constant ċ ∈ (0,∞) such that, for any j, j′ ∈ G0,

inf
j �= j′

∣∣∣c0
j − c0

j′

∣∣∣ ≥ ċ.

Assumption 1(i) provides restrictions on the individual fixed effects that ensure drift effects
from the equation intercept are asymptotically negligible in all cases. Assumption 1(ii) pro-
vides for linear process equation errors uit with group-specific homogeneity that facilitates the
limit theory (Phillips and Solo, 1992). Assumption 1(ii) assumes cross-sectional independence
and possible heterogeneity over i ∈ In with uniform moment conditions that facilitate the de-
velopment of limit theory for cross-section averages. Further enhancements to this framework
that allow for cross-section dependence are possible and will be considered in future work.

Under Assumption 1(ii), the error process {uit} admits the Beveridge–Nelson decomposi-
tion, namely,

uit = Fi(1)εit + ε̃i,t−1 − ε̃it ,

where ε̃it = ∑∞
h=0 F̃ihεi,t−h and F̃ih = ∑∞

k=h+1 Fik. The summability condition
∑∞

h=0 |F̃ih| < ∞ is
satisfied by (30), which in turn assures functional laws hold for the partial sum processes Sit =∑t

s=1 uis (Phillips and Solo, 1992)

Bi,T γ (·) = Si,�T γ ·�(·)
T γ /2

= 1
T γ /2

�T γ ·�∑
s=1

uis ⇒ Bi(·),

for all i where the Bi(·) are Brownian motions with variances (ω0
i )2.

Remark 10. Bonhomme and Manresa (2015) assumed in their work that the errors were
strong mixing. In our approach it is convenient to employ stationary linear process (Phillips
and Solo, 1992) errors, which includes nearly all types of stationary autoregressive moving av-
erage (ARMA) processes and is a natural choice in the present linear panel dynamic setting,
accommodating stationary endogenous control variables also. See Remarks 15 and 16 for fur-
ther discussion.

Another modeling strategy for uit that subsumes mixing and linear processes is to employ
mixingale conditions and our framework accommodates this extension. Mixingales include
martingale differences, ARMA processes, linear processes, and various mixing and near-
epoch dependent series as special cases (Davidson, 1994) with known asymptotics and invari-
ance principle properties (McLeish, 1977; Andrews, 1988). Recent uses of mixingale assump-
tions in panel models appear in Hahn et al. (2022) and Li et al. (2022). For use in the present
case, we can employ a scalar Lq-mixingale array {uT,it} := {uit/

√
T } with respect to a suitable

filtration Fit satisfying the condition∥∥E[uT,it |Fi,t−k]
∥∥

q ≤ atψk,
∥∥uT,it − E[uT,it |Fi,t+k]

∥∥
q ≤ atψk+1,(31)

for any k ≥ 0 and where ‖X‖q := (E‖X‖q)
1
q . The constants at and ψk control the magnitude

and the dependence of {uit}, respectively. With this approach we replace Assumption 1(ii) by
the following condition.

Assumption 2Li and Liao (2020). Let the error terms {uT,it} satisfy (31) for some q ≥ 3 and
for some positive sequence at , sup1≤t≤T |at | ≤ a/T 1/2 with a being a constant and

∑
k≥0 ψk <

+∞. For mildly stationary individuals, uit = εit .
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a panel clustering approach to analyzing bubble behavior 1363

Assumption 2 allows us to approximate the partial sum of the mixingale {uT,it} using a mar-
tingale as

uT,it = u∗
T,it + ũT,it − ũT,i,t+1,

where u∗
T,it = ∑∞

s=−∞{E[uT,i,t+s|Fit] − E[uT,i,t+s|Fi,t−1]} forms a martingale difference se-
quence and the ‘residual’ ũT,it satisfies sup1≤t≤T ‖ũT,it‖2 = Op(1/

√
T ). This representation

allows the martingale concentration inequality (Freedman, 1975) to hold. The uniform upper
bound then applies in the mixingale case and the difference between the martingale and
mixingale components can be bounded by the Markov inequality. With this setup, no material
change is needed for our framework to apply under mixingale errors.

Remark 11. In the presence of heteroskedasticity no modification is needed for clustering
as the convergence rates in parameter estimation stay the same. In that case, the clustering er-
rors (CEs) remain asymptotically negligible, so that consistency of estimated group member-
ship is retained.

Further, in the presence of heteroskedasticity over t as discussed later, our tests still have
pivotal null limit distributions. In particular, postclustering estimates have limiting normal dis-
tributions under joint asymptotics; and for the unit root group the limit distributions are re-
tained. For example, in the pure stationary AR(1) case, the standardized sample covariance
(1/

√
T )

∑T
t=1(xt−1εt ) has asymptotic variance E[(xt−1x′

t−1) · (ε2
t )], which cannot be factored to

E(xt−1x′
t−1) · E(ε2

t ), thereby playing a role in the limit theory. But under the group-specific
unit root null hypothesis, partial sum processes converge to a limit Gaussian process with two-
sided long-run variance. It follows that our statistics, which employ long-run variance estima-
tors, are general enough to allow for time-series heteroskedasticity; and test statistics that al-
low for bias correction are robust to intertemporally correlated errors within the linear pro-
cess error framework.

Our asymptotic theory does rely heavily on cross-sectional aggregation and independence
across individuals. So heteroskedasticity across i brings substantial challenges. In the presence
of such heterogeneity, the test statistics need to be scaled by a heteroskedasticity-robust vari-
ance estimate (White, 1980) instead of the current variance estimate. With the additional com-
plexity, this extension would lead to a different test statistic, which involves further asymptotic
analysis that is best left for future research.

Assumption 1(iii) details simple initial conditions and these may be considerably weakened
without changing the limit theory, as shown in time-series settings (Phillips and Magdalinos,
2009), at the expense of further notational complications. Assumption 1(iv) imposes an iden-
tification condition that ensures a bounded support for the distancing parameter vector c so
that, employing the earlier support notation CG0 , we have

CG0 := XG0

1 C, with C := [−cup,−clow] ∪ {0} ∪ [clow, cup],

in which cup := max j∈G0 |c0
j · 1{c0

j �= 0}| and clow := min j∈G0 |c0
j · 1{c0

j �= 0}|, with 1{·} being the
indicator function. Assumption 1 gives another identification condition in which the group-
specific parameters are well separated and ensures that the recursive k-means algorithm can
correctly determine each group under the joint asymptotic scheme with both n,T → ∞. The
next assumption prescribes some useful rate conditions on these asymptotics.

Assumption 3.

(i) As n → ∞,

n j

n
→ π j ∈ (0, 1],
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1364 liu, phillips, and yu

where π j is a constant value for any j ∈ G0. Moreover,

inf
j∈G0

π j ≥ M > 0,

for some constant M > 0.
(ii) The following rate restrictions hold:9 T γ∧(1−γ )(log2 T )−2 	 n, T 3−4γ (log2 T )−8 	 n2,

T (log2 T )−8 	 n(log2 n)2, T 2γ−4/q−4ε∗ 	 n for any ε∗ > 0, and n 	 T 3γ+2ξ−1(log T )4 in
which the constant ξ satisfies ξ > 8c2

up(1 − γ )/(mini∈In (ω0
i )2).

(iii) The lag truncation parameter in long-run variance estimations, L, satisfies the condition
that L = o(T

1
3 ) and L = o(T 2γ ).

Assumption 3(i) implies that the cardinality of each group increases proportionally to the
full dimension of the cross section. If we denote

σ 2
0 :=

G0∑
j=1

π j

(
σ 0

j

)2
,

then, under Assumption 3(i), we have

lim
n→∞

1
n

n∑
i=1

(
σ 0

iu

)2 = lim
n→∞

G0∑
j=1

nj

n

⎛⎝ 1
nj

∑
i∈G0( j)

(
σ 0

j

)2

⎞⎠ =
G0∑
j=1

π j

(
σ 0

j

)2
= σ 2

0 > 0,(32)

in which the individual-specific variance (σ 0
iu)2 is defined in Equation (7). Positivity σ 2

0 > 0 is
assured because all π j > 0 by Assumption 3(i), the innovations {εit} have positive variance,
and all group-specific true variances σ 0

j > 0 by Assumption 1(ii). Assumption 3(iii) provides
necessary conditions to ensure consistent estimates for the one-sided and two-sided long-
run variances.

Assumption 3(ii) imposes rate restrictions on the joint divergence (n,T ) → ∞ that ensure
the CEs are negligible and the recursive k-means clustering algorithm is uniformly consistent.
The large-T conditions facilitate the application of concentration inequalities and ensure that
the moment conditions for each individual are uniformly bounded. The large-n assumption
guarantees that the mildly stationary individuals can be consistently allocated to their cor-
rect groups. These rate restrictions that ensure clustering consistency are all primitive condi-
tions comparable to Assumption A.2 of Su et al. (2016) that bounds both n and T . Further,
under the appropriate model framework, our rate restrictions imply the high-level conditions
of clustering consistency in Bonhomme and Manresa (2015, Assumption A.2) and Okui and
Wang (2021, Assumption A.3).

Assumption 3(ii) imposes rate restrictions ensuring that the first-stage parameter estimate
ĉ∗ converges at a faster rate than O(T γ+ξ (log T )2), so that the estimated group structure
is consistent with the true latent membership for all types of nonstationary roots. Specifi-
cally, the large-T rate restrictions ensure that the tail probabilities of sample covariances are
bounded. The large-n requirement n 	 T 3γ+2ξ−1(log T )4 ensures clustering consistency for all
three types of nonstationary roots and assures that the upper bound of ĉ∗ has convergence
rate Op(1/(

√
nT

1−γ
2 )) faster than O(T−γ−ξ /(log T )2), the lower bound for clustering consis-

tency. Assumption 3(ii) does not impose very restrictive conditions on the rate parameter γ .
In practical work, the panel clustering approach should therefore have wide applicability in
cases where mixed-root phenomena are present. The simulations reported later show that the
recursive k-means clustering algorithm and postclustering test statistics are actually robust to
γ choice. In particular, if the chosen value of γ is too large to satisfy the rate restrictions,

9 Recall that AnT 	 BnT signifies that BnT /AnT = op(1) as (n,T ) → ∞.
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a panel clustering approach to analyzing bubble behavior 1365

the clustering results are nearly identical to those obtained when the rate restrictions apply.
This evidence suggests that the rate restrictions used to validate consistency of the cluster-
ing methodology may be stricter than necessary and supports the use of a reasonably high
value of the localizing rate γ in empirical work, as recommended in the time-series studies
of Kostakis et al. (2015) and employed in the empirical work and simulations of Liu et al.
(2022).10

It is worth mentioning that, for mildly stationary groups, i.i.d. error components are as-
sumed, which is convenient here to ensure clustering consistency for these groups and
matches standard assumptions for stationary autoregressions. In mildly stationary time-series
regression, serially correlated errors do affect the limit theory. In particular, Phillips and Mag-
dalinos (2007b, Theorem 4.4) show that for mildly stationary individuals i, the time-series LS
autoregressive estimator ρ̂

TS
i has second-order bias terms that appear in the limit theory

T
1+γ

2

(
ρ̂

TS
i − ρ0

i − 1
T γ

−2c0
i(

ω0
i

)2

(
λ

0
i + c0

i

T γ
Mi,T

))
⇒ N

(
0,−2c0

i

)
,

in which Mi,T is defined in Theorem 2. When γ > 1/3, the bias is simplified and the compo-
nent Mi,T is removed, leading to the modified asymptotics

T
1+γ

2

(
ρ̂

TS
i − ρ0

i − 1
T γ

−2c0
i λ

0
i(

ω0
i

)2

)
⇒ N

(
0,−2c0

i

)
.

This simplification, which is achieved by γ > 1/3, is convenient in conducting a correction for
bias in estimation and inference. With γ > 1/3 it would therefore be feasible to employ bias
correction procedures within the k-means clustering algorithm, thereby allowing for serially
correlated errors in mildly stationary groups. Such an extension is left for future work.

Thus, to attain clustering consistency for all group types without asymptotic bias correction,
the limit theory here assumes i.i.d. errors for mildly stationary groups accompanied by condi-
tions that include n 	 T 3γ+2ξ−1(log T )4. But if the practical focus is solely on mildly explosive
and unit root groups then the i.i.d. condition can be eliminated. That approach is investigated
in the Supporting Information and in such cases the size and power performance of postclus-
tering bubble detection statistics are unaffected. Readers are referred to the Supporting Infor-
mation for details.

4.1. Clustering and Estimation. First, uniform consistency of the recursive k-means cluster-
ing method is established, showing that the estimated membership is equivalent to the true
membership under the joint asymptotic scheme, (n,T ) → ∞.

Theorem 1. Suppose Assumptions 1 and 3 hold. When (n,T ) → ∞,

Pr
(

max
1≤i≤n

∣∣̂gi − g0
i

∣∣ > 0
)

→ 0.

Theorem 1 shows that we can correctly recover the latent group structures of the mixed-
root panel autoregression model under the joint asymptotic framework. This result relies
heavily on the identification conditions given in Assumptions 1(iv) and 1(v), based on which
the computational algorithm of Bonhomme and Manresa (2015) applies to the present model.
As long as the group-specific distancing parameters are well separated across groups and the
parameter supports are compact, the latent group membership can be consistently estimated
via the recursive k-means clustering algorithm.

10 In the simulation studies and the empirics we use the value 0.9 for the rate parameter, which has good perfor-
mance in practice and is close to the value 0.95 suggested in Kostakis et al. (2015).
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1366 liu, phillips, and yu

Remark 12. Corrections for incidental parameters are known to cause endogeneity in dy-
namic panel models and disturb pivotal test procedures (Hahn and Kuersteiner, 2002). In the
present framework, the bias terms generated by incidental parameter corrections still exist
but they are not present in the limiting Gaussian distributions in all groups except for the unit
root group. But in the unit root group the first-stage estimator ĉ∗

j still converges at a faster rate
than Op(T γ+ξ (log T )2) in the presence of incidental parameter bias, so the incidental param-
eter problems are no longer a concern. The disappearance of incidental parameter bias is well
recognized in near-unity panel data models (Phillips, 2018). For instance, Moon and Phillips
(2000) showed that incidental parameter bias terms are eliminated asymptotically under the
rate condition T/n → ∞. In this article, when the rate restriction T 1−γ /n → ∞ holds,11 inci-
dental parameter bias is eliminated under joint asymptotics for the non–unit-root groups and
the convergence rate of ĉ∗ is faster than Op(T γ+ξ (log T )2), guaranteeing the clustering consis-
tency of the k-means algorithm.

As already noted, asymptotic bias from error serial correlations instead of incidental pa-
rameter bias can invalidate clustering consistency in the k-means algorithm. Under serial cor-
relation the errors uit induce asymptotic bias of order Op(nT ). For the mildly explosive and
unit root individuals, their group-specific signal matrices

∑
i∈G0( j)

∑T
t=1 ỹ2

i,t−1 are, respectively,
of orders Op(n(ρ0

j )2T T 2γ ) and Op(nT 2). The first-stage estimates ĉ∗
j in these groups there-

fore provide faster convergence rates than Op(T γ+ξ (log T )2), which is the lower bound to
ensure consistent membership estimation for mildly explosive and unit root groups. But for
mildly stationary groups, the first-stage estimates ĉ∗

j are inconsistent under serially correlated
errors and i.i.d. errors uit = εit are therefore assumed in the present work, as discussed, ensur-
ing first-stage parameter estimation consistency and uniform consistency of the k-means clus-
tering algorithm across all groups.

With the clustered membership obtained from Stage 1, we employ the panel within esti-
mate ρ̌ j based on the estimated membership {̂gi}n

i=1. Since the CEs are asymptotically negligi-
ble, it is easy to show that the postclustering estimator ρ̌ j is asymptotically equivalent to the
oracle estimator ρ̂ j that uses the true group structure. Thus, for any 1 ≤ j ≤ G0, if ρ̂ j and ρ̌ j

are defined as in (12) and (13), then

√
nj

(
ρ0

j

)T
T γ

(
ρ̌ j − ρ0

j

)
= √

nj

(
ρ0

j

)T
T γ

(
ρ̂ j − ρ0

j

)
+ op(1), if c0

j > 0,(33)

√
njT

(
ρ̌ j − 1 + 3(σ 0

j )2

(ω0
j )

2
1
T

)
= √

njT
(
ρ̂ j − 1 + 3(σ 0

j )2

(ω0
j )

2
1
T

)
+ op(1), if c0

j = 0,(34)

and

√
njT

1+γ
2

(
ρ̌ j − ρ0

j − 1
T γ

−2c0
j

(ω0
j )

2

(
λ0

j + c0
j

T γ mj,T

))
= √

njT
1+γ

2

(
ρ̂ j − ρ0

j − 1
T γ

−2c0
j

(ω0
j )

2

(
λ0

j + c0
j

T γ mj,T

))
+ op(1), if c0

j < 0,(35)

where mj,T in (35) denotes a nonnegligible bias element whose explicit form is given by (39)
in Theorem 2. Based on (33), (34), and (35), the asymptotic theory may be obtained from
that of the oracle estimator based on the true group membership. Under the joint conver-
gence framework (n,T ) → ∞, the following theorem provides the Gaussian limit theory of
the postclustering estimator ρ̌ j of the jth estimated group.

11 The rate restriction in Lemma A10 ensures that the demeaning terms arising from incidental parameter adjust-
ments in mildly stationary and mildly explosive groups are asymptotically negligible.
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a panel clustering approach to analyzing bubble behavior 1367

Theorem 2. Suppose Assumptions 1 and 3 hold. When (n,T ) → ∞,

√
nj

(
ρ0

j

)T
T γ

(
ρ̌ j − ρ0

j

)
⇒ N

(
0, 4

(
c0

j

)2
)
, if c0

j > 0;(36)

√
njT

⎛⎜⎝ρ̌ j − 1 +
3
(
σ 0

j

)2

(
ω0

j

)2

1
T

⎞⎟⎠ ⇒ N (0, 3), if c0
j = 0;(37)

√
njT

1+γ
2

⎛⎜⎝ρ̌ j − ρ0
j − 1

T γ

−2c0
j(

ω0
j

)2

(
λ0

j +
c0

j

T γ
mj,T

)⎞⎟⎠ ⇒ N
(

0,−2c0
j

)
, if c0

j < 0,(38)

where

mj,T = 1
n j

∑
i∈G0( j) mi,T and mi,T = ∑∞

h=1

(
ρ0

j

)h−1
E(̃εitui,t−h).(39)

Remark 13. Theorem 2 shows that ρ̌ j can consistently estimate the true slope parameters in
all three types of nonstationary roots. The asymptotic distributions of the postclustering esti-
mators are always Gaussian, regardless of the value of c0

j and show distinctively different be-
haviors from the time-series case, as shown in Phillips and Magdalinos (2007b), in which the
limiting distributions are Cauchy, DF, and Gaussian when c0

j > 0, = 0, < 0, respectively. The
above difference suggests that it is easier to test a hypothesis about the autoregressive coeffi-
cient in the panel context than in a time-series context, as only the pivotal critical values are
needed in practice.

Remark 14. The convergence rates of ρ̌ j are
√

nj(ρ0
j )T T γ ,

√
njT , and

√
njT

1+γ
2 for the

respective cases c0
j > 0, c0

j = 0, and c0
j < 0. These rates are

√
nj times the usual conver-

gence rates for time series (Phillips and Magdalinos, 2007b). These enhanced rates in the
panel model exploit the effects of cross-section averaging and confirm that panel tests, which
combine cross-section and time-series information, are expected to have improved statistical
power over tests that rely only on time-series data.

Remark 15. Additional control variables have been used in the dynamic panel literature.
For example, Moon and Phillips (2004) and Norkutė and Westerlund (2021) modeled the
near-unit-root panel model by including exogenous variables as in the following system:

zi,t = β ′xi,t + yi,t , yi,t = αi + ρgi yi,t−1 + ui,t with ρgi = 1 + cgi

T γ
,(40)

where the zit are asset prices and xit contains d-dimensional market fundamentals. Follow-
ing the quasi-maximum likelihood estimator (QMLE) approach of Norkutė and Westerlund
(2021) or the PSY-IVX approach of Shi and Phillips (2021), we can concentrate out xit and
obtain the residuals {ŷit}n,T

i=1,t=1. The proposed two-stage procedure can then be applied to ŷit

without further changes. In the empirical work of this article, market fundamentals are con-
centrated out and our method is applied to (4). A further extension that incorporates multidi-
mensional clusterings as in Cheng et al. (2019) and Leng et al. (2023) to allow both β and ρ to
differ across groups may be potentially useful but is not considered in the present work.

Remark 16. Predetermined variables have also been used in the dynamic panel literature.
For example, when testing for the presence of unit roots in a panel setting, Chang (2002) in-
cluded predetermined variables. When αi = 0 in (40), the mixed-root panel model can be de-
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1368 liu, phillips, and yu

composed as

(1 − ρgi L)yit =
( ∞∑

h=0

FihLh

)
εit = Fi(L)εit = Fi,1(L) · Fi,2(L)εit,(41)

where some factorization Fi(L) = Fi,1(L)Fi,2(L) applies. Then the model can be transformed
as

(1 − ρgi L)Fi,1(L)−1yit = Fi,2(L)εit,(42)

and lagged variables generated as endogenous controls. Clearly, by allowing uit to be a general
stationary linear process, (4) characterizes the impact of such endogenous controls in a differ-
ent manner.

Remark 17. Theorem 2 gives closed-form expressions of the second-order asymptotic bi-
ases that can arise in our panel model framework and connects to earlier work on endogene-
ity issues in the panel unit root literature. For instance, the traditional model setup (Chang
and Song, 2009) includes endogenous regressors to eliminate omitted variable bias and is es-
sentially equivalent to estimating the following augmented model:

(1 − ρgi L)Fi(L)−1yit = εit,(43)

by ordinary least squares (OLS). Or, explicit forms of asymptotic bias as in the general frame-
work of Phillips and Magdalinos (2007b) can be employed with bias correction procedures.
In our model framework, the focus is on distinguishing explosive, unit root, and mildly inte-
grated groups, so the regression approach is much simpler and better suited to practical situa-
tions where it is useful to distinguish such groups in empirical research.

4.2. Testing for Explosive Roots. Theorem 3. Suppose Assumptions 1 and 3 hold and
(n,T ) → ∞. Under the null hypothesis H( j)

0 : c0
j = 0, we have t̃ j ⇒ N (0, 1), and J̃j ⇒ N (0, 1).

Under the alternative hypothesis H( j)
1 : c0

j > 0, we have t̃ j 
 ((ρ0
j )T √

n), and J̃j 
 (
√

nT 1−γ ).

Remark 18. In the explosive root groups, where c0
j > 0, the sample moment

∑
i∈G0( j)

T∑
t=1

ỹ2
i,t−1 = Op

(
n
(
ρ0

j

)2T
T 2γ

)
,

ensures asymptotically negligible bias terms, which diminish at a faster rate than the Gaussian
distribution. Therefore,

√
nj

(
ρ0

j

)T
T γ

⎛⎜⎝ρ̌ j − ρ0
j +

njT
(
σ 0

j

)2

2
∑

i∈G0( j)

∑T
t=1 ỹ2

i,t−1

⎞⎟⎠ ⇒ N
(

0, 4
(

c0
j

)2
)
, if c0

j > 0;(44)

√
njT

⎛⎜⎝ρ̌ j − ρ0
j +

njT
(
σ 0

j

)2

2
∑

i∈G0( j)

∑T
t=1 ỹ2

i,t−1

⎞⎟⎠ ⇒ N (0, 3), if c0
j = 0.(45)

By Theorem 2 and Lemma A8, when (n,T ) → ∞, we can simply replace the sample moment
that relies on the true membership by the corresponding sample moment based on the esti-
mated group structures. It follows that
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a panel clustering approach to analyzing bubble behavior 1369

√
nj

(
ρ0

j

)T
T γ

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
⇒ N

(
0, 4

(
c0

j

)2
)
, if c0

j > 0,(46)

√
njT

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
⇒ N (0, 3), if c0

j = 0.(47)

The consistency of the short-run variance estimate ensures standard normality of the postclus-
tering statistics t̃ j and J̃ j under H( j)

0 : c0
j = 0.

Remark 19. In comparison with statistics based on time-series data, the t-statistic under
the alternative hypothesis of an explosive root diverges at the rate O((ρ0

j )T ), slower than the
O((ρ0

j )T √
n) rate of Theorem 3. The power deficiency of pure time-series t-tests arises from

this lower convergence rate of time-series estimates under the alternative. Importantly, under
the alternative H( j)

1 : c0
j > 0 the t-statistic t̃ j has a divergence rate that is faster by an exponen-

tial factor than the coefficient-based test for which J̃ j = Op(
√

nT 1−γ ). This difference, which
does not occur in stationary alternatives (for either time-series or panel data tests), arises be-
cause t̃ j is constructed with a standard error in the denominator that shrinks at an exponential
rate corresponding to the signal strength of the regressor in the mildly explosive case.

4.3. Estimating the Number of Groups. The following result shows that the IC estimator G̃
is inconsistent when there are mildly stationary groups in the data.

Theorem 4. Suppose Assumptions 1 and 3 hold and (n,T ) → ∞. When either (i) γ ∈ (0, 1)
and c0

i ≥ 0 or (ii) γ = 0, we have G̃ →p G0. When γ ∈ (0, 1), we have G̃ ≤ G0, with probability
approaching 1.

The first part of Theorem 4 indicates that when there is no mildly stationary group, G̃ consis-
tently estimates G0. The second part of the theorem shows that G̃ may underestimate G0 with
positive probability asymptotically when mildly stationary processes are present in the panel.
The next result shows that the combined IC and Hausman test estimator Ĝ delivers a consis-
tent estimate of G0.

Theorem 5. Let Assumptions 1 and 3 hold and γ ∈ (0, 1). Then, Ĝ →p G0, as (n,T ) → ∞.

Remark 20. The idea of using a Hausman-type statistic in this context follows Phillips and
Sul (2003). The procedure consistently tests for slope heterogeneity and possible miscluster-
ing of individuals in the panel, thereby providing a useful complement to IC group num-
ber selection, especially in cases like the present where IC is not consistent for all possible
classifications. Pesaran et al. (1996) gave another Hausman-type statistic to test for a differ-
ence between panel within estimation ρ̂FE and mean group estimation ρ̂MG, where ρ̂MG =
(1/n)

∑n
i=1 ρ̂

TS
i and ρ̂

TS
i is the time-series estimate for individual i in the panel, as defined in

Equation (3). But this procedure is not easily used in the present context since ρ̂FE and ρ̂MG

are both asymptotically efficient estimates with Avar(ρ̂FE ) = Avar(ρ̂MG) when mildly station-
ary groups exist, so the Rao-Blackwell theorem is not applicable (Pesaran and Yamagata,
2008).

Remark 21. In the asymptotic analysis earlier in this section, the limit theory was obtained
under the assumption that the true number of groups, G0, was known. Theorem 5 shows that
the estimator Ĝ consistently estimates G0. Following common practice in the panel clustering
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1370 liu, phillips, and yu

literature (Bonhomme and Manresa, 2015; Huang et al., 2021; Su et al., 2016), we treat the
consistent estimate Ĝ as the true value G0 in the practical work of implementation.12

5. simulation studies

Several numerical experiments were designed to check the finite sample performance of the
procedures developed above. These include the following: the group number estimate in (27);
the membership estimate generated by the recursive k-means clustering algorithm in (8); the
postclustering estimates in (13); and the size and power performances of the proposed tests in
(18).

The following DGP was used for the simulations: individual fixed effects μi
i.i.d.∼ T−1N (0, 1);

errors uit = θui,t−1 + εit with either (i) serially correlated errors (θ = 0.5, εit
i.i.d.∼ N (0, 0.1)) or

(ii) i.i.d. errors (θ = 0, εit
i.i.d.∼ N (0, 0.1))13; sample sizes n = 32, 48, 64, 72, 96, 120, 144, 150,

192, and T = 150, 200, 250, 400, 600, 800; group number G0 = 3 (i.e., three groups) with π1 :
π2 : π3 = (1/3) : (1/3) : (1/3) or G0 = 2 (i.e., two groups) with π1 : π2 = (1/2) : (1/2). The pa-
rameter settings for c and γ were as follows:

(
c0

1, c0
2, c0

3, γ
) =

{
(−1, −5, −10, 0.4) for DGP 0
(0.5, 0.04,−0.06, 0.1) for DGP 1

,(48)

and

(
c0

1, c0
2, γ

) =
⎧⎨⎩(0.5, 0.04, 0.1) for DGP 2

(0.5, 0, 0.1) for DGP 3
(0.5, 0.01, 0.1) for DGP 4

,(49)

in which only a small true value γ = 0.1 was used, while checking the robustness of the clus-
tering accuracy with a misspecified γ ∗ > γ . Simulation results with a larger true value (e.g.,
γ > 0.5) are given in Liu et al. (2022) to which readers are referred.

These settings reflect those found in the empirical work in Section 6. The models considered
allow for three groups (G0= 3) and two groups (G0 = 2). With 3 groups and all c0

j < 0, DGP
0 helps to reveal the downward bias problem of IC when all groups are mildly stationary. In
DGPs 1–4, the AR(1) parameter values are close to the empirical estimates. All these DGPs
have a mixed collection of groups and are designed to show the accuracy of the hybrid model
specification procedure, the consistency of the recursive k-means clustering algorithm, and the
power improvements that result from cross section within group averaging in the panel infer-
ence procedures. In order to explore the advantages of the postclustering panel tests, we draw
comparisons with standard semiparametric time-series test statistics, namely, PP t and J tests
(Phillips, 1987; Phillips and Perron, 1988), which follow nonstandard limit distributions14 un-
der the null H0 : c0

i = 0.
According to the pivotal distributions of the panel t- and J-tests under the null hypothesis,

the right-tailed 95% critical value is 1.64. For the time series PP t- and J-tests, the right-tailed
95% critical values are set at −0.07 and −0.13, respectively (e.g., Tables B.5–B.6 in Hamil-
ton, 1994). The bandwidth for the long-run variance estimates in (15) and (16) was set at L =
�T 0.3�, the bandwidth for the variance estimate in (17) was set to L = �T 0.1�, and for the PP

12 It is worth noting that a slow rate of convergence in determining the correct model specification can lead to in-
valid inference (Leeb and Pötscher, 2005, 2008) due to postselection inference difficulties particularly in small sam-
ples. However, existing results in the literature (Liu et al., 2020) show that overidentification of the group number and
resulting minor classification errors do not damage the consistency of the postclassification estimators. Extensions of
such findings to nonstationary panel models like those of this article are a topic for further research.

13 The Supporting Information gives results for i.i.d. errors and signal-to-noise ratios for each group in DGPs 0–2.
14 Explicit forms and null limit distributions of the t and J tests are given in equations (43) and (44) of Liu et al.

(2022).

 14682354, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12647 by Y

ale U
niversity, W

iley O
nline L

ibrary on [13/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



a panel clustering approach to analyzing bubble behavior 1371

Table 2
empirical frequency of model selection under dgp 0 (θ = 0.5)

IC Estimator G̃ Proposed Estimator Ĝ
n T 1 2 3 4 5 6 7 1 2 3 4 5 6 7

120 200 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
120 400 0.000 0.999 0.001 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
120 600 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
120 800 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
150 200 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.001
150 400 0.000 0.947 0.053 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
150 600 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000
150 800 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

time-series statistics the bandwidth for the long-run variance and covariance components was
set to �T 0.3�.15 These bandwidth choices are consistent with the rate restrictions in the theory
development and they are used in the empirical analysis. In all cases in the numerical simula-
tions, the number of replications was 1,000.

The performance of the group number estimate Ĝ is considered first. The tuning parame-
ter κnT in the IC penalty is (nT )−0.6 or (nT )−0.7 and the upper bound Gmax is 7.16 Although
IC has a downward bias, it does help to raise the convergence rate of the procedure and pro-
vides some improvement in finite-sample performance. The penalty can be set in a flexible
way (e.g., in a domain such as κnT ∈ [(nT )−0.7, (nT )−0.6]).17 The critical value of the Hausman
test is set as cvnT = (1 + 5 log(nT ))χ2

0.95(G) and G = (Gmax − G + 1). Table 2 reports the em-
pirical frequency of the IC and proposed estimators of G (i.e., G̃ in (21) and Ĝ in (27)) for
DGP 0. As T increases, the performance of Ĝ steadily improves, so that when T is larger than
200 Ĝ successfully identifies the true G0 with only small errors involving overestimation, re-
vealing evidence of consistency in group number estimation. By comparison the downward
bias of IC is evident in nearly every case, corroborating the asymptotic theory. The Supporting
Information reports the performance of G̃ and Ĝ for other DGPs.

Next, finite sample performance of the recursive k-means clustering algorithm and postclus-
tering estimation was checked, assuming the true group number G0 was known. Table 3 re-
ports the CE, root mean squared error (RMSE), and bias of the postclustering estimates of
DGP 1 and results for other DGPs are given in the Supporting Information. The CE is de-
fined as

1
n

G0∑
j=1

∑
i∈Ĝ( j)

1
{
ĝi �= g0

i

}
.

The RMSE is the square root of the sample moment of the squared differences between the
postclustering estimates and the true values. The bias is based on the averaged differences be-
tween the postclustering estimates and the true values. For comparison we also report the CE,
RMSE, and bias of the oracle estimates where it is assumed that the true group membership
δ0 is known.

15 Bandwidths are selected based on the simulation findings in the mixed-root panel model. When the bandwidths
of (15) and (16) are smaller than �T 0.3�, the panel t-test statistic overrejects and leads to size distortion. When the
bandwidths used in (17) exceed �T 0.1�, the panel t-test statistic is too small and test power in rejecting the null of a
group-specific unit root is reduced. Automated bandwidth choices could be obtained by cross validation, as in Phillips
et al. (2017), and this approach is left for future investigation.

16 The generic upper bound does not impact the performance of either IC or Hausman-type statistics once it is set
to a large enough value.

17 The main article uses (nT )−0.7 and results with the setting (nT )−0.6 appear in the Supporting Information.
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1372 liu, phillips, and yu

Table 3
clustering and estimation by two stage procedure under dgp 1 and correct γ ∗ value (γ ∗ = 0.1, with θ = 0.5 )

Group 1 Group 2 Group 3
n T CE Clustering Oracle Clustering Oracle Clustering Oracle

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

48 150 0.029 0.000 0.000 0.000 0.000 0.002 −0.002 0.002 −0.002 0.034 0.033 0.033 0.033
48 200 0.011 0.000 0.000 0.000 0.000 0.001 −0.001 0.001 −0.001 0.035 0.035 0.035 0.035
48 250 0.004 0.000 0.000 0.000 0.000 0.000 −0.000 0.000 −0.000 0.036 0.036 0.036 0.036
72 150 0.029 0.000 0.000 0.000 0.000 0.002 −0.002 0.002 −0.002 0.034 0.033 0.033 0.033
72 200 0.011 0.000 0.000 0.000 0.000 0.001 −0.001 0.001 −0.001 0.035 0.035 0.035 0.035
72 250 0.004 0.000 0.000 0.000 0.000 0.000 −0.000 0.000 −0.000 0.036 0.036 0.036 0.036
96 150 0.029 0.000 0.000 0.000 0.000 0.002 −0.002 0.002 −0.002 0.034 0.033 0.033 0.033
96 200 0.011 0.000 0.000 0.000 0.000 0.001 −0.001 0.001 −0.001 0.035 0.035 0.035 0.035
96 250 0.004 0.000 0.000 0.000 0.000 0.000 −0.000 0.000 −0.000 0.036 0.036 0.036 0.036

According to Table 3, the CE decreases to zero as T increases. The RMSE and bias of the
oracle estimates are smaller than those of the postclustering estimates. For the postclustering
estimates of the nonstationary groups, the magnitude of the RMSE and bias also generally de-
creases when T → ∞. For DGP 1, the difference between the oracle and the postclustering
estimates is negligible when T ≥ 200. The diminishing differences suggest asymptotic equiv-
alence between these two sets of estimates. This property is due to the uniform consistency
of the recursive k-means clustering algorithm, as shown in the theory development. Further,
clustering results are explored when the employed value of the rate parameter γ ∗ exceeds
the true generating value γ = 0.1. Table 8 of the Supporting Information shows that the esti-
mated membership based on the use of γ ∗ larger than γ = 0.1 is identical to membership es-
timation based on the value γ ∗ = 0.1, again corroborating the use of a larger rate parameter.
Further extensive simulations were conducted with various values of γ ∗,18 all showing that use
of larger values of γ ∗ are robust in recovering correct group membership. This robustness of
clustering performance to γ ∗ raises the practical question of a suitable choice of this parame-
ter in practice. Based on our simulation results, we recommend the use of γ ∗ = 0.9 in practice
and this value was employed in our empirical work.

An interesting feature of Table 3 is that the RMSE and bias are almost zero for the explo-
sive group with c0

1 = 0.5. This outcome is due to the fact that for a mildly explosive process the
estimation errors decay at an exponential rate that is influenced by the true distance parame-
ter. In DGP 1, since c0

1 = 0.5 is large, the estimation of the distancing parameter is highly ac-
curate and the resulting RMSE and bias are nearly zero.

Based on the estimated membership δ̂, the performance of the postclustering panel t and J
tests for detecting explosive roots was analyzed and compared with the time-series counter-
parts. The nominal levels are all set at 5%, accompanied by the right-tail 95% critical values
of the standard normal distribution and standard unit root limit distributions. We obtain the
empirical rejection rates of the PP t and J tests when n = 1 and the empirical rejection rates
of the postclustering panel t and J tests when n > 1, which are presented in Table 4. If the dis-
tancing parameter c0

j is zero (as in the null hypothesis) the empirical rejection rate gives test
size; and when c0

j is nonzero, the empirical rejection rate gives test power.
Evidently the size distortion of both panel tests is small when n ≥ 48 and T ≥ 150, although

size distortion of the panel tests is slightly larger than that of the time-series counterparts.
This is unsurprising as the asymptotics require the use of cross-section central limit theory,
which inevitably introduces approximation errors in finite samples, particularly the small sam-
ples that arise in group subsamples. This loss is counterbalanced by a substantial improvement

18 Some of these simulation results are reported in the Supporting Information and show robustness of the k-means
clustering algorithm to an overspecified rate parameter γ ∗(> γ ).
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a panel clustering approach to analyzing bubble behavior 1373

Table 4
power of tests for detecting explosiveness (θ = 0.5)

DGP 3 DGP 4
n T c1 = 0.5 c2 = 0 c1 = 0.5 c2 = 0.01

t-Test J-Test t-Test J-Test t-Test J-Test t-Test J-Test

1 150 1.000 1.000 0.064 0.066 1.000 1.000 0.156 0.155
1 200 1.000 1.000 0.069 0.069 1.000 1.000 0.203 0.204
1 250 1.000 1.000 0.054 0.055 1.000 1.000 0.286 0.291
32 150 1.000 1.000 0.063 0.070 1.000 1.000 0.326 0.166
32 200 1.000 1.000 0.049 0.051 1.000 1.000 0.564 0.278
32 250 1.000 1.000 0.056 0.052 1.000 1.000 0.888 0.611
48 150 1.000 1.000 0.053 0.058 1.000 1.000 0.418 0.238
48 200 1.000 1.000 0.049 0.054 1.000 1.000 0.703 0.425
48 250 1.000 1.000 0.056 0.063 1.000 1.000 0.958 0.828
64 150 1.000 1.000 0.063 0.061 1.000 1.000 0.477 0.295
64 200 1.000 1.000 0.041 0.049 1.000 1.000 0.797 0.562
64 250 1.000 1.000 0.058 0.057 1.000 1.000 0.985 0.914

in the power of the panel tests over the time-series tests. For instance, when c0
j = 0.01 (the

corresponding ρ0
j is 1.0061, 1.0059, and 1.0058 when T = 150, 200, 250, which are empirically

plausible based on the later empirical outcomes), the power performances of the postcluster-
ing panel tests are much larger than those of the time-series tests. If T = 250, the postcluster-
ing panel t-test raises the power of the time series t-test from 0.286 to 0.888 when nj = 16, to
0.958 when nj = 24, and to 0.985 when nj = 32. The postclustering panel t test with T = 200
has substantially greater power than the time-series t test with T = 250 (0.797 versus 0.291).
Moreover, the panel t test has greater power than the panel J-test that is based on the esti-
mated membership, corroborating the different divergence rates in asymptotic theory of The-
orem 3 under the mildly explosive alternative.

6. empirical applications

Many empirical studies have investigated the existence of financial asset bubbles in real es-
tate (Giglio et al., 2016; Phillips, 2023; Phillips and Yu, 2011) and equity markets (Diba and
Grossman, 1988; Phillips et al., 2015a). Most of these have used time-series data. This sec-
tion applies our methodology to housing markets in China and the United States and the U.S.
equity market.

6.1. Housing Prices in China. It is well known that housing prices in China have experi-
enced unprecedented growth over the last 20 years. Using data on 35 major Chinese cities,
Chen and Wen (2017) found that housing prices have substantially outgrown income in these
cities, leading them to interpret China’s housing boom as a rational bubble. Such an interpre-
tation is important to subject to a formal assessment of the empirical evidence using rigorous
methods to detect potential explosive behavior. Our first empirical study applies the methods
of this article to a panel of monthly housing indices from 83 (n = 83) cities in China obtained
from Fang et al. (2016). The sample period is from January 2003 to June 2012 and contains 114
monthly observations (T = 114). Ideally, housing rental prices in these cities would be useful
to measure fundamental values in these real estate markets. But it is difficult to find reliable
rental indices at the city level in China. Instead, as a proxy, we use the monthly national-level
Consumer Price Index (CPI) for rentals to approximate fundamental values.19 For this appli-

19 The CPI for rentals is available on the official website of National Bureau of Statistics, China, http://www.stats.
gov.cn/
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1374 liu, phillips, and yu

Table 5
selection by ic of the number of groups G in three empirical studies

G 1 2 3 4 5 6 7

IC for Chinese housing −14.8514 −14.8595 −14.8586 −14.8583 −14.8564 −14.8560 −14.8545
IC for U.S. housing −11.1695 −11.1914 −11.1914 −11.1873 −11.1810 −11.1732 −11.1667
IC for U.S. equty −2.9545 −2.9639 −2.9631 −2.9615 −2.9588 −2.9562 −2.9531

The smallest IF value is in boldface.

Table 6
postclustering estimates and panel t- and J-tests in three empirical studies

Chinese Housing U.S. Housing U.S. Equity
Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

ň j 40 43 7 4 40 106
ρ̌ j 1.011 0.996 1.0432 1.0113 1.012 0.967
t-test 7.964∗∗∗ 0.383 31.9880∗∗∗ 1.8617∗ 2.236∗∗ 0.141
J-test 5.608∗∗∗ 0.313 35.5062∗∗∗ 2.3412∗∗ 8.908∗∗∗ 1.330

∗, ∗∗ and ∗∗∗ imply rejection of the null hypothesis at the 10%, 5% and 1% levels.

cation, we let {yit} be the ratio between the nominal housing price index for city i and the CPI
for rentals in month t.

The model in (4) and (5) was fitted to {yit} using the proposed methods. Cross-section het-
erogeneity exists because different cities have different characteristics and may, for example,
experience different levels of urbanization. Nonetheless, a group structure in the evolution of
house prices may exist because of similarities in the driving mechanism underlying the price
dynamics in some cities and commonalities that exist in supply and demand factors, leading
to the coexistence of possible groupings of cities into mildly explosive groups, a unit root ef-
ficient market group, and mildly stationary groups.

With tuning parameter κnT = (nT )−0.7,20 the first row of Table 5 reports the values of the
computed ICs for G = 1, . . . , 7. According to the IC selection G̃ = 2. The Hausman-type test
algorithm is applied using the critical value cvnT = (1 + 5 log(nT ))χ2

0.95(G) and this procedure
leads to the same estimate Ĝ = 2. The recursive k-means clustering algorithm is then imple-
mented based on (8), giving the postclustering estimate (13). This two-stage procedure pro-
vides the clustered group structure.21,22 There are 40 cities in Group 1 including three tier
1 cities, Beijing, Guangzhou, and Shenzhen. Comparatively, there are 43 cities in Group 2.
Figure 2 gives the time-series plots for both groups.

For each identified group, we report the panel-within estimate ρ̌ j, the number of cities
in each estimated group, the postclustering t- and J-statistics for the null hypothesis of the
group-specific unit root, as in the first panel of Table 6. For Group 1, the estimated ρ̌1 is 1.011.
Both the panel t-test and the panel J-test suggest that c0

1 is significantly larger than zero at the
1% significance level. For Group 2, the postclustering estimate ρ̌2 is just below unity and the
unit root null hypothesis is not rejected in this group. The postclustering t and J tests therefore
indicate explosive behavior in Group 1 but unit root behavior in Group 2.

The recursive k-means clustering procedure evidently finds a two-cluster structure in the
China real estate market: one fast-growing group and one relatively slow-growing cluster, in

20 Here and in the following empirical applications the IC penalty tuning parameter κnT was chosen to satisfy the
rate condition (20). The IC results reported were found to be robust to tuning parameter choices in the range κnT ∈
[(nT )−0.7, (nT )−0.6]. In particular, for κnT = (nT )−0.7 or κnT = (nT )−0.6, membership estimation, postclustering pa-
rameter estimation and inferences concerning explosive behavior are unchanged in all the applications of the article.

21 The initial values used to start the k-means algorithm were chosen as the 0.3 and 0.8 quantiles of the individual
time-series estimates. The rate parameter γ ∗ = 0.9 was used. The estimated groups were found to be robust to vari-
ous choices of the initial values and the rate parameter.

22 The names of the cities in each estimated group are reported in the Supporting Information.
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a panel clustering approach to analyzing bubble behavior 1375

Figure 2

times-series plots of the demeaned ratio of chinese city house price indices to the rental cpi (vertical axis) for
the estimated groups

which the fast-growing one shows strong signals of explosive roots, supported by the postclus-
tering statistics. This two-cluster estimated membership thereby demonstrates the feature of
real estate market segmentation that has been long investigated in the literature. For instance,
it is well acknowledged that housing submarkets can be due to such features as spatial at-
tributes, policy-related issues, and population expansion (Goodman, 1978; Rosen, 1974).

Fang et al. (2016) showed that house price appreciation of the first-tier cities in China
(such as Beijing, Guangzhou, and Shenzhen) is significant relative to increases in household
disposable income, whereas house price growth in second-tier and third-tier cities is slower.
For instance, price appreciation had an average annual real growth rate larger than 7.9%
throughout the entire country between 2003 and 2013, which included the much higher aver-
age growth rate of 13.1% in the first-tier cities. The housing price growth was accompanied
by growth in household disposable income, which includes an average annual real growth rate
of about 9.0% at the national level and a lower average growth rate of 6.6% in the first-tier
cities. Another reason for this divergence may relate to demographics and the urbanization
process. In particular, the population of the four first-tier cities grew from 48 million in 2004
to almost 70 million in 2012, whereas the population of the second-tier and third-tier cities ex-
perienced a much smaller increase: The total population of the second-tier cities, for instance,
grew from 220 million in 2004 to around 260 million in 2012.

These clustering results support a general finding of group divergence: The estimated group
with the largest explosive root, including tier-one and several tier-two cities, reveals a clear
grouping phenomenon, with the remaining cities classified into a single group where house
price appreciation is relatively lower than that of household disposable income. Notably, the
clustering approach corroborates the distinct high house price appreciation phenomenon gen-
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1376 liu, phillips, and yu

erally acknowledged among tier 1 and certain tier 2 cities by direct application of bubble de-
tection statistical tests.

6.2. Housing Prices in the United States. In recent years, strong surges in house prices have
occurred in many U.S. cities. Possible reasons for these surges include near-zero interest rates
and rising inflation expectations. In order to examine whether rising fundamental values jus-
tify these developments, the two-stage algorithm of this article was applied to a panel of
monthly housing indices for 11 (n = 11) U.S. cities obtained from the official website of the
Federal Reserve Bank of St. Louis.23 Monthly observations of T = 105 time series for each se-
ries were used, covering the period from January 2013 to September 2021. In order to mea-
sure fundamental values monthly city-specific CPI data for rentals was employed.24 In the ap-
plication, {yit} was set as the ratio of the nominal housing price index to the CPI for rentals for
city i in month t.

Using the tuning parameter setting κnT = (nT )−0.7, the second row of Table 5 reports cal-
culated values of the ICs for G = 1, . . . , 7, leading to the choice G̃ = 2. The combined IC-
Hausman test procedure with critical value cvnT = (1 + 5 log(nT ))χ2

0.95(G) gave the same es-
timated value Ĝ = 2. Using this estimated group number the clustering algorithm based on
(8) was implemented, giving postclustering estimates from (13) and the corresponding clus-
tered group structure.25,26 The two-stage procedure produced seven cities in Group 1 and four
cities in Group 2. Time-series plots of these two groups are provided in Figure 3.

For each identified group of cities in the U.S. housing market, the second panel of Table 6
reports the panel within-group estimates ρ̌ j, the number of cities in each estimated group, and
the postclustering t- and J-statistics for the null hypothesis of the group-specific unit root. Ac-
cording to both the postclustering t- and J-statistics, the explosive root ρ̌1 = 1.0432 of Group 1
is statistically significant at the 1% level, indicating the presence of a housing bubble in this
group. For Group 2, the postclustering estimate ρ̌2 = 1.0113 also exceeds unity and the unit
root group null is rejected at the 5% level. These postclustering panel tests suggest that explo-
sive price bubbles are present in the data for both Groups 1 and 2, although Group 2 has four
cities with a considerably weaker common explosive root in housing prices. In consequence,
there are clear differences in detection between the panel clustered series and the individual
time series. Figure 1(b) shows the time series of U.S. house prices27 for the cities where explo-
sive behavior was detected by the panel t-test but not by individual time series t-tests. In fact,
none of the 11 cities were found to have explosive behavior in house prices in the individual
tests at the 5% level.

Our recursive k-means clustering procedure finds a two-cluster structure also in the U.S.
real estate market. A fast-growing group and a relatively slow-growing cluster are detected.
Both groups show strong signals of explosive roots, which are supported by the postcluster-
ing statistical tests. This group estimation outcome accords with earlier evidence in Abraham
et al. (1994), where a k-means clustering algorithm was applied to identify structural relation-
ships in the U.S. housing market and a bootstrap test procedure was used to test for statistical
significance of a three-group structure. Abraham et al. (1994) employed a sample of 30 U.S.
cities between 1977 and 1992, whereas our data are for only 11 U.S. cities, so that a partial
grouping structure of that in Abraham et al. (1994) is to be expected.

The regional structure of the United States has a tremendous impact on direct and indirect
investment in the housing market (Abraham et al., 1994; Bourassa et al., 1999; Goetzmann

23 https://fred.stlouisfed.org/
24 For cities whose city-specific CPI for rentals data were unavailable, fundamental values were approximated using

the national CPI for rentals.
25 The initial values were obtained from the 0.3 and 0.8 quantiles of the individual time-series estimates and the lo-

calizing rate parameter was set to γ ∗ = 0.9. The empirical results were found to be robust to various initial values and
localizing rate parameters.

26 The names of the U.S. cities in each estimated group are reported in the Supporting Information.
27 Specifically, the plotted data in Figure 1(b) are the ratio of the city price index to the CPI of the city rentals
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a panel clustering approach to analyzing bubble behavior 1377

Figure 3

time-series plots of the demeaned ratio of the housing price to the rental cpi (vertical axis) in the two
estimated groups of the u.s. housing market

and Wachter, 1995) with systematic differences across cities that reduce portfolio risk in real
estate. In general, the greater the topographical distance there is between cities, the higher
is the level of diversification, with fewer common factors driving house prices being shared
across cities. Topographical distance also tends to produce market division into submarkets
in which cities may share certain common factors (such as environmental quality, living facil-
ities, crime incidence, or extremities of weather) that can serve as proxies for one or the other
(Bourassa et al., 1999; Goodman and Thibodeau, 2003). These levels of aggregation may be
reasonably approximated in the econometric modeling of latent membership used in this ar-
ticle. Estimated groups identified here might then be treated as submarkets in which similar
features are shared.

Abraham et al. (1994) applied the k-means algorithm and found three groups: West Coast,
Middle, and East Coast. The West Coast group contains the Bay Area and LA, the Middle
group includes cities of the Great Lakes Region, and the East Coast group has the regions
on the east coast. Their detected group structure is similar to ours, but our estimated group
structure aggregates the Middle and West Coast groups into one estimated group. Based on
our estimated group structure, postclustering test statistic outcomes indicate explosive bubble
signals for both groups and support a broad finding of a housing price bubble. These results
have implications for regional economic assessments of housing price trends and for specialist
financial services requiring more detailed analysis and accuracy in real estate asset pricing.

6.3. Equity Prices in the United States. In a further application, the methodology is applied
to a panel of equity prices in the U.S. stock market. Whereas analysis of a general stock price
index may indicate the presence of an explosive root as in the historical study of Phillips et al.
(2015a), such a finding does not mean that all of the component stocks manifest explosive fea-
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1378 liu, phillips, and yu

Figure 4

time-series plots of the demeaned difference between s&p 500 stock prices and dividends in the two estimated
groups

tures. Narayan et al. (2013) found evidence of group-specific heterogeneity in 589 stocks from
nine different sectors, so it is natural to incorporate group-specific heterogeneity in the anal-
ysis of stock market bubbles. Our application employs the proposed two-stage approach in
which the panel variables {yit} are set as the difference in levels between the monthly price
and monthly dividends of stock i in period t. The presence of a significant explosive common
root in any group is then indicative of a stock price bubble in that group.

Monthly data for the S&P 500 component stocks were sourced from the Wharton Research
Data Service (WRDS), covering around 500 stocks in different sampling periods. For this
study, we selected a panel of 146 stocks giving 98 monthly observations (n = 146,T = 98)
taken over the common period between January 2010 and February 2018.

Using the penalty parameter κnT = (nT )−0.6 the third row of Table 5 reports IC values for
G = 1, . . . , 7, leading to the estimate G̃ = 2. The combined IC–Hausman test procedure with
critical value cvnT = (1 + 5 log(nT ))χ2

0.95(G) produced the same estimate Ĝ = 2. The cluster-
ing algorithm was implemented using (8) and postclustering estimates from (13). The two-
stage procedure provided the group structure.28,29 The results gave 40 stocks in Group 1 and
106 stocks in Group 2, in which high-tech stocks such as IT and biotech stocks and energy
stocks usually manifest mildly explosive roots. Time-series plots of these two groups are pro-
vided in Figure 4.

28 The initial values were obtained from the 0.3 and 0.8 quantiles of the individual time series estimates and the lo-
calizing rate parameter was set to γ ∗ = 0.9. The empirical results were found to be robust to various initial values and
localizing rate parameters.

29 The individual stock symbols in each estimated group are reported in the Supporting Information.
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a panel clustering approach to analyzing bubble behavior 1379

For each identified group, the third panel of Table 6 reports the panel within-group es-
timates ρ̌ j, the number of stocks in each estimated group, and the postclustering t- and J-
statistics for the null hypothesis of the group-specific unit root. According to both the post-
clustering t- and J-statistics, the explosive root ρ̌1 = 1.012 of Group 1 is statistically significant
at the 5% level, indicating the presence of a price bubble in this group. For Group 2, the post-
clustering estimate ρ̌2 = 0.967 is smaller than unity and we cannot reject the null hypothesis
of a group-specific unit root. These postclustering panel tests therefore suggest that an explo-
sive price bubble is manifest in Group 1 with 40 stocks, whereas Group 2 has 106 stocks with
near unit root behavior indicative of an efficient market. The time series in the two groups are
displayed in Figure 4. In individual time-series tests at the 5% level, only 29 of the stocks in
Group 1 were found to be explosive and no explosive behavior was supported in any of the
106 stocks in Group 2. Clustering the time series therefore assists in the detecting 11 further
stocks manifesting explosive behavior.

Our recursive k-means clustering procedure therefore reveals a two-cluster structure in the
US S&P500 market. Again, one fast-growing group and one relatively slow-growing cluster
are detected, but only the fast-growing group shows a strong signal of an explosive root that
is supported by postclustering statistical tests. These results relate to earlier studies by Harvey
et al. (2016), Kozak et al. (2020), and Feng et al. (2020) where grouping and clustering meth-
ods were used to classify asset returns. A key question in the application of k-means cluster-
ing in financial markets that needs to be addressed is whether group separations are statisti-
cally significant, thereby justifying the cluster outcomes. Oh and Patton (2023) and Patton and
Weller (2022) tested for statistical significance in group separations in the S&P 100 stock mar-
ket and U.S. mutual funds. Rejection of the hypothesis of homogeneous parameters gives ev-
idence of group-specific heterogeneity, a conclusion that has implications for financial invest-
ment. More specifically, in our application of postclustering testing, we find statistically signifi-
cant signals of an explosive price bubble in the group composed of high-tech firms and energy
giants and fail to detect explosive roots in the other group.

7. conclusions

The existence of explosive phenomena is conveniently captured in time-series autoregres-
sion by an autoregressive root that exceeds unity. Phillips and Magdalinos (2007a) introduced
the concept of mildly explosive roots, which have proved particularly useful in empirical re-
search because they are amenable to estimation and inference with pivotal asymptotic theory,
confidence interval construction (Phillips, 2023), and recursive testing algorithms. This mech-
anism of detection has assisted in determining the presence of asset price bubbles in finan-
cial assets like stocks and real assets like housing. This article extends this mechanism to al-
low for latent group structures within a dynamic panel model so that the individual time series
may have mixed roots that fall into three general categories, some that are mildly explosive,
some that are mildly stationary, and some with a unit root. This extension is appealing in wide
panels where behavior may vary within each of these general classifications. The framework
then allows for subgroups with different autoregressive coefficients within a particular class
such as those with mildly explosive roots, which assists in modeling several forms of explosive
behavior. The article develops a clustering algorithm that accommodates this framework and
enables detection of the clusters and estimation of their respective coefficients, taking advan-
tage of cross-section averaging within each cluster. In particular, a two-stage approach is pro-
posed to detect explosive behavior, incorporating a recursive k-means clustering algorithm in
the first stage and the panel approach to bubble analysis in the second stage. Both asymptotic
theory and numerical simulations show that the postclustering testing procedures attain better
power performance in bubble detection than a time-series approach; and the clustering algo-
rithm is uniformly consistent in recovering the latent group membership.

Several extensions of the present research are possible. First, the framework of this arti-
cle only accommodates time-invariant parameters and does not allow for structural breaks.
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1380 liu, phillips, and yu

Hence, the origination and termination of an explosive episode in data are not included within
the present framework. However, the model and methods can be extended to a wider panel
setup that includes the real-time bubble dating strategy developed in Phillips et al. (2011,
2015a) and more recent research on dating methods. Some related research is in Okui and
Wang (2021) and Lumsdaine et al. (2023). Second, cross-section independence was imposed
in the present framework to facilitate the development of the asymptotic theory of cluster-
ing. A natural extension of this framework is to employ models with panel interactive fixed
effects (Bai, 2009) or panel group fixed effects (Bonhomme and Manresa, 2015; Bonhomme
et al., 2022) to accommodate some of the features that are often present in panel data, partic-
ularly those where common factors play a role in determining episodes of exuberance in the
data (cf., Chen et al., 2022). Such extensions of the present model involve considerable com-
plexities, especially when different groups involve different break dates and real-time analysis
is needed for practical implementation. Some of these complications are currently under in-
vestigation and will be reported in future work.

appendix A: proofs

Throughout the following proofs we use the same notation as in the article. The technical
lemmas listed in the next section are proved in the Supporting Information and play central
roles in the proofs of the main theorems in the article.

A.1. Proofs for Stage 1: Recursive k-Means Clustering. Let ĝi := ĝi (̂c∗) denote the mem-
bership estimator of g0

i generated by the recursive k-means clustering algorithm for any indi-
vidual i ∈ In. Note that ĉ∗(:= (̂c∗

1, ĉ∗
2, . . . , ĉ∗

G0 )) is the first-stage estimator of the distancing pa-
rameter vector c.

In order to demonstrate uniform consistency of the recursive k-means clustering algorithm,
we first establish consistency of the parameter estimate ĉ∗ in terms of the Hausdorff distance
that measures how far two compact subsets in a metric space are separated from each other.
This distance is defined as

dH (a,b) = max

{
max

j∈{1,2,...,G0}

(
min

j̃∈{1,2,...,G0}
(

a j̃ − bj

)2
)

, max
j̃∈{1,2,...,G0}

(
min

j∈{1,2,...,G0}
(

a j̃ − bj

)2
)}
,

in which a := (a1, a2, . . . , aG0 ) and b := (b1,b2, . . . ,bG0 ). The proof of uniform consistency
makes use of the following lemmas, which are stated first.

Lemma A1. If Assumptions 1 and 3 hold, then

sup
(c,δ)∈CG0 ×	G0

T 4γ+2ξ (log T )4
∣∣∣Q̂nT (c, δ) − Q̃nT (c, δ)

∣∣∣ = op(1),

where

Q̂nT (c, δ) = 1
n

∑n
i=1

1
ϒiT

∑T
t=1 (ỹit − ỹi,t−1ρ i)

2
, and

Q̃nT (c, δ) = 1
n

∑n
i=1

1
ϒiT

∑T
t=1

(
ỹi,t−1

(
ρ0

i − ρ i

))2 + 1
n

∑n
i=1

1
ϒiT

∑T
t=1 ũ2

it ,

with ϒiT = ∑T
t=1 ỹ2

i,t−1 and ρ i and ρ0
i defined in (6).

Lemma A2. Suppose Assumptions 1 and 3 hold. Then, when (n,T ) → ∞,

dH (c0, ĉ∗) = op

(
T−2γ−2ξ (log T )−4

)
.(A.1)
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a panel clustering approach to analyzing bubble behavior 1381

Moreover, there exists a permutation τ : {1, 2, . . .G0} → {1, 2, . . . ,G0}, such that

T γ+ξ (log T )2
∣∣∣∣̂c∗
τ( ĵ) − c0

j

∣∣∣∣ →p 0.

If we relabel ĉ∗ by setting τ ( ĵ) = j, then∥∥ĉ∗ − c0
∥∥ = op

(
T−γ−ξ (log T )−2

)
.(A.2)

In the rest of the article, we always relabel ĉ∗, ĉ, and č by setting τ ( ĵ) = j. For any η > 0,
define Nη, ĝi (̂c∗), and δ̂ as

Nη :=
{

c ∈ CG0 :
∣∣∣c0

j − c j

∣∣∣ < η, ∀ j = 1, 2, . . . ,G0
}
,(A.3)

ĝi (̂c∗) := arg min j∈{1,2,...,G0}
∑T

t=1

(
ỹit − ỹi,t−1 exp

(
ĉ∗

j

T γ

))2
,

δ̂ := (̂g1(̂c∗), ĝ2(̂c∗), . . . , ĝn (̂c∗)),

where we treat the scaling parameter γ as given a priori.

Lemma A3. Suppose Assumptions 1 and 3 hold. Then, for any fixed M > 0,

(i) if c0
i > 0,

max
i∈In

Pr

(
T ξ(

ρ0
i

)2T
T γ

∣∣∣∣∣
T∑

t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥ M

)
= o

(
1
n

)
;

(ii) if c0
i = 0,

max
i∈In

Pr

(
(log2 (T ))2

T 2−γ

∣∣∣∣∣
T∑

t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥ M

)
= o

(
1
n

)
;

(iii) if c0
i < 0,

max
i∈In

Pr

(
1
T

∣∣∣∣∣
T∑

t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥ M

)
= o

(
1
n

)
.

Lemma A4. Suppose that Assumptions 1 and 3 hold, then:

(i) if c0
i > 0 and M̃1 ≥ 3(c−2

low
) maxi∈In (ω0

i )2, then

max
i∈In

Pr

(
1(

ρ0
i

)2T
T 2γ (log T )2

∣∣∣∣∣
T∑

t=1

ỹ2
i,t−1

∣∣∣∣∣ ≥ M̃1

)
= o

(
1
n

)
;

(ii) if c0
i = 0 and M̃2 ≥ maxi∈In (ω0

i )2, then

max
i∈In

Pr

(
1

T 2(log2 T )2

∣∣∣∣∣
T∑

t=1

ỹ2
i,t−1

∣∣∣∣∣ ≥ M̃2

)
= o

(
1
n

)
;
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1382 liu, phillips, and yu

(iii) if c0
i < 0 and M̃3 ≥ 2(c−1

low
) maxi∈In (σ 0

iu)2,

max
i∈In

Pr

(
1

T 1+γ

∣∣∣∣∣
T∑

t=1

ỹ2
i,t−1

∣∣∣∣∣ ≥ M̃3

)
= o

(
1
n

)
.

Lemma A5. Suppose Assumptions 1 and 3 hold, then:

(i) if c0
i > 0, M1 > 0 and ξ > 8c2

up(1 − γ )/(mini∈In (ω0
i )2),

max
i∈In

Pr

(
T ξ(

ρ0
i

)2T
T 2γ

∣∣∣∣∣
T∑

t=1

ỹ2
i,t−1

∣∣∣∣∣ ≤ M1

)
= o

(
1
n

)
;

(ii) if c0
i = 0 and 0 < M2 ≤ mini∈In (ω0

i )2/24,

max
i∈In

Pr

(
(log2 T )2

T 2

∣∣∣∣∣
T∑

t=1

ỹ2
i,t−1

∣∣∣∣∣ ≤ M2

)
= o

(
1
n

)
;

(iii) if c0
i < 0 and 0 < M3 ≤ (mini∈In (σ 0

iu)2)/(8cup), then

max
i∈In

Pr

(
1

T 1+γ

∣∣∣∣∣
T∑

t=1

ỹ2
i,t−1

∣∣∣∣∣ ≤ M3

)
= o

(
1
n

)
.

Lemma A6. Suppose Assumptions 1 and 3 hold. Let η = O(T−γ−ξ (log T )−2). Then, when
(n,T ) → ∞,

sup
c∈Nη

1
n

n∑
i=1

1
{
ĝi(c) �= g0

i

} = op

(
1
n

)
,

where Nη is defined in (A.3).

For any j ∈ G0 and i ∈ In, let

Ê j,i := {
ĝi �= j|g0

i = j
}

and F̂j,i := {
g0

i �= j|̂gi = j
}
.(A.4)

Moreover, let Ê j,nT := ⋃
i∈G0( j) Ê j,i and F̂j,nT := ⋃

i∈Ĝ( j) F̂j,i. In order to show uniform consis-
tency of the recursive k-means clustering algorithm, we use the following lemma.

Lemma A7. (Uniform Consistency of Clustering) Suppose Assumptions 1 and 3 hold. Then,
when (n,T ) → ∞,

(i) Pr(
⋃G0

j=1 Ê j,nT ) ≤ ∑G0

j=1 Pr(Ê j,nT ) → 0;

(ii) Pr(
⋃G0

j=1 F̂j,nT ) ≤ ∑G0

j=1 Pr(F̂j,nT ) → 0.

Proof of Theorem 1: We use Lemmas A7(i) and A7(ii). In order to establish uniform consis-
tency of the recursive k-means clustering algorithm, we first bound the CE by

Pr

⎛⎝ G0⋃
j=1

Ê j,nT

⎞⎠ ≤
G0∑
j=1

Pr
(

Ê j,nT

)
≤

G0∑
j=1

∑
i∈G0( j)

Pr
(

Ê j,i

)
.
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a panel clustering approach to analyzing bubble behavior 1383

Then, it follows that

G0∑
j=1

∑
i∈G0( j)

Pr
(

Ê j,i

)
≤ n max

i∈In

E1{̂gi (̂c∗) �= g0
i } ≤ n max

i∈In

Pr{∣∣̂gi (̂c∗) − g0
i

∣∣ > 0}

≤ n max
i∈In

sup
c∈Nη

Pr{∣∣̂gi(c) − g0
i

∣∣ > 0} + n max
1≤ j≤G0

Pr{
∣∣∣̂c∗

j − c0
j

∣∣∣ > η}

= o(1) + n max
1≤ j≤G0

Pr{
∣∣∣̂c∗

j − c0
j

∣∣∣ > η}

= o(1),(A.5)

where the last step is due to the Markov inequality, Equation (A.2) in Lemma A1, and the
rate restriction in Assumption 3. This proves Lemma A7(i). For Lemma A7(ii), we can follow
the proof of Theorem 2.2(ii) in Su et al. (2016). The results of Theorem 1 are then extensions
of Lemma A7 and the proof is complete. �

A.2. Proofs for Stage 2: Postclustering Estimation and Testing. We need a lemma that es-
tablishes consistency of the variance estimates ω̌2

j , σ̌
2
j , and λ̌ j and lemmas that show the limits

of various sample moments. These lemmas are stated first.

Lemma A8. Suppose Assumptions 1 and 3 hold. Then, for any j ∈ G0, if c0
j ≥ 0, when

(n,T ) → ∞,

ω̌2
j →p

(
ω0

j

)2
, ω̂2

j →p

(
ω0

j

)2
,

σ̌ 2
j →p

(
σ 0

j

)2
, σ̂ 2

j →p

(
σ 0

j

)2
,

λ̌ j →p λ
0
j , λ̂ j →p λ

0
j .

Lemma A9. Suppose Assumptions 1 and 3 hold. Then, for any j ∈ G0, when (n,T ) → ∞,

1
n jT 2

∑
i∈G0( j)

∑T
t=1 ỹ2

i,t−1 →p
(ω0

j )
2

6 , if c0
j = 0;(A.6)

1
njT 2γ (ρ0

j )2T

∑
i∈G0( j)

T∑
t=1

ỹ2
i,t−1 →p

1
2c0

j

⎛⎜⎝
(
ω0

j

)2

2c0
j

⎞⎟⎠, if c0
j > 0;

1
njT 1+γ

∑
i∈G0( j)

T∑
t=1

ỹ2
i,t−1 →p

(
ω0

j

)2

−2c0
j

, if c0
j < 0.

Lemma A10. Suppose Assumptions 1 and 3 hold. Then, for any j ∈ G0, when (n,T ) → ∞,

1√
njT

∑
i∈G0( j)

T∑
t=1

(
ỹi,t−1ũi,t − λ̂ j + ω̂2

j

2

)
⇒ N

⎛⎜⎝0,

(
ω0

j

)4

12

⎞⎟⎠, if c0
j = 0;(A.7)

1√
n jT γ (ρ0

j )T

∑
i∈G0( j)

∑T
t=1 ỹi,t−1ũit ⇒ N

(
0, (ω0

j )
4

4(c0
j )

2

)
, if c0

j > 0;(A.8)
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1384 liu, phillips, and yu

1
√

n jT
1+γ

2

∑
i∈G0( j)

∑T
t=1

(
ỹi,t−1ũit − λ0

j − mj,T
c0

j

T γ

)
⇒ N

(
0, (ω0

j )
4

−2c0
j

)
, if c0

j < 0,

where

mj,T = 1
n j

∑
i∈G0( j) mi,T , and mi,T = ∑∞

h=1

(
ρ0

j

)h−1
E(̃εitui,t−h).

Proof of Theorem 2: When c0
j > 0, the following decompositions apply to the numerator and

denominator of the postclustering estimate, ρ̌ j:

1√
njT γ (ρ0

j )T

∑
i∈Ĝ( j)

T∑
t=1

ỹi,t−1ũit

= 1√
njT γ (ρ0

j )T

∑
i∈G0( j)

T∑
t=1

ỹi,t−1ũit + 1√
njT γ (ρ0

j )T

∑
j̃ �= j

∑
i∈Ĝ( j)∩G0( j̃)

T∑
t=1

ỹi,t−1ũit

− 1√
njT γ (ρ0

j )T

∑
j̃ �= j

∑
i∈Ĝ( j̃)∩G0( j)

T∑
t=1

ỹi,t−1ũit

and

1
njT 2γ (ρ0

j )2T

∑
i∈Ĝ( j)

T∑
t=1

ỹ2
i,t−1

= 1
njT 2γ (ρ0

j )2T

∑
i∈G0( j)

T∑
t=1

ỹ2
i,t−1 + 1

njT 2γ (ρ0
j )2T

∑
j̃ �= j

∑
i∈Ĝ( j)∩G0( j̃)

T∑
t=1

ỹ2
i,t−1

− 1
njT 2γ (ρ0

j )2T

∑
j̃ �= j

∑
i∈Ĝ( j̃)∩G0( j)

T∑
t=1

ỹ2
i,t−1.

In order to demonstrate the asymptotic equivalence between the postclustering estimates and
the oracle estimates, we need to show the following:

(i) for any j = 1, 2, . . . ,G0,

1√
n jT γ (ρ0

j )T

∑
j̃ �= j

∑
i∈Ĝ( j)∩G0( j̃)

∑T
t=1 ỹi,t−1ũit = op(1),

1
n jT 2γ (ρ0

j )2T

∑
j̃ �= j

∑
i∈Ĝ( j)∩G0( j̃)

∑T
t=1 ỹ2

i,t−1 = op(1);

(ii) for any j = 1, 2, . . . ,G0,

1√
n jT γ (ρ0

j )T

∑
j̃ �= j

∑
i∈Ĝ( j̃)∩G0( j)

∑T
t=1 ỹi,t−1ũit = op(1),

1
n jT 2γ (ρ0

j )2T

∑
j̃ �= j

∑
i∈Ĝ( j̃)∩G0( j)

∑T
t=1 ỹ2

i,t−1 = op(1).
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a panel clustering approach to analyzing bubble behavior 1385

Since the treatment of the denominator is identical to that of the numerator, we need to only
focus on the numerator. In terms of A.2, for any j̃ �= j and any ε > 0,

Pr

⎛⎜⎝
∣∣∣∣∣∣∣

1√
njT γ (ρ0

j )T

∑
j̃ �= j

∑
i∈Ĝ( j̃)∩G0( j)

T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣∣∣ > ε

⎞⎟⎠ ≤ Pr

⎛⎝ G0∑
j=1

Ê j,nT

⎞⎠ → 0,(A.9)

when (n,T ) → ∞. Similarly, in terms of A.2, for any j̃ �= j and any ε > 0,

Pr

⎛⎜⎝
∣∣∣∣∣∣∣

1√
njT γ (ρ0

j )T

∑
j̃ �= j

∑
i∈Ĝ( j)∩G0( j̃)

T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣∣∣ > ε

⎞⎟⎠ ≤ Pr

⎛⎝ G0∑
j=1

F̂j,nT

⎞⎠ → 0,(A.10)

when (n,T ) → ∞. Combining (A.9) and (A.10), we have

1√
njT γ (ρ0

j )T

∑
i∈Ĝ( j)

T∑
t=1

ỹi,t−1ũit = 1√
njT γ (ρ0

j )T

∑
i∈G0( j)

T∑
t=1

ỹi,t−1ũit + op(1)(A.11)

and

1
njT 2γ (ρ0

j )2T

∑
i∈Ĝ( j)

T∑
t=1

ỹ2
i,t−1 = 1

njT 2γ (ρ0
j )2T

∑
i∈G0( j)

T∑
t=1

ỹ2
i,t−1 + op(1).(A.12)

Based on (A.11) and (A.12), the asymptotic theory for the postclustering estimator is equiva-
lent to that of the infeasible estimator, which is

√
njT γ (ρ0

j )T
(
ρ̌ j − ρ0

j

)
= √

njT γ (ρ0
j )T

(
ρ̂ j − ρ0

j

)
+ op(1).(A.13)

Similarly, asymptotic equivalence can be obtained in the other cases. For example, when c0
j =

0,

√
n jT

⎛⎜⎝ρ̌ j − ρ0
j − 1

T

6λ0
j(

ω0
j

)2 + 1
T

3
(
ω0

j

)2

(
ω0

j

)2

⎞⎟⎠ = √
n jT

⎛⎜⎝ρ̂ j − ρ0
j − 1

T

6λ0
j(

ω0
j

)2 + 1
T

3
(
ω0

j

)2

(
ω0

j

)2

⎞⎟⎠ + op(1);(A.14)

when c0
j < 0,

√
njT

1+γ
2

(
ρ̌ j − ρ0

j − 1
T γ

−2c0
j

(ω0
j )

2

(
λ0

j + c0
j

T γ mj,T

))
= √

njT
1+γ

2

(
ρ̂ j − ρ0

j − 1
T γ

−2c0
j

(ω0
j )

2

(
λ0

j + c0
j

T γ mj,T

))
+ op(1),

where mj,T = (1/nj )
∑

i∈G0( j) mi,T and mi,T = ∑∞
h=1(ρ0

j )h−1E(̃εitui,t−h). Therefore, we only
need to derive the limit distribution of the infeasible estimator in all cases. From Lemmas A9
and A10, the limit distributions of the oracle estimators that employ the true group identities
are derived and this completes the proof. �

Proof of Theorem 3: By Lemma A8 and Theorem 2, when (n,T ) → ∞,

√
nj

(
ρ0

j

)T
T γ

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
⇒ N

(
0, 4

(
c0

j

)2
)
, if c0

j > 0;

√
njT

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
⇒ N (0, 3), if c0

j = 0.
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1386 liu, phillips, and yu

So both the postclustering t- and J-statistics follow a pivotal distribution upon standardiza-
tions, under the null hypothesis of group-specific unit root behavior.

Similarly, under the alternative hypothesis of the group-specific explosive root, for the post-
clustering t-test, we have(

ρ̌ j − 1 + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
Ď j,nT

ω̌ j

√
Ě j,nT

=

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
−

(
1 − ρ0

j

)
ω̌ j

×
(

Ď j,nT

)
√

Ě j,nT

=

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)(
Ď j,nT

)
ω̌ j

√
Ě j,nT

−
(

1 − ρ0
j

)
Ď j,nT

ω̌ j

√
Ě j,nT

= Op(1) + Op

(√
n
(
ρ0

j

)T
)

,

where the last equality is due to Theorem 2 and the Op(·) rate is sharp. For the postclustering
J-test, we have √

ň j

3
T

(
ρ̌ j − 1 + ň jT σ̌ 2

j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)

=
√

ň j

3
T

(
ρ̌ j − ρ0

j + ň jT σ̌ 2
j

2
∑

i∈Ĝ( j)

∑T
t=1 ỹ2

i,t−1

)
−

√
ň j

3
T
(

1 − ρ0
j

)
= Op

((
ρ0

j

)−T
T 1−γ

)
+ Op

(√
nT 1−γ ),

where the last equality is due to Theorem 2 and the Op(·) rate is again sharp. This concludes
the proof. �

A.3. Proofs for the Estimation of Group Numbers. Lemma A11. Suppose Assumptions 1
and 3 hold. Let (n,T ) → ∞. When (i) γ > 0 and c0

i ≥ 0 or (ii) γ = 0, we have

min
1≤G<G0

inf
δ̂(G)∈	G

σ̌ 2
δ̂(G) > σ 2

0 , with probability approaching 1,(A.15)

and

σ̌ 2
δ̂(G0 ) →p σ

2
0 ,(A.16)

where σ 2
0 is defined in Equation (32),

σ̌ 2
δ̂(G) := 1

nT

G∑
j=1

∑
i∈Ĝ( j,G)

T∑
t=1

(ỹit − ỹi,t−1ρ̌ j(G))2
,

and δ̂(G)(:= (̂g(G)
1 , ĝ(G)

2 , . . . , ĝ(G)
n )) is the vectorized membership estimate, assuming there are

G groups.
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a panel clustering approach to analyzing bubble behavior 1387

Proof of Lemma A11: In order to show Equation (A.15), it is sufficient to show

inf
δ̂(G)∈	G

σ̌ 2
δ̂(G) > σ 2

0 , with probability approaching 1,(A.17)

for all G < G0. The above relationship (A.17) holds since the true number of groups, G0, is fi-
nite. Without losing generality, we discuss the case in which G = G0 − d and d = 1. Treatment
for the case d ≥ 2 is similar to the case d = 1 and is omitted.

When the minimum value of σ̌ 2
δ̂(G)

is attained, the individuals of G groups are correctly clus-
tered to their true membership, and the individuals of the remaining group, namely, the indi-
viduals for the j∗-th true group, are wrongly allocated to the group whose group-specific dis-
tance parameter c0

j̃
is close to the group-specific parameter of these individuals, c0

j∗
30. Without

losing generality, we assume j̃ ≤ G and j̃ ≤ j∗ and still call the union of the j̃-th and j∗-th true
groups as the j̃-th estimated group of the G-group partition.

Therefore, {Ĝ( j,G)}1≤ j≤G and {Ĝ( j,G0)}1≤ j≤G0 share (G − 1) common groups. Apart from
these (G − 1) common groups, the remaining group in {Ĝ( j,G)}1≤ j≤G is the union of the two
remaining groups in {Ĝ( j,G0)}1≤ j≤G0 . By the consistency of the postclustering estimates, we
have

σ̌ 2
δ̂(G) − σ̌ 2

δ̂(G0 )

= 1
nT

G∑
j=1

∑
i∈Ĝ( j,G)

T∑
t=1

(ỹit − ỹi,t−1ρ̌ j(G))2 − 1
nT

G0∑
j=1

∑
i∈Ĝ( j,G0 )

T∑
t=1

(
ỹit − ỹi,t−1ρ̌ j

(
G0))2

∼a − 2
nT

∑
j= j̃, j∗

∑
i∈Ĝ( j,G0 )

T∑
t=1

(
ỹit − ỹi,t−1ρ̌ j

(
G0))ỹi,t−1

(
ρ̌ j̃(G) − ρ̌ j

(
G0))

+ 1
nT

∑
j= j̃, j∗

∑
i∈Ĝ( j,G0 )

T∑
t=1

ỹ2
i,t−1

(
ρ̌ j̃(G) − ρ̌ j

(
G0))2

∼a
1

nT

∑
j= j̃, j∗

∑
i∈Ĝ( j,G0 )

T∑
t=1

ỹ2
i,t−1

(
ρ̌ j̃(G) − ρ̌ j

(
G0))2

,(A.18)

where the asymptotic equivalence holds by the consistency of the postclustering estimates
ρ̌ j(G0) and ρ̌ j(G). When (i) c0

i ≥ 0 and γ ∈ (0, 1) for all i ∈ In

1
nT

∑
j= j̃, j∗

∑
i∈Ĝ( j,G0 )

T∑
t=1

ỹ2
i,t−1

(
ρ̌ j̃(G) − ρ̌ j

(
G0))2

∼a

⎧⎪⎪⎨⎪⎪⎩
Op

(
T 1−2γ

)
if c0

j̃
= 0

Op

((
ρ0

j̃

)2T
T−1

)
if c0

j̃
> 0 ;

30 When only one group is misallocated, the leading term of the distance between the MSEs of the residuals is af-
fected by the distance between group-specific slope coefficients, as shown by Equation (A.18). So once the difference
between these slope coefficients is smaller, the distance between the MSEs of residuals decreases. Then it is evident
that when the misallocated individuals are all put into the group with the nearest distancing parameter, the MSE of
residuals attains its minimum.

 14682354, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12647 by Y

ale U
niversity, W

iley O
nline L

ibrary on [13/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1388 liu, phillips, and yu

or when (ii) γ = 0,

1
nT

∑
j= j̃, j∗

∑
i∈Ĝ( j,G0 )

T∑
t=1

ỹ2
i,t−1

(
ρ̌ j̃(G) − ρ̌ j

(
G0))2

∼a

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Q > 0 if c0
j̃
< 0

Op(T ) if c0
j̃
= 0

Op

((
ρ0

j̃

)2T
T−1

)
if c0

j̃
> 0

,

in which Q is a positive constant. The case in which j∗ ≤ j̃ follows a similar procedure to that
mentioned above and is omitted. Then Equation (A.15) holds. Moreover, Equation (A.16)
holds due to the consistency of k-means clustering and postclustering estimates:

σ̌ 2
δ̂(G0 ) := 1

nT

G0∑
j=1

∑
i∈Ĝ( j,G0 )

T∑
t=1

(
ỹit − ỹi,t−1ρ̌ j

(
G0))2 = 1

nT

n∑
i=1

T∑
t=1

̂̃u2
it

∼a
1

nT

n∑
i=1

T∑
t=1

ũ2
it = 1

nT

n∑
i=1

T∑
t=1

u2
it + Op

(
1
T

)
→p σ

2
0 ,(A.19)

where the last line (A.19) holds due to Equation (32). The proof is now complete. �
Proof of Theorem 4: From Theorems 1 and 2, it follows that

IC
(
G0) = ln

(
σ̌ 2
δ̂(G0 )

)
+ G0κnT

= ln

⎡⎣ 1
nT

G0∑
j=1

∑
i∈Ĝ( j,G0 )

T∑
t=1

(
ỹit − ỹi,t−1ρ̌ j

(
G0))2

⎤⎦ + o(1) → ln
(
σ 2

0

)
.

Moreover, for an underfitted model with G < G0, note that

σ̌ 2
δ̂(G) =

⎡⎣ 1
nT

G∑
j=1

∑
i∈Ĝ( j,G)

T∑
t=1

(ỹit − ỹi,t−1ρ̌ j(G))2

⎤⎦
≥ min

1≤G<G0
inf

δ̂(G)∈	G

1
nT

G∑
j=1

∑
i∈Ĝ( j,G)

T∑
t=1

(ỹit − ỹi,t−1ρ̌ j(G))2

= min
1≤G<G0

inf
δ̂(G)∈	G

σ̌ 2
δ̂(G).

Under the imposed assumptions (i) γ > 0 and c0
i ≥ 0 or (ii) γ = 0, as (n,T ) → ∞,

min
1≤G<G0

IC(G) ≥ min
1≤G<G0

inf
δ̂(G)

ln σ̌ 2
δ̂(G) + G · κnT > ln

(
σ 2

0

)
.

It follows that, when (n,T ) → ∞,

Pr
(

min
1≤G<G0

IC(G) > IC
(
G0)) → 1.
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a panel clustering approach to analyzing bubble behavior 1389

Finally, for an overfitted model with G0 < G ≤ Gmax, as (n,T ) → ∞,

Pr
(

min
G0<G≤Gmax

IC(G) > IC
(
G0))

= Pr
(

min
G0<G≤Gmax

(
nT ln

(
σ̌ 2
δ̂(G)/σ̌

2
δ̂(G0 )

)
+ nT

(
G − G0) · κnT

)
> 0

)

= Pr

(
min

G0<G≤Gmax

(
nT

(
σ̌ 2
δ̂(G)

− σ̌ 2
δ̂(G0 )

σ̌ 2
δ̂(G0 )

)
+ nT

(
G − G0) · κnT

)
> 0

)
→ 1.

The proof is now complete. �
Proofs of Equations (23)–(25): We first discuss the results of Equation (23). When G = G0

and c0
j < 0, we have

√
ň jT 1+γ

(
ρ̌ j(G) − ρ0

j

)
⇒ N

(
0,−2c0

j

)
,√

ň j,hT 1+γ
(
ρ̌ j,h(G) − ρ0

j

)
⇒ N

(
0,−2c0

j

)
, for any h = 1, 2, . . . ,G,

whose derivations are similar to Theorem 2. Since ň j,h/ň j → π j,h, then we have√
ň jT 1+γ

(
ρ̌ j(G) − ρ0

j

)
⇒ N

(
0,−2c0

j

)
,√

ň jT 1+γ
(
ρ̌ j,h(G) − ρ0

j

)
⇒ N

(
0,−2c0

jπ
−1
j,h

)
, for any h = 1, 2, . . . ,G.

Therefore, it follows that√
ň jT 1+γ (ρ̌ j(G) − ρ̌ j,h(G)) ∼a N

(
0, Avar

(√
ň jT 1+γ (ρ̌ j(G) − ρ̌ j,h(G))

))
,

in which

Avar
(√

ň jT 1+γ (ρ̌ j(G) − ρ̌ j,h(G))
)

= Avar
(√

ň jT 1+γ
(
ρ̌ j(G) − ρ0

j

))
+ Avar

(√
ň jT 1+γ

(
ρ̌ j,h(G) − ρ0

j

))
−2 Acov

(√
ň jT 1+γ

(
ρ̌ j,h(G) − ρ0

j

)
,

√
ň jT 1+γ

(
ρ̌ j(G) − ρ0

j

))
.

For any h = 1, 2, . . . ,G, we consider the asymptotic covariance as

Acov

⎛⎝ 1√
ň jT 1+γ

∑
i∈Ĝ( j,G)

T∑
t=1

yi,t−1ui,t ,
1√

ň jT 1+γ
∑

i∈Ĝ( j,h,G)

T∑
t=1

yi,t−1ui,t

⎞⎠
= Acov

⎛⎝ 1√
ň jT 1+γ

∑
i∈Ĝ( j,h,G)

T∑
t=1

yi,t−1ui,t ,
1√

ň jT 1+γ
∑

i∈Ĝ( j,h,G)

T∑
t=1

yi,t−1ui,t

⎞⎠
= π j,h · Avar

⎛⎝ 1√
ň j,hT 1+γ

∑
i∈Ĝ( j,h,G)

T∑
t=1

yi,t−1εi,t

⎞⎠,
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1390 liu, phillips, and yu

as (n,T ) → ∞, from which we deduce that

Avar
(√

ň jT 1+γ (ρ̌ j(G) − ρ̌ j,h(G))
)

= − Avar
(√

ň jT 1+γ
(
ρ̌ j(G) − ρ0

j

))
+ Avar

(√
ň jT 1+γ

(
ρ̌ j,h(G) − ρ0

j

))
= −2c0

j

(
π−1

j,h − 1
)
.

Further, based on the assumption of cross-sectional independence, we prove Equation (23).
The proofs of (24) and (25) follow a procedure similar to (23). �

Proof of Theorem 5: Assume any G with G̃ ≤ G ≤ Gmax where G̃ is estimated by IC. Also
assume any j = 1, 2, . . . ,G. Under the null hypothesis of slope homogeneity in the jth group,
the test statistic (27) converges to χ2(G) based on Equations (23)–(25). Since the critical val-
ues cvnT := (1 + b log(nT )) · χ2

0.95(G) → ∞, the probability of the Type I error shrinks to zero
asymptotically. Under the alternative hypothesis of a nonzero fraction of slope heterogeneity
in the jth group, the test statistic (27) asymptotically diverges since

min

{√
ň jT 1+γ ,

√
ň jT 2,

√
ň j

(
ρ0

j

)2T
T 2γ

}
	 T γ .

Also, since min{ň jT 1−γ , ň jT 2−2γ , ň j(ρ0
j )2T } 	 cvnT , power converges to unity and the estima-

tor Ĝ of (27) is consistent. The proof is complete. �

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information sec-
tion at the end of the article.

Table 1: Clustering errors with an underestimated group number
Table 2: Empirical frequency of model selection under DGP 0 (θ = 0.5andknT = (nT ) − 0.7)
Table 3: Empirical frequency of model selection under DGP 1 (θ = 0.5andknT = ((nT ) − 0.7)
Table 4: Empirical frequency of model selection under DGP 2 (θ = 0.5 and knT = ((nT )-0.7)
Table 5: Empirical frequency of model selection under DGP 1 (θ = 0.5 and knT = ((nT )-0.6)
Table 6: Clustering and estimation by the two stage procedure under DGP 1 and correct γ *(θ
= 0.5 and γ * = 0.1)
Table 7: Clustering and estimation by the two stage procedure under DGP 2 and correct γ *(θ
= 0.5 and γ * = 0.1)
Table 8: Clustering and estimation by the two stage procedure under DGP 1 and incorrect
γ *(θ = 0.5 and γ * = 0.4)
Table 9: Clustering and estimation by the two stage procedure under DGP 2 and incorrect
γ *(θ = 0.5 and γ * = 0.4)
Figure 1: Empirical frequency distribution and sample average (shown by the vertical line) of
the signal-to-noise ratio in each group of DGPs 0-2.
Table 10: Empirical frequency of the clustering errors in the mixed-root model with stationary
linear processes (c = (0.5,0) and θ = 0.5) when γ * = 0.9
Table 11: Power of tests for detecting explosiveness (θ = 0.5)
Table 12: Empirical frequency of model selection under DGP 1 (θ = 0 and knT = ((nT )-0.7)
Table 13: Empirical frequency of model selection under DGP 2 (θ = 0 and knT = ((nT )-0.7)
Table 14: Empirical frequency of model selection under DGP 1 (θ = 0 and knT = ((nT )-0.6)
Table 15: Clustering and estimation by the two stage procedure under DGP 1 and correct
γ *(θ = 0 and γ * = 0.1)

 14682354, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/iere.12647 by Y

ale U
niversity, W

iley O
nline L

ibrary on [13/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



a panel clustering approach to analyzing bubble behavior 1391

Table 16: Clustering and estimation by the two stage procedure under DGP 2 and correct
γ *(θ = 0 and γ * = 0.1)
Table 17: Clustering and estimation by the two stage procedure under DGP 1 and incorrect
γ *(θ = 0 and γ * = 0.4)
Table 18: Clustering and estimation by the two stage procedure under DGP 2 and incorrect
γ *(θ = 0 and γ * = 0.4)
Table 19: Empirical frequency of the clustering errors in the mixed-root model with iid errors
(c = (0.5,0) and θ = 0) when γ * = 0.9
Table 20: Power of tests for detecting explosiveness (θ = 0)
Table 21: Estimated group structure of the housing price indices in China
Table 22: Estimated group structure of the prices for the U.S. housing market
Table 23: Estimated group structure of the prices for S&P 500 stocks
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notation glossary

Symbol Description

G Number of groups
G0 True number of groups
Ĝ Estimated number of groups generated by the combined method based on the use of IC

and the Hausman test
j Subscript for group identities, namely, 1 ≤ j ≤ G0 or 1 ≤ j ≤ G
i Subscript for individuals, namely, 1 ≤ i ≤ n
In Set of individual subscripts {1, 2, . . . , n}
G Set of group identities {1, 2, . . . ,G}
G0 Set of group identities {1, 2, . . . ,G0}
gi Membership indicator mapping from individuals In into group identities G0

g0
i True membership indicator for (gi)

ĝi Estimated membership indicator for (gi) generated by recursive k-means clustering
δ Collection of membership indicators (:= (g1, g2, . . . , gn)′)
δ0 True value of δ as δ0(:= (g0

1, g0
2, . . . , g0

n)′)
δ̂ Estimation of δ as δ̂(:= (̂g1, ĝ2, . . . , ĝn)′)
	G0 Set of all possible δ, so that δ ∈ 	G0

G( j) Individuals of the jth group; for instance, G( j) = {i ∈ In|gi = j}
G0( j) Individuals of the true jth group; for instance, G0( j) = {i ∈ In|g0

i = j}
Ĝ( j) Individuals of the estimated jth group; for instance, Ĝ( j) = {i ∈ In |̂gi = j}
c j Group-specific distancing parameter; for instance, c j(:= cgi ) if gi = j
c0

j True value of group-specific distancing parameter c j

ĉ∗
j First-stage estimate of group-specific parameter c j by recursive k-means clustering

ĉ j Oracle estimate of group-specific parameter c j based on the true membership δ0

č j Post-clustering estimate of group-specific parameter c j based on the estimation δ̂

ĉ
TS
i Time series estimate of individual parameter ci

CG and CG0 Set of all possible G-dimensional or G0-dimensional distance parameter c
ρ j Group-specific slope coefficient ρ j = 1 + c j/T γ

ρ0
j True value of group-specific slope coefficient ρ0

j = 1 + c0
j/T

γ

ρ̂∗
j First-stage estimate of group-specific slope coefficient ρ̂∗

j = 1 + ĉ∗
j/T

γ

ρ̂ j Oralce estimate of group-specific slope coefficient ρ̂ j = 1 + ĉ j/T γ

ρ̌ j Post-clustering estimate of group-specific slope coefficient ρ̌ j = 1 + č j/T γ
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Symbol Description

ρ̂
TS
i Time series estimate of individual parameter ρi

c, ρ G0-dimensional parameters c = (c1, c2, . . . , cG0 )′ and ρ = (ρ1, ρ2, . . . , ρG0 )′
c0, ρ0 G0-dimensional true values c0 = (c0

1, c0
2, . . . , c0

G0 )′ and ρ0 = (ρ0
1 , ρ

0
2 , . . . , ρ

0
G0 )′

ĉ∗, ρ̂∗ First-stage estimate of c, ρ as ĉ∗ = (̂c∗
1, ĉ∗

2, . . . , ĉ∗
G0 )′ and ρ̂∗ = (ρ̂∗

1 , ρ̂
∗
2 , . . . , ρ̂

∗
G0 )′

ĉ, ρ̂ Oracle estimate of c, ρ as ĉ = (̂c1, ĉ2, . . . , ĉG0 )′ and ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂G0 )′
č, ρ̌ Post-clustering estimate of c, ρ as č = (č1, č2, . . . , čG0 )′ and ρ̌ = (ρ̌1, ρ̌2, . . . , ρ̌G0 )′
clow , cup Bounds for c j ; for instance, c j ∈ [−cup,−clow] ∪ {0} ∪ [clow, cup] in which we define

cup := max j∈G0 |c0
j · 1{c0

j �= 0}| and clow := min j∈G0 |c0
j · 1{c0

j �= 0}|
ρlow , ρup Bounds for ρ j ; for instance ρup = 1 + cup

Tγ and ρlow = 1 + clow
Tγ

ċ Separation for c j ; for instance inf j �= j̃ |c j − c j̃| ≥ ċ
σ 2

j , λ j , ω2
j Group-specific parameters for variances, one-sided and two-sided long-run variances

in the jth group
n j Number of individuals in the jth true group
ň j Number of individuals in the jth estimated group
(σ 0

j )2, λ0
j , (ω0

j )2 True values for variances, one-sided and two-sided long-run variances in the true jth
group

(σ̌ j )2, λ̌ j , (ω̌ j )2 Postclustering estimates for variances, one-sided and two-sided long-run variances
in the estimated jth group

ci, ρi Individual distancing parameter and slope coefficient for the ith individual; namely,
ρi = 1 + ci

Tγ

c0
i , ρ0

i True values for ci and ρi; namely, ρ0
i = 1 + c0

i
Tγ

ĉi, ρ̂i Postclustering estimations for ci and ρi; namely, ρ̂i = 1 + ĉi
Tγ

c, ρ c = (c1, c2, . . . , cn)′ and ρ = (ρ1, ρ2, . . . , ρn)′

c0, ρ0 c0 = (c0
1, c0

2, . . . , c0
n)′ and ρ0 = (ρ0

1, ρ
0
2, . . . , ρ

0
n)′

ĉ, ρ̂ ĉ = (̂c1, ĉ2, . . . , ĉn)′ and ρ̂ = (̂ρ1, ρ̂2, . . . , ρ̂n)′
σ 2, (σ 0)2 Parameter representation and true value of Var(εit )
σ 2

iu, λi, ω2
i Individual parameters for variances, one-sided and two-sided long-run variances of

the ith individual; for instance, σ 2
iu := σ 2

gi
, λi := λgi and ω2

i := ω2
gi

(σ 0
iu)2, λ

0
i , (ω0

i )2 True values for variances, one-sided and two-sided long-run variances of the ith individual;

for instance, (σ 0
iu)2 := (σ 0

j )2, λ
0
i := λ0

j and (ω0
i )2 := (ω0

j )2 when g0
i = j

(σ̂ iu)2, λ̂i, (ω̂i)2 Individual time-series estimates for variances, one-sided and two-sided long-run variances of
the ith individual, based on the postclustering estimate ρ̌ j with ĝi = j

Id , 0d×d A d × d identity matrix; A d × d matrix of zeros
→p, ⇒ Convergence in probability; Weak convergence in the Euclidean space or functional space
AnT � BnT AnT /BnT is either Op(1) or op(1) as (n,T ) → ∞
AnT 	 BnT BnT /AnT is op(1) as (n,T ) → ∞
AnT ∼a BnT Pr(|BnT /AnT | �= 1) → 0 as (n,T ) → ∞
AnT ∼ BnT |BnT /AnT | → 1 as (n,T ) → ∞
Gmax Generic upper bound for group number G
G := Gmax − G + 1 The maximum number of subgroups in each group j = 1, 2, . . . ,G
G̃ The lower bound of group number selected by IC as in (21)
ρ̌ j(G), ρ̌ j,h(G), h = 1, . . .G Postclustering pooled LS estimators for slopes in the estimated j group and in the

estimated hth subgroup of the estimated jth group when assuming G groups, as in (22)
ĝ j,k, k = 1, . . . , ň j The estimated membership indicators of individuals in the estimated jth group
δ̂ j(G) The estimated membership of subgroups in the estimated jth group,

and δ̂ j (G) = (̂g j,1(G), ĝ j,2(G), . . . , ĝ j,ň j
(G))′

ρ̌ j(G) The estimated slopes of subgroups in the estimated jth group,
and ρ̌ j(G) = (ρ̌ j,1(G), ρ̌ j,2(G), . . . , ρ̌ j,G(G))′;

Ĝ( j, h,G), h = 1, 2, . . . ,G Individuals in the estimated hth subgroup of the estimated jth group
ň j,h, h = 1, 2, . . . ,G The dimension of the estimated hth subgroup in the estimated jth group, assuming G groups

π j,h limn
ň j,h
ň j

→ π j,h;

π̃ j π̃ j = diag{π j,1, π j,2, . . . , π j,G}.
γ True value of the rate parameter
γ ∗ Employed value of the rate parameter use in clustering.
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