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ABSTRACT. Workers with variable earnings and flexible hours offer unique opportunities to

evaluate intertemporal labor supply elasticities. Existing static analyses, however, have generated

well-known puzzles, suggesting evidence of downward sloping labor supply curves. Using a large

sample of shifts of New York City taxicab drivers, we estimate a dynamic optimal stopping model

of drivers’ work times and quitting decisions. We model the equilibrium interactions of supply and

demand through dynamic state transition densities, allowing us to estimate driver opportunity

costs via a single agent problem. Our results demonstrate that several apparent behavioral biases

documented in the literature can be reproduced using entirely standard preferences. We use our

model to provide new estimates of individual earnings elasticities and show that taxi drivers

have similar elasticities to workers in markets where experimental evidence has been obtained.

Finally, we use data spanning a 2012 fare change to estimate labor supply elasticities with respect

to market prices, accounting for the equilibrium impact of prices on supply and demand. We find

market elasticities to be approximately a third of the size of individual elasticities, suggesting that

existing estimates of the benefits to recent earnings legislation in the taxi and ride-hail industries

are overstated.

Keywords: Labor supply elasticity, Optimal stopping, Dynamic discrete choice, Taxi industry

JEL: C14, D91, C41, L91

Date: Friday 14th July, 2023.
The authors are grateful to Laura Doval, Hank Farber, Jakub Kastl, Ricardo Lagos, Alessandro Lizzeri, Aniko

Öry, Ariel Pakes, Rob Porter, Eric Richert, Nicola Rosaia, Neil Thakral, and Kevin Williams for helpful comments and
suggestions.

⋆Department of Economics, Princeton University, nbuchholz@princeton.edu.
†Division of Humanities and Social Sciences, California Institute of Technology, mshum@caltech.edu.
‡Department of Economics, University of Texas at Austin, h.xu@austin.utexas.edu.

1

MAILTO: NBUCHHOLZ@PRINCETON.EDU
MAILTO:MSHUM@CALTECH.EDU
MAILTO:H.XU@AUSTIN.UTEXAS.EDU
mailto: nbuchholz@princeton.edu
mailto:mshum@caltech.edu
mailto:h.xu@austin.utexas.edu


1. INTRODUCTION

Workers with variable earnings and flexible hours offer unique opportunities to evaluate

inter-temporal labor supply elasticities. Existing static analyses, however, have generated

well-known puzzles, suggesting evidence of downward sloping labor supply curves. In this

paper we use data from New York City taxicab drivers to estimate a dynamic optimal stopping

model of drivers’ work times and quitting decisions. Our data-driven modeling approach

and counterfactual questions allow us avoid the need to estimate equilibrium search and

matching frictions. We show that the estimated model is capable of reproducing many patterns

associated with behavioral biases despite the fact that it specifies a rational-expectations based

framework and neo-classical model of labor supply. We use our model to provide new estimates

of individual earnings elasticities and show that taxi drivers have similar elasticities to workers

in markets where experimental evidence has been obtained.

Studies using observational data aggregated across multiple industries and spanning several

years have encountered challenges in measuring labor supply elasticities because observed

wage changes typically do not hold all else equal. As access to rich micro-data has become

more available, economists have turned to flexible-work settings, in which workers have the

ability to immediately adjust their work time in response to changes in earnings opportunities.

Such settings offer a clearer path to estimating substitution effects. Yet, the literature has raised

several new questions of methodology and interpretation and has therefore not settled on how

to obtain the elasticities of interest. A seminal paper is Camerer, Babcock, Loewenstein and

Thaler (1997), which finds evidence for negative income elasticities of labor supply among taxi

drivers – that is, drivers appear to work fewer hours when faced with higher wage rates. Such a

finding is inconsistent with textbook neoclassical labor supply models and instead congruent

with alternative “behavioral” labor supply models, such as income targeting, in which agents

with flexible hours set an income target and work until the target is reached. A large follow-up

literature using a variety of datasets has both corroborated (Ashenfelter, Doran and Schaller

(2010), Duong, Chu and Yao (2022)), expanded (Farber (2008), Crawford and Meng (2011),

Thakral and Tô (2021)) or challenged (Farber (2005, 2015)) these findings.

In contrast to the prior literature that has largely treated drivers’ earnings expectations as

stationary up to predictable time-of-day effects, we demonstrate multiple and significant forms
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of non-stationarities within a shift, motivating a forward-looking model of the choice of work

hours within a shift. We model taxicab drivers’ labor supply decisions as emerging from an

optimal stopping problem: in a stochastically evolving environment, drivers provide rides and

decide whether or not to continue working or quit for the day. A driver’s stopping rule is

determined by comparing his expected future earnings at a given place and time against the op-

portunity cost of continuing to work. This is an inherently dynamic problem, as drivers’ choices

are derived by comparing tradeoffs in expected future utility levels. Our model offers a simple

way to accommodate the complex patterns of serial correlation of earnings. Specifically, we

model three state variables: cumulative earnings, cumulative work time and location. We then

pair this state vector with a transition probability matrix that is estimated non-parametrically at

a level of granularity sufficient to capture the serial correlation patterns. Estimated parameters

capture the opportunity costs of drivers as a function of cumulative work hours, allowing for

heterogeneity in preferences across different days of the week, daytime or evening shifts, and

different types of licenses.

Together with our modeling approach, our first primary contribution is to provide methodol-

ogy to estimate the intertemporal substitutability of labor and leisure, or the Frisch elasticity of

labor supply, from observational data of dynamically optimizing agents. While our model is

consistent with equilibrium models of search, matching and spatial sorting in the taxi industry,

our approach and specific research questions do not require treating most aspects of these

equilibrium outcomes as endogenous. Instead, we are able to specify the model in a highly

tractable and parsimonious way with respect to our counterfactuals of interest, allowing us to

estimate driver preferences as a single-agent dynamic problem.

A second contribution is that our approach can be used to explain both negative wage

elasticities, as recovered in Camerer et al. (1997) as well as the fact that drivers appear more

likely to quit after earnings shocks late into the shift, a “recency” bias documented in Thakral

and Tô (2021). In the case of Camerer et al. (1997), in which authors analyze end-of-shift data and

regress hours worked on average daily wages, we find that the declining relative productivity

of drivers on longer shifts leads to negative wage elasticities as a result of a selection effect;

a driver with a longer shift will, on average, end the day at a lower productivity state than a

similar driver who ends earlier, generating a correlation between low average earnings per hour

3



and longer work hours. In the case of Thakral and Tô (2021), the authors regress drivers’ binary

decisions to quit on cumulative earnings interacted with the time of day in which the earnings

accrued. Their estimates show that drivers exhibit a higher probability of quitting associated

with late-in-shift earnings shocks. We find that the particularly large negative autocorrelation of

earnings on long trips, for example trips from the New York boroughs of Manhattan to Queens

or Bronx, can induce these effects. Long trips appear in the data as earnings shocks and lead to

subsequently low expected future earnings. Viewed through the lens of our dynamic stopping

model, a positive current earnings shock imposes a less attractive future path of earnings relative

to the time cost of continuing to work, leading to a higher probability of quitting for the day. We

validate our model by showing that it is capable of generating the patterns in the data that have

been attributed to behavioral explanations. Our results therefore demonstrate that the apparent

non-standard behavior can be rationalized as optimal decision making.

These findings highlight an important case in which models of perfect rationality produce

results that coincide with models of bounded rationality (Rust, 2019). To the extent that workers

in flexible work settings actually express non-standard or “behavioral” preferences in their labor

supply, our results imply that this behavior may simply serve as a simple heuristic for a solution

to a more complicated model of perfect rationality.1

Finally, we use our estimated model to explore the effects of a recent policy to raise taxi fares

in New York City. The New York Taxi and Limousine Commission estimates that a January

2023 fare change, on average raising trip prices by 23%, will lead to a 33% increase in driver

earnings. This estimate implies that labor supply elasticities with respect to fares are no less

than 0.40, and only under a strong assumption that demand is perfectly inelastic. We evaluate

this elasticity by using data spanning the last such change, a fare hike that raised average prices

by 18% on September 4, 2012. Our methodology allows us to analyze these effects without

explicitly modeling the interaction of supply and demand. We instead exploit the fact that a

complete summary of the equilibrium effects of this fare change can be obtained through our

estimates of transition densities before and after the policy took effect. With our model estimates

in hand, by simulating driver behavior under alternative earnings expectations (as summarized

1For example, Farber (2005) discusses that, when informally surveyed, a small percentage of taxi drivers report
following an income targeting strategy.
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by these transition densities), we find that the elasticity of labor supply with respect to market

prices is approximately 0.25, or a third of our overall Frisch elasticity estimates. This implies

that the benefits to individual drivers of a large price increase will be substantially less than

predicted by regulators.

Literature. A growing literature has arisen aiming to estimate labor supply elasticities in

markets where labor supply is continuously adjustable. Several of these papers have studied

the taxi industry, because taxi drivers are typically able to choose their own hours. Moreover, as

automated data collection has been implemented to meet regulatory standards, detailed trip

data has become available in some of the largest U.S. taxi markets.

Camerer et al. (1997) analyzes hand-collected data from New York City and considers the

hours worked during individual driver shifts. The authors conduct a series of regressions of log

hours worked on the log of average daily wages and find evidence for negative wage elasticities.

The authors argue that negative elasticities are consistent with income-targeting on the part of

drivers: for example, a labor supply policy of the form “I will work today until I earn $200."

Farber (2005, 2008, 2015) consider static optimal stopping models of labor supply. The first paper

develops a stopping rule model which explores similar forces to our model, showing that drivers’

stopping is most reliably predicted by hours instead of income. The latter two papers integrate

reference-dependent utility, which is the notion that agents’ utility is not only a function of

income but also reference-points or targets, where the marginal utility of income increases more

quickly before the target is met than after it is met. While Farber (2008) finds mixed evidence

for the existence of reference-dependence, Farber (2015) uses more comprehensive data and

finds stronger evidence that drivers have, on average, upward sloping earnings elasticities.

Nevertheless, Farber finds that just under a third of drivers exhibit behavior consistent with

negative elasticities. Using data on taxi inspections, Ashenfelter et al. (2010) finds that drivers

who worked before and after fare hikes tended to work slightly less on average afterwards,

suggesting a small negative earnings elasticity.2 Our paper highlights new data evidence that

2There are additional studies outside of the context of taxis which consider related questions: Fehr and Goette
(2007) demonstrate positive labor supply elasticities in an experiment providing higher payments to bicycle messen-
gers. Andersen, Brandon, Gneezy and List (2014) also show positive labor supply elasticities in an experiment among
market vendors in India, explicitly testing for and rejecting reference-dependence. Oettinger (1999) documents an
equilibrium increase in labor effort on high demand days among stadium vendors.
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drivers’ relative earnings productivity tends to decline with hours worked. This fact generates a

downward bias in the elasticity estimate in the wage regressions due to a selection effect, one

which may reconcile these disparate findings. We further show through our model that the key

puzzles are reproducible when simulating data directly from the model.

A newer literature presents evidence that drivers’ labor supply behavior is dependent on the

time of day in which they earn revenue. Crawford and Meng (2011) specifies and estimates a

dynamic model of labor supply incorporating reference-dependence in both income and hours-

worked during a shift. The authors find evidence that drivers’ types of reference-dependence

depends on whether their earnings are high or low early in the shift relative to their long-run

average. Thakral and Tô (2021) also takes up the question of whether there is a timing dimension

to behavioral biases in drivers stopping decisions, showing that more recent income is a stronger

determinant of quitting than income earned earlier in a shift. Our paper proposes an explanation

for this behavior by showing that earnings shocks are associated with subsequently negative

earnings opportunities. Incorporating this fact into our model, we show that we can reproduce

the apparent time-inconsistent behavior. Overall, our paper contributes to this literature by

proposing a parsimonious model of dynamic optimization without any behavioral parameters

that serves as an alternative explanation for driver behavior.3

We also contribute to a literature on structural models of labor supply and market equilibrium

in taxi and ride-hail settings. Our model is closely related to the taxi labor supply model of

Frechette, Lizzeri and Salz (2019), in which taxi drivers decide how long to work by weighing

the utility of earning revenue against the disutility of working longer. We use our framework

to study the equilibrium effects of policies that were enacted during the sample period. One

important difference is that we do not model endogenous search frictions or strategic entry,

3There is also an empirical literature that recovers the elasticities of intertemporal substitution as a part of
estimating lifecycle models of labor supply, for example Heckman and MaCurdy (1980), Browning et al. (1985),
MaCurdy (1981), and Altonji (1986). The data used are highly aggregated and often cross-sectional and cross-industry
in nature. These studies generally predict small positive labor supply adjustments as a result of increased wage rates.
Within the literature, authors regularly highlight significant data limitations and modeling assumptions: for example
one must assume that workers are free to choose their own hours and that wage variation is exogenous, which is
unlikely to hold in the analyzed settings. It is also a challenge to separate wealth effects from substitution effects,
even when long-run panels are used. Nevertheless, our work corroborates the findings of positive substitution
elasticities but at a much finer, intra-daily scale instead of workers’ lifecycle.
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and instead we rely on non-parametric estimates of the dynamic path of earnings. This data-

driven approach captures the intra-daily dynamics of earnings at more granular level, but at the

same time abstracts from modeling the underlying mechanisms of market clearing. In essence

we substitute with extra data part of the analysis that would otherwise require an additional

equilibrium model of search and matching along with several assumptions to make such a

model tractable. Chen, Rossi, Chevalier and Oehlsen (2019) estimate labor supply and the value

of flexibility in the setting of Uber drivers. Because Uber drivers are able to supply labor in

irregular schedules, often as secondary jobs, the labor supply problem is fundamentally different

from that of professional taxi drivers. The authors focus on quantifying driver preferences for

the flexibility offered by the platform and the opportunity costs of working at different times of

day. Buchholz (2022) considers a model of endogenous spatial equilibrium among taxi drivers.

We do not model drivers’ location choices directly, however these decisions are embedded in

our model’s transition densities, allowing drivers to account for divergent continuation values

associated with distant locations and use these to condition labor supply decisions. This suggests

a useful approach to accommodate spatial models built from the framework of Lagos (2000),

including many additional settings and applications (e.g. Brancaccio et al. 2020; Castillo 2022;

Rosaia 2023), when counterfactuals address aggregate moments. Petterson (2022) considers a

dynamic labor supply model among taxi drivers to estimate a model of reference dependence. In

contrast, our model assumes no reference dependence and derives predictions that are consistent

with static evidence of reference dependence.

Finally, we contribute to a broad literature that demonstrates how a variety of static empirical

puzzles can be rationalized through dynamic models of firm behavior. Examples of these include

the puzzle of procyclical labor productivity, rationalized in part by models of labor hoarding

among forward-looking firms (Rotemberg and Summers 1990; Burnside et al. 1993; Lagos 2006),

the puzzle of firms pricing below cost, rationalized through models of learning by doing or

predatory pricing (Benkard 2004; Besanko, Doraszelski and Kryukov 2014), and the puzzle that

incurring costly regulations would benefit firms, rationalized through a model of rising rival

entry costs (Ryan, 2012).

In Section 2 we present the data used, document important stylized facts and review the main

findings of past literature on taxi driver labor supply. In Section 3 we present a dynamic model
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of drivers’ labor supply decision. In Section 4 we discuss the estimation and identification of our

model. Section 5 provides estimation results and revisits the literature in light of them. Section 6

uses the estimated model to conduct counterfactuals that measure labor supply elasticity in the

context of both individual and market-wide wage fluctuations. Section 7 concludes.

2. DATA AND EVIDENCE

We start by introducing the dataset and presenting some descriptive results. In 2009, The Taxi

and Limousine Commission of New York City (TLC) initiated the Taxi Passenger Enhancement

Project, which mandated the use of upgraded metering and information technology in all New

York medallion cabs. The technology includes the automated data collection of taxi trip and fare

information. This data set represents a complete record of all trips operated by licensed New

York medallion taxis. We primarily use TLC data on all medallion cab rides given from July,1

2012 to September 3, 2012, the last day before a fare change. The sample analyzed here consists

of 27,830,861 trips. Data include the exact time and date of pickup and drop-offs, trip distance,

trip time, fare information and car and driver identifiers. Table 1 provides summary statistics

on trips in Panel I and driver shifts in Panel II. In Section 6 we complement this data with two

additional months of trips that occur after the fare change.

Recent work has made broad use of this data set (See, e.g. Farber (2015), Haggag et al. (2017),

Frechette et al. (2019), Thakral and Tô (2021), Buchholz (2022)). Earlier research, including

work devoted to explicitly measuring labor supply elasticities, employs smaller samples and

less reliable taxi trip data. While there is continued debate about model specification and the

presence of behavioral biases, the TLC data obviates most lingering worries about sample size

and measurement error.

There are several regulatory statutes governing TLC licensed taxis that are relevant for

analyzing the labor supply of drivers. The TLC licenses are divided into categories, including

yellow taxis, liveries, para-transit and special charter vehicles. In 2012, yellow taxis are by far

the highest volume of the license classes, providing around 175 million rides per year among

roughly 50,000 drivers and 13,437 cars. In 2013 the TLC began licensing “green cabs” or “boro

cabs”, which grants authorization to pick up passengers outside of Manhattan. Later, they
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permitted high-volume for-hire vehicles that include platform-based ride-hail companies such

as Uber and Lyft.

Yellow taxi medallions are sub-divided into operational types. The most common is the

mini-fleet type, representing about 60% of the total yellow taxis, in which companies own

multiple cars with attached medallions and drivers lease the taxi on a daily or weekly basis,

paying a fixed leasing fee subject to regulated caps. Daily leases impose strict shift limitations,

where day-shift drivers are required to return cars to bases, typically located in Queens, by

4-5pm for the evening shift, and night-shift drivers are required to return the car by 4-5am. The

remaining types involve a driver-owned car and a leased medallion, or a driver-owned car and

driver-owned medallion, neither of which are subject to daily shift restrictions.

Yellow taxis are required to locate passengers through street hail and cannot schedule rides in

advance.4 During the sample period the fare was fixed by the TLC at $2.50 fixed fee plus $2.00

per mile.

Table 1 contains summary statistics for the full sample of trips in Panel I and driver shifts

in Panel II, as well as subsamples by weekday vs. weekend, morning vs. evening shift, and

fleet status. Morning (AM) and evening (PM) shifts are defined similarly to Farber (2015):

AM shifts start between 4am – 10am and PM shifts start between 2pm – 8pm. Fleet status is

not directly observed but can be partially inferred from data. We’re specifically interested in

capturing whether an AM-shift driver is obligated to return the taxi by 5pm, or similarly for a

PM-shift driver at 5am.5 Fleet drivers here are interpreted as daily lease drivers, whereas non

fleet drivers include owner-operators with and without leased medallions as well as fleet drivers

who operate on longer term leases.6

Panel I shows that nearly all driving yields similar distributions of trips in terms of fares

and duration. However weekdays, afternoon shifts, and non-fleet drivers face slightly higher

4Permission to engage in app-based e-hailing of yellow taxes, a limited type of scheduling and search aid, was
approved by the TLC in mid-December 2012 and took effect in February 2013.

5Though exact shift times are not recorded, we take shifts to be drivers’ total span of work without breaks longer
than five hours. This definition is adopted by some of the literature using this data set (e.g., Haggag et al. (2017),
Frechette et al. (2019)) and close to the six hour definition used in the rest (e.g., Farber (2015), Thakral and Tô (2021))

6While our data do not directly record the type of license used by each driver, they do identify the medallion ID
separately from the driver ID. We categorize leased vs. owner-operator medallions based on the number of unique
drivers observed using each medallion and the probability that a medallion is turned over during the “witching
hour” between 4pm – 5pm. See Section A.1 for more detail.
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TABLE 1. Trip-level Summary Statistics

Variable Data Sample Obs. 10%ile Mean 90%ile S.D.

I. Trip Summary Statistics

Trip Revenue ($)

Overall 27.9M 5.60 12.35 21.50 9.23
Mon-Fri 18.6M 5.70 12.47 21.82 9.39
Sat-Sun 9.3M 5.50 12.11 20.90 8.90
AM Shift 17.5M 5.40 11.80 20.30 8.98
PM Shift 7.1M 6.40 13.39 23.29 9.33
Fleet 14.9M 5.52 12.06 20.78 8.75
Non-Fleet 13.0M 5.70 12.69 22.68 9.74

Trip Minutes

Overall 27.8M 4.00 12.15 22.70 8.61
Mon-Fri 18.6M 4.00 12.50 23.00 8.64
Sat-Sun 9.3M 4.00 11.45 21.17 7.89
AM Shift 17.5M 4.00 11.96 22.23 8.47
PM Shift 7.1M 4.52 12.56 23.00 8.36
Fleet 14.9M 4.00 11.90 22.00 8.20
Non-Fleet 13.0M 4.00 12.45 23.00 8.76

II. Shift Summary Statistics

Shift Revenue ($)

Overall 1,287K 150.26 267.25 378.59 89.94
Mon-Fri 880K 153.32 262.18 358.20 81.90
Sat-Sun 406K 144.77 278.27 419.33 104.46
AM Shift 766K 174.97 270.10 359.52 77.07
PM Shift 331K 166.57 285.60 410.00 92.59
Fleet 647K 168.06 277.24 380.76 85.33
Non-Fleet 640K 138.35 257.21 375.64 93.28

Shift Minutes

Overall 1,287K 287.92 497.91 659.58 149.60
Mon-Fri 880K 304.12 497.69 641.27 140.11
Sat-Sun 406K 262.85 498.37 689.87 168.35
AM Shift 766K 380.07 525.71 649.57 125.30
PM Shift 331K 303.24 485.97 662.10 139.74
Fleet 647K 331.28 516.79 658.79 137.13
Non-Fleet 640K 260.59 478.81 661.03 158.97

This table uses TLC Data from August–September, 2012. Panel I summarizes revenues and total trip
times over all trips in the sample, with subsampling on different types of shifts as indicated. Panel II
summarizes total cumulative revenues and cumulative work time across each driver-shift. Shift minutes
includes both the time spent vacant and the time spent occupied.

fares and longer durations. These differences reflect a slightly lower concentration of central

Manhattan trips. Panel II shows that evening shifts earn drivers about 6% more revenue across

shifts with about 7% less time. Though owner-operators have essentially free entry across shifts,
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the fact that their shifts are similarly distributed as lease drivers suggests that evening work

may impose higher opportunity cost on drivers despite being more valuable overall. A similar

albeit weaker pattern is true for weekend shifts compared to weekdays.

2.1. The Time Path of Earnings. In this section we highlight patterns in how drivers accrue

earnings over time. While trip prices are determined by the TLC’s fare schedule, drivers face

uncertainty over hourly earnings because they need to first search for passengers in order to

earn fare revenue. The amount of search time required to find a passenger is highly uncertain

and generates variability in the realized productivity of a driver’s time. To capture this in a

simple way, we define a spell as the length of time between passenger drop-offs. A spell is

therefore the sum of time spent searching for a passenger and the time spent traveling with a

passenger, and every shift can be characterized as a sequence of spells from the time the driver

begins working until the end of the day. We now define a driver’s spell wage as the total revenue

earned over a spell divided by length of the spell. The driver’s spell wage is thus a trip-by-trip

effective wage wage. Note that the weighted average spell wage, where weights are according

to the time spent on each spell, is equal to the average realized wage over a given driver’s shift,

a common moment used in the literature. We express spell wage in units of dollars per hour.

We document two key stylized facts about drivers’ spell wages. First, they tend to decline

with time spent on a shift. Figure 1 shows a relation between spell wages and cumulative

hours worked on weekdays (Panel (a)) and weekends (Panel (b)). To summarize the effects over

hundreds of thousands of observations each, both panels depict a binscatter plot of spell wages

on work hours, where estimates are residualized over month by day-of-week by hour fixed

effects. These plots indicate that drivers earn, on average, around $2 less per hour relative to

other drivers from the start to the end of a typical shift.

We present more precise measures and additional insights in Table 2, which shows the effects

of cumulative time worked on different measures of earnings per hour, including spell wages.

Column 1 presents raw correlations without controls for each of four dependent variables.

The subsequent two specifications add day of week by hour fixed effects (column 2) and also

driver-shift fixed effects (column 3). Taking column 3 as the preferred specification, we see that

the productivity of a spell declines over each hour by 23 cents per hour. Thus a typical driver

on the ninth hour of the shift would be expected to earn about $2 less per hour than when he
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FIGURE 1. The Time Path of Earnings by Cumulative Hours Worked
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TLC from January to August 2012. This figure shows two binscatter plots of how the distribution of
spell wages evolve with cumulative hours worked. Panel (a) shows the relation between spell wage and
cumulative hours worked on weekdays. Panel (b) repeats this for weekends.

started. Panels III, IV and V detail the underlying reasons for this: fares per ride increase by

about 49 cents (implying slightly longer trips on average) but not enough to offset increased

search and travel times, which collectively grow by over one and a half minutes per spell per

hour worked.

Growing search times may indicate longer breaks or less intense search behavior. We find no

relationship between cumulative hours worked and the straight-line distance between passenger

drop-off and subsequent pickup points, which suggests that hours worked does not affect the

geographic extent of the search process, consistent with an interpretation of increased search

times indicating that drivers are taking breaks without driving. In Section A.2 we provide

evidence that drivers do not modulate effort in response to transient earnings shocks within

a day, which suggests that the decrease in the earnings rate to be exogenous with respect to

cumulative earnings. These patterns reflect a declining within-driver productivity: earnings

continue to slow down even when market conditions become more favorable for drivers. One

important implication of this declining productivity is that, all else equal, driver shifts with

longer cumulative work hours will be associated with lower average shift wages.

On top of showing that wages decline on average over the course of a shift, the second key

fact is that they also exhibit, on average, negative serial correlation from trip-to-trip. This pattern
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TABLE 2. Earnings Per Hour and Search Times by Cumulative Hours

(1) (2) (3)

Effect of cumulative hours worked on:

Panel I: Wage (cumulative) -0.106** -0.317** -0.252**
(0.002) (0.002) (0.002)

Panel II: Wage (spell) -0.078** -0.213** -0.233**
(0.006) (0.007) (0.009)

Panel III: Earnings/Trip 0.110** 0.085** 0.485**
(0.003) (0.004) (0.007)

Panel IV: Trip Time (sec) 10.81** 7.32** 35.59**
(0.173) (0.230) (0.393)

Panel V: Search Time (sec) 27.95** 32.39** 59.21**
(0.407) (0.539) (0.991)

Dow x Hour x ✓ ✓
Driver-Shift FE x x ✓
N 25,689,471 25,689,471 25,689,471

This table documents the effect of the reported variables due to cumulative hours worked.

arises because many long and high-earning trips will leave taxi drivers in less desirable locations

that require additional search time to find the next passenger.

Table 3 shows the result of a regression of spell wage on its own lag with driver-shift fixed

effects. We see that there is an average effect of lagged spell wage by about -4% on current spell

wage, but depending on the destination this may be as high as -74%, as is the case with trips

following a Bronx drop-off. Moreover, the share of non-Manhattan drop-offs increases from

about 7.7% among drivers on the first four hours of their shift to about 11.6% among drivers

who are beyond 8 hours into their shift. The average duration of a spell outside of Manhattan

is about 25 minutes, suggesting that drivers who receive a high wage draw in the form of an

outer borough destination trip face about half an hour of substantial subsequent “wage cuts”

in the form of a lower expected spell wage. The negative auto-correlation shown here plays

an important role in the dynamic model because it helps explain why drivers often exhibit an

increased likelihood of quitting after positive earnings shocks near the end of their shift. Without
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incorporating forward looking behavior into the labor supply model, these stylized facts would

be hard to explain.

TABLE 3. Autocorrelation in Spell Wages

Lag Drop-off Borough
Overall Bronx Brooklyn Manhattan Queens

I. AR(1) Regression Coefficients

Lag Spell Wage -0.036** -0.737** -0.060** -0.070** -0.506**
(0.003) (0.023) (0.015) (0.003) (0.015)

II. Trip Share (%) / Quit Probability (fraction) in Parentheses

12AM-2AM . (0.13) 1.11 (0.27) 14.44 (0.20) 76.61 (0.09) 7.78 (0.29)
2AM-4AM . (0.22) 1.76 (0.39) 16.30 (0.31) 67.58 (0.16) 14.05 (0.37)
4AM-6PM . (0.02) 0.84 (0.06) 4.32 (0.07) 82.23 (0.01) 12.08 (0.05)
6AM-8AM . (0.00) 0.38 (0.01) 1.68 (0.01) 93.59 (0.00) 4.22 (0.01)
8AM-10AM . (0.01) 0.28 (0.01) 1.63 (0.01) 94.50 (0.00) 3.48 (0.02)
10AM-12PM . (0.01) 0.28 (0.03) 1.91 (0.04) 93.83 (0.01) 3.85 (0.06)
12PM-2PM . (0.05) 0.27 (0.15) 2.17 (0.15) 92.66 (0.03) 4.69 (0.24)
2PM-4PM . (0.19) 0.29 (0.36) 2.54 (0.35) 91.42 (0.17) 5.52 (0.49)
4PM-6PM . (0.03) 0.37 (0.07) 3.99 (0.06) 91.34 (0.03) 4.17 (0.09)
6PM-8PM . (0.02) 0.45 (0.06) 5.92 (0.05) 90.35 (0.02) 3.22 (0.05)
8PM-10PM . (0.03) 0.63 (0.10) 8.66 (0.07) 86.61 (0.02) 4.05 (0.08)
10PM-12AM . (0.09) 0.84 (0.24) 11.18 (0.17) 82.45 (0.06) 5.49 (0.22)

Panel I of this table reports the results of an Arellano-Bond AR(1) regression to test for the auto-correlation
of spell wages. The first specification pools all data. Specifications (2)-(5) subset data according to the last
(i.e. lagged) drop-off Borough. Robust standard errors are reported. Asterisks (**) denote significance
above the 1% level. Panel 2 shows the percentage of trips with destinations in each boro by time of
day. The gray shaded region denotes typical AM shift hours. Percentages do not add up to one because
destinations outside these boroughs have very low volume and are not reported.

In Panel II of Table 3 we show that these patterns coincide with a higher likelihood of taking

trips outside of Manhattan and a higher likelihood of quitting after those destinations. For

example, during the day shift, highlighted in gray, the share of trips to Brooklyn rises from

1.68% to 3.99% from 6am to 6pm. The likelihood of quitting at a Brooklyn destination also rises

from 1% in the early hours to a peak of 35% between 2-4pm, likely reflecting shift quitting in

advance of the 5pm shift turnover. In general, the share of destinations outside of Manhattan is

increasing towards the end of the day-shift hours and again increases sharply into the evening

shift hours as regular shift hours near their end. Quitting is more likely in these destinations as
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well. We interpret these collective facts as evidence for the impact of negative serial correlation

in spell wages influencing drivers’ labor supply choices.

2.2. Static Approaches to Recover Wage Elasticities. We replicate several recent studies em-

ploying a static analysis of labor supply. In Section A.4 we show that our specific data sample

is able to reproduce the negative wage elasticities by using analogous wage instruments to

Camerer et al. (1997), the hazard rate patterns documented in Farber (2005) and the recency

effects documented in Thakral and Tô (2021). These effects are reproducible despite using much

richer data compared to the first two studies and a different time period from the latter study.

3. MODEL

Taxi drivers drive around the city searching for customers. They earn fare revenue by

providing rides and work until deciding to quit for the day. We model the quitting decisions of

individual drivers, indexed by i, engaged in daily shifts indexed by j. A shift is characterize

by a range of possible starting times. Market conditions on a given shift are described by a

vector xj , a categorical index for how profitable a specific shift is for the average drivers. xj

summarizes market-wide heterogeneity in expected average earnings-per-hour due to daily

weather conditions, demand conditions, and road congestion. Given xj , drivers’ payoff-relevant

state is described by their cumulative work time h, cumulative earnings r and a location ℓ from

which they are searching for passengers. Note that cumulative work time includes both the time

searching to find passengers as well as the time spent driving them.

Drivers earn a payoff from cumulative earnings and cumulative time spent working given

by uij(r, h). In the empirical analysis below we make the assumption that money is fungible

throughout the day and further normalize the scale of utility to the dollar, so that δu
δr = 1 for all r

and h. The function uij(r, h) is the main primitive object of interest, as it describes how drivers

value their time at various levels of work time.

We assume the mean utility of drivers has the following structure, with r equal to cumulative

earnings and h equal to cumulative number of hours worked:

uij(r, h) = r + θ1,ijh+ θ2,ijh
2 (1)
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where θc
ij = {θ1,ij , θ2,ij} is a vector of unknown cost function parameters to be estimated.7

Time is discrete and each decision period occurs when a passenger is dropped off. After each

trip is completed, the driver observes the current state {r, h, ℓ} and faces a decision. He may

quit for the day, in which all fares earned up to that point are kept but all possible future fares

for that day are foregone. Alternatively, the driver may choose to keep working for one more

spell, in which case he draws from a distribution of new fares dr, new work times dh (consisting

of both search time and then time-on-trip) and new locations ℓ′, such that

(dr, dh, ℓ′) ∼ F(r, h, ℓ, x). (2)

Each draw adds to the stock of cumulative earnings, i.e. r′ = r + dr and similarly for work

time h′ = h+ dh. The payoff associated with a new fare is the difference between payoffs at the

new state from the previous one:

πij(dr, dh) = uij(r + dr, h+ dh)− uij(r, h). (3)

At the end of this trip, the driver once again faces the decision to quit or not.

Note that F plays a critical role in the model: draws from this distribution capture the

transition path of the state variable, and, by extension, the path of spell wages, as determined

each period as dr
dh . The descriptive patterns documented in Section 2.1 are directly encoded

in F through its dependency on current state variables r, h and ℓ. Moreover, F represents

the equilibrium earnings process for the entire shift, summarizing the search process and the

efficiency of driver search as a consequence of the thin/thick externalities on both sides of the

market. Our counterfactuals of interest operate on F in a natural and straightforward way,

which allows us to circumvent the need to model the underlying search and matching process

and avoid the need to take a stance on its form.8

Before making a decision, drivers draw an unobserved opportunity cost ϵt,y associated with

each period t and each choice to quit or not, y ∈ {0, 1}. We assume each ϵt,y is i.i.d and distributed

7In practice, we will treat drivers as homogenous within eight discrete types: AM/PM shifts × Weekday/Weekend
shifts × owner-operator/fleet licenses.

8Our approach relates to Huang and Smith (2014), which models the non-stationary evolution of fishery stocks,
in part a function of a complex biological process, through a flexible specification of transition densities.

16



as Type I Extreme Value with mean zero and scale parameter σϵ. Define ϵt = ϵt0 − ϵt1 as the net

unobserved opportunity cost of quitting, drawn once per driver per decision period.

Because the payoff-relevant non-stationarity is captured by the cumulative time state h, we

hereafter suppress decision-period subscripts t without loss of generality. Driver i’s decision

problem can then be characterized by a value of quitting or continuing depending his state

{r, h, ℓ}, market conditions xj , and a draw of ϵ. We can thus write the value function of driver i

on shift j as follows:

Vij(r, h, ℓ, ϵ) = max
{
uij(r, h) + ϵ,

∫
F (dr,dh,ℓ′|r,h,ℓ,x),G(ϵ′)

Vij(r + dr, h+ dh, ℓ′, ϵ′)
}

(4)

Equation 4 summarizes the timing of the decision problem: after dropping a passenger, drivers

observe their private signal ϵ about the relative value of continuing work over quitting. If they

decide to continue, they then draw an updated work time and income. We therefore assume

they either quit or commit to search until finding another passenger and revisiting the decision

after that passenger is dropped off. Since the entire shift occurs within a single day, we assume

there is no discounting. However, the draws dh do impact model timing. First, the wage process

F depends on h, so a long spell dh impacts future draws. Second, the driver’s cumulative work

time also increments by dh, which increases total costs according to the shape of uij(·, ·).

Existence and Uniqueness of the Optimal Stopping Rule.

Theorem 1. Assume the following: (i) the distribution of ϵ has full support, (ii) u(·) is bounded, and (iii)

u(·) is decreasing and convex in h. Then a unique solution exists to the optimal stopping rule.

We provide a proof of the above Theorem in Section A.9.

Entry. We abstract from modeling daily entry costs and instead assume drivers’ entry timing

decisions are fixed. While this is in part supported by regulatory constraints, as daily lease

drivers are bound to morning and evening shift timing windows, owner-operators are generally

free to begin work at any hour. Because drivers’ actual starting time decisions and constraints

are not observable, identifying entry costs would require a model of strategic interaction in

daily entry timing. We nevertheless believe the most natural way to estimate the substitution

elasticity of labor supply, as we do in Section 6.1, is to fix starting times and predict work hours
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as a function of changes to earnings. This approach offers a direct comparability between our

estimates and those obtained in other labor markets. We also want to emphasize that even a

simple dynamic model is capable of reconciling multiple puzzles that arise in the labor supply

literature. Nevertheless, this assumption limits the types of counterfactuals one can consider

using our framework.

Competition. Drivers compete for fares with other drivers. This interaction is encoded in the

distribution F of work time, earnings and location draws. All else equal, more drivers in the

market tends to shift the mass of this distribution towards longer realizations of h for a given r,

as a thicker supply-side leads to increased driver search times.

Modeling the underlying mechanisms that give rise to the equilibrium embedded in F poses

unique challenges, as it requires a model that maps strategic entry decisions to hourly earnings

(Frechette et al., 2019) and a model that maps drivers’ endogenous location search to location-

specific earnings (Buchholz, 2022). Each of these challenges, as addressed by the literature,

entails a number of substantial assumptions for computational tractability.

For our questions of interest, we can circumvent many of these difficulties. In estimation, we

treat F as a data object, and holding it fixed conditional on a broad set of observables. In our

counterfactuals, we operate directly on F in different ways. We further argue that, conditional

on an equilibrium of interest, in both estimation and computing counterfactuals, F can be

regarded as common and exogenous across drivers. This approach enables us to conduct our

analysis through the lens of a single-agent problem.9

4. EMPIRICAL STRATEGY

In this section, we discuss the estimation of the model presented in Section 3. We adopt a

nested fixed-point procedure where for each guess of the parameter vector we first solve for the

fixed point of the value functions in Equation 4. Traditionally, non-stationary dynamic models

allow for a relatively straight-forward solution value function by backward induction. However,

because the time dimension enters our utility specification directly as a state variable, we take

the approach of treating value functions as stationary with respect to income and time-worked.

The model nevertheless behaves as non-stationary, because time-worked only evolves forward

9We discuss this assumption further in Section 2.1 and Section A.2.

18



in each decision period until a terminal value. We impose that time-worked beyond 15 hours

results in automatic quitting. In practice this assumption is innocuous since more than 99% of

driver shifts end before this cutoff and the estimated model will predict that quitting happens

much earlier.

4.1. Discretization of State Variables: To construct continuation values we finely discretize the

state space and generate a set of transition probabilities between each state. We create fifteen

uniformly divided bins between the lowest and highest observed values of earnings and time

worked within a shift. This leads to cumulative earnings (r) bins from $2.50 to $753.33 in fifteen

intervals of $53.63 and cumulative time (h) bins from 0 minutes to 1,008 minutes in fifteen

intervals of 77.2 minutes. Together these two grids form a state space of 225 discrete bins over

which drivers face value functions and policy functions in each location ℓ. We divide ℓ into six

categories: Manhattan, Brooklyn, Bronx, Queens, Staten Island, and Newark Airport.10

4.2. Driver Heterogeneity: To capture the sources of preference heterogeneity consistent with

the literature discussed in Section A.4, we will focus our analysis of heterogeneity on eight

discrete driver types, according to whether a driver’s shift is classified as AM or PM and Weekday

or Weekend, and whether the driver is classified as Owner-operator or Fleet. Drivers within each

group (e.g., AM-Weekday-Fleet) are assumed to have common cost function parameters and

common scale parameters on unobserved shocks. Denote the full vector of parameters for type i

drivers as θi = {θi1, θi2, σϵ,i} and denote the cost-function-specific parameters as θc
i = {θi1, θi2}.

4.3. Market-level Heterogeneity: Some days are more profitable for drivers than other days,

for example weekdays versus weekends, or simply days in which demand is very high or

very low. This variation has persistence within a particular shift j and will therefore enter

into drivers’ earnings expectations, represented by Fj on any given day. We use this type

of daily market-level variation for two reasons. First, it allows us to finely construct driver

expectations with respect to market observables and, second, to create enough richness in our

simulations to replicate the instrumental variables strategy used in the literature. We incorporate

this heterogeneity into our model along three dimensions: AM/PM shifts, Weekday/Weekend

shifts, and we further separate shifts into five types of days, denoted as xj or the daily earnings

10Note that both New York City Airports, LaGuardia and JFK, are contained within Queens.
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quintile x associated with shift j. We compute xj by first computing the average spell wage

of all drivers across each shift and categorizing these into five quintiles, which represent how

productive driving is on average. The three above shift characteristics combine to create 2×2×5

types that make up market-level heterogeneity entering the model as Fj .

4.4. Serial Correlation in Earnings: Our model accounts for the two forms of within-driver-shift

serial correlation discussed in Section 2.1. We describe each of these in turn.

(i) Declining spell wages, or the phenomenon in which drivers tend to become less productive

as their shift grows longer, are patterns that enter our model through the state transition

probability matrix. State transitions determine the relative probabilities of advancing in

cumulative earnings and cumulative time conditional on a location ℓ and daily shift-type

xj . Transition probabilities incorporate declining spell wages documented in Section 2.1

because, as the cumulative time state grows, a driver’s probability of reaching higher

earnings states declines relative to his probability of reaching higher time states.

(ii) Location effects, or the chance that future spell wages fall following trips to outer bor-

oughs, also enter drivers’ expectations and impact their quitting decisions. Due to

dimensionality concerns with adding more locations we treat the space of locations

fairly coarsely, dividing ℓ into six categories as detailed in Section 4.1. Each time drivers

in location ℓ draw a new location ℓ′ they earn fare, cumulate work time, and then face

a new decision at location ℓ′. Drivers face a location-specific value function V (·, ·, ℓ′, ·)

which reflects that, for ℓ′ /∈ Manhattan, the expected productivity of earnings falls as a

large fraction of drivers will not find a passenger until returning to Manhattan.

To incorporate these locations effects, we model outer-borough decisions in the

following way. When a driver drops off a passenger outside of Manhattan, he faces

the option to end the shift and collect the current net utility from income and hours,

or else return to Manhattan to continue search. The value of search in Manhattan is

offset by additional travel time to return there and therefore the value is computed as

V (r, h|ℓ /∈ Manhattan) = V (r, h+ zℓ|ℓ = Manhattan) where zℓ is the expected travel time

to return to Manhattan for search. We estimate zℓ for each outer borough by regressing

drivers’ total searching times on the previous drop-off borough, relative to Manhattan,
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net of a full set of controls for hour-of-day, day-of-week, shift, owner-operator, and

driver-shift fixed effects. See Section A.7 for more details.

4.5. Estimation. Our model parameters reflect the tradeoff between earnings and time as

revealed by drivers’ quitting decisions conditional on observed states. To estimate the model

parameters governing this tradeoff we specify a log-likelihood function as follows, among

drivers i ∈ I(j) of shift-type j and trips t:

LL(θj) =
∑

i∈I(j)

T∑
t=1

{
yit ·

[
lnP (yit = 1|rit, hit, ℓit, xi;θj) +

ti−1∑
s=1

lnP (yi,s = 0|ri,s, hi,s, ℓi,s, xi;θj)

]}
(5)

The quitting probability P (yit = 1|rit, hit, ℓit, xi;θj) is obtained via the equilibrium value

functions as specified in Equation 4.

P (yit = 1|rit, hit, ℓit, xi;θj) =
exp(u(rit, hit|θc

j)/σϵ,j)

exp(u(rit, hit|θc
j)/σϵ,j)) + exp(

∫
F,ϵ Vi(rit + dr, hit + dh, ℓ′, xi|θc

j)/σϵ)

(6)

Our estimator maximizes Equation 5 across eight distinct observable types of driver-shifts, or

j ∈ {1, ..., 8}, as reported in Section 5.11

5. RESULTS

In this section we present and discuss the empirical results of the dynamic labor supply model

presented in Section 3. Estimates of the driver cost parameters are reported in Table 4, Panel I.

We produce estimates on eight samples, dividing drivers into owner-operator or fleet and their

shifts into day or evening and weekday or weekend. As discussed in Section 2, these are natural

divisions across which opportunity costs should differ. Because we normalize the scale of

utility to dollars, we can also interpret cost functions in dollar terms. The raw parameter values

11In practice, we impose a penalty term on high values of σϵ. This is because the solver otherwise overweights
matching the many “continue” choices, or P (yi,s = 0) compared with the relatively few“quit” choices, or P (yi,s = 1),
and converges to degenerate distributions of θ and very high σϵ to explain quitting. We find that by penalizing high
σϵ we require the estimator to match the quitting probabilities instead using the cost curves. This method provides
cost curves that fit the data well.
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show that time costs are decreasing and convex, with steeper costs on weekends compared to

weekdays and evening shifts compared to day shifts.

TABLE 4. Model Estimates

Driver-Type: Owner-Operated Fleet Owner-Operated Fleet

Shift-Type: AM AM PM PM
Mon-Fri Sat-Sun Mon-Fri Sat-Sun Mon-Fri Sat-Sun Mon-Fri Sat-Sun

I. Estimates

σϵ
16.11 17.32 15.20 15.50 19.88 19.13 19.45 18.44

(0.469) (0.986) (0.949) (0.770) (1.140) (0.660) (0.729) (0.617)

θ1
38.18 27.57 56.04 40.18 12.55 -3.53 8.74 -7.32

(2.039) (5.370) (5.622) (4.135) (3.777) (2.406) (3.072) (2.450)

θ2
-3.53 -2.80 -4.48 -3.45 -2.24 -1.258 -1.98 -1.00

(0.116) (0.351) (0.192) (0.251) (0.235) (0.166) (0.212) (0.151)

II. Implied by Estimates

Last Hour Time Cost ($/hr.) 28.62 23.67 28.72 26.25 21.55 24.88 17.64 23.03
(1.150) (7.354) (1.675) (0.432) (0.591) (0.713) (0.861) (1.842)

III. Data Comparison
Last Hour Earning ($/hr.) 36.94 39.68 37.57 40.07 38.55 40.89 37.80 41.26
Avg. Shift Minutes 472 399 509 456 577 568 550 567
Avg. Trips Per Hour 3.8 3.9 3.8 3.8 3.7 4.0 3.6 3.9

This table shows model estimates by shift, owner-status and weekday/weekend. Panel I shows parameter
estimates as well as standard errors. Panel II shows the average marginal time cost of drivers at the
time of quitting. This cost is computed as the mean (across drivers in each group) of model estimates
of drivers’ time costs at the time that driver quits. Panel III displays average cumulative earnings and
work time for driver shifts within each group. Standard errors are obtained by resampling entire driver
shifts, with replacement, and re-estimating state transitions, parameter estimates (panel I) and associated
moments (panel II) within each driver- and shift-type. We conduct the estimation across 200 samples for
each group and report standard deviations in parentheses.

In Table 4, Panel II, we use the mean cost parameters θ1 and θ2 to compute drivers’ marginal

cost of time at the typical hour of quitting. This value is computed as the mean of the derivative

in total time cost with respect to hours worked (i.e., mci(h) = θi1 + 2θi2h) where h is the final

hour of each driver’s shift. For example, the first column shows that owner-operators during

daytime weekday shifts have a cost of time at the average hour of quitting of $28.62 per hour. We

contrast with Panel III, which shows the average shift earnings in that hour to be $36.94. The

discrepancy between the two rows is due to the role of unobservables. The bottom row of Panel

III shows the expected number of trips per hour across shifts (computed as the average of the

inverse spell length, in hours, across trips of each shift type). This value informs us how many
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FIGURE 2. NYC Taxi Driver Marginal Cost of Time Estimates
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This figure shows estimates of drivers’ marginal cost of time by day/evening and weekday/weekend
shifts.

draws of ϵit are obtained by drivers in each hour. Thus, the model predicts that driver facing

systematic hourly costs of $28.62 are likely to quit in an hour when average earnings are $36.94,

because total costs are likely to surpass these earnings. Moreover, since time costs are rising

rapidly by 7–8 hours due to the quadratic term, these estimates appear to broadly rationalize

drivers’ quitting behavior around the observed times. Finally, Table 4 Panel III also displays

average shift durations by group. Average shift durations across groups are between 7h 40m

and 9h 40m.

While the empirical specifications in Table 4 are simple – payoff functions have only three

parameters – the behavioral implications of the dynamic model are quite rich. In Figure 2 we

present drivers’ marginal cost of time, or δu(r, h)/δh. These marginal cost functions are linear

as u(·, ·) is quadratic in cumulative time-worked. An immediate implication of the positive

slopes is that individual driver labor supply elasticities are positive. As a earnings grow, all else

equal, a driver’s optimal amount of cumulative work time will increase on average. Day shift

preferences are however more alike than evening shift preferences; the steeper costs in day shifts

may reflect the influence of the 5pm shift change as well as greater preferences for traditional

work hours. We also see that marginal costs are slightly less steep on weekend shifts compared

with weekday shifts, implying lower driver opportunity costs on weekends.
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Nevertheless, a point of emphasis here is that once taxi drivers’ quitting decision are modeled

in a dynamic optimal stopping framework, the existing static wage or hazard models are hard

to interpret as they largely require drivers to react to past outcomes instead of forward-looking

tradeoffs. However, in the dynamic context we can also see why past outcomes may matter

in more subtle ways: drivers react to past earnings shocks (i.e., observed “high” draws from

F) because there is autocorrelation in these shocks, at times positive and other times negative.

Drivers react to cumulative time because it moves them up their cost curves as illustrated in

Figure 2. Both types of serial correlation lead static models to identify real effects of current time

and income, but absent the dynamic model the interpretation is difficult.

5.1. Generating the Behavioral Results. In this section we show that data generated from our

estimated model produces driver behavior that appears as non-standard or “behavioral” when

analyzed in a static model. Our first step is to use our model to simulate data that takes the

same form as our actual data set. To do this we simulate a large set of driver shifts conditional

on driver types (owner-operator or fleet drivers), shift-types (morning or evening shift periods),

and day-types (one of five levels of average daily earnings), where drivers begin at an initial

state and take draws from the joint distribution of earnings and time when they choose to

keep working. We design this exercise to generate a new data set such that driver-, shift-, and

day-types are represented in proportions identical to those found in the original data set. We

then conduct a series of regressions analogous to those used in the literature and show that the

results indicate apparent downward-sloping labor supply curves. In Section A.8 we provide a

detailed description of the simulation exercise.

In Table 5 we report estimated wage regressions next to analogous regressions from the

original data set. Both data and estimates underlying the simulation come from a two-month

period of July 1, 2012 to August 31, 2012. The first two columns display instrumented wage

regressions comparable to those in Camerer et al. (1997).12 We report results using two separate

instruments representing the distribution of wages among drivers on a given day. IV 1 denotes

the Camerer et al. (1997) wage instrument, or the 25th, 50th and 75th percentiles of the average

shift wages of other drivers on the same day. IV 2 denotes an alternative instrument as used

12The exception is that our estimates are not conditioned on weather and temperature variables so we omit these
covariates across the table.
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TABLE 5. Simulated Wage Regressions Comparison

(1) (2) (3) (4)
Simulated (IV 1) Simulated (IV 2) Data (IV 1) Data (IV 2)

Log Wage -0.600** -0.586** -0.190** -0.158**
(0.07) (0.07) (0.017) (0.018)

Weekday -0.020** -0.020** 0.047** 0.046**
(0.003) (0.003) (0.003) (0.003)

PM Shift 0.178** 0.178** 0.013** 0.011**
(0.004) (0.003) (0.003) (0.003)

Owner Operator 0.224** 0.274** -0.055** -0.056**
(0.002) (0.003) (0.002) (0.002)

N 51,468 51,468 382,241 382,241

TLC Data from July-August, 2012. Panels (1)-(2) use simulated driver shift data. Data record the final
cumulative hours and average wage earned as of the last trip of each simulated driver-shift. IV 1
denotes wage instruments are the 25th, 50th and 75th percentile across all driver wages in each day type,
weekday/weekend and am/pm shift. IV 2 denotes wage instruments is the mean of average hourly
driver wages across all drivers in each day type, weekday/weekend and am/pm shift. Panels (3)-(4) use
TLC data and report the same regressions, where IV 1 denotes the wage instruments are the quartiles of
hourly driver wage each day and IV 2 denotes wage instruments that are the average hourly driver wages
across all drivers. Standard Errors clustered at the driver-shift level. Asterisks (**) indicate significance at
or above the 1% level.

in Farber (2015) equal to the average of the daily shift wage rates across all drivers. Under

all specifications we find significant negative coefficients on log wage, indicating that shifts

in which drivers who earn higher wages are correlated with shifts in which drivers work less

time.13 Columns (3)-(4) replicate identical specifications by directly using the data. While we

replicated the specifications of Camerer et al. (1997) in Table 10, here we demonstrate that the

negative coefficients still obtain when we compare them to our simulated regressions. While

our model inherently abstracts from the richness of the decisions taken by actual drivers on the

street, our elasticity estimates are slightly more negative than those produced using the actual

data. This suggests that, despite its simplicity, our model fully captures the “behavioral” aspects

of driver behavior as documented in the prior literature.

Despite the apparent negative wage elasticities, we know that our model is, by construction,

fully consistent with standard or neoclassical preferences for earnings at all states. To see why

13In columns (1)-(2), which use data simulated from our estimated model, a “day” is simply the combination of
day types d and weekday or weekend. In columns (3)-(4), which use actual data, a day is defined as the calendar day
in which the shift began. Within a day, average shift wages are separated between am and pm shift workers.
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we obtain negative coefficients on wage in hours worked, and positive coefficients on earnings

in the probability of quitting, we turn back to Section 2.1. There we document how spell wages

of a given driver tend to decline relative to other drivers the longer his shift grows. Thus, by

evaluating the average wage and the total time worked, we find that longer shifts are associated

with a lower average earnings-per-hour compared to drivers who worked shorter shifts as a

result of the pattern of declining spell wages.

This pattern holds despite an instrument for wages that generates exogenous variation in

the average earnings per hour. This result indicates that a selection bias is present: drivers

who work for longer hours are more likely to be drivers with lower average wages, given the

negative correlation between hours and average wage. In the IV regressions, this effect appears

to dominate the standard effect in which longer hours are worked due to higher earnings. We

show in Section 6.1 that the dynamic model can be used to disentangle these two channels in

order to estimate the actual impact of a persistent increase in earnings on total work hours.

Next, we turn to the case of time-inconsistent preferences highlighted in Thakral and Tô

(2021). This result again suggests a non-standard, downward-sloping labor supply curve in

certain periods of time close to the end of the work day.

By incorporating negative serial correlation into the dynamic model, our simulations also

produce data that align with the time-inconsistent preferences. To show this, we estimate the

following equation:

Pr(yint = 1) =
∑
ℓ

βℓ(hint)r
ℓ
int +Xintγ + ϵint (7)

Here y is the binary decision for driver i to quit or not on shift n at time t. As in Thakral and Tô

(2021) we allow drivers’ decisions to depend on cumulative earnings r which are earned in hour

ℓ of the shift. X includes controls for hour and shift.14 The specification is then estimated on five

overlapping subsets of drivers: those who are still driving with cumulative hours equal to 7, 8,

9, 10 and 11. In each group, we collect only the observations where drivers have observations

in the middle 20 minutes of the cumulative hour (i.e., hour 7 drivers are drivers that exist in

14Note we do not include the full set of weather controls and driver fixed effects because these are not estimated
separately in our model. However, these controls are not pivotal to the outcomes documented in Thakral and Tô
(2021).
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TABLE 6. Simulated Adaptive Hazard Rates

(1) (2) (3) (4) (5)
Quit Hour 7 Quit Hour 8 Quit Hour 9 Quit Hour 10 Quit Hour 11

Hour 4 income 0.003 -0.001 0.000 -0.005 0.005
(0.002) (0.003) (0.002) (0.003) (0.004)

Hour 5 income 0.025** -0.005 0.003 0.003 -0.001
(0.003) (0.003) (0.003) (0.004) (0.004)

Hour 6 income 0.007** 0.025** -0.001 0.005 0.000
(0.002) (0.003) (0.003) (0.004) (0.004)

Hour 7 income 0.005** -0.009** -0.012** -0.014**
(0.002) (0.002) (0.003) (0.004)

Hour 8 income 0.017** 0.017** 0.008*
(0.002) (0.003) (0.004)

Hour 9 income 0.019** 0.008**
(0.002) (0.005)

Hour 10 income 0.025**
(.002)

N 16,364 11,179 8,370 6,893 5,306

This table replicates the results of Figure 4 of Thakral and Tô (2021). Data are simulated from the dynamic
choice model. Asterisks (*) and (**) indicate significance at or above the 5% and 1% level.

the data between 7:20-7:40 minutes into their shift), and we control for income earned in the

previous hours starting at the fourth cumulative hour, not including the final hour.15

Table 6 shows the results of this exercise. They reveal that (i) the final hour or two of income is

most significant whereas other hours mostly result in insignificant estimates and (ii) for later quit

times, the coefficient on income is both positive and significant. Although our simulated sample

is much smaller and, by construction, less rich than the TLC data itself, these results suggest

we can replicate patterns consistent with adaptive reference dependence or late-in-day income

targeting without any explicit modeling of these phenomena, solely through incorporating

forward looking decisions into an otherwise simple preference specification.

To explain these patterns we again point back to Section 2.1, which documents negative serial

correlation in earnings per hour. We find this effect to be present, on average, across all trips,

but especially so on longer trips to the outer boroughs of New York. Such long trips are also

15By limiting the length of the window we mitigate concerns about selection within the window, where higher
earnings mechanically correlate with higher hours. A similar approach appears in Thakral and Tô (2021).
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positively correlated with hours worked, as they occur more during end-of-shift hours for both

day and evening shifts.

Negative serial correlation implies that large positive earnings shocks will on average be

followed by a negative earnings shock. For example, following a trip with spell wage equal

to the daily average earnings-per-hour, or about $37, we predict the next period’s earnings

to be approximately $1.37 per hour lower (or a decline of 3.7%). However, for a trip with a

destination in the Bronx, we expect the subsequent spell wage to be approximately $27.27 lower

than average (or a decline of 73.7%). As a consequence, earnings shocks – particularly those

involving travel to distant regions – represent substantial negative shocks to future earnings

and induce a higher likelihood of quitting.

5.2. Discussion: Are Taxi Drivers Dynamic Programmers? The results in Table 5 suggest that

drivers, on average, engage in labor supply behavior that is consistent with positive Frisch

elasticities. On the other hand, as is typical with dynamic programming models, our estimates

rely on an implicit modeling assumption that drivers need to solve a complicated optimization

problem in order to make decisions. The question of whether this is reasonable points to

a long-running discussion among scholars of decision theory and dynamic programming

(e.g., Friedman and Savage 1948; Simon 1979; Rust 2019). We argue that either drivers do

indeed solve this problem or some approximation to it, or else they engage in any number of

behavioral heuristics that attempt to maximize a similar objective. One such heuristic could

be some form of static, reference-dependent behavior. Our model nevertheless serves as a

microfoundation for the underlying utility maximization. Indeed, such heuristics may arise in a

similar way to solutions to the actual dynamic programming problem, such as through learning

and accumulated experience.

6. ANALYSIS OF LABOR SUPPLY ELASTICITY AND THE EFFECT OF RISING FARES

In this section we examine labor supply elasticity from both the individual and aggregate

perspectives. We then estimate the effects of recent fare increases, a policy mean to increase

driver wages, on labor supply in the setting of NYC taxi drivers.
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6.1. Estimating Individual Labor Supply Elasticity. Our estimated model allows us to recover

an estimate of the labor supply elasticity of taxi drivers with respect to wage rates. Given

the day-to-day nature of earnings variation and driver labor supply choices, it is natural to

interpret these as intensive-margin intertemporal substitution (Frisch) elasticities. While these

estimates are the target of the literature reviewed in Section A.4, we have shown that existing

approaches are flawed when it comes to identifying them. We estimate these elasticities by

constructing counterfactual wage rate increases and simulating driver shifts and expected work

hours with and without the increases. For example, we consider a 10% increase in all earnings

available to a single driver across the joint distribution of earnings and time draws. This would

represent a 10% increase in the measurement of wages preserving the stochasticity of wages

as well as the negative auto-correlation discussed in Section 2.1. This counterfactual assumes

that demand as well as the supply of all rivals is held fixed. In other words, we make a large

markets assumption: when a single driver faces the earnings increase, this driver’s impact on

demand and any spillover effects to other drivers are negligible.

TABLE 7. Individual Labor Supply Elasticity

Earnings Change Hours Worked Implied Elasticity
P25 Mean P75 Mean Std. Err.

Baseline 5.06 8.74 12.18 . .
5% increase 5.62 9.23 12.84 1.124 0.181
10% increase 6.01 9.64 13.40 1.034 0.071
18% increase 6.29 9.81 13.59 0.745 0.055
25% increase 6.66 10.39 14.37 0.757 0.036

This table reports the distribution of estimated work-hours resulting from simulating shifts at the baseline
as well as across a series of increases to the earnings from each trip, assuming that demand and all
other taxis behavior remains fixed. Implied elasticities are computed at the mean of hours worked.
Standard errors are obtained by resampling entire driver shifts, with replacement, and re-estimating
model parameters for each driver-shift type and re-simulating data in equal proportion to how each
driver-shift is distributed. We conduct the exercise across 200 samples, compute the weighted average
elasticity across shift types, and report standard deviations in parentheses.

Table 7 displays the estimated elasticities of hours worked with respect to earnings rates.

They show that for a range of earnings increases from 5–25%, the estimated mean hours worked,

across all driver types, increases by 2–5 hours, implying individual elasticities between 0.75–1.12.

Due to the convexity of costs, elasticity is positive and falling in additional earnings. Table 5 in
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Farber (2015) estimates aggregate elasticities to be 0.589. That our estimates are higher is not

surprising: there is a downward bias in the reduced form approach due to drivers’ within-shift

declining productivity of earnings.

We refer to these estimates as individual labor supply elasticities because they hold search

times fixed, implying that the labor supply of other drivers and consumer demand are both held

fixed. If a wage increase were implemented on the entire market, other drivers would change

their behavior and consequently lead to endogenous changes in search times. In addition, in

this exercise we are holding fixed passenger prices: if passenger prices increased, this would

decrease demand for taxi rides and again lead to longer search times. Therefore our estimates

can be interpreted as the effect of an exogenous subsidy to an individual driver holding all else

equal.

Looking to other comparable settings, our individual elasticity estimates are quite close to

the Frisch intensive elasticity estimate of 0.704 in response to a 10% earnings shock as reported

in Pistaferri (2003), which studies labor supply responses to earnings shocks and expectations

among households in Italy.16

We implicitly assume that in a given day the earnings process F is exogenous. One threat to

our strategy would be the case that drivers endogenously choose their levels of search effort,

perhaps at higher cost, when the earnings profile changes. In Section A.2 we conduct a simple

test for this by analyzing drivers who achieve unexpectedly high earnings early in the shift. We

find that such high earnings do not predict subsequently higher earnings, implying that drivers

who perceive the day to be more profitable than it is do not earn higher profits in later periods.

This suggests that endogenous effort is not confounding our analysis of earnings elasticities.

Although individual elasticities are an important quantity of interest, we can also use our

data and empirical approach to learn more. The reason for including the specific case of 18% is

that in September, 2012 the NY TLC hiked fares by 18%, which affected search times through

both passenger demand and equilibrium effects of labor supply. In the next section we use this

change in fares to evaluate and compare individual labor supply elasticities with aggregate or

16See also Table 1 of Chetty et al. (2011), which among other statistics provides an extensive meta-analysis of
quasi-experimental evidence on intensive-margin labor supply elasticities, highlighting an average inter-temporal
substitution elasticity of 0.54.
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equilibrium labor supply elasticities and consider these effects in the context of recent minimum

wage legislation applied to taxi and ride-hail workers in New York City.

6.2. Equilibrium Elasticities and Wage Policy. On December 19, 2022 the New York Taxi and

Limousine Commission implemented the first fare hike in ten years under a proposal known as

"Raise For All".17 Fares increased through a mix of increased base fares and increased surcharges

during rush hour trips and trips to airports. The net effect is estimated by the TLC to increase

average passenger fares by 23%.18

We investigate how much work hours will be impacted by the rising fares and whether the

data generated by such a change can be informative about drivers’ earnings elasticities. Data

are not available to study the 2022 event as the TLC no longer provides access to driver and

medallion identifiers. We instead study this question by considering the last time in which fares

were changed. On September 4, 2012 the NYC TLC raised base taxi fares across for all drivers

and customers. The distance fee increased from $2.00 per-mile to $2.50 per-mile, the JFK airport

flat-fee increased from $45 to $52 and the Newark Liberty Airport surcharge increased from $15

to $17.50. Collectively these changes amounted to an 18% increase in the expected cost of a trip.

Fare increases of this form impact the earnings process through three channels. First, drivers

directly earn more from each trip according to the new fare schedule. Second, to the extent

that rival drivers change their labor supply behavior, the level of competition and therefore

the expected searching times are impacted. Third, there is a demand response: higher trip

prices depress demand and increase the expected search times for taxi drivers. In determining

individual labor supply elasticities we only considered the impact of the first channel. Market-

wide price changes will give rise to different work-hours elasticities because they also impact

the other two channels.

To measure the elasticity of hours worked with respect to fares, we use our model and

estimated parameters to simulate data under the state transitions from (1) the two months before

and (2) the two months after the September 2012 fare increase. Critically, the state transitions

embed all relevant information drivers need to formulate new stopping rules. Therefore, by

17See details in Hartwell et al. (2022).
18This estimate seems to compare the existing distribution of trips and routes and multiplies these trips by the

new fares. In reality, even if we ignore potential supply-side effects, the demand response alone on more affected
routes would likely dampen this aggregate estimate.

31



simply observing the earnings process encountered by drivers before and after the change took

effect, we can avoid modeling the search and matching process and thereby also avoid the

additional restrictive assumptions that are necessary to estimate such a model. By simulating

driver shifts and hours worked across the pre- and post-fare hike periods, we can compute

market-wide labor supply elasticities.

TABLE 8. Individual vs. Market Labor Supply Elasticity

Baseline I. 18% Individual II. 18% Market
Wage Increase Fare Increase

Hours Hours Elasticity ∆ Welfare Hours Elasticity ∆ Welfare

Overall 8.74 9.81 0.745 $84.34 9.09 0.253 $63.00
Weekday, AM 7.96 9.21 0.871 $63.36 8.71 0.522 $40.96
Weekday, PM 9.92 10.89 0.546 $86.11 9.58 -0.186 $66.49
Weekend, AM 8.82 10.25 0.900 $78.55 8.87 0.035 $70.46
Weekend PM 9.18 10.45 0.768 $79.50 9.70 0.319 $53.15

This table shows the labor hours and welfare effects of an 18% individual earnings increase (panel I) and
an 18% market fare increase (panel II). The baseline and Panel I are estimated on a sample from Aug 1,
2012 – September 3, 2012. Panel II is estimated on a sample from September 4, 2012 – October 31, 2012,
just after the fare change. Welfare is computed as σ−1

ϵ

∑
i log(exp((ri +C(hi|θτ(i))/σϵ) + 1/σϵ)) for each

driver-shift i and shift type τ(i).

Table 8 reports the mean work hours across all simulated shifts before and after the fare

change along with implied work-hours elasticities and changes to driver welfare. Averaging

across shifts and drivers, the overall elasticity with respect to fares is 0.253, approximately one

third of the elasticity with respect to individual earnings, which implies smaller benefits to a

single driver once we account for the market adjustment to the wage increase. This ratio is

varied across different types of shifts, likely reflecting divergence in both demand and driver

preferences across groups in the pre- and post-periods. Evening-shift weekend simulations

suggest that drivers actually work less after the fare hike; there, drivers on average work 20

minutes less when the fare increases. This result captures the fact that earnings opportunities

after the September 4, 2012 fare increase decline in hours worked for only this shift type. At high

levels of cumulative work time, the post-fare change average spell wages are below those of the

pre-fare change period. We detail these patterns in Section A.3.
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We also derive welfare estimates to evaluate drivers’ overall benefits net of costs. A typical

drivers is generally about 33% better off when faced with a personal earnings hike compared

to a fare increase. Welfare increases on average by $84.34 in the former care (about 26% of

the mean shift earnings). Compare this with the 20% gain in welfare following the fare hike.

However, these values are likely to be overstated for two reasons. First, as is common in discrete

choice settings, our welfare estimates embed the value of unobservables with a positive selection.

Second, our cost functions are not well-identified low values of hours worked in which drivers

rarely quit, so parameter values imply negative opportunity costs in the first few hours of the

day, giving values which would add to welfare.

The main goal of the exercise in Table 8 is to demonstrate the importance of distinguishing

market-wide price and earnings variation from individual earnings variation in the assessment

of labor supply elasticity. Since prices are regulated and therefore set exogenously, price changes

induce both a demand and supply response as well as an equilibrium adjustment to expected

search times. More generally, earnings variation may be induced by shifts in demand or supply.

In all of these cases, drivers’ forward-looking tradeoffs and therefore labor supply decisions

are impacted in unpredictable ways: demand elasticities may vary spatially, shifts in demand

may be local depending on what events are taking place, etc. The mission to measure labor

supply elasticity from observational data is inherently complicated by these factors. This is

where our counterfactual approach can offer a clean and clear alternative; by simulating driver

shifts subject to a uniform earnings increase, we are able to replicate a wage experiment without

the confounding effects of equilibrium adjustments.

7. CONCLUSION

We use a comprehensive dataset of trips and work hours among New York City taxi drivers

to take a new approach to a long-running question of drivers’ wage elasticities by modeling

taxi drivers’ labor supply decisions as emerging from a dynamic optimal stopping problem. Our

model explicitly assumes that drivers have standard preferences for labor and leisure, implying

standard behavior stemming from upward sloping labor supply curves.

We estimate our model and use it to simulate a panel of driver shifts. We then conduct a static

analysis of drivers’ labor supply behavior that is analogous to specifications used in previous
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literature. We demonstrate that we can replicate the same patterns in the literature, in which

labor supply elasticity may appear to have a negative sign. We show that these patterns arise

because of previously unexplored intra-daily dynamics in earnings per hour. In particular,

drivers become less productive as they work longer, and there is also negative autocorrelation

in long trips that generate apparent earnings shocks in a static framework.

Our results reconcile a twenty-five-year debate in this literature. More broadly, these findings

suggest that once we account for the dynamic incentives in taxicab drivers’ labor supply

decisions, there is no need to add behavioral parameters to the model to explain their quitting

behavior. However, we note that behavioral patterns may serve as useful heuristics for drivers

that happen to coincide with the more complicated dynamic optimization problem.

Finally, our model is also capable of answering the question of what is the labor supply

elasticity of New York City taxi drivers. We find individual elasticities of 0.75–1.12. These

values are close to estimates obtained in other settings. However, to evaluate wage policy

among drivers, such as the recent fare hike among New York taxi drivers, we also have to

acknowledge the equilibrium impact of wage changes as it transmits from demand elasticities

as well as the spillovers from all drivers re-optimizing their search behavior. We find that the

average market-level elasticity to a 18% wage hike is 0.25, or about 2/3 smaller on average than

prevailing under a direct 18% earnings increase.
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ONLINE APPENDIX

APPENDIX A. DATA: ADDITIONAL DETAILS

A.1. Data Cleaning and Preparation.

A.1.1. Data Cleaning. We begin with raw data obtained from the New York City Taxi and Limousine

commission consisting of all yellow taxi trip and fare data from July 1 to September 3, 2012. The raw

files consist of 29,939,090 observations. To obtain a structure suitable for estimating driver labor supply

behavior, we throw out any data that appears contaminated by severe measurement error, key missing

information, or highly unusual patterns.

We closely follow previous work using the same TLC dataset to prepare our data for the analysis

of shifts (e.g., Haggag et al. (2017), Thakral and Tô (2021)). We start by cleaning the raw TLC data of

obvious measurement errors or apparent extraneous data produced by duplicate or false entries or those

data produced from electronic testing. The data are organized trip-by-trip, where we observe medallion

identifiers and exact pickup and drop-off date-times. Our first step is to establish criteria for the change

of shifts. To do this, for every driver we measure the time between trips and, for trip times with gaps

beyond five hours, we define a change of shift (See discussion in Section 2). Next, we classify every

driver-shift with a unique identifier. There are 1,408,646 driver-shifts in our full sample. When we identify

a potentially erroneous trip or data problem, we flag the entire shift as having a problem and drop it from

our analysis sample.

To begin, we flag the following problematic observations:

(i) Duplicates on medallion and pickup date-time

(ii) Missing or zero entry for trip distance or trip duration

(iii) Trip duration far less than feasible for trip distance

(iv) Trip distance far longer than feasible for trip duration

(v) Trip fare less than minimum TLC prices for normal fares (indicated as fare code=1)

(vi) Trip times less than 10 seconds

(vii) Trip times less than 60 seconds with fare greater than $10

(viii) Trips from Manhattan to JFK Airport with trip duration less than ten minutes
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(ix) Trips from Manhattan to JFK Airport with trip distance less than 10 miles

(x) Trips with pickup time occurring before the previous trip’s drop-off time

(xi) Latitude or longitude of trip could not be mapped to a destination within New York City or

Newark Airport

Next, we flag the following problematic shifts:

(i) Shifts with more than one car per driver within a shift

(ii) Shifts with total duration longer than 18 hours or shorter than 2 hours

(iii) Shifts with 3 or fewer trips in total

We drop shifts with the above errors, leaving us with a data set of 8,220,299 observations, 30,231

drivers, and 444,317 unique shifts across July 1 to September 3, 2012.19

A.1.2. Predicting Medallion Types. The TLC issues different types of medallions with different restrictions

that may impact driver incentives. Although we do not have data on medallion types, we screen

medallions for patterns that indicate a higher likelihood of being fleet medallions (subject to higher levels

of minimum usage and often stringent turnover hours) vs. owner-operator medallions (which have less

onerous requirements). Our screen is constructed as follows:

(i) Number of drivers per medallion less than 4

(ii) Number of trips per medallion greater than 200

The first criterion checks that the taxi medallion is only utilized by a small number of individuals,

for example licensed individuals within a family. The second criterion ensures that the small number

of individuals is not a consequence of scant usage of the medallion. Although this screen is simple and

coarse, it predicts well the probability that the medallion will be used during the witching hour, between

4–5pm, in which fleet medallions turn over to the evening shift. The benefit of using this screen without

incorporating the witching hour directly is that some owner-operators are only active in the evening shift,

for which there is no equivalent of the witching hour.

A.2. Evidence that Effort is Independent of Earnings. In this section we investigate whether taxi drivers

engage in higher (or lower) “effort” when they perceive earnings opportunities to be high (or low). We

specifically characterize effort as the extent to which drivers can choose their earnings per hour across

some support by paying an extra cost. Endogenous effort, or effort that varies with demand or supply

19Note we conduct an analogous data cleaning routine for the post-fare change period, September 4, 2012 to
October 31, 2012, in constructing our sample for analyzing the fare hike counterfactual in Section 6.
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shocks, would imply that quantities such as earnings per hour, wage spells, and average wages are all

equilibrium objects that cannot be imposed as policy counterfactuals.

To test for endogenous effort, we evaluate whether drivers who, through lucky draws of trips, experi-

ence consistently higher or lower earnings relative to other drivers within the first four hours of the same

shift (and who therefore perceive higher or lower overall demand) achieve different expected payoffs in

the subsequent four hours. The question is whether drivers who perceive high demand but in reality

were lucky will adjust their effort levels to be more productive later in the day. We evaluate this via a

regression that compares, among those drivers who work at least eight hours, the expected earnings of a

driver in hours four through eight conditional on their first four hours. To account for the fact that there

are predictable hourly patterns of earnings, we control for the hour in which the drivers’ shifts begin.

Table 9 reports the results. We see that, conditional on four hour earnings, each dollar earned in the

first four hours is associated with $0.031 additional earnings in the second four hours. In other words,

take a one standard deviation increase in hours 0-4 income (net of date, driver and starting hour controls)

of $31.87. A 1 SD increase in income over this period would predict a subsequent gain of $0.99 over the

next four hours. To verify that our selection of hours 4 and 8 are not driving these results, we report

alternative versions of the test in each cell and see similar results.

We interpret these results to imply that drivers’ day to day success with earnings, insofar as it shapes

their beliefs about future earnings within the same day, does not lead to meaningful changes in their

ability to earn income compared to other drivers in the same market. Effort is difficult to measure, but

these results give us some confidence that it is not driving the earnings schedules of drivers.

TABLE 9. Evidence for Exogenous Effort

Effect of 1 SD increase in earnings by:
Fourth Hour Fifth Hour Sixth Hour

E[Addt’l Earning] by Hour 7 $0.83 $0.22 $-0.02
E[Addt’l Earning] by Hour 8 $0.99 $0.35 $-0.01
E[Addt’l Earning] by Hour 9 $1.32 $0.62 $-0.00

This table shows the predicted change in earnings by the indicated hour in each row as a function of a
one standard deviation growth in expected earnings by the hour indicated in each column. These values
are obtained by regressing each row variable on shift income at the hour on each column along with date,
driver and starting hour fixed effects.

A.3. The Evolution of Average Spell Wage by Cumulative Hours and Shift Types. Figure 3 shows

how average spell wages evolve with cumulative work hours by shift type. This figure does not directly
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FIGURE 3. The Time Path of Earnings by Cumulative Hours Worked
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This figure depicts, for each stated category of shifts, the expected spell wage earned by drivers with
each level of cumulative hours worked. “Pre” denotes the sample period September 4 – October 31, 2011.
“Post” denotes the sample period September 4 – October 31, 2012. The expectation is fitted via regression
on cumulative hours and cumulative hours squared.

describe hourly patterns in spell wage, because shift start times are distributed across several hours in

the day and evening shifts. Its purpose, however, is to reconcile Table 8 which shows that, following an

18% fare increase, work hours decreased for Weekday PM drivers. In Figure 3 we see that this category is

the only one in which earnings opportunities decline relative to the pre-fare change period.

A.4. Static Approaches to Recover Wage Elasticities. Table 10 shows the results of elasticity regression of

the form of Camerer et al. (1997) and further analyzed (and critiqued) in Farber (2005). Each specification

regresses log(hours) on log(wage), where “hours” refers to the cumulative time worked by a driver upon

quitting for the day, and “wage” refers to the average hourly earnings achieved through the day. In

these regressions, authors derive a measure of labor supply elasticity as the coefficient on log(wage). We

instrument for a driver’s own wage rate by using the 25th, 50th and 75th percentiles of average wages

across all drivers in each day, along with day-of-week indicators. Note that these instruments shift driver

wages but do not explicitly fix aggregate supply or demand. If driver wages are correlated with drivers’

opportunity costs, then the coefficients become quite difficult to interpret even in a static context.
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Specifications (1) and (2) in Table 10 reproduce the baseline IV regression implemented in Camerer

et al. (1997) with and without driver fixed effects. Specifications (3)-(4) restricts the sample to fleet drivers

and runs the same two regressions. Specifications (5)-(6) repeats this for owner-operator medallions.

The results show that by using the richer and more granular TLC data we can attain the same apparent

negative wage elasticities using an analogous empirical framework to the original result.

TABLE 10. Wage Regressions

(1) (2) (3) (4) (5) (6)
All All Fleet Fleet Owner-Op Owner-Op

Log Wage -0.720** -0.570** -0.669** -0.511** -0.694** -0.583**
(0.004) (0.004) (0.006) (0.005) (0.007) (0.006)

Daily High Temp -0.001** -0.001** -0.001** -0.001** -0.001** -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Precipitation 0.013** 0.010** 0.007** 0.006** 0.020** 0.017**
(0.001) (0.001) (0.002) (0.001) (0.002) (0.002)

Weekday 0.013** 0.021** 0.006** 0.008** 0.022** 0.036**
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001 )

PM Shift 0.055** 0.142** 0.057** 0.235** 0.041** 0.112**
(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)

Driver FE X ✓ X ✓ X ✓
N 2,065,186 2,065,044 1,136,140 1,135,116 929,046 928,608

January-August 2012 data. Data record the final cumulative hours and average wage earned as of the last
trip of each driver-shift. Instruments are the 25th, 50th and 75th percentile across all driver wages each
day. Standard Errors clustered at the driver-shift level. Asterisks (**) indicate significance at or above the
1% level.

As Farber (2005) cautions, conventional (static) wage regressions, as in Table 10, are not easily inter-

pretable in settings like this where intra-daily wages are variable. Because drivers do not face a fixed

wage rate, decisions over how long to work can not be made on the basis of average earnings per hour

unless that earnings rate is predictable and stationary, and thus a proxy for future earnings. Indeed, in

Section 2.1 we show that earnings per hour is declining in cumulative hours worked, a pattern that will

naturally give rise to negative correlation in the wage regressions. This fact alone suggests that wage

regressions will face a selection problem: all else equal, drivers who decide to work longer will be less

productive earners near the end of their shift.

A.5. Hazard Models. Farber (2005) and subsequent literature adopts hazard models instead of wage

regressions in order to evaluate drivers’ labor supply decisions. In contrast to data summarizing drivers’
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work time and earnings at the end of the shift, the hazard models use much more detailed trip sheet

data to examine how drivers’ decisions to quit relate to their total hours worked and cumulative income

earned after each trip. These models allow for drivers to react differently to hours and income as they

are accrued through a series of stochastic trip draws. A key finding of Farber (2005) is that drivers’ quit

decisions are mostly responsive to hours worked and there is only weak evidence that accrued income

ever serves as a determinant of quitting. These effects are complemented by more nuanced tests for

reference dependence in Farber (2008) and more detailed data in Farber (2015). In Section A.6 we broadly

demonstrate this ambiguity by directly reporting quitting probabilities by cumulative work time and

cumulative income.

Acknowledging that even reference-dependent drivers are unlikely to have ex-ante predictable refer-

ence points, Crawford and Meng (2011) and Thakral and Tô (2021) investigate the role of time-varying or

adaptive behavioral effects. Most recently, Thakral and Tô (2021) use the TLC data to investigate whether

cumulative income impacts drivers differently depending on when the income was earned within the

day. They find robust evidence that income earned closer to the end of the driver’s shift is associated

with a higher likelihood of quitting, whereas income earned earlier in the day was not. They argue that

this reflects a pattern of adaptive reference points, in which drivers overreact to positive earnings shocks in

the short-run, but the overreaction effect of these surprises diminishes with additional work time. While

the dataset used in Thakral and Tô (2021) is the same as ours, we nevertheless use a slightly different

sample period. For sake of completeness we reproduce these patterns using our sample in Table 11.

The hazard models estimate stopping probabilities as a function of both cumulative earnings and

cumulative time worked. Since these two independent variables are separated, their independent

variation is used to identify parameters. Therefore the broad pattern of decline in earnings per hour

will not threaten identification as in the wage regressions. Nevertheless, these regressions allow us

to emphasize the need for a dynamic model. Stopping decisions are inherently dynamic; the tradeoff

between stopping now and stopping later is determined by the costs of additional work time and the

expected benefits of future earnings. Regressing this decision on past outcomes can only reveal an effect

through the serial correlation between the current and future state variables. Since that serial correlation

in earnings per time is actually negative in a short time horizon, there is a clear risk of mis-interpreting

the effect of earnings shocks. This pattern, viewed through the lens of a model of forward-looking drivers,

can explain the apparent recency bias in drivers’ behavior.
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TABLE 11. Hazard Model with Time-dependence

Shift Length 7hr 8hr 9hr 10hr 11hr 12hr

Income in hour 4 -0.0011 -.0026** -.0024** .0033** .0003 -.0022
Income in hour 5 0.0062** -.0003 -.0015 -.0049** -.0002 -.0004
Income in hour 6 0.0059** .0116** -.0019 .003 -.0022 -.0029
Income in hour 7 -0.0652** .0849** .0225** -.0031 -.0002 -.0004
Income in hour 8 -.0935** .1284** .0339** .0028 -.0006
Income in hour 9 -.1443** .1745** .0378** .0023
Income in hour 10 -.2024 .2036** .0371**
Income in hour 11 -.2375** .1871**
Income in hour 12 -.2191**

Controls cumulative hours
Driver FE ✓ ✓ ✓ ✓ ✓ ✓
Dow x Hour ✓ ✓ ✓ ✓ ✓ ✓
Dropoff Location FE ✓ ✓ ✓ ✓ ✓ ✓
N 376,198 334,452 265,992 170,669 83,514 30,556

Jan-Mar 2012 data.“7hr” column designates shifts with total duration between 7hr 20min and 7hr 40min.
Standard Errors clustered at the driver-shift level. Coefficients depict the effect of increasing income
within a given hour by $23, approx. 10% of the daily average income.

A.6. Descriptive Analysis of Quitting Probabilities. In this section we show that our data broadly

corroborates a finding of Farber (2005) that the hazard rates analysis demonstrates some ambiguity about

the presence of income targets.

Table 12 provides a set of quitting probabilities by cumulative hours worked and cumulative income

over a shift. This table reveals a broadly increasing pattern of increasing quit probabilities by both hour

and income, although there are some interesting regions of quitting probabilities decreasing in income

(eg. at $300-$400 and 8-9 hours of work).20 These patterns are similar to those revealed by the hazard

model estimates of Farber (2005), and we note that the limited apparent increase, albeit small, in stopping

probability associated with accruing more income may again signal the possibility of negative earnings

elasticities within some states.21

20The pattern comes with a caveat that the more extreme off-diagonal cells have relatively few observations
despite the abundance of data, as those depicted in gray shading.

21Farber (2008) follows this work with additional evidence that reference-dependent preferences is likely limited.
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TABLE 12. Choice Probabilities by Cumulative Earnings and Hours

Cum. Hours Cumulative Income Earned

Worked $50 $100 $150 $200 $250 $300 $350 $400 $450 $500 $550 $600 $650 $700

1 0.000 0.001 0.000

2 0.012 0.014 0.029 0.021

3 0.017 0.014 0.021 0.046 0.040

4 0.025 0.019 0.022 0.030 0.037 0.048

5 0.041 0.028 0.027 0.036 0.047 0.084 0.062

6 0.067 0.045 0.041 0.049 0.067 0.077 0.087

7 0.094 0.077 0.072 0.073 0.087 0.096 0.100 0.093

8 0.186 0.120 0.121 0.129 0.138 0.137 0.119 0.111 0.154

9 0.232 0.172 0.182 0.200 0.220 0.216 0.185 0.152 0.143 0.160

10 0.191 0.192 0.219 0.238 0.280 0.294 0.274 0.247 0.230 0.282 0.368

11 0.333 0.179 0.232 0.232 0.251 0.276 0.287 0.301 0.315 0.372 0.509

12 0.143 0.176 0.174 0.184 0.189 0.191 0.187 0.195 0.232 0.271 0.291 0.308

13 0.750 0.200 0.184 0.163 0.177 0.163 0.165 0.178 0.185 0.197 0.200 0.333

14 0.294 0.219 0.255 0.170 0.194 0.169 0.176 0.184 0.193 0.232 0.067

15 0.304 0.305 0.243 0.221 0.219 0.213 0.236 0.219 0.235 0.259

16 0.389 0.362 0.373 0.291 0.287 0.326 0.323 0.289 0.314 0.354 0.182

17 0.643 0.818 0.539 0.587 0.597 0.555 0.601 0.579 0.700 0.684

TLC Data from January through October, 2012. Each cell shows the fraction of time drivers in each

category (of cumulative hours worked and income earned) quit for the day. Each category reflects values

at or above the category label. For example, income category $100 is read as “$100-199.99” and hour

category 1 is read as “1 hour 0 minutes - 1 hour 59 minutes”. Gray entries denote cells with fewer than

100 observations. Entries with fewer than 10 observations are omitted.

A.7. Expected Search Times by Borough. To simplify value function computation, we model the value

of making decisions in outer (i.e. non-Manhattan) boroughs as the value of decisions within Manhattan

subject to an additional search time. This additional time accounts for the extra time spent among drivers

who drop off passengers in the outer boroughs to get back to locations, largely in Manhattan or some

sections of Brooklyn where there is a higher likelihood of finding a passenger.

To obtain the additional expected search time, we regress the waiting time of each spell on the

lagged drop-off borough (i.e. the location in which the decision is made) as well as cumulative income,

cumulative time worked, indicators for AM shift, weekday and owner-operator, as well as driver-shift
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fixed effects. The coefficient on lagged drop-off borough (with Manhattan as the omitted category),

reveals the anticipated extra search time required, above the expected search time in Manhattan, to obtain

the next fare conditional on each location. Results are reported in Table 13.

TABLE 13. Search Time from Boroughs

Bronx Brooklyn Newark, NJ Queens Staten Island
Add’l Search Time (min.) 20.81 11.70 31.82 24.72 35.15

This table shows the coefficients from a regression of taxi waiting times on the borough of the previous
drop-off (with Manhattan as the omitted category) along with controls for cumulative hours, cumulative
income, am/pm shift and weekday/weekend, plus driver-shift fixed effects. Newark, NJ is the site of
Newark Liberty Airport, where TLC taxis are licensed to drop passengers for an additional fare. The
coefficients on waiting time by borough are presented. Since the coefficients are relative to Manhattan,
we can interpret these as expected additional search times associated with outer borough drop-offs.

A.8. Simulation Details. In Section 5.1 we use the estimated model to simulate driver shifts and then

use those simulated data to reproduce key behavioral puzzles in the literature. For each simulated driver

of type d, we draw a sequence of trips as (drt, dht) from the empirical distribution F (dr, dh|r, h, x), draw

a sequence of drivers’ net shocks to the outside option ϵt, and for each decision point t together with

parameter estimates, we compute whether drivers’ value of quitting exceeds the value of continuing

search. As with estimation, there are eight persistent driver types i and five categories of demand

heterogeneity k ∈ {1, ..., 5}, defined as quintiles over average daily spell wages.

Simulation Steps. To simulate data we adopt the following procedure:

(i) Uniformly draw a demand quintile k. We assume drivers observe the day’s demand type and

have expectations that are consistent with the empirical state transition matrix for days of type

k.

(ii) Each shift begins at the initial state (0, 0), with zero cumulative income and time worked. For

each of 20,000 simulated shifts, we draw from the empirical distribution of realized sequences

of trips. This begins by selecting a random shift s from a driver-day of type i and demand

quintile k. We take the first trip of s and simulate spells as they occurred in the data. Denote the

simulated shift by ŝ.22

22Drawing from the realized distribution of trips ensures our simulated spells will follow the wage process
outlined in Section 2.1.
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(iii) At the end of each spell, drivers weigh the opportunity to quit and receive an immediate payoff

against the option value of continuing to work longer and accrue additional earnings and time

costs.

(iv) If our simulated shift ŝ exceeds the set of trips observed in s, we append draws from another

randomly selected shift s′ given i and k by additionally matching the origin of the first draw in

s′ with the destination of our final observed trip in s.

(v) Finally, we combine each driver-day-type simulation together in proportion to their appearance

rates in the data to assemble the simulated data set.

A.9. Existence and Uniqueness of the Optimal Stopping Rule.

Proof. We begin by writing out the Bellman equation representing driver’s optimal stopping problem:

V ∗
t (rt, ht, ϵt) = max

{
u(rt, ht) + ϵt, E

(
V ∗
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt
)}

Suppose V ∗
t is strictly monotone in ϵt. Then the optimal stopping rule can be described as follows. Let

yt = 1 denotes the “quit” decision at time t

yt = 1 {ϵt ≥ ϵ∗t (rt, ht)}

where ϵ∗t is obtained from

u(rt, ht) + ϵ∗t = E
(
Vt+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵ
∗
t

)
.

Given ϵ∗t (·) that defines the optimal stopping rule, we define the following equilibrium expected stopping

probabilities:

q∗t,s(rt, ht, ϵt) ≡ P (ϵt+s ≥ ϵ∗t+s(rt+s, ht+s)|rt, ht, ϵt),∀s ≥ 1

and

p∗t,s(rt, ht) ≡ P (ϵt+s ≥ ϵ∗t+s(rt+s, ht+s)|rt, ht),∀s ≥ 0,

Where, by definition,

p∗t,s(rt, ht) = E
[
q∗t,s(rt, ht, ϵt)

∣∣rt, ht

]
.

It is helpful to first consider a numerical solution: let ϵ(0)t (·) = −∞. In this case, the driver always

chooses to quit at each decision period. Then q
(0)
t,s (·) = 1 for all t and s ≥ 1, and

V
(0)
t (rt, ht, ϵt) = max {u(rt, ht) + ϵt, 0} ≥ 0.
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Now update the optimal decision and value function as follows:

ϵ
(1)
t (rt, ht) = −u(rt, ht)

and

V
(1)
t (rt, ht, ϵt) = max

{
u(rt, ht) + ϵt, E

(
V

(0)
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt

)}
Clearly, ϵ(1)t ≥ ϵ

(0)
t and V

(1)
t ≥ V

(0)
t . Moreover, ϵ(2)t is obtained by solving ϵ̄t from the following equation

u(rt, ht) + ϵ̄t = E
(
V

(1)
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵ̄t

)
and then

V
(2)
t (rt, ht, ϵt) = max

{
u(rt, ht) + ϵt, E

(
V

(1)
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt

)}
.

For arbitrary s ≥ 1, we now show ϵ
(s+1)
t (·) ≥ ϵ

(s)
t (·) and V

(s+1)
t (·) ≥ V

(s)
t (·) by induction: Suppose

ϵ
(s̃+1)
t (·) ≥ ϵ

(s̃)
t (·) and V

(s̃+1)
t (·) ≥ V

(s̃)
t (·) hold for all s̃ ≤ s− 1. It follows that

V
(s+1)
t (·) ≥ V

(s)
t (·).

Thus,

E
(
V

(s+1)
t+1 (rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵ
(s+1)
t

)
≥ E

(
V

(s)
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵ
(s+1)
t

)
holds almost surely. Therefore, ϵ(s+1)

t (·) ≥ ϵ
(s)
t (·). This implies the existence of an optimal stopping rule.

Next we show uniqueness of such a solution by contradiction. Let Ṽt be another equilibrium. By

definition, V (s)
t (·) ≤ Ṽt(·) and ϵ

(s)
t (·) ≤ ϵ̃t(·) for all s. Therefore, V ∞

t (·) ≤ Ṽt(·).

Let δ ≡ supr,h,e Ṽt(r, h, e) − V ∞
t (r, h, e). Because V ∞

t (·) and Ṽt(·) are two different equilibria and

V ∞
t (·) ≤ Ṽt(·), then δ > 0. For an arbitrary (rt, ht, ϵt):

Ṽt(rt, ht, ϵt)− V ∞
t (rt, ht, ϵt)

= max
{
u(rt, ht) + ϵt, E

(
Ṽt+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt

)}
−max

{
u(rt, ht) + ϵt, E

(
V ∞
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt
)}

≤ max
{
u(rt, ht) + ϵt, δ + E

(
V ∞
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt
)}

−max
{
u(rt, ht) + ϵt, E

(
V ∞
t+1(rt+1, ht+1, ϵt+1)

∣∣rt, ht, ϵt
)}

< δ.

This is a contradiction. □
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