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A B S T R A C T

This paper considers a linear panel model with interactive fixed effects and unobserved individ-
ual and time heterogeneities that are captured by some latent group structures and an unknown
structural break, respectively. To enhance realism, the model may have different numbers
of groups and/or different group memberships before and after the break. With preliminary
nuclear norm regularized estimation followed by row- and column-wise linear regressions,
we estimate the break point based on the idea of binary segmentation and the latent group
structures together with the number of groups before and after the break by sequential testing
K-means algorithm simultaneously. It is shown that the break point, the number of groups
and the group memberships can each be estimated correctly with probability approaching
one. Asymptotic distributions of the estimators of the slope coefficients are established. Monte
Carlo simulations demonstrate excellent finite sample performance for the proposed estimation
algorithm. An empirical application to real house price data across 377 Metropolitan Statistical
Areas in the US from 1975 to 2014 suggests the presence both of structural breaks and of
changes in group membership.

1. Introduction

Heterogeneous panel data models have been widely used in empirical research in economics because they can capture a rich
degree of unobserved heterogeneity. But models with complete heterogeneity along either the cross-section or time dimension
tend to possess too many parameters to be identified, which results in slow convergence and inefficient estimates. For this reason,
researchers now frequently advocate the use of panel data models with certain structures imposed along either the cross-section or
time dimension. On the one hand, the recent burgeoning of panels with latent group structures can be motivated from the observation
that different groups of individuals respond differently to exogenous shocks. For instance, Durlauf and Johnson (1995), Berthelemy
and Varoudakis (1996), and Ben-David (1998) show economies in different groups of income per capita and/or education level
may converge to different steady state equilibria. Klapper and Love (2011), Chu (2012), and Zhang and Cheng (2019) show an
exogenous shock like policy implementation has different impacts on different individuals, and Long et al. (2012) argue that the
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influence of the 2008 financial crisis on economic growth differs for emergent and developed economies. On the other hand, the
recent popularity of panels that evidence structural change can be motivated by events such as financial crises, the economic impact
of technological progress, and more general economic transitions that occur during the time periods covered by the data. See Qian
and Su (2016) for a survey of panel data models and research that consider estimation and inference concerning structural change.

In spite of the large literatures that now separately study individual heterogeneity or time heterogeneity in the slope coefficients
f panel models, few works consider both types of heterogeneity simultaneously. Exceptions include Keane and Neal (2020) and Lu
nd Su (2023) who consider linear panel data models with two-dimensional unobserved heterogeneity in the slope coefficients
hat are modeled via the usual additive structure, and Chernozhukov et al. (2020) and Wang et al. (2022) who model the slope
oefficients via the use of low-rank matrices for conditional mean and quantile regressions, respectively. In addition, Okui and
ang (2021) and Lumsdaine et al. (2023) consider both individual heterogeneity and time heterogeneity by modeling them as a

rouped pattern and as structural breaks, respectively. Specifically, Okui and Wang (2021) develop a new panel data model with
atent groups where the number of groups and the group memberships do not change over time but the coefficients within each
roup can change over time and they may have different break-dates; Lumsdaine et al. (2023) consider the panels with a grouped
attern of heterogeneity when the latent group membership structure and/or the values of slope coefficients change at a break point.
oth papers provide algorithms to recover the latent group structure based on linear panel models with or without individual fixed
ffects, but cannot allow for the presence of more complicated fixed effects such as interactive fixed effects (IFEs) to capture strong
ross-sectional dependence in the data.

This paper proposes a linear panel data model with IFEs that enable the slope coefficients to exhibit two-way heterogeneity.
ollowing the lead of Okui and Wang (2021) and Lumsdaine et al. (2023) and to encourage the parameter parsimony, we use a
atent group structure to capture individual heterogeneity and an unknown structural break to capture time heterogeneity. The
atent group structure of the model accommodates different group numbers and different group memberships before and after the
reak. Given this complicated structure, the approach proposed is to estimate the break point, the number of groups before and after
he break, the group membership before and after the break, and the group-specific parameters in multiple steps. The key insight
hat permits this degree of complication is that the slope coefficients of each of the 𝑝 regressors in the model are permitted to vary

across both cross-section and time dimensions by means of a factor structure with a fixed number of factors so that they may be
conveniently stacked into a low-rank matrix.

In the first step, the low-rank nature of the slope matrices is explored and initial estimates are obtained by nuclear norm
regularization (NNR), a machine learning technique popular in computer science that is increasingly used in econometrics. Such
initial matrix estimates are consistent in terms of the Frobenius norm but do not have pointwise or uniform convergence for their
elements. Despite this, by applying singular value decomposition (SVD) to these estimates, we can obtain estimates of the associated
factors and loadings that are also consistent in terms of the Frobenius norm. In the second step, we use the first-step initial estimates
of the factors and loadings to run the row- and column-wise linear regressions to update the estimates of the factors and loadings
which now possess pointwise and uniform consistency and can be used for subsequent analyses. In the third step, we estimate the
break point by using the celebrated idea of binary segmentation, as commonly used for break point estimation in the time series
literature. Once the break point is estimated, the full sample is naturally split into two subsamples. In the fourth step, we follow the
lead of Lin and Ng (2012) and Jin et al. (2022) to focus on each subsample before and after the estimated break point and propose
a sequential testing K-means algorithm to recover the latent group structure and obtain the number of groups simultaneously. In
the last step, we use the estimated group structure to estimate the group-specific parameters. Asymptotic analyses show that the
break point, the number of groups and the group memberships can be consistently estimated in Steps 3–4, so that the final-step
estimates for the group-specific coefficients can enjoy the oracle property. This means they have the same asymptotic distributions
as the ones obtained by knowing the break point and the latent group structures before and after the break point.

The present paper makes contributions that relate to two branches of literature. First, it contributes to the panel data literature
on one-way heterogeneity, especially with either latent group structures or structural breaks. With respect to latent group structures,
there are several popular ways to recover the latent groups. The first approach is the K-means algorithm. Lin and Ng (2012) apply the
K-means algorithm to linear panel data models with grouped slope coefficients and propose an information criterion and a sequential
testing approach to estimate the true number of groups. Sarafidis and Weber (2015) analyze the unknown grouped slopes in the
large 𝑁 and fixed 𝑇 framework, and Zhang et al. (2019) provide an iterative algorithm based on K-means clustering for a panel
uantile regression model. Bonhomme and Manresa (2015) and Ando and Bai (2016) consider panels with grouped fixed effects. The
econd approach is the Classifier-Lasso (C-Lasso) that has become a popular clustering method since (Su et al., 2016). This method is
xtended by Lu and Su (2017), Su and Ju (2018), Su et al. (2019), Wang et al. (2019), and Huang et al. (2020) to various contexts.
n addition, both the clustering algorithm in regression via a data-driven segmentation (CARDS) approach and binary segmentation
re also considered in Ke et al. (2015), Wang et al. (2018), Ke et al. (2016) and Wang and Su (2021), among others. As for panel
odels with structural breaks, binary segmentation has become a common approach to estimate the break point. See Bai (2010), Lin

nd Hsu (2011), Kim (2011, 2014) and Baltagi et al. (2017), among others. These papers focus on the case of a single break point in
he model. In contrast, Qian and Su (2016) and Li et al. (2016) allow for multiple breaks in linear panel models with either classical
ixed effects or IFEs, and propose an adaptive grouped fused lasso (AGFL) approach to estimate the break points. Compared to the
xisting panel literature on one-way heterogeneity, our model allows for two-way heterogeneity. In particular, not only are different
embership structures in different time blocks permitted but also changes in the number of groups over time. As a result, our model

s more flexible than all existing models that allow only for latent group structures or structural breaks, but not both.
Second, this paper contributes to the recent burgeoning literature that models two-way heterogeneity in the slope coefficients of a
2

anel model. As mentioned above, there are two approaches to model two-way heterogeneity in the slope coefficients. One approach
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models them in an additive structure so that both individual and time effects enter the slope coefficients additively, as in Keane
and Neal (2020) and Lu and Su (2023). The other approach imposes certain low-rank structures on the slope coefficient matrices
in which case one models each slope coefficient via the use of IFEs to capture strong cross-sectional dependence in the panel. In
view of the low-rank structures, we can resort to NNR estimation which has attracted increasing attention recently in panel data
analyses. NNR has been used in recent econometric research — see Moon and Weidner (2018), Bai and Ng (2019), Chernozhukov
et al. (2020), Belloni et al. (2023), Miao et al. (2023), Feng (2023), and Hong et al. (2023), among others. But none of these papers
imposes any latent group structures on the slope coefficients. With latent group structures and structural breaks imposed, Okui and
Wang (2021) allow the slope coefficients within each group to have common breaks and the break points to vary across different
groups, and they propose to estimate the latent group structures, the structural breaks, and the group-specific regression parameters
by the grouped adaptive group fused lasso (GAGFL). But neither the number of groups nor the group memberships is allowed to
change over time in Okui and Wang (2021). In a companion paper, Lumsdaine et al. (2023) allow the latent group membership
structure and/or the values of slope coefficients to change at a break point, and propose an estimation algorithm similar to the
K-means of Bonhomme and Manresa (2015). Both Okui and Wang (2021) and Lumsdaine et al. (2023) allow for at most one-way
heterogeneity (individual fixed effects) in the intercept and neither allows for IFEs to capture strong cross-section dependence. In
contrast, this paper proposes an algorithm to detect the unknown break point and to recover the group structure based on linear
panel model with IFEs, which involves a more general model. In addition, Lumsdaine et al. (2023) first assume the number of
groups is known in the estimation algorithm and then estimate the number of groups via an information criterion but they do not
establish consistency for such an estimate. Instead, we estimate the number of groups and group membership simultaneously by the
sequential testing K-means algorithm and establish the consistency of the number of groups estimator.

The rest of the paper is organized as follows. We first introduce the linear panel model with time-varying latent group structures
n Section 2 and provide the estimation algorithm in Section 3. The asymptotic properties are given in Section 4. In Section 5, we
ropose an alternative approach to detect the break point and discuss the potential extension. Sections Section 6 provides simulation
vidence on the finite sample performance of our methods and Section 7 reports an empirical application to housing price data in
he US that explores group membership and structural breaks. Section 8 concludes. All proofs are provided in the online supplement.

Notation. Let ‖⋅‖max, ‖⋅‖𝑜𝑝, ‖⋅‖, and ‖⋅‖∗ be the (elementwise) maximum norm, operator norm, Frobenius norm, and nuclear norm,
respectively. Let ⊙ denote the element-wise Hadamard product. ⌊⋅⌋ and ⌈⋅⌉ denote the floor and ceiling functions, respectively. Let
𝑎 ∨ 𝑏 = max (𝑎, 𝑏) and 𝑎 ∧ 𝑏 = min(𝑎, 𝑏). 𝑎𝑛 ≲ 𝑏𝑛 means 𝑎𝑛∕𝑏𝑛 = 𝑂𝑝 (1) and 𝑎𝑛 ≫ 𝑏𝑛 means 𝑏𝑛𝑎−1𝑛 = 𝑜(1). Let 𝐴 = {𝐴𝑖𝑡} be a matrix
with its (𝑖, 𝑡)-th entry denoted as 𝐴𝑖𝑡. Let {𝐴𝑗}𝑗∈[𝑝]∪{0} be the collection of matrices 𝐴𝑗 , 𝑗 ∈ {0, 1,… , 𝑝}. For a specific 𝐴 ∈ R𝑚×𝑛 with
rank 𝑛, let 𝑃𝐴 = 𝐴(𝐴′𝐴)−1𝐴′ and 𝑀𝐴 = 𝐼𝑚 − 𝑃𝐴. When 𝐴 is symmetric, 𝜆max(𝐴), 𝜆min(𝐴) and 𝜆𝑛(𝐴) denote its largest, smallest and
𝑛th largest eigenvalues, respectively. The operators ⇝ and

𝑝
⟶ denote convergence in distribution and in probability, respectively.

Denote [𝑛] = {1,… , 𝑛} for any positive integer 𝑛, and let 𝟏{⋅} be the usual indicator function, w.p.a.1 and a.s. abbreviate “with
probability approaching 1” and “almost surely”, respectively.

2. Model setup

In this paper we consider the following linear panel model with IFEs:1

𝑌𝑖𝑡 = 𝜆0′𝑖 𝑓
0
𝑡 +𝑋′

𝑖𝑡𝛩
0
𝑖𝑡 + 𝑒𝑖𝑡, (1)

where 𝑖 ∈ [𝑁], 𝑡 ∈ [𝑇 ], 𝑌𝑖𝑡 is the dependent variable, 𝑋𝑖𝑡 = (𝑋1,𝑖𝑡,… , 𝑋𝑝,𝑖𝑡)′ is a 𝑝 × 1 vector of regressors, 𝛩0
𝑖𝑡 = (𝛩0

1,𝑖𝑡,… , 𝛩0
𝑝,𝑖𝑡)

′ is a
𝑝 × 1 vector of slope coefficients, 𝜆0𝑖 and 𝑓 0

𝑡 are individual and time fixed effects, and 𝑒𝑖𝑡 is the error term. Let 𝛩0
0,𝑖𝑡 ∶= 𝜆0′𝑖 𝑓

0
𝑡 denote

the intercept term that exhibits a factor structure with 𝑟0 factors. Here, we assume 𝑟0 is a fixed integer that does not change as
(𝑁, 𝑇 ) → ∞. Let 𝛬0 =

(

𝜆01,… , 𝜆0𝑁
)′ and 𝐹 0 =

(

𝑓 0
1 ,… , 𝑓 0

𝑇
)′. Moreover, let 𝑌 =

{

𝑌𝑖𝑡
}

, 𝑋𝑗 =
{

𝑋𝑗,𝑖𝑡
}

, 𝛩0
𝑗 = {𝛩0

𝑗,𝑖𝑡} and 𝐸 =
{

𝑒𝑖𝑡
}

, all of
which are 𝑁 × 𝑇 matrices. Then we can rewrite (1) in matrix form as

𝑌 = 𝛬0𝐹 0′ +
𝑝
∑

𝑗=1
𝑋𝑗 ⊙𝛩

0
𝑗 + 𝐸 = 𝛩0

0 +
𝑝
∑

𝑗=1
𝑋𝑗 ⊙𝛩

0
𝑗 + 𝐸. (2)

We assume that the slope coefficients follow time-varying latent group structures, viz.,

𝛩0
𝑖𝑡 =

∑

𝑘∈[𝐾𝑡]
𝛼𝑘𝑡𝟏{𝑖 ∈ 𝐺𝑘𝑡},

where
{

𝐺𝑘𝑡
}

𝑘∈[𝐾𝑡]
forms a partition of [𝑁] for each specific time 𝑡 with 𝐾𝑡 being the number of groups at time 𝑡. Moreover, we

assume that the group-specific slope coefficients 𝛼𝑘𝑡 or the memberships change at an unknown time point 𝑇1, i.e.,

𝛼𝑘𝑡 =

{

𝛼(1)𝑘 , for 𝑡 = 1,… , 𝑇1, 𝑘 = 1,… , 𝐾 (1),

𝛼(2)𝑘 , for 𝑡 = 𝑇1 + 1,… , 𝑇 , 𝑘 = 1,… , 𝐾 (2),

1 A referee expressed interest in specifying the intercept in terms of other forms of generalized fixed effects such as 𝑔
(

𝜆0𝑖 , 𝑓
0
𝑡

)

and 𝑔𝑖
(

𝑓 0
𝑡

)

, where the functional
orm of either 𝑔 (⋅, ⋅) or the 𝑔𝑖 (⋅) is unknown,

(

𝜆0𝑖 , 𝑓
0
𝑡

)

and the 𝑓 0
𝑡 are unobserved in the first and second specifications, respectively. Such specifications would

equire different identification and estimation methods and are left for future study.
3
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𝐺𝑘𝑡 =

{

𝐺(1)
𝑘 , for 𝑡 = 1,… , 𝑇1, 𝑘 = 1,… , 𝐾 (1),

𝐺(2)
𝑘 , for 𝑡 = 𝑇1 + 1,… , 𝑇 , 𝑘 = 1,… , 𝐾 (2),

with 𝐾 (1) and 𝐾 (2) being the number of latent groups before and after the break point, respectively. Let 𝑔(1)𝑖 and 𝑔(2)𝑖 respectively
enote the individual group indices before and after the break:

𝑔(1)𝑖 =
∑

𝑘∈[𝐾(1)]

𝑘𝟏{𝑖 ∈ 𝐺(1)
𝑘 } and 𝑔(2)𝑖 =

∑

𝑘∈[𝐾(2)]

𝑘𝟏{𝑖 ∈ 𝐺(2)
𝑘 }.

Let 𝑟𝑗 be the rank of 𝛩0
𝑗 for 𝑗 ∈ [𝑝] ∪ {0}. By the SVD for 𝛩0

𝑗 ∕
√

𝑁𝑇 , we have

𝛩0
𝑗 =

√

𝑁𝑇 0
𝑗 𝛴

0
𝑗 

0′
𝑗 ∶= 𝑈0

𝑗 𝑉
0′
𝑗 , 𝑗 ∈ [𝑝] ∪ {0}, (3)

where  0
𝑗 ∈ R𝑁×𝑟𝑗 , 0

𝑗 ∈ R𝑇×𝑟𝑗 , 𝛴0
𝑗 = diag(𝜎1,𝑗 ,… , 𝜎𝑟𝑗 ,𝑗 ), 𝑈

0
𝑗 =

√

𝑁 0
𝑗 𝛴

0
𝑗 with each row being 𝑢0′𝑖,𝑗 , and 𝑉 0

𝑗 =
√

𝑇0
𝑗 with each row

eing 𝑣0′𝑡,𝑗 . Later, we will show that 𝛩0
𝑗 exhibits a low-rank structure for all 𝑗, i.e., 𝑟𝑗 is some fixed number.

Note that we allow
{

𝛩0
𝑖𝑡
}𝑁
𝑖=1 to exhibit latent group structures before and after the break. For a particular 𝑗 ∈ [𝑝], the 𝑁 × 𝑇

atrix 𝛩0
𝑗 may have no group structure before or after the break, or no break, or more or fewer groups after the break. Let 𝐾 (1)

𝑗
nd 𝐾 (2)

𝑗 denote the number of groups before and after the break, respectively, for {𝛩0
𝑗,𝑖𝑡}

𝑁
𝑖=1. Let (𝓁)𝑗 = {𝐺(𝓁)

1,𝑗 ,… , 𝐺(𝓁)
𝐾(𝓁)
𝑗 ,𝑗

}, 𝓁 = 1, 2,

denote the associated latent group structures. Define 𝑁 (𝓁)
𝑘,𝑗 = |𝐺(𝓁)

𝑘,𝑗 | and 𝜋(𝓁)𝑘,𝑗 =
𝑁 (𝓁)
𝑘,𝑗
𝑁 for 𝓁 = 1, 2, where |𝐴| denotes the cardinality of

et 𝐴. Further define 𝜏𝑇 ∶= 𝑇1
𝑇 . We show that 𝛩0

𝑗 for all 𝑗 ∈ [𝑝] has a low-rank structure in all of the following cases:

ase 1: For some 𝑗 ∈ [𝑝], 𝛩0
𝑗 exhibits neither structural break nor group structure.

In this case, 𝐾 (1)
𝑗 = 𝐾 (2)

𝑗 = 1, and 𝛩0
𝑗,𝑖𝑡 = 𝛼𝑗 ∀ (𝑖, 𝑡) ∈ [𝑁] × [𝑇 ]. Without loss of generality, assume that 𝛼𝑗 > 0. Then by the

SVD for 𝛩0
𝑗 as in (3), we have

 0
𝑗 = 1

√

𝑁
𝜄𝑁 ∈ R𝑁×1, 𝛴0

𝑗 = 𝛼𝑗 , 0
𝑗 = 1

√

𝑇
𝜄𝑇 ∈ R𝑇×1,

𝑈0
𝑗 = 𝛼𝑗 𝜄𝑁 ∈ R𝑁×1, 𝑉 0

𝑗 = 𝜄𝑇 ∈ R𝑇×1,

where 𝜄𝑑 = (1,… , 1)′ ∈ R𝑑×1 for any natural number 𝑑. Obviously, 𝑟𝑗 = 1 in Case 1.

Case 2: For some 𝑗 ∈ [𝑝], 𝛩0
𝑗 exhibits no structural break but a group structure.

In this case, 𝐾 (1)
𝑗 = 𝐾 (2)

𝑗 = 𝐾𝑗 , 𝐺
(1)
𝑘,𝑗 = 𝐺(2)

𝑘,𝑗 = 𝐺𝑘,𝑗 , 𝑁
(1)
𝑘,𝑗 = 𝑁 (2)

𝑘,𝑗 = 𝑁𝑘,𝑗 , 𝜋
(1)
𝑘,𝑗 = 𝜋(2)𝑘,𝑗 = 𝜋𝑘,𝑗 ∀𝑘 ∈

[

𝐾𝑗
]

, and 𝛩0
𝑗,𝑖𝑡 =

∑

𝑘∈[𝐾𝑗 ] 𝛼𝑘,𝑗𝟏
{

𝑖 ∈ 𝐺𝑘,𝑗
}

for 𝑡 ∈ [𝑇 ]. Therefore, we have

 0
𝑗,𝑖 =

∑

𝑘∈[𝐾𝑗 ] 𝛼𝑘,𝑗𝟏
{

𝑖 ∈ 𝐺𝑘,𝑗
}

√

∑

𝑘∈[𝐾𝑗 ]𝑁𝑘,𝑗
(

𝛼𝑘,𝑗
)2

, 𝛴0
𝑗 =

√

∑

𝑘∈[𝐾𝑗 ]
𝜋𝑘,𝑗

(

𝛼𝑘,𝑗
)2, 0

𝑗 = 1
√

𝑇
𝜄𝑇 ,

𝑢0𝑖,𝑗 =
∑

𝑘∈[𝐾𝑗 ]
𝛼𝑘,𝑗𝟏

{

𝑖 ∈ 𝐺𝑘,𝑗
}

, 𝑉 0
𝑗 = 𝜄𝑇 ,

where  0
𝑗,𝑖 is the 𝑖th element in  0

𝑗 . Obviously, 𝑟𝑗 = 1 in this case.

Case 3: For some 𝑗 ∈ [𝑝], 𝛩0
𝑗 exhibits both a structural break and a group structure.

(i) 𝐾 (1)
𝑗 ≠ 𝐾 (2)

𝑗 , where we have different numbers of groups before and after the break;
(ii) 𝐾 (1)

𝑗 = 𝐾 (2)
𝑗 = 𝐾𝑗 and 𝐺(1)

𝑘,𝑗 ≠ 𝐺(2)
𝑘,𝑗 for some 𝑘 ∈

[

𝐾𝑗
]

, where we have the same number of groups before and after the break,
but the group memberships change after the break point;

(iii) 𝐾 (1)
𝑗 = 𝐾 (2)

𝑗 = 𝐾𝑗 , 𝐺
(1)
𝑘,𝑗 = 𝐺(2)

𝑘,𝑗 = 𝐺𝑘,𝑗 for ∀𝑘 ∈ [𝐾𝑗 ], and 𝛼(1)𝑘,𝑗 ≠ 𝛼(2)𝑘,𝑗 for at least one 𝑘 ∈ [𝐾𝑗 ], where even though neither
the number of groups nor group membership changes after the break, there exists at least one group whose slope coefficients
change.

Case 3 is of most interest to us. It suggests that from the perspective of the entire sample, it is possible that either the group-
pecific coefficients, or the group memberships of certain cross-section units, or both may change in Case 3. Specifically, the number
f groups must change over time in Case 3(i), where we must observe the changes of both group memberships and group-specific
lope coefficients. For example, consider the case where there are two groups before the break, with one group (say, group 2) split
nto two groups (say, groups 2 and 3) after the break. In this case, we have three groups after the break and some individuals in the
re-break group 2 must change their slope coefficients. Of course, it is also possible all the slope coefficients in the post-break three
roups differ from the pre-break ones in this subcase. Similarly, we observe that in Case 3(ii), there is no change in the number of
4

roups after the break, while the group memberships change for some individuals. This subcase includes a special case where the
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group-specific slope coefficients do not change while only the memberships of some individuals change over time. Apart from this
special case, we may have both change in the group-specific slope coefficients and group memberships. In Case 3(iii), there is no
change in the group memberships and only the group-specific slope coefficients change over time.

For any positive integer 𝑑, we use 𝟎𝑑 to denote a 𝑑 ×1 vector of zeros. The following lemma lays down the foundation for break
oint detection in our model.

emma 2.1. For any 𝑗 ∈ [𝑝] such that 𝛩0
𝑗 lies in Case 3 above, we have rank(𝛩0

𝑗 ) ≤ 2. When rank(𝛩0
𝑗 ) = 2, for the SVD for 𝛩0

𝑗 ∕
√

𝑁𝑇 ,
i.e., 𝛩0

𝑗 ∕
√

𝑁𝑇 ∶=  0
𝑗 𝛴

0
𝑗 

0′
𝑗 , we have

(i) 𝛩0
𝑗 = 𝑈0

𝑗 𝑉
0′
𝑗 where 𝑈0

𝑗 =
√

𝑁 0
𝑗 𝛴

0
𝑗 , 𝑉 0

𝑗 =
√

𝑇0
𝑗 = 𝐷𝑗𝑅𝑗 , 𝐷𝑗 =

⎡

⎢

⎢

⎣

1
√

𝜏𝑇
𝜄𝑇1 𝟎𝑇1

𝟎𝑇−𝑇1
1

√

1−𝜏𝑇
𝜄𝑇−𝑇1

⎤

⎥

⎥

⎦

and 𝑅′
𝑗𝑅𝑗 = 𝐼2;

(ii)
‖

‖

‖

‖

‖

‖

𝑣0𝑡,𝑗
‖

‖

‖

𝑣0𝑡,𝑗
‖

‖

‖

−
𝑣0𝑡∗ ,𝑗

‖

‖

‖

‖

𝑣0𝑡∗ ,𝑗
‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

=
√

2 for any 𝑡 ≤ 𝑇1 and 𝑡∗ > 𝑇1.

By Lemma 2.1 for Case 3 and the above analyses for Cases 1 and 2, we conclude that 𝛩0
𝑗 is a low-rank matrix with rank equal

o or less than 2. In view of the low-rank structure of the slope matrices, we propose to adopt the NNR to obtain the preliminary
stimates below. Moreover, under Case 3, Lemma 2.1(ii) indicates that singular vectors of the slope matrix with rank 2 contain the
tructural break information.

. Estimation

This section develops the estimation algorithm. We first assume that the ranks 𝑟𝑗 for 𝑗 ∈ [𝑝] ∪ {0} are known, and then propose
singular value thresholding (SVT) procedure to estimate them. After we recover the break point and the latent group structures,
e propose consistent estimates of the group-specific parameters.

.1. Estimation algorithm

Given 𝑟𝑗 , ∀𝑗 ∈ [𝑝]∪{0}, we propose the following four-step procedure to estimate the break point and to recover the latent group
tructures before and after the break.

tep 1: Nuclear Norm Regularization (NNR). We run the nuclear norm regularized regression and obtain the preliminary
estimates as follows:

{�̃�𝑗}𝑗∈[𝑝]∪{0} = argmin
{

𝛩𝑗
}𝑝
𝑗=0

1
𝑁𝑇

‖

‖

‖

‖

‖

‖

𝑌 −
𝑝
∑

𝑗=1
𝑋𝑗 ⊙𝛩𝑗 − 𝛩0

‖

‖

‖

‖

‖

‖

2

+
𝑝
∑

𝑗=0
𝜈𝑗

‖

‖

‖

𝛩𝑗
‖

‖

‖∗
, (4)

where 𝜈𝑗 is the tuning parameter. For each 𝑗, conduct the SVD: 1
√

𝑁𝑇
�̃�𝑗 = ̂̃𝑗

̂̃𝛴𝑗 ̂̃ ′
𝑗 , where ̂̃𝛴𝑗 is a diagonal matrix that contains

the singular values of �̃�𝑗 ordered in descending order along its diagonal line. Let ̃𝑗 consist of the first 𝑟𝑗 columns of ̂̃𝑗 , and
𝑉𝑗 =

√

𝑇 ̃𝑗 . Let �̃�′𝑡,𝑗 denote the 𝑡th row of 𝑉𝑗 for 𝑡 ∈ [𝑇 ].

tep 2: Row- and Column-Wise Regressions. First run the row-wise regressions of 𝑌𝑖𝑡 on
(

�̃�𝑡,0, {�̃�𝑡,𝑗𝑋𝑗,𝑖𝑡}𝑗∈[𝑝]
)

to obtain {�̇�𝑖,𝑗}𝑗∈[𝑝]∪{0}
for 𝑖 ∈ [𝑁]. Then run the column-wise regressions of 𝑌𝑖𝑡 on

(

�̇�𝑖,0, {�̇�𝑖,𝑗𝑋𝑗,𝑖𝑡}𝑗∈[𝑝]
)

to obtain {�̇�𝑡,𝑗}𝑗∈[𝑝]∪{0} for 𝑡 ∈ [𝑇 ]. Let
�̇�𝑗,𝑖𝑡 = �̇�′𝑖,𝑗 �̇�𝑡,𝑗 for (𝑖, 𝑡) ∈ [𝑁] × [𝑇 ] and 𝑗 ∈ [𝑝] ∪ {0}. Specifically, the row- and column-wise regressions are given by

{

�̇�𝑖,𝑗
}

𝑗∈[𝑝]∪{0} = argmin
{𝑢𝑖,𝑗}𝑗∈[𝑝]∪{0}

1
𝑇

∑

𝑡∈[𝑇 ]

(

𝑌𝑖𝑡 − 𝑢′𝑖,0�̃�𝑡,0 −
𝑝
∑

𝑗=1
𝑢′𝑖,𝑗 �̃�𝑡,𝑗𝑋𝑗,𝑖𝑡

)2

, 𝑖 ∈ [𝑁], (5)

{

�̇�𝑡,𝑗
}

𝑗∈[𝑝]∪{0} = argmin
{𝑣𝑡,𝑗}𝑗∈[𝑝]∪{0}

1
𝑁

∑

𝑖∈[𝑁]

(

𝑌𝑖𝑡 − 𝑣′𝑡,0�̇�𝑖,0 −
𝑝
∑

𝑗=1
𝑣′𝑡,𝑗 �̇�𝑖,𝑗𝑋𝑗,𝑖𝑡

)2

, 𝑡 ∈ [𝑇 ]. (6)

tep 3: Break Point Estimation. We estimate the break point as follows:

�̂�1 = argmin
𝑠∈{2,…,𝑇−1}

1
𝑝𝑁𝑇

∑

𝑗∈[𝑝]

∑

𝑖∈[𝑁]

{ 𝑠
∑

𝑡=1

(

�̇�𝑗,𝑖𝑡 − ̄̇𝛩(1𝑠)
𝑗,𝑖

)2
+

𝑇
∑

𝑡=𝑠+1

(

�̇�𝑗,𝑖𝑡 − ̄̇𝛩(2𝑠)
𝑗,𝑖

)2
}

, (7)

where ̄̇𝛩(1𝑠)
𝑗,𝑖 = 1

𝑠
∑𝑠
𝑡=1 �̇�𝑗,𝑖𝑡 and ̄̇𝛩(2𝑠)

𝑗,𝑖 = 1
𝑇−𝑠

∑𝑇
𝑡=𝑠+1 �̇�𝑗,𝑖𝑡.

Step 4: Sequential Testing K-means (STK). In this step, we estimate the number of groups and the group membership before
and after the break by using the STK algorithm. For each 𝑗 ∈ [𝑝], define �̇�(1)

𝑗,𝑖 = (�̇�𝑗,𝑖1,… , �̇�𝑗,𝑖�̂�1 )
′, �̇�(2)

𝑗,𝑖 = (�̇�𝑗,𝑖,�̂�1+1,… , �̇�𝑗,𝑖𝑇 )′,
�̇�(1)𝑖 = 1

√ (�̇�(1)′
1,𝑖 ,… , �̇�(1)′

𝑝,𝑖 )
′, and �̇�(2)𝑖 = 1

√ (�̇�(2)′
1,𝑖 ,… , �̇�(2)′

𝑝,𝑖 )
′. Let 𝑧𝜍 be some predetermined value which will be specified in the
5

�̂�1 �̂�2
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Fig. 1. The flow chart of STK algorithm.

next subsection. Given the subsample before and after the estimated break point, initialize 𝑚 = 1 and classify each subsample
into 𝑚 groups by the K-means algorithm with group membership obtained as ̂(𝓁)𝑚 ∶= {�̂�(𝓁)

𝑘,𝑚}𝑘∈[𝑚]. Next, we construct a suitable
test statistic 𝛤 (𝓁)

𝑚 , defined by (11) in the next subsection, and compare it to its critical value 𝑧𝜍 at significance level 𝜍 under
the null hypothesis of 𝑚 subgroups, setting 𝑚 = 𝑚 + 1 and moving to the next iteration if 𝛤 (𝓁)

𝑚 > 𝑧𝜍 and stopping the STK
algorithm otherwise. Lastly, define �̂� (𝓁) = 𝑚 and ̂(𝓁) = ̂(𝓁)𝑚 . See the next subsection for specific details of the STK algorithm.

Several remarks are in order. First, the ranks of the intercept and slope matrices are assumed to be known in Step 1; otherwise
they can be consistently estimated via SVT (see Section 3.3 below). Second, we obtain preliminary estimates by NNR based on the
low-rank structure of the intercept and slope matrices in the model. These estimates are consistent in terms of the Frobenius norm but
pointwise or uniform convergence for their elements is not established. Nonetheless, SVD can be employed to obtain preliminary
estimates of the factors and loadings to be used subsequently. Third, row- and column-wise linear regressions are conducted to
obtain updated estimates of the factors and loadings for which we can establish pointwise and uniform convergence rates. As one
referee kindly pointed out, one can iterate this step to improve the finite sample performance in practice. Fourth, using the consistent
estimates obtained in the second step, we can estimate the break point in Step 3 consistently by using a binary segmentation process.
Fifth, the STK algorithm in Step 4 then yields the estimated number of groups and the group memberships together.

In the latent group literature, it is standard and popular to assume the number of groups in the K-means algorithm is known
and then to estimate the number of groups by using certain information criteria. In this case, one needs to consider not only under-
and just-fitting cases, but also over-fitting cases. It is well known that the major difficulty with this approach is to show that the
over-fitting case occurs with probability approaching zero. The STK algorithm ensures a focus on the under-and just-fitting cases,
which helps to avoid the difficulty caused by K-means classification with a larger than true number of groups. We will prove that the
STK algorithm helps to eliminate the under-fitting case in which parameters cannot be consistently estimated in general. Although we
adopt a sequential testing algorithm, we control the false discovery rate (FDR) by specifying a significance level that shrinks to zero
(see Theorem 4.3 below), which also helps to deliver a consistent estimator of the number of groups. In addition, other approaches
can also be used to estimate the latent group structures. For example, it is possible to apply the sequential binary segmentation
algorithm (SBSA) of Wang and Su (2021) given the uniform consistent estimates {�̇�(1)

𝑖𝑡 , �̇�
(2)
𝑖𝑡 }. It is also possible to extend the C-Lasso

of Su et al. (2016) to allow for both latent group structures and structural changes despite the technical difficulty. But to save space
we do not formally study these alternative approaches in our setup.

3.2. The STK algorithm

This subsection describes the K-means algorithm and the construction of the test statistics 𝛤 (𝓁)
𝑚 that are used in the STK algorithm

for 𝓁 ∈ {1, 2}.
First, we define the objective function for the K-means algorithm with 𝑚 clusters at each iteration. Let 𝑎(𝓁)𝑘,𝑚 be a 𝑝�̂�1 × 1 and

𝑝(𝑇 − �̂�1)×1 vector for 𝓁 = 1, 2, respectively. We obtain the group membership with 𝑚 groups by solving the following minimization
problem

{

�̇�(𝓁)𝑘,𝑚

}

𝑘∈[𝑚]
= argmin

{

𝑎(𝓁)𝑘,𝑚

}

𝑘∈[𝑚]

1
𝑁

∑

𝑖∈[𝑁]
min
𝑘∈[𝑚]

‖

‖

‖

�̇�(𝓁)𝑖 − 𝑎(𝓁)𝑘,𝑚
‖

‖

‖

2
, (8)

which yields the membership estimates for each individual at the 𝑚th iteration as

�̂�(𝓁)𝑖,𝑚 = argmin
𝑘∈[𝑚]

‖

‖

‖

�̇�(𝓁)𝑖 − �̇�(𝓁)𝑘,𝑚
‖

‖

‖

∀𝑖 ∈ [𝑁]. (9)

Let �̂�(𝓁)
𝑘,𝑚 ∶= {𝑖 ∈ [𝑁] ∶ �̂�(𝓁)𝑖,𝑚 = 𝑘}.

Second, we discuss the construction of the test statistic based on the idea of homogeneity test for several subsamples. At iteration
𝑚, we have 𝑚 potential subgroups (�̂�(𝓁) ,… , �̂�(𝓁) ) after the K-means classification for 𝓁 = 1 and 2. Let ̂ = [�̂� ], ̂ = [𝑇 ]∖[�̂� ],
6

1,𝑚 𝑚,𝑚 1 1 2 1



Journal of Econometrics 240 (2024) 105685Y. Wang et al.

a
a

h
a
r

3

w
D

p

w

̂1,−1 = ̂1∖{�̂�1}, ̂2,−1 = ̂2∖{𝑇 }, ̂1,𝑗 = {1 + 𝑗,… , �̂�1}, and ̂2,𝑗 = {�̂�1 + 1 + 𝑗,… , 𝑇 } for some specific 𝑗 ∈ ̂𝓁,−1. Based on these
estimated subgroups, we can obtain the estimates of the coefficients, factors and loadings for each subgroup in regime 𝓁 as follows:

(

{

�̂�(𝓁)𝑖,𝑘,𝑚

}

𝑖∈�̂�(𝓁)
𝑘,𝑚

, �̂�(𝓁)
𝑘,𝑚, 𝐹

(𝓁)
𝑘,𝑚

)

= argmin
{𝜃𝑖 ,𝜆𝑖 ,𝑓𝑡}𝑖∈�̂�(𝓁)𝑘,𝑚,𝑡∈̂𝓁

∑

𝑖∈�̂�(𝓁)
𝑘,𝑚

∑

𝑡∈̂𝓁

(

𝑌𝑖𝑡 −𝑋′
𝑖𝑡𝜃𝑖 − 𝜆

′
𝑖𝑓𝑡

)2 ,

where �̂�(𝓁)
𝑘,𝑚 = {�̂�(𝓁)𝑖,𝑘,𝑚}𝑖∈�̂�(𝓁)

𝑘,𝑚
∈ R

|

|

|

�̂�(𝓁)
𝑘,𝑚

|

|

|

×𝑟0 and 𝐹 (𝓁)
𝑘,𝑚 = {𝑓 (𝓁)

𝑡,𝑘,𝑚}𝑡∈̂𝓁 ∈ R
|

|

|

̂𝓁
|

|

|

×𝑟0 are the estimated individual effects matrix and time effects

matrix for the estimated group �̂�(𝓁)
𝑘,𝑚 over the time span ̂𝓁 . For all 𝑖 ∈ [𝑁] and 𝑡 ∈ [𝑇 ], define the residuals

𝑒𝑖𝑡 =
2
∑

𝓁=1

(

𝑌𝑖𝑡 − 𝑓
(𝓁)′
𝑡,𝑘,𝑚�̂�

(𝓁)
𝑖,𝑘,𝑚 −𝑋′

𝑖𝑡�̂�
(𝓁)
𝑖,𝑘,𝑚

)

𝟏{𝑡 ∈ ̂𝓁}.

Let �̂�(1)
𝑖 = (𝑋𝑖1,… , 𝑋𝑖�̂�1

)′, �̂�(2)
𝑖 = (𝑋𝑖,�̂�1+1

,… , 𝑋𝑖𝑇 )′, �̂�2 = 𝑇 − �̂�1,

̂̄𝜃(𝓁)𝑘,𝑚 = 1
|�̂�(𝓁)

𝑘,𝑚|

∑

𝑖∈�̂�(𝓁)
𝑘,𝑚

�̂�(𝓁)𝑖,𝑘,𝑚, �̂�(𝓁)
𝑖𝑖,𝑘,𝑚 = 1

�̂�𝓁
�̂�(𝓁)′
𝑖 𝑀𝐹 (𝓁)

𝑘,𝑚
�̂�(𝓁)
𝑖 , �̂�(𝓁)𝑖𝑖,𝑘 = �̂�(𝓁)′𝑖,𝑘,𝑚

(

|�̂�(𝓁)
𝑘,𝑚|

−1
�̂�(𝓁)′
𝑘,𝑚 �̂�

(𝓁)
𝑘,𝑚

)−1
�̂�(𝓁)𝑖,𝑘,𝑚,

nd �̂�(𝓁)′𝑖𝑡 be the 𝑡th row of 𝑀𝐹 (𝓁)
𝑘,𝑚
�̂�(𝓁)
𝑖 . For each subgroup �̂�(𝓁)

𝑘,𝑚 with 𝑘 ∈ [𝑚], we follow the lead of Pesaran and Yamagata (2008)
nd Ando and Bai (2015) and define the following test statistic components

𝛤 (𝓁)
𝑘,𝑚 =

√

|�̂�(𝓁)
𝑘,𝑚| ⋅

1
|�̂�(𝓁)
𝑘,𝑚|

∑

𝑖∈�̂�(𝓁)
𝑘,𝑚

Ŝ(𝓁)𝑖,𝑘,𝑚 − 𝑝

√

2𝑝
, (10)

where

Ŝ(𝓁)𝑖,𝑘,𝑚 = �̂�𝓁(�̂�
(𝓁)
𝑖,𝑘,𝑚 − ̂̄𝜃(𝓁)𝑘,𝑚)

′�̂�(𝓁)
𝑖𝑖,𝑘,𝑚(�̂�

(𝓁)
𝑖,𝑘,𝑚)

−1�̂�(𝓁)
𝑖𝑖,𝑘,𝑚(�̂�

(𝓁)
𝑖,𝑘 − ̂̄𝜃(𝓁)𝑘 )

⎛

⎜

⎜

⎝

1 −
�̂�(𝓁)𝑖𝑖,𝑘

|�̂�(𝓁)
𝑘,𝑚|

⎞

⎟

⎟

⎠

2

,

�̂�(𝓁)
𝑖,𝑘,𝑚 = 1

�̂�𝓁

∑

𝑡∈̂𝓁

�̂�(𝓁)𝑖𝑡 �̂�
(𝓁)′
𝑖𝑡 𝑒2𝑖𝑡 +

1
�̂�𝓁

∑

𝑗∈̂𝓁,−1

𝑘(𝑗∕𝑆𝑇 )
∑

𝑡∈̂𝓁,𝑗

[�̂�(𝓁)𝑖𝑡 �̂�
(𝓁)′
𝑖,𝑡−𝑗𝑒𝑖𝑡𝑒𝑖,𝑡−𝑗 + �̂�

(𝓁)
𝑖,𝑡−𝑗 �̂�

(𝓁)′
𝑖𝑡 𝑒𝑖,𝑡−𝑗𝑒𝑖,𝑡],

𝑘(⋅) is a kernel function, 𝑆𝑇 is a bandwidth/truncation parameter, and �̂�(𝓁)
𝑖,𝑘,𝑚 is the traditional HAC estimator. Using the components

(10), we now define the test statistic

𝛤 (𝓁)
𝑚 = max

𝑘∈[𝑚]
(𝛤 (𝓁)
𝑘,𝑚)

2. (11)

We will show that 𝛤 (𝓁)
𝑚 is asymptotically distributed as the maximum of 𝑚 independent 𝜒2(1) random variables under the null

ypothesis that the slope coefficients in each of the 𝑚 subsamples are homogeneous, whereas it diverges to infinity under the
lternative. Let 𝑧𝜍 denote the critical value at significance level 𝜍, which is calculated from the maximum of 𝑚 independent 𝜒2(1)
andom variables. We reject the null of 𝑚 subgroups in favor of more groups at level 𝜍 if 𝛤 (𝓁)

𝑚 > 𝑧𝜍 .

.3. Rank estimation

Given the NNR estimators from (4), we propose to estimate the rank 𝑟𝑗 of 𝛩𝑗 via SVT:

�̂�𝑗 =
𝑁∧𝑇
∑

𝑖=1
𝟏
{

𝜎𝑖
(

�̃�𝑗
)

≥ 0.5
(

𝜈𝑗
‖

‖

‖

�̃�𝑗
‖

‖

‖𝑜𝑝

)1∕2
}

∀𝑗 ∈ {0} ∪ [𝑝],

here 𝜎𝑖 (𝐴) denotes the 𝑖th largest singular value of 𝐴 and 𝑁 ∧ 𝑇 = min(𝑁, 𝑇 ). By arguments as used in the proof of Proposition
.1 in Chernozhukov et al. (2020) and that of Theorem 3.2 in Hong et al. (2023), we can show that P(�̂�𝑗 = 𝑟𝑗 ) → 1 for each 𝑗 as

(𝑁, 𝑇 ) → ∞.

3.4. Parameter estimation

Once we obtain the estimated break point, the number of groups and the group membership before and after the estimated break
oint, we can estimate the group-specific slope coefficients {𝛼(𝓁)𝑘 }𝑘∈[�̂�(𝓁)] along with the factors and loadings as follows

(

�̂�(𝓁), 𝐹 (𝓁),
{

�̂�(𝓁)𝑘

}

𝑘∈[�̂�(𝓁)]

)

= argminL
(

𝛬, 𝐹 ,
{

𝑎(𝓁)𝑘

}

𝑘∈[�̂�(𝓁)]

)

, (12)

here L
(

𝛬, 𝐹 ,
{

𝑎(𝓁)𝑘

}

𝑘∈[�̂�(𝓁)]

)

= 1
𝑁�̂�𝓁

∑�̂�(𝓁)

𝑘=1
∑

𝑖∈�̂�(𝓁)
𝑘

∑

𝑡∈̂𝓁

(

𝑌𝑖𝑡 − 𝜆′𝑖𝑓𝑡 −𝑋
′
𝑖𝑡𝑎

(𝓁)
𝑘

)2
. Here, we ignore the fact that the prior- and post-

break regimes share the same set of factor loadings and estimate the group-specific parameters separately for the two regimes at
7
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the cost of sacrificing some efficiency for the factor loading estimates. Alternatively, we can pool the observations before and after
the break to estimate the parameters as

(

�̂�, 𝐹 ,
{

�̂�(1)𝑘
}

𝑘∈[�̂�(1)]
,
{

�̂�(2)𝑘
}

𝑘∈[�̂�(2)]

)

= argminL
(

𝛬, 𝐹 ,
{

𝑎(1)𝑘
}

𝑘∈[�̂�(1)]
,
{

𝑎(2)𝑘
}

𝑘∈[�̂�(2)]

)

where

L
(

𝛬, 𝐹 ,
{

𝑎(1)𝑘
}

𝑘∈[�̂�(1)]
,
{

𝑎(2)𝑘
}

𝑘∈[�̂�(2)]

)

= L
(

𝛬, 𝐹 ,
{

𝑎(1)𝑘
}

𝑘∈[�̂�(1)]

)

+ L
(

𝛬, 𝐹 ,
{

𝑎(2)𝑘
}

𝑘∈[�̂�(2)]

)

. (13)

In either case, as should be clear because of the presence of the group structures, establishment of the asymptotic properties of
he post-classification estimators of the group-specific slope coefficients becomes much more involved than in Bai (2009) and Moon
nd Weidner (2017). For this reason, we will focus on the estimates defined in (12).2

. Asymptotic theory

This section develops the asymptotic properties of the estimators introduced above.

.1. Basic assumptions

Define 𝑒𝑖 =
(

𝑒𝑖1,… , 𝑒𝑖𝑇
)′ and 𝑋𝑗,𝑖 =

(

𝑋𝑗,𝑖1,… , 𝑋𝑗,𝑖𝑇
)′. Let 𝑉 0

𝑗 be a 𝑇 × 𝑟𝑗 matrix with its 𝑡th row being 𝑣0′𝑡,𝑗 , and 𝑈0
𝑗 be the

𝑁 × 𝑟𝑗 matrix with its 𝑖th row being 𝑢0′𝑖,𝑗 . Throughout the paper, we treat the factors {𝑉 0
𝑗 }𝑗∈[𝑝]∪{0} as random and their loadings

{𝑈0
𝑗 }𝑗∈[𝑝]∪{0} as deterministic. Let 𝒟 ∶= 𝜎({𝑉 0

𝑗 }𝑗∈[𝑝]∪{0}) denote the minimum 𝜎-field generated by {𝑉 0
𝑗 }𝑗∈[𝑝]∪{0}. Similarly, let

𝒢𝑡 ∶= 𝜎(𝒟 ,
{

𝑋𝑖𝑠
}

𝑖∈[𝑁],𝑠≤𝑡+1 ,
{

𝑒𝑖𝑠
}

𝑖∈[𝑁],𝑠≤𝑡). Let max𝑖 = max𝑖∈[𝑁], max𝑡 = max𝑡∈[𝑇 ] and max𝑖,𝑡 = max𝑖∈[𝑁],𝑡∈[𝑇 ]. Let 𝑀 and 𝐶 be generic
ounded positive constants which may vary across lines.

ssumption 1.

(i)
{

𝑒𝑖𝑡, 𝑋𝑖𝑡
}

𝑡∈[𝑇 ] are conditionally independent across 𝑖 given 𝒟 .
(ii) E(𝑒𝑖𝑡|𝑋𝑖𝑡,𝒟 ) = 0.

(iii) For each 𝑖,
{(

𝑒𝑖𝑡, 𝑋𝑖𝑡
)

, 𝑡 ≥ 1
}

is strong mixing conditional on 𝒟 with the mixing coefficient 𝛼𝑖(⋅) satisfying max𝑖 𝛼𝑖(𝑧) ≤ 𝑀𝜗𝑧

for some constant 𝜗 ∈ (0, 1).
(iv) There exists a constant 𝐶 > 0 such that max𝑖

1
𝑇
∑

𝑡∈[𝑇 ]
‖

‖

𝜉𝑖𝑡‖‖
2 ≤ 𝐶 𝑎.𝑠. and max𝑡

1
𝑁

∑

𝑖∈[𝑁]
‖

‖

𝜉𝑖𝑡‖‖
2 ≤ 𝐶 𝑎.𝑠. for 𝜉𝑖𝑡 = 𝑒𝑖𝑡, 𝑋𝑖𝑡 and

𝑋𝑖𝑡𝑒𝑖𝑡.
(v) max𝑖,𝑡 E[‖‖𝜉𝑖𝑡‖‖

𝑞 |
|

|

𝒟 ] ≤𝑀 𝑎.𝑠. and max𝑖,𝑖∗ ,𝑡 E[‖‖𝑋𝑖𝑡𝑒𝑖∗𝑡‖‖
𝑞 |
|

|

𝒟 ] ≤𝑀 𝑎.𝑠. for some 𝑞 > 8 and 𝜉𝑖𝑡 = 𝑒𝑖𝑡, 𝑋𝑖𝑡 and 𝑋𝑖𝑡𝑒𝑖𝑡.
(vi) As (𝑁, 𝑇 ) → ∞,

√

𝑁(log𝑁)2𝑇 −1 → 0 and 𝑇 (log𝑁)2𝑁−3∕2 → 0.

ssumption 1*. (i), (iv), (v), and (vi) are same as Assumption 1(i), (iv), (v) and (vi). In addition:

(ii) E(𝑒𝑖𝑡|𝒢𝑡−1) = 0 ∀(𝑖, 𝑡) ∈ [𝑁] × [𝑇 ], and max𝑖,𝑡 E(𝑒2𝑖𝑡
|

|

|

𝒢𝑡−1) ≤𝑀 𝑎.𝑠..
(iii)

{

𝑒𝑖𝑡
}

𝑖∈[𝑁] is conditionally independent across 𝑡 given 𝒟 .

Assumption 1(i) imposes conditional independence on
{

𝑒𝑖𝑡, 𝑋𝑖𝑡
}

𝑡∈[𝑇 ] across the cross-sectional units. Assumption 1(ii) is the con-
itional moment condition. Assumption 1(iii) imposes conditional strong mixing conditions along the time dimension. See Prakasa
ao (2009) for the definition of conditional strong mixing and Su and Chen (2013) for an application in the panel setup.
ssumptions 1(iv) and (v) impose conditions that restrict the tail behavior of 𝜉𝑖𝑡. Note that neither the regressors nor the errors
re constrained to be bounded. Assumption 1(vi) imposes restrictions on 𝑁 and 𝑇 but does not require 𝑁 and 𝑇 to diverge at

the same rate. It is possible to allow 𝑁 to diverge to infinity faster but not too much faster than 𝑇 , and vice versa. Note that 𝑁
and 𝑇 enter Assumption 1(vi) asymmetrically because the estimation is based on a sequential approach, which does not treat the
cross-section and time dimensions in a symmetric way.

Assumption 1* is used for the study of dynamic panel data models. To be specific, Assumption 1*(ii) requires that the error
sequence

{

𝑒𝑖𝑡, 𝑡 ≥ 1
}

be a martingale difference sequence (m.d.s.) with respect to the filtration 𝒢𝑡, which allows for lagged dependent
variables in 𝑋𝑖𝑡. Assumption 1*(iii) imposes conditional independence of the errors over 𝑡. The presence of serially correlated errors
in dynamic panels typically induces endogeneity, which invalidates least-squares-based PCA estimation.

Assumption 2. rank(𝛩0
𝑗 ) = 𝑟𝑗 ≤ �̄� for 𝑗 ∈ [𝑝] ∪ {0} and some fixed �̄�, and max𝑗∈[𝑝]∪{0} ‖𝛩0

𝑗 ‖max ≤𝑀 .

2 If there is certain prior knowledge that both the slope coefficients and the memberships of some cross-section units in the sample are not affected by the
reak, we can still run the above estimation algorithm perhaps at the cost of certain efficiency loss. To incorporate such prior knowledge, one can impose some
onstraints in the above estimation procedure. For example, if we know individuals 1,… , 𝑁1 belong to group 1 before and after the break and the group 1 slope

coefficient vector remains constant over time, we can explore such information in the estimation procedure by grouping units 1 to 𝑁1 into group 1 and use all
8

time periods to estimate the constant slope coefficient vector for group 1.
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Assumption 2 imposes low-rank conditions on the coefficient matrices, which facilitate the use of NNR in obtaining preliminary
stimates in the first step. As discussed in the previous section, we see that the low-rank assumption for the slope matrices is satisfied
or the model introduced in Section 2. Moreover, we follow Ma et al. (2022) and assume the elements of the coefficient matrices
re uniformly bounded to simplify the proofs. The boundedness of the slope coefficients is reasonable given that their cardinality
oes not grow with the sample size. The boundedness assumption for the intercept coefficient can be relaxed at the cost of more
engthy arguments.

ssumption 3. Let 𝜎𝑙,𝑗 denote the 𝑙th largest singular values of 𝛩0
𝑗 for 𝑗 ∈ [𝑝] ∪ {0}. There exist some constants 𝐶𝜎 and 𝑐𝜎 such

that

∞ > 𝐶𝜎 ≥ lim sup
(𝑁,𝑇 )→∞

max
𝑗∈[𝑝]

𝜎1,𝑗 ≥ lim inf
(𝑁,𝑇 )→∞

min
𝑗∈[𝑝]

𝜎𝑟𝑗 ,𝑗 ≥ 𝑐𝜎 > 0.

Assumption 3 imposes some conditions on the singular values of the coefficient matrices. These ensure that only pervasive
factors are allowed when the matrices are written as a factor structure. The assumption can be readily verified given the latent
group structures of the slope coefficients.

Consider the SVD: 𝛩0
𝑗 ∕
√

𝑁𝑇 =  0
𝑗 𝛴

0
𝑗 

0′
𝑗 for all 𝑗 ∈ [𝑝] ∪ {0}. Decompose  0

𝑗 =
(

𝑗,𝑟,𝑗,0
)

and 0
𝑗 =

(

𝑗,𝑟,𝑗,0
)

with
(

𝑗,𝑟,𝑗,𝑟
)

being the singular vectors corresponding to nonzero singular values and
(

𝑗,0,𝑗,0
)

being the singular vectors corresponding to zero
singular values. Hence, for any matrix 𝑊 ∈ R𝑁×𝑇 , we define

⊥
𝑗 (𝑊 ) = 𝑁𝑇𝑗,0 ′

𝑗,0𝑊 𝑗,0 ′
𝑗,0, 𝑗 (𝑊 ) = 𝑊 − ⊥

𝑗 (𝑊 ) ,

where 𝑗 (𝑊 ) can be seen as the linear projection of matrix 𝑊 into the low-rank space with ⊥
𝑗 (𝑊 ) being its orthogonal space. Let

𝛥𝛩𝑗 = 𝛩𝑗 −𝛩0
𝑗 for any 𝛩𝑗 . Based on the spaces constructed above, with some positive constants 𝐶1 and 𝐶2, we define the restricted

set for full sample parameters as follows:

(𝐶1, 𝐶2) ∶=
{

({𝛥𝛩𝑗 }𝑗∈[𝑝]∪{0}) ∶
∑

𝑗∈[𝑝]∪{0}

‖

‖

‖

⊥
𝑗 (𝛥𝛩𝑗 )

‖

‖

‖∗
≤ 𝐶1

∑

𝑗∈[𝑝]∪{0}

‖

‖

‖

𝑗 (𝛥𝛩𝑗 )
‖

‖

‖∗
,

∑

𝑗∈[𝑝]∪{0}

‖

‖

‖

𝛩𝑗
‖

‖

‖

2
≥ 𝐶2

√

𝑁𝑇
}

. (14)

Lemma B.4 in the online supplement shows that our nuclear norm estimators are in a restricted set larger than (14), which
derives from the restriction on the Frobenius norm in the definition of 

(

𝐶1, 𝐶2
)

. Intuitively, the first restriction in (14) means the
projection onto the orthogonal low-rank space of the estimator error can be controlled by its projection onto the low-rank space.
Theorem 4.1 largely hinges on this property.

Assumption 4. For any 𝐶2 > 0, there are constants 𝐶3 and 𝐶4 such that for any ({𝛥𝛩𝑗 }𝑗∈[𝑝]∪{0}) ∈ (3, 𝐶2), we have

‖

‖

‖

‖

‖

‖

𝛥𝛩0
+

𝑝
∑

𝑗=1
𝛥𝛩𝑗 ⊙𝑋𝑗

‖

‖

‖

‖

‖

‖

2

≥ 𝐶3
∑

𝑗∈[𝑝]∪{0}

‖

‖

‖

𝛥𝛩𝑗
‖

‖

‖

2
− 𝐶4(𝑁 + 𝑇 ) w.p.a.1.

Assumption 4 imposes the restricted strong convexity (RSC) condition, which is similar to Assumption 3.1 in Chernozhukov et al.
(2020). The latter authors also provide some sufficient conditions to justify such an assumption.

Let 𝑟 = ∑

𝑗∈[𝑝]∪{0} 𝑟𝑗 . Define the following 𝑟 × 𝑟 matrices:

𝛷𝑖 =
1
𝑇

𝑇
∑

𝑡=1
𝜙0
𝑖𝑡𝜙

0′
𝑖𝑡 ∀𝑖 ∈ [𝑁] and 𝛹𝑡 =

1
𝑁

∑

𝑖∈[𝑁]
𝜓0
𝑖𝑡𝜓

0′
𝑖𝑡 ∀𝑡 ∈ [𝑇 ],

here 𝜙0
𝑖𝑡 = (𝑣0′𝑡,0, 𝑣

0′
𝑡,1𝑋1,𝑖𝑡,… , 𝑣0′𝑡,𝑝𝑋𝑝,𝑖𝑡)′, and 𝜓0

𝑖𝑡 = (𝑢0′𝑖,0, 𝑢
0′
𝑖,1𝑋1,𝑖𝑡,… , 𝑢0′𝑖,𝑝𝑋𝑝,𝑖𝑡)′.

ssumption 5. There exist constants 𝐶𝜙 and 𝑐𝜙 such that

∞ > 𝐶𝜙 ≥ lim sup
𝑇

max
𝑡∈[𝑇 ]

𝜆max(𝛹𝑡) ≥ lim inf
𝑇

min
𝑡∈[𝑇 ]

𝜆min(𝛹𝑡) ≥ 𝑐𝜙 > 0,

∞ > 𝐶𝜙 ≥ lim sup
𝑁

max
𝑖∈[𝑁]

𝜆max(𝛷𝑖) ≥ lim inf
𝑁

min
𝑖∈[𝑁]

𝜆min(𝛷𝑖) ≥ 𝑐𝜙 > 0.

Assumption 5 is similar to Assumption 8 in Ma et al. (2022), and it imposes some rank conditions.

4.2. Asymptotics of NNR estimators and singular vector estimators

Let 𝜂𝑁,1 =
√

log 𝑇
√

𝑁∧𝑇
and 𝜂𝑁,2 =

√

log(𝑁∨𝑇 )
√

𝑁∧𝑇
(𝑁𝑇 )1∕𝑞 . Let �̃�𝑘,𝑗 denote the 𝑘th largest singular value of �̃�𝑗 for 𝑗 ∈ [𝑝] ∪ {0}. Our first

main result is about the consistency of the first-stage NNR estimators and the second-stage singular vector estimators.

Theorem 4.1. Suppose that Assumptions 1 and 4 hold. Then ∀𝑗 ∈ [𝑝] ∪ {0}, we have
9
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(i) 1
√

𝑁𝑇
‖�̃�𝑗 −𝛩0

𝑗 ‖ = 𝑂𝑝(𝜂𝑁,1), max𝑘∈[𝑟𝑗 ] |�̃�𝑘,𝑗 − 𝜎𝑘,𝑗 | = 𝑂𝑝(𝜂𝑁,1), and ‖𝑉 0
𝑗 − 𝑉𝑗𝑂𝑗‖ = 𝑂𝑝(

√

𝑇 𝜂𝑁,1) where 𝑂𝑗 is some orthogonal matrix.
If in addition Assumption 5 is also satisfied, then we have

(ii) max𝑖∈[𝑁] ‖�̇�𝑖,𝑗 − 𝑂𝑗𝑢0𝑖,𝑗‖ = 𝑂𝑝(𝜂𝑁,2), max𝑡∈[𝑇 ]
‖

‖

‖

�̇�𝑡,𝑗 − 𝑂𝑗𝑣0𝑡,𝑗
‖

‖

‖2
= 𝑂𝑝(𝜂𝑁,2),

(iii) max𝑖∈[𝑁],𝑡∈[𝑇 ] |�̇�𝑗,𝑖𝑡 − 𝛩0
𝑗,𝑖𝑡| = 𝑂𝑝(𝜂𝑁,2).

Theorem 4.1(i) reports the error bounds for �̃�𝑗 , �̃�𝑘,𝑗 , and 𝑉𝑗 . The log 𝑇 term in the numerator of 𝜂𝑁,1 is due to the use of some
exponential inequality for (conditional) strong mixing processes. Theorem 4.1(ii) reports the uniform convergence rate of the factor
and loading estimators. Theorem 4.1(iii) reports the uniform convergence rate of the intercept and slope estimators. The extra
(𝑁𝑇 )1∕𝑞 term in the definition of 𝜂𝑁,2 is due to the nonboundedness of 𝑋𝑗,𝑖𝑡 in Assumption 1(v), and it disappears when 𝑋𝑗,𝑖𝑡 is
assumed to be uniformly bounded.

4.3. Consistency of the break point estimate

Recall that 𝑔(1)𝑖 and 𝑔(2)𝑖 denote the true group individual 𝑖 belongs to before and after the break, respectively. To estimate the
break point consistently, we add the following condition.

Assumption 6.

(i)
√

1
𝑁

∑

𝑖∈[𝑁] ‖𝛼𝑔(1)𝑖
− 𝛼𝑔(2)𝑖

‖

2 = 𝐶5𝜁𝑁𝑇 , where 𝐶5 is a positive constant and 𝜁𝑁𝑇 ≫ 𝜂𝑁,2.

(ii) 𝜏𝑇 ∶= 𝑇1
𝑇 → 𝜏 ∈ (0, 1) as 𝑇 → ∞.

Assumption 6(i) imposes conditions on the break size in order to identify the break point. Note that we allow the average break
ize to shrink to zero at a rate slower than 𝜂𝑁,2 =

√

log(𝑁∨𝑇 )
𝑁∧𝑇 (𝑁𝑇 )1∕𝑞 . The reason why we need the average break size 𝜁𝑁𝑇 to be larger

in order than 𝜂𝑁,2 is that breaking point detection is based on the singular vector estimators �̇�𝑖,𝑗 and �̇�𝑡,𝑗 , which converge to their true
values uniformly at rate 𝜂𝑁,2. This rate is of much bigger magnitude than the optimal (𝑁𝑇 )−1∕2-rate that can be detected in the panel
hreshold regressions (PTRs) for several reasons. First, in PTRs, the slope coefficients are usually assumed to be homogeneous so that
ach individual is subject to the same change in the slope coefficients and one can use the cross-sectional information effectively. In
ontrast, we allow for heterogeneous slope coefficients here and the change can occur only for a subset of cross-section units but not
ll. In addition, in the presence of latent group structures, we not only allow the slope coefficients of some specific groups to change
ith group membership fixed, but also allow the slope coefficient to remain the same for some groups while the group memberships

hange after the break. Second, our break point estimation relies on the binary segmentation idea borrowed from the time series
iterature where one can allow break sizes of bigger magnitude than 𝑇 −1∕2 in order to identify the break ratio consistently but not
he break point consistently. As is apparent, even though we require bigger break sizes, we can estimate the break date consistently
y using information from both the cross-section and time dimensions. Third, as mentioned above, the additional term log(𝑁 ∨ 𝑇 )
n the above rate is mainly due to the use of an exponential inequality and the factor (𝑁𝑇 )1∕𝑞 is due to the fact that we only assume
he existence of 𝑞th order moments for some random variables.

The following theorem indicates that we can estimate the break date 𝑇1 consistently.

heorem 4.2. Suppose Assumptions 1 and 6 hold, with the true break point being 𝑇1 and the estimator defined in (7). Then P(�̂�1 = 𝑇1) → 1
s (𝑁, 𝑇 ) → ∞.

Theorem 4.2 shows that we can estimate the true break date consistently w.p.a.1 despite the fact that we allow the break size
o shrink to zero at a certain rate.

emarks. Following a suggestion from a referee, an alternative approach is to minimize the sum of squared residuals (SSR)

argmin
𝑠∈{2,…,𝑇−1}

1
𝑁𝑇

∑

𝑖∈[𝑁]

⎡

⎢

⎢

⎣

𝑠
∑

𝑡=1

(

𝑌𝑖𝑡 − �̇�0,𝑖𝑡 −
∑

𝑗∈[𝑝]
𝑋𝑗,𝑖𝑡

̄̇𝛩(1𝑠)
𝑗,𝑖

)2

+
𝑇
∑

𝑡=𝑠+1

(

𝑌𝑖𝑡 − �̇�0,𝑖𝑡 −
∑

𝑗∈[𝑝]
𝑋𝑗,𝑖𝑡

̄̇𝛩(2𝑠)
𝑗,𝑖

)2
⎤

⎥

⎥

⎦

,

where ̄̇𝛩(1𝑠)
𝑗,𝑖 = 1

𝑠
∑𝑠
𝑙=1 �̇�𝑗,𝑖𝑙 and ̄̇𝛩(2𝑠)

𝑗,𝑖 = 1
𝑠
∑𝑇
𝑙=𝑠+1 �̇�𝑗,𝑖𝑙. The analysis is then similar to that of Bai (1997). The major complication

omes from the fact that �̇�0,𝑖𝑡, ̄̇𝛩(1𝑠)
𝑗,𝑖 , and ̄̇𝛩(2𝑠)

𝑗,𝑖 , are all estimated from the data in Step 2. Let �̃�1 denote the solution to the above
inimization problem. We conjecture that one can establish P

(

�̃�1 = 𝑇1
)

→ 1 as (𝑁, 𝑇 ) → ∞ under some conditions. In Step 3,
e propose to minimize the sum of (scaled) sample variances before and after the break points. We can do this because we have
ariations in the regression coefficients along both the cross section and time dimensions. There are two major advantages in favor
f this approach. First, our objective function in Step 3 is based on a location model for �̇�𝑖𝑡 = (�̇�0,𝑖𝑡, �̇�1,𝑖𝑡,… , �̇�𝑝,𝑖𝑡)′ instead of a
egression model with covariates, so the asymptotic analysis can be greatly simplified. Second, this approach allows us to impose
onditions on the average break size as characterized by

√

1
𝑁

∑

𝑖∈[𝑁] ‖𝛼𝑔(1)𝑖
− 𝛼𝑔(2)𝑖

‖

2 in Assumption 6(i) directly without the need to
onsider the behavior of the covariates before and after the break. In contrast, the SSR-based approach requires certain assumption
n the covariates and their interactions with 𝛩0

𝑖𝑡 before and after the break. In addition, our simulations show that the two approaches
eliver comparable accuracy for the estimation of the break points. So we focus on the approach stated in Step 3.
10
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4.4. Consistency of the estimates of the number of groups and the latent group structures

To study the asymptotic properties of the estimates of the number of groups and the recovery of the latent group structures, we
dd the following assumptions.

ssumption 7.

(i) Let 𝑘 and 𝑘∗ be different group indices. Assume that min1≤𝑘<𝑘∗≤𝐾(𝓁)
‖

‖

‖

𝛼(𝓁)𝑘 − 𝛼(𝓁)𝑘∗
‖

‖

‖2
≥ 𝐶5 for 𝓁 ∈ {1, 2}.

(ii) Let 𝑁 (𝓁)
𝑘 be the number of individuals in group 𝑘 for 𝑘 ∈ [𝐾 (𝓁)]. Define 𝜋(𝓁)𝑘 =

𝑁 (𝓁)
𝑘
𝑁 for 𝓁 = 1, 2. Assume 𝐾 (𝓁) is fixed and

lim inf𝑁 inf𝑘∈[𝐾(𝓁)] 𝜋
(𝓁)
𝑘 ≥ 𝑐 > 0 for 𝓁 = 1, 2.

(iii) For any permutation of 𝑛 true groups with 𝑛 ∈ {2,… , 𝐾 (𝓁)}, we have

𝑇𝓁
√

𝑁

𝑛
∑

𝑘=1
𝑁 (𝓁)
𝑘

‖

‖

‖

‖

‖

‖

∑

𝑘∗∈[𝑛],𝑘∗≠𝑘
(𝛼(𝓁)𝑘∗ − 𝛼(𝓁)𝑘 )

‖

‖

‖

‖

‖

‖

2

∕(log𝑁)1∕2 → ∞, 𝓁 = 1, 2.

Assumption 7(i)–(ii) are the standard assumptions for K-means algorithm, which are comparable to Assumption 4 in Su et al.
2020) and greatly facilitate the subsequent analyses. Assumption 7(i) assumes that the minimum distance of two distinct groups
s bounded away from 0, and Assumption 7(ii) imposes that each group has asymptotically non-negligible number of units.
ssumption 7(iii) is needed in the proof of the last part of Theorem 4.3(ii) and we now show that it holds under some mild conditions.
hen 𝑛 = 2, it is clear that

𝑇𝓁
√

𝑁

𝑛
∑

𝑘=1
𝑁 (𝓁)
𝑘

‖

‖

‖

‖

‖

‖

∑

𝑘∗∈[𝑛],𝑘∗≠𝑘
(𝛼(𝓁)𝑘∗ − 𝛼(𝓁)𝑘 )

‖

‖

‖

‖

‖

‖

2

=
𝑇𝓁
√

𝑁

(

𝑁 (𝓁)
1

‖

‖

‖

𝛼(𝓁)2 − 𝛼(𝓁)1
‖

‖

‖

2
+𝑁 (𝓁)

2
‖

‖

‖

𝛼(𝓁)1 − 𝛼(𝓁)2
‖

‖

‖

2
)

≥
𝐶2
5𝑇𝓁(𝑁

(𝓁)
1 +𝑁 (𝓁)

2 )
√

𝑁
= 𝛺(𝑇

√

𝑁)

by Assumptions 6(ii) and 7(i)–(ii). Here, 𝛺(𝑇
√

𝑁) signifies that the order is of exact order 𝑇
√

𝑁 . When 𝑛 > 2, we consider a
pecial case such that 𝑆𝑘 =∶

‖

‖

‖

∑

𝑘∗∈[𝑛],𝑘∗≠𝑘(𝛼
(𝓁)
𝑘∗ − 𝛼(𝓁)𝑘 )‖‖

‖

= 0 for some specific 𝑘 = 𝑘0 ∈ [𝑛]. Then it is easy to see 𝑆𝑠 is non-zero for all
𝑠 ∈ [𝑛]∖{𝑘0} under Assumption 7(i). Hence, if we assume 𝑆𝑠 is lower bounded by a constant 𝑐 for any 𝑠 ∈ [𝑛]∖{𝑘0}, Assumption 7(iii)
holds naturally. Similar arguments hold for the other general cases.

Assumption 8. Let 1 =
[

𝑇1
]

and 2 = [𝑇 ]∖
[

𝑇1
]

. 1
𝑇𝓁

∑

𝑡∈𝓁 𝑓
0
𝑡 𝑓

0′
𝑡

𝑝
⟶ 𝛴(𝓁)

𝐹 > 0 as 𝑇 → ∞. 1
𝑁 (𝓁)
𝑘

𝛬0,(𝓁)′
𝑘 𝛬0,(𝓁)

𝑘
𝑝

⟶ 𝛴(𝓁)
𝛬,𝑘 > 0 as 𝑁 → ∞,

here 𝛬0,(𝓁)
𝑘 is a stack of 𝜆0𝑖 for all individuals in group 𝑘 and 𝑘 ∈ [𝐾 (𝓁)].

Assumption 8 imposes some standard assumptions on the factors and loadings. The next result details the asymptotic properties
f the STK estimators.

heorem 4.3. Let 𝜍 = 𝜍𝑁 → 0 at rate 𝑁−𝑐 for some 𝑐 > 0 as 𝑁 → ∞. Suppose that Assumption 1* and Assumptions 2–8 hold. Then for
∈ {1, 2}, we have

(i) if 𝑚 = 𝐾 (𝓁),

(a) max𝑖∈[𝑁] 𝟏{�̂�
(𝓁)
𝑖,𝐾(𝓁) ≠ 𝑔(𝓁)𝑖 } = 0 w.p.a.1,

(b) 𝛤 (𝓁)
𝐾(𝓁) is asymptotically distributed as the maximum of 𝐾 (𝓁) independent 𝜒2(1) random variables,

(c) P(�̂� (𝓁) ≤ 𝐾 (𝓁)) ≥ 1 − 𝜍 + 𝑜(1),

(ii) if 𝑚 < 𝐾 (𝓁), 𝛤 (𝓁)
𝑚 ∕ log𝑁 → ∞ w.p.a.1. Thus P(�̂� (𝓁) ≠ 𝐾 (𝓁)) ≤ 𝜍 + 𝑜(1).

In Theorem 4.3 we allow 𝜍 = 𝜍𝑁 to shrink to zero at rate 𝑁−𝑐 , so that the critical value 𝑧𝜍 diverges to infinity at rate log𝑁
s 𝑁 → ∞ by virtue of the tail properties of 𝜒2(1) random variables. At iteration 𝑚 such that 𝑚 < 𝐾 (𝓁), w.p.a.1, the test statistic
̂ (𝓁)𝑚 diverges to infinity at a rate faster than log𝑁 , which means the iteration will continue at the (𝑚 + 1)-th iteration. At iteration

with 𝑚 = 𝐾 (𝓁), however, we can easily find that 𝑧𝜍 → ∞ while the test statistic 𝛤 (𝓁)
𝑚 is stochastically bounded. As a result,

he iteration stops w.p.a.1 and we have P(�̂� (𝓁) = 𝐾 (𝓁)) → 1. As aforementioned, Theorem 4.3 ensures the application of K-means
lgorithm only for the under-fitting and just-fitting cases, and it avoids the theoretical challenge of handling the over-fitting case
n the classification.

For dynamic panels, we can focus on Assumption 1*, where the error term is an m.d.s. Under this assumption, the HAC estimator
̂ (𝓁)
𝑖,𝑘,𝑚 degenerates to 1

�̂�𝓁

∑

𝑡∈̂𝓁
�̂�(𝓁)𝑖𝑡 �̂�

(𝓁)′
𝑖𝑡 𝑒2𝑖𝑡. For static panels, we typically allow for serially correlated errors and employ the HAC

stimator, and the results in Theorem 4.3 continue to hold with Assumption 1* replaced by Assumption 1. For the kernel function
nd bandwidth, we can follow Andrews (1991) and let 𝑘 (⋅) belong to the following class of kernels

 =
{

𝑘(⋅) ∶ R ↦ [−1, 1] ∣ 𝑘(0) = 1, 𝑘(𝑢) = 𝑘(−𝑢), |𝑘 (𝑢)| 𝑑𝑢 <∞,
11
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g

𝑘(⋅) is continuous at 0 and at all but a finite number of other points
}

.

See, e.g., Andrews (1991) and White (2014) for details.

4.5. Distribution theory for the group-specific slope estimators

For 𝓁 ∈ {1, 2}, let {�̂�∗(𝓁)𝑘 }𝑘∈𝐾(𝓁) be the oracle estimators of the group-specific slope coefficients before and after the break
point by using the true break and membership information for all individuals. To study the asymptotic distribution theory for
{�̂�(𝓁)𝑘 }𝑘∈𝐾(𝓁) , 𝓁 ∈ {1, 2}, we only need to show that for the oracle estimators {�̂�∗(𝓁)𝑘 }𝑘∈𝐾(𝓁) based on Theorems 4.2 and 4.3 by extending
the result of Bai (2009) and Moon and Weidner (2017).

To proceed, we add some notation. For 𝓁 ∈ {1, 2}, we first define the matrix notation for each subgroup. For 𝑗 ∈ [𝑝], let
𝑋(1)
𝑗,𝑖 =

(

𝑋𝑗,𝑖1,… , 𝑋𝑗,𝑖𝑇1

)′
,𝑋(2)

𝑗,𝑖 =
(

𝑋𝑗,𝑖(𝑇1+1),… , 𝑋𝑗,𝑖𝑇

)′
, 𝑒(1)𝑖 =

(

𝑒𝑖1,… , 𝑒𝑖𝑇1
)′

and 𝑒(2)𝑖 =
(

𝑒𝑖(𝑇1+1),… , 𝑒𝑖𝑇
)′

. Then we use X(𝓁)
𝑗,𝑘 ∈ R𝑁

(𝓁)
𝑘 ×𝑇𝓁

and 𝐸(𝓁)
𝑘 ∈ R𝑁

(𝓁)
𝑘 ×𝑇𝓁 to denote the regressor matrix and error matrix for subgroup 𝑘 ∈ [𝐾 (𝓁)] with each row being 𝑋(𝓁)

𝑗,𝑖 and 𝑒(𝓁)𝑖 for
𝑖 ∈ 𝐺(𝓁)

𝑘 , respectively. To state the main result in this subsection, we add the following assumption.

Assumption 9.

(i) As (𝑁, 𝑇 ) → ∞, 𝑇 (log 𝑇 )𝑁−4∕3 → 0.
(ii) plim(𝑁,𝑇 )→∞

1
𝑁 (𝓁)
𝑘 𝑇𝓁

∑

𝑖∈𝐺(𝓁)
𝑘

∑

𝑡∈𝓁 𝑋𝑖𝑡𝑋′
𝑖𝑡 > 0 for 𝓁 ∈ {1, 2} and 𝑘 ∈ [𝐾 (𝓁)].

(iii) For 𝓁 ∈ {1, 2} and 𝑘 ∈ [𝐾 (𝓁)], separate the 𝑝 regressors of each subgroups into 𝑝1 ‘‘low-rank regressors’’ X(𝓁)
𝑗,𝑘 such that

rank(X(𝓁)
𝑗,𝑘) = 1, for any 𝑗 ∈ {1,… , 𝑝1}, and ‘‘high-rank regressors’’ X(𝓁)

𝑗,𝑘 such that rank(X(𝓁)
𝑗,𝑘) > 1, for any 𝑗 ∈ {𝑝1 + 1,… , 𝑝}.

Let 𝑝2 ∶= 𝑝 − 𝑝1. These two types of regressors satisfy:

(iii.a) Consider the linear combinations 𝑏 ⋅X(𝓁)
ℎ𝑖𝑔ℎ,𝑘 ∶=

∑𝑝
𝑗=𝑝1+1

𝑏𝑗X
(𝓁)
𝑗,𝑘 for high-rank regressors with 𝑝2-vectors 𝑏 such that ‖𝑏‖2 = 1

and 𝑏 =
(

𝑏𝑝1+1,… , 𝑏𝑝
)′

. There exists a positive constant 𝐶𝑏 such that

min
{‖𝑏‖2=1}

𝑁 (𝓁)
𝑘
∑

𝑛=2𝑟0+𝑝1+1
𝜆𝑛

[

1
𝑁 (𝓁)
𝑘 𝑇𝓁

(

𝑏 ⋅ X(𝓁)
ℎ𝑖𝑔ℎ,𝑘

)(

𝑏 ⋅ X(𝓁)
ℎ𝑖𝑔ℎ,𝑘

)′
]

≥ 𝐶𝑏 𝑤.𝑝.𝑎.1.

(iii.b) For 𝑗 ∈ [𝑝1], write X(𝓁)
𝑗,𝑘 = 𝑤(𝓁)

𝑗,𝑘𝑣
(𝓁)′
𝑗,𝑘 with 𝑁 (𝓁)

𝑘 -vectors 𝑤(𝓁)
𝑗,𝑘 and 𝑇𝓁-vectors 𝑣(𝓁)𝑗,𝑘 . Let 𝑤(𝓁)

𝑘 = (𝑤(𝓁)
1,𝑘,… , 𝑤(𝓁)

𝑝1 ,𝑘
) ∈ R𝑁×𝑝1 and

𝑣(𝓁)𝑘 = (𝑣(𝓁)1,𝑘,… , 𝑣(𝓁)𝑝1 ,𝑘
) ∈ R𝑇𝓁×𝑝1 . There exists a positive constant 𝐶𝐵 such that (𝑁 (𝓁)

𝑘 )−1𝛬0,(𝓁)′
𝑘 𝑀𝑤(𝓁)

𝑘
𝛬0,(𝓁)
𝑘 > 𝐶𝐵𝐼𝑟0 and

𝑇 −1
𝓁 𝐹 0,(𝓁)′𝑀𝑣(𝓁)𝑘

𝐹 0,(𝓁) > 𝐶𝐵𝐼𝑟0 w.p.a.1.

(iv) For ∀𝑗 ∈ [𝑝], 𝓁 ∈ {1, 2}, and 𝑘 ∈ 𝐾 (𝓁),

1
𝑁 (𝓁)
𝑘 𝑇 2

𝓁

∑

𝑖∈𝐺(𝓁)
𝑘

∑

𝑡1∈𝓁

∑

𝑡2∈𝓁

∑

𝑠1∈𝓁

∑

𝑠2∈𝓁

|

|

|

|

Cov
(

𝑒𝑖𝑡1 �̃�𝑗,𝑖𝑡2 , 𝑒𝑖𝑠1 �̃�𝑗,𝑖𝑠2

)

|

|

|

|

= 𝑂(1),

where �̃�𝑗,𝑖𝑡 = 𝑋𝑗,𝑖𝑡 − E
(

𝑋𝑗,𝑖𝑡|𝒟
)

.

Assumption 9 imposes some conditions to help derive the asymptotic distribution theory for the panel model with IFEs which
llows for dynamics. Assumption 9(i) slightly strengthens Assumption 1(vi). Assumption 9(ii) is the standard non-collinearity
ondition for regressors, which is analogous to Assumption 4(i) in Moon and Weidner (2017). Assumption 9(iii) is the identification
ssumption, which is comparable to Assumption 4 in Moon and Weidner (2017). Assumption 9(iv) requires {�̃�𝑗,𝑖𝑡𝑒𝑖𝑡} to be weakly
ependent over the time, which parallels Assumption 5(v) in Moon and Weidner (2017) and can be verified under some weak
ependence and moment conditions.

To show the distribution of the slope estimator, we further define  (𝓁)
𝑗,𝑘 = 𝑀𝛬0,(𝓁)

𝑘
X(𝓁)
𝑗,𝑘𝑀𝐹 0,(𝓁) ∈ R𝑁

(𝓁)
𝑘 ×𝑇𝓁 with the (𝑖, 𝑡)-th entry

iven by  (𝓁)
𝑗,𝑘,𝑖𝑡, 

(𝓁)
𝑘,𝑖𝑡 = ( (𝓁)

1,𝑘,𝑖𝑡,… , (𝓁)
𝑝,𝑘,𝑖𝑡)

′, and

B(𝓁)
𝑁𝑇 ,1,𝑗,𝑘 =

1
𝑁 (𝓁)
𝑘

𝑡𝑟
[

𝑃𝐹 0,(𝓁)E
(

𝐸(𝓁)′
𝑘 X(𝓁)

𝑗,𝑘
|

|

|

𝒟
)]

,

B(𝓁)
𝑁𝑇 ,2,𝑗,𝑘 =

1
𝑇𝓁
𝑡𝑟
[

E
(

𝐸(𝓁)
𝑘 𝐸(𝓁)′

𝑘
|

|

|

𝒟
)

𝑀𝛬0,(𝓁)
𝑘

X(𝓁)
𝑗,𝑘𝐹

0,(𝓁) (𝐹 0,(𝓁)′𝐹 0,(𝓁))−1
(

𝛬0,(𝓁)′
𝑘 𝛬0,(𝓁)

𝑘

)−1
𝛬0,(𝓁)′
𝑘

]

,

B(𝓁)
𝑁𝑇 ,3,𝑗,𝑘 =

1
𝑁 (𝓁)
𝑘

𝑡𝑟
[

E
(

𝐸(𝓁)
𝑘 𝐸(𝓁)′

𝑘
|

|

|

𝒟
)

𝑀𝐹 0,(𝓁)X(𝓁)
𝑗,𝑘𝛬

0,(𝓁)
𝑘

(

𝛬0,(𝓁)′
𝑘 𝛬0,(𝓁)

𝑘

)−1
(

𝐹 0,(𝓁)′𝐹 0,(𝓁))−1 𝐹 0,(𝓁)′
]

,

B(𝓁)
𝑁𝑇 ,𝑚,𝑘 =

(

B(𝓁)
𝑁𝑇 ,𝑚,1,𝑘,… ,B(𝓁)

𝑁𝑇 ,𝑚,𝑝,𝑘

)′
, ∀𝑚 ∈ {1, 2, 3}.
12
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Then the overall bias term for each subgroup is

B(𝓁)
𝑁𝑇 ,𝑘 = −𝜌(𝓁)𝑘 B(𝓁)

𝑁𝑇 ,1,𝑘 − (𝜌(𝓁)𝑘 )−1B(𝓁)
𝑁𝑇 ,2,𝑘 − 𝜌

(𝓁)
𝑘 B(𝓁)

𝑁𝑇 ,3,𝑘, (15)

where 𝜌(𝓁)𝑘 =

√

𝑁 (𝓁)
𝑘
𝑇𝓁

. Define the two 𝑝 × 𝑝 matrices W(𝓁)
𝑁𝑇 ,𝑘 =

{

[W(𝓁)
𝑁𝑇 ,𝑘]𝑗1𝑗2

}

and 𝛺(𝓁)
𝑘 respectively as

[W(𝓁)
𝑁𝑇 ,𝑘]𝑗1𝑗2 = 1

𝑁 (𝓁)
𝑘 𝑇𝓁

𝑡𝑟
(

𝑀𝐹 0,(𝓁)X(𝓁)′
𝑗1 ,𝑘

𝑀𝛬0,(𝓁)
𝑘

X(𝓁)
𝑗2 ,𝑘

)

for 𝑗1, 𝑗2 ∈ [𝑝] (16)

𝛺(𝓁)
𝑘 = 1

𝑁 (𝓁)
𝑘 𝑇𝓁

∑

𝑖∈𝐺(𝓁)
𝑘

∑

𝑡∈𝓁

𝑒2𝑖𝑡
(𝓁)
𝑘,𝑖𝑡

(𝓁)′
𝑘,𝑖𝑡 for 𝑘 ∈

[

𝐾 (𝓁)] . (17)

he following theorem establishes the asymptotic distribution of {�̂�(𝓁)𝑘 }𝑘∈𝐾(𝓁) .

heorem 4.4. Suppose that Assumption 1 or Assumption 1* and Assumptions 2 and 9 hold. For 𝓁 ∈ {1, 2}, the estimators {�̂�(𝓁)𝑘 }𝑘∈𝐾(𝓁)

re asymptotically equivalent to the oracle estimators {�̂�∗(𝓁)𝑘 }𝑘∈𝐾(𝓁) , and we have

W(𝓁)
𝑁𝑇D

(𝓁)
𝑁𝑇

⎛

⎜

⎜

⎜

⎝

�̂�(𝓁)1 − 𝛼(𝓁)1
⋮

�̂�(𝓁)
𝐾(𝓁) − 𝛼

(𝓁)
𝐾(𝓁)

⎞

⎟

⎟

⎟

⎠

− B(𝓁)
𝑁𝑇 ⇝ N

(

0, 𝛺(𝓁)) ,

uch that D(𝓁)
𝑁𝑇 = diag

(

√

𝑁 (𝓁)
1 𝑇𝓁𝐼𝑝,… ,

√

𝑁 (𝓁)
𝐾(𝓁)𝑇𝓁𝐼𝑝

)

, W(𝓁)
𝑁𝑇 = diag

(

W(𝓁)
𝑁𝑇 ,1,… ,W(𝓁)

𝑁𝑇 ,𝐾(𝓁)

)

, B(𝓁)
𝑁𝑇 =

(

B(𝓁)′
𝑁𝑇 ,1,… ,B(𝓁)′

𝑁𝑇 ,𝐾(𝓁)

)′
and

𝛺(𝓁) = diag
(

𝛺(𝓁)
1 ,… , 𝛺(𝓁)

𝐾(𝓁)

)

, where B(𝓁)
𝑁𝑇 ,1, W

(𝓁)
𝑁𝑇 ,𝑘 and 𝛺(𝓁)

𝑘 are defined in (15), (16) and (17), respectively.

Theorem 4.4 establishes the asymptotic distribution for the estimators of the group-specific slope coefficients before and after
the break. It shows that the parameter estimators from our algorithm enjoy the oracle property given the results in Theorems 4.2
and 4.3.

Remarks. The approach in this paper seeks to extend the work of Su et al. (2016) to allow for both IFEs (to model the strong cross-
section dependence) and time-varying latent group structures (to take into account possible breaks over time). Our goal is modest in
that we only consider discrete heterogeneity along both the cross-section and time dimensions. Over time, we currently focus on the
case of one-time break; cross-sectionally we focus on the latent group structures with a fixed number of groups both before and after
the break. By doing so, our panel data model can be regarded as a special case of the low-rank panel data regression model considered
by Chernozhukov et al. (2020). As in that work, we model the intercept term as an IFE but we consider a special case of low-rank
structure for the slope coefficients where the rank of 𝛩0

𝑗 is typically either 1 or 2 depending on whether we have structural changes
in the model. The advantage of this device is two-fold. First, we maintain a balance between parameter heterogeneity and parsimony
so that the number of parameters in the slope coefficients is significantly reduced from the order 𝑂 (𝑁 + 𝑇 ) in Chernozhukov et al.
(2020) to ∑2

𝓁=1 𝐾
(𝓁)𝑝, which is a fixed integer. Second, we can obtain the usual

√

𝑁𝑇 -rate of convergence for the estimators of
the slope parameters perhaps after bias correction and derive the asymptotic normality as usual without calling upon the sample
splitting or de-biasing procedure used by Chernozhukov et al. (2020). From the technical perspective, there are two major differences
between our estimators and the low-rank estimators in Chernozhukov et al. (2020). One is that Chernozhukov et al. (2020) rely on
sample splitting and serial independence of the error terms in both the 𝑦- and 𝑥-equations whereas we do not need either sample
splitting or serial dependence. The second is that Chernozhukov et al. (2020) rely on a partialling-out de-biasing procedure to remove
the strong-cross-sectional dependence in the regressors whereas we do not need that procedure.

5. Alternatives and extensions

This section first considers an alternative method to estimate the break point and then discusses a possible extension.

5.1. Alternative for break point detection

The algorithm proposed in Section 3 uses low-rank estimates of 𝛩0
𝑗 to find the break point estimates. However, by Lemma 2.1(ii),

we observe that the right singular vector matrix of 𝛩0
𝑗 , i.e., 𝑉 0

𝑗 , contains the structural break information when 𝑟𝑗 = 2. For this reason,
we can propose an alternative way to estimate the break point under the case where the maximum rank of the slope matrix in the
model is 2. Let �̇�∗𝑡,𝑗 ∶=

�̇�𝑡,𝑗
‖

‖

‖

�̇�𝑡,𝑗
‖

‖

‖

and �̇�∗𝑡 ∶=
(

�̇�∗′𝑡,1,… , �̇�∗′𝑡,𝑝
)′

, with the true values being 𝑣∗𝑡,𝑗 ∶=
𝑂𝑗𝑣0𝑡,𝑗

‖

‖

‖

𝑂𝑗𝑣0𝑡,𝑗
‖

‖

‖

and 𝑣∗𝑡 ∶=
(

𝑣∗′𝑡,1,… , 𝑣∗′𝑡,𝑝
)′

, respectively.

Then Step 3 can be replaced by Step 3* below:

Step 3*: Break Point Estimation by Singular Vectors. We estimate the break point as follows:

�̃�1 = argmin
𝑠∈{2,…,𝑇−1}

1
𝑇

{ 𝑠
∑

𝑡=1

‖

‖

‖

�̇�∗𝑡 − ̄̇𝑣∗(1)𝑠‖‖
‖

2
+

𝑇
∑

𝑡=𝑠+1

‖

‖

‖

�̇�∗𝑡 − ̄̇𝑣∗(2)𝑠‖‖
‖

2
}

, (18)

̄∗(1)𝑠 1 ∑𝑠 �̇�∗ and ̄̇𝑣∗(2)𝑠 = 1 ∑𝑇 �̇�∗.
13

where �̇� = 𝑠 𝑡=1 𝑡 𝑇−𝑠 𝑡=𝑠+1 𝑡
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The following two theorems establish the consistency of �̇�∗𝑡 and �̃�1, respectively.

Theorem 5.1. Suppose that Assumptions 1–5 hold. Then max𝑡 ‖‖�̇�
∗
𝑡 − 𝑣

∗
𝑡
‖

‖

= 𝑂𝑝(𝜂𝑁,2).

heorem 5.2. Suppose that Assumptions 1–6 hold. Then P(�̃�1 = 𝑇1) → 1 as (𝑁, 𝑇 ) → ∞.

Since the singular vectors of the slope matrices contain the structural change information, Theorem 5.2 indicates that we can
onsistently estimate the break point by using the factor estimates instead of the slope matrix estimates in (7). Given Theorem 5.1
nd Lemma 2.1(iii), we can prove Theorem 5.2 with arguments analogous to those used in the proof of Theorem 4.2.

.2. The case of multi-dimensional clustering

In this paper, we follow the lead of Su et al. (2016) and extend their work to allow for both IFEs (to model the strong cross-section
ependence) and structural changes along the time dimension (to model time-varying latent group structures). For this reason, we
onsider the case where all the elements in 𝛩0

𝑖𝑡 as a whole share a latent group structure before and after the break point. Let 𝛽(1)𝑖
nd 𝛽(2)𝑖 denote 𝛩0

𝑖𝑡 before and after the break point 𝑇1, respectively. It is also possible to consider the case where different elements
f 𝛽(𝓁)𝑖 to exhibit different latent group structures.

Cheng et al. (2021) study a multi-dimensional approach for unobserved heterogeneity in panel data models where different
arameters may exhibit different group structures. Similarly, Leng et al. (2023) consider a panel quantile regression model with
dditive individual and time fixed effects and multi-dimensional latent group structures where the individual coefficients and slope
oefficients may exhibit different group structures. It is possible to consider the clustering case as studied in these two papers. For
his purpose, we write 𝛽(𝓁)𝑖 =

(

𝛽(𝓁)1,𝑖 ,… , 𝛽(𝓁)𝑝,𝑖

)′
and allow

{

𝛽(𝓁)𝑗,𝑖

}𝑁

𝑖=1
to be classified into 𝐾 (𝓁)

𝑗 groups for 𝑗 ∈ [𝑝] and 𝓁 ∈ [2]. In

rinciple, we can apply the STK algorithm to obtain the estimates
{

�̇�(𝓁)𝑗,𝑖

}𝑁

𝑖=1
of

{

𝛽(𝓁)𝑗,𝑖

}𝑁

𝑖=1
to recover the different group structures

or 𝑗 ∈ [𝑝] and 𝓁 ∈ [2]. Let �̂� (𝓁)
𝑗 be the estimates of 𝐾 (𝓁)

𝑗 via the STK algorithm. Let
{

�̂�(𝓁)
𝑗,𝑘

}

𝑘∈[�̂�(𝓁)
𝑗 ]

denote the corresponding estimates

f the latent group structure for the 𝑗th slope coefficient at regime 𝓁 ∈ [2]. Then we can estimate the group-specific slope coefficients
𝛼(𝓁)𝑗,𝑘}𝑗∈[𝑝],𝑘𝑗∈[�̂�(𝓁)

𝑗 ] for the 𝑗th regressor along with the factors and loadings as follows
(

�̂�(𝓁), 𝐹 (𝓁),
{

�̂�(𝓁)𝑗,𝑘

}

𝑗∈[𝑝],𝑘∈[�̂�(𝓁)
𝑗 ]

)

= argminL
(

𝛬, 𝐹 ,
{

𝑎(𝓁)𝑘

}

𝑘∈[�̂�(𝓁)]

)

,

here L
(

𝛬, 𝐹 , {𝛼(𝓁)𝑗,𝑘}𝑗∈[𝑝],𝑘∈[�̂�(𝓁)
𝑗 ]

)

= 1
𝑁�̂�𝓁

∑𝑝
𝑗=1

∑�̂�(𝓁)
𝑙

𝑘=1
∑

𝑖∈�̂�(𝓁)
𝑗,𝑘

∑

𝑡∈̂𝓁

(

𝑌𝑖𝑡 − 𝜆′𝑖𝑓𝑡 −
∑𝑝
𝑗=1𝑋𝑗,𝑖𝑡𝑎

(𝓁)
𝑗,𝑘

)2
. As in the previous section, we can

stablish the consistency of �̂� (𝓁)
𝑗 and

{

�̂�(𝓁)
𝑗,𝑘

}

𝑘∈[�̂�(𝓁)
𝑗 ]

with obvious modifications. Difficulty arises only when we want to establish

he estimators for the group-specific coefficients for each regressor as we need to introduce more complicated notations and further
echnical assumptions.

It is worth mentioning that the above multi-clustering case can be regarded as a special case of the one-dimensional clustering
tudied in Sections 3–4. To see this point clearly, focus on the case where 𝑝 = 2 so that 𝛩𝑖𝑡 =

(

𝛩1,𝑖𝑡, 𝛩2,𝑖𝑡
)′. Suppose that

𝛩0
𝑗,𝑖𝑡 =

⎡

⎢

⎢

⎢

⎣

∑

𝑘∈[𝐾(1)
𝑗 ]

𝛼(1)𝑗,𝑘𝟏{𝑖 ∈ 𝐺(1)
𝑗,𝑘}

⎤

⎥

⎥

⎥

⎦

𝟏{𝑡 ≤ 𝑇1} +

⎡

⎢

⎢

⎢

⎣

∑

𝑘∈[𝐾(2)
𝑗 ]

𝛼(2)𝑗,𝑘𝟏{𝑖 ∈ 𝐺(2)
𝑗,𝑘}

⎤

⎥

⎥

⎥

⎦

𝟏{𝑡 > 𝑇1},

here 𝑗 ∈ [2], 𝐾 (1)
𝑗 and 𝐾 (2)

𝑗 denote the numbers of latent groups in {𝛩0
𝑗,𝑖𝑡}𝑖∈[𝑁] before and after the break point 𝑇1, respectively,

𝐺(1)
𝑗,𝑘}𝑘∈𝐾(1)

𝑗
(resp. {𝐺(2)

𝑗,𝑘}𝑘∈𝐾(2)
𝑗

) denotes the latent group structures for {𝛩0
𝑗,𝑖𝑡}𝑖∈[𝑁] before (resp. after) the break point 𝑇1, and 𝛼(1)𝑗,𝑘

resp. 𝛼(2)𝑗,𝑘) denotes the group-specific slope coefficient before (resp. after) the break point 𝑇1. It is easy to see that for 𝓁 ∈ [2],
𝐺(𝓁)
𝑗,𝑘}𝑗∈[2],𝑘∈𝐾(𝓁)

𝑗
partitions [𝑁] into 𝐾 (𝓁) groups, say

{

{𝐺(𝓁)
𝑘 }𝑘∈𝐾(𝓁)

}

, where 𝐾 (𝓁) ≤ 𝐾 (𝓁)
1 +𝐾 (𝓁)

2 − 1. Consequently, we can still apply

he estimation procedure in Section 3 to estimate the latent group structures
{

{𝐺(𝓁)
𝑘 }𝑘∈𝐾(𝓁)

}

𝓁∈[2]
and the associated group-specific

arameters. The consistency and asymptotic normality results obtained in Section 4 continue to apply at the cost of sacrificing some
fficiency for the estimators of some group-specific parameters where the group structures are 𝑗-dependent.

. Monte Carlo simulations

In this section, we report simulation results for the low-rank estimates, break point estimates, group membership estimates and
he group number estimates based on 1000 replications, and the tuning parameter 𝜈𝑗 is chosen by a procedure similar to that
escribed in Chernozhukov et al. (2020). We focus on the linear panel data model 𝑌𝑖𝑡 = 𝜆′𝑖𝑓𝑡 +𝑋

′
𝑖𝑡𝛩𝑖𝑡 + 𝑒𝑖𝑡, where 𝑋𝑖𝑡 = (𝑋1,𝑖𝑡, 𝑋2,𝑖𝑡)′

′

14

nd 𝛩𝑖𝑡 = (𝛩1,𝑖𝑡, 𝛩2,𝑖𝑡) .
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6.1. Data generating processes (DGPs)

The following four main DGPs are employed.

GP 1: [Static panel with homoskedasticity] 𝑋1,𝑖𝑡 ∼ 𝑖.𝑖.𝑑. 𝑈 (−2, 2), 𝑋2,𝑖𝑡 ∼ 𝑖.𝑖.𝑑. 𝑈 (−2, 2), and errors 𝑒𝑖𝑡 ∼ 𝑖.𝑖.𝑑. N(0, 1). For 𝛩1,
we randomly choose the break point 𝑇1 from 0.4𝑇 to 0.6𝑇 .

DGP 2: [Static panel with heteroscedasticity] Compared to DGP 1, the errors 𝑒𝑖𝑡 ∼ 𝑖.𝑖.𝑑. N(0, 𝜎2𝑖𝑡) with 𝜎2𝑖𝑡 ∼ 𝑖.𝑖.𝑑. 𝑈 (0.5, 1). The
settings for the regressors and break point are the same as those in DGP 1.

DGP 3: [Serially correlated error] Compared to DGP 2, the errors 𝑒𝑖𝑡 = 0.2𝑒𝑖,𝑡−1+𝜂𝑖𝑡, where 𝜂𝑖𝑡 ∼ 𝑖.𝑖.𝑑. N(0, 1) and all other settings
are the same as in DGP 2.

DGP 4: [Dynamic panel] In this case, 𝑋1,𝑖𝑡 = 𝑌𝑖,𝑡−1 with 𝑌𝑖,0 ∼ 𝑖.𝑖.𝑑. N(0, 1). 𝑋2,𝑖𝑡 ∼ 𝑖.𝑖.𝑑. 𝑈 (−2, 2), and 𝑒𝑖𝑡 ∼ 𝑖.𝑖.𝑑. N(0, 0.5).

For each DGP above, we set 𝑟0 = 1 and draw 𝜆𝑖 and 𝑓𝑡 from N(0, 1) independently. We define the slope coefficients based on
three subcases below.

DGP X.1: In this case, the group membership and the number of groups do not change after the break point and only the values
of the slope coefficients change. We set the number of groups to be 2, the ratio of individuals among the two groups is
𝑁1 ∶ 𝑁2 = 0.5 ∶ 0.5, and the group membership 𝐺1 is obtained by a random draw from [𝑁] without replacement. For DGPs
1.1, 2.1, and 3.1,

𝛩1,𝑖𝑡 = 𝛩2,𝑖𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.1, 𝑖 ∈ 𝐺1, 𝑡 ∈ {1,… , 𝑇1},

0.9, 𝑖 ∈ 𝐺2, 𝑡 ∈ {1,… , 𝑇1},

0.05, 𝑖 ∈ 𝐺1, 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.45, 𝑖 ∈ 𝐺2, 𝑡 ∈ {𝑇1 + 1,… , 𝑇 }.

For DGP 4.1, 𝛩2,𝑖𝑡 is same as other DGPs X.1 for X∈ {1, 2, 3}, and

𝛩1,𝑖𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.1, 𝑖 ∈ 𝐺1, 𝑡 ∈ {1,… , 𝑇1},

0.7, 𝑖 ∈ 𝐺2, 𝑡 ∈ {1,… , 𝑇1},

0.05, 𝑖 ∈ 𝐺1, 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.35, 𝑖 ∈ 𝐺2, 𝑡 ∈ {𝑇1 + 1,… , 𝑇 }.

GP X.2: Compared to DGP X.1, the values of the slope coefficients for different groups do not change after the break point, but the
group membership changes. The number of groups is 2, the ratio of individuals among the groups is still 𝑁1 ∶ 𝑁2 = 0.5 ∶ 0.5.
Nevertheless, {𝐺(1)

1 , 𝐺(1)
2 } is different from {𝐺(2)

1 , 𝐺(2)
2 } so that elements in both 𝐺(1)

1 and 𝐺(2)
1 are independent draws from [𝑁]

without replacement. In addition, for DGPs 1.2, 2.2, and 3.2,

𝛩1,𝑖𝑡 = 𝛩2,𝑖𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.1, 𝑖 ∈ 𝐺(1)
1 , 𝑡 ∈ {1,… , 𝑇1},

0.9, 𝑖 ∈ 𝐺(1)
2 , 𝑡 ∈ {1,… , 𝑇1},

0.1, 𝑖 ∈ 𝐺(2)
1 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.9, 𝑖 ∈ 𝐺(2)
2 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 }.

For DGP 4.2, 𝛩2,𝑖𝑡 = 0.5 and

𝛩1,𝑖𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.1, 𝑖 ∈ 𝐺(1)
1 , 𝑡 ∈ {1,… , 𝑇1},

0.7, 𝑖 ∈ 𝐺(1)
2 , 𝑡 ∈ {1,… , 𝑇1},

0.1, 𝑖 ∈ 𝐺(2)
1 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.7, 𝑖 ∈ 𝐺(2)
2 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 }.

GP X.3: Under this scenario, the number of groups changes after the break. We set 𝑁 (1)
1 ∶ 𝑁 (1)

2 = 0.5 ∶ 0.5 and 𝑁 (2)
1 ∶ 𝑁 (2)

2 ∶ 𝑁 (2)
3 =

0.4 ∶ 0.3 ∶ 0.3 before and after the break, respectively. Specifically, for DGPs 1.3, 2.3, and 3.3, we have

𝛩1,𝑖𝑡 = 𝛩2,𝑖𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

0.1, 𝑖 ∈ 𝐺(1)
1 , 𝑡 ∈ {1,… , 𝑇1},

0.9, 𝑖 ∈ 𝐺(1)
2 , 𝑡 ∈ {1,… , 𝑇1},

0.1, 𝑖 ∈ 𝐺(2)
1 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.5, 𝑖 ∈ 𝐺(2)
2 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },
(2)
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⎩0.9, 𝑖 ∈ 𝐺3 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 }.
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Table 1
Frequency of correct rank estimation.
N 100 200 N 100 200

T 100 200 100 200 T 100 200 100 200

DGP 1.1

𝑟0 = 1 1.000 1.000 1.000 1.000

DGP 3.1

𝑟0 = 1 1.000 1.000 1.000 1.000
𝑟1 = 1 1.000 1.000 1.000 1.000 𝑟1 = 1 1.000 1.000 1.000 1.000
𝑟2 = 1 1.000 1.000 1.000 1.000 𝑟2 = 1 1.000 1.000 1.000 1.000

DGP 1.2

𝑟0 = 1 1.000 1.000 1.000 1.000

DGP 3.2

𝑟0 = 1 1.000 1.000 1.000 1.000
𝑟1 = 2 1.000 1.000 1.000 1.000 𝑟1 = 2 1.000 1.000 1.000 1.000
𝑟2 = 2 1.000 1.000 1.000 1.000 𝑟2 = 2 1.000 1.000 1.000 1.000

DGP 1.3

𝑟0 = 1 1.000 1.000 1.000 1.000

DGP 3.3

𝑟0 = 1 1.000 1.000 1.000 1.000
𝑟1 = 2 1.000 1.000 1.000 1.000 𝑟1 = 2 1.000 1.000 1.000 1.000
𝑟2 = 2 1.000 1.000 1.000 1.000 𝑟2 = 2 0.998 1.000 1.000 1.000

DGP 2.1

𝑟0 = 1 1.000 1.000 1.000 1.000

DGP 4.1

𝑟0 = 1 1.000 1.000 1.000 1.000
𝑟1 = 1 1.000 1.000 1.000 1.000 𝑟1 = 1 1.000 1.000 1.000 1.000
𝑟2 = 1 1.000 1.000 1.000 1.000 𝑟2 = 1 1.000 1.000 1.000 1.000

DGP 2.2

𝑟0 = 1 1.000 1.000 1.000 1.000

DGP 4.2

𝑟0 = 1 1.000 1.000 1.000 1.000
𝑟1 = 2 1.000 1.000 1.000 1.000 𝑟1 = 2 1.000 1.000 1.000 1.000
𝑟2 = 2 1.000 1.000 1.000 1.000 𝑟2 = 1 1.000 1.000 1.000 1.000

DGP 2.3

𝑟0 = 1 1.000 1.000 1.000 1.000

DGP 4.3

𝑟0 = 1 1.000 1.000 1.000 1.000
𝑟1 = 2 1.000 1.000 1.000 1.000 𝑟1 = 2 1.000 1.000 1.000 1.000
𝑟2 = 2 1.000 1.000 1.000 1.000 𝑟2 = 1 1.000 1.000 1.000 1.000

Table 2
Frequency of correct break point estimation.
N 100 200 N 100 200

T 100 200 100 200 T 100 200 100 200

DGP 1.1 0.980 0.993 1.000 1.000 DGP 3.1 0.985 0.972 1.000 0.999
DGP 1.2 0.999 1.000 1.000 1.000 DGP 3.2 1.000 1.000 1.000 1.000
DGP 1.3 1.000 1.000 1.000 1.000 DGP 3.3 1.000 1.000 1.000 1.000

DGP 2.1 0.998 0.999 1.000 1.000 DGP 4.1 1.000 1.000 1.000 1.000
DGP 2.2 1.000 1.000 1.000 1.000 DGP 4.2 1.000 1.000 1.000 1.000
DGP 2.3 1.000 1.000 1.000 1.000 DGP 4.3 1.000 1.000 1.000 1.000

For DGP 4.3, 𝛩2,𝑖𝑡 = 0.5 and

𝛩1,𝑖𝑡 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0.1, 𝑖 ∈ 𝐺(1)
1 , 𝑡 ∈ {1,… , 𝑇1},

0.7, 𝑖 ∈ 𝐺(1)
2 , 𝑡 ∈ {1,… , 𝑇1},

0.1, 𝑖 ∈ 𝐺(2)
1 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.4, 𝑖 ∈ 𝐺(2)
2 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 },

0.7, 𝑖 ∈ 𝐺(2)
3 , 𝑡 ∈ {𝑇1 + 1,… , 𝑇 }.

6.2. Results

Table 1 reports the proportion of correct rank estimation for the intercept (IFE) and slope matrices based on the SVT in
Section 3.3. Note that 𝑟0 denotes the true rank of the intercept matrix and 𝑟1 and 𝑟2 denote those of the two slope matrices. From
Table 1, we notice that the true ranks of both the intercept and slope matrices can be almost perfectly estimated for the sample
sizes under investigation.

Table 2 reports the results for break point estimation in Step 3 based on some different (𝑁, 𝑇 ) combinations. We summarize
some important findings from Table 2. First, when the group membership and the number of groups do not change as in DGP X.1
for X∈ [4], the frequency of correct break point estimation may not be 1 especially if 𝑁 is not large. This suggests that the binary
segmentation does not work perfectly in such a scenario. Second, the change of group membership or the number of groups help to
identify the break point as reflected in the simulation results for DGP X.2 and X.3 for X∈ [4]. In general, the binary segmentation
works well in our setting.

Table 3 reports the results for the group membership estimation when the number of groups are either known (infeasible in
practice) or estimated from the data (feasible). Define the frequency of correct group membership estimation in a replication as

1
𝑁

∑

𝑖∈[𝑁]
𝟏
{

�̂�(𝓁)𝑖 = 𝑔(𝓁)𝑖

}

for 𝓁 ∈ {1, 2},

where �̂�(𝓁)𝑖 and 𝑔(𝓁)𝑖 are the estimated group label and true group label for individual 𝑖. The above values are then averaged over
1000 replications to obtain the frequency of correct group membership estimation in 1000 replications. With known number of
16
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Table 3
Frequency of correct group membership estimation.

N 100 200 N 100 200

T 100 200 100 200 T 100 200 100 200

Infeasible

DGP 1.1
𝐺𝐵 1.000 1.000 1.000 1.000

Feasible

DGP 1.1
𝐺𝐵 1.000 1.000 1.000 1.000

𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 1.000 1.000 1.000 1.000

DGP 1.2 𝐺𝐵 1.000 1.000 1.000 1.000 DGP 1.2 𝐺𝐵 1.000 1.000 1.000 1.000
𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 1.000 1.000 1.000 1.000

DGP 1.3
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 1.3
𝐺𝐵 1.000 1.000 1.000 1.000

𝐺𝐴 0.989 0.999 0.978 0.999 𝐺𝐴 0.989 0.999 0.978 0.999

DGP 2.1
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 2.1
𝐺𝐵 1.000 1.000 1.000 1.000

𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 1.000 1.000 1.000 1.000

DGP 2.2 𝐺𝐵 1.000 1.000 1.000 1.000 DGP 2.2 𝐺𝐵 0.989 0.999 0.992 0.999
𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 0.992 0.999 0.977 0.998

DGP 2.3
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 2.3
𝐺𝐵 0.992 0.999 0.961 0.999

𝐺𝐴 0.998 1.000 0.999 1.000 𝐺𝐴 0.989 0.999 0.992 0.999

DGP 3.1
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 3.1
𝐺𝐵 0.981 0.999 0.949 0.999

𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 0.981 0.993 0.979 0.996

DGP 3.2 𝐺𝐵 1.000 1.000 1.000 1.000 DGP 3.2 𝐺𝐵 0.985 0.996 0.962 0.993
𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 0.985 0.994 0.973 0.998

DGP 3.3
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 3.3
𝐺𝐵 0.985 0.998 0.973 0.995

𝐺𝐴 0.981 0.997 0.982 0.999 𝐺𝐴 0.971 0.994 0.968 0.998

DGP 4.1
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 4.1
𝐺𝐵 0.975 0.999 0.984 0.999

𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 0.985 0.998 0.949 0.997

DGP 4.2 𝐺𝐵 1.000 1.000 1.000 1.000 DGP 4.2 𝐺𝐵 0.972 0.996 0.964 0.996
𝐺𝐴 1.000 1.000 1.000 1.000 𝐺𝐴 0.989 0.998 0.967 0.998

DGP 4.3
𝐺𝐵 1.000 1.000 1.000 1.000

DGP 4.3
𝐺𝐵 0.981 0.994 0.942 0.995

𝐺𝐴 0.981 1.000 0.988 0.999 𝐺𝐴 0.958 0.997 0.964 0.997

Table 4
Frequency of correct estimation of the number of groups.
N 100 200 N 100 200

T 100 200 100 200 T 100 200 100 200

DGP 1.1
𝐾 (1) = 2 1.000 1.000 0.999 1.000

DGP 3.1
𝐾 (1) = 2 0.880 0.993 0.675 0.985

𝐾 (2) = 2 1.000 1.000 1.000 1.000 𝐾 (2) = 2 0.890 0.960 0.873 0.971

DGP 1.2 𝐾 (1) = 2 1.000 1.000 1.000 1.000 DGP 3.2 𝐾 (1) = 2 0.868 0.985 0.759 0.940
𝐾 (2) = 2 1.000 1.000 1.000 0.999 𝐾 (2) = 2 0.897 0.971 0.829 0.987

DGP 1.3
𝐾 (1) = 2 0.999 1.000 1.000 1.000

DGP 3.3
𝐾 (1) = 2 0.889 0.988 0.802 0.965

𝐾 (2) = 3 1.000 0.999 1.000 1.000 𝐾 (2) = 3 0.932 0.977 0.907 0.988

DGP 2.1
𝐾 (1) = 2 1.000 1.000 1.000 1.000

DGP 4.1
𝐾 (1) = 2 0.807 0.981 0.825 0.982

𝐾 (2) = 2 1.000 1.000 1.000 1.000 𝐾 (2) = 2 0.919 0.988 0.714 0.980

DGP 2.2 𝐾 (1) = 2 0.919 0.995 0.940 0.994 DGP 4.2 𝐾 (1) = 2 0.794 0.962 0.754 0.974
𝐾 (2) = 2 0.930 0.993 0.809 0.982 𝐾 (2) = 2 0.918 0.988 0.779 0.988

DGP 2.3
𝐾 (1) = 2 0.940 0.989 0.724 0.990

DGP 4.3
𝐾 (1) = 2 0.922 0.978 0.784 0.980

𝐾 (2) = 3 0.946 0.995 0.952 0.992 𝐾 (2) = 3 0.860 0.980 0.845 0.983

groups, the STK algorithm degenerates to the traditional K-means algorithm. The “Infeasible” part of Table 3 reports the frequency
of correct group membership estimation before and after the estimated break point, 𝐺𝐵 and 𝐺𝐴, based on the known true number
of groups and K-means algorithm. Evidently, the K-means classification exhibits excellent performance in this case. Nevertheless,
without prior information on the true number of groups, the STK algorithm is able to estimate the group membership and the
number of groups simultaneously. In this case, the frequency of correct estimation of the group membership and that of the number
of groups are shown in the “Feasible” part in Table 3 and in Table 4, respectively. To implement the STK algorithm with unknown
number of groups, we set 𝜍𝑁 = 𝑁−2 to ensure the consistency of the group number estimators. As expected, the performance of
the STK algorithm is slightly worse than that of the K-means algorithm with knowledge of the true number of groups. But the
performance improves when both 𝑁 and 𝑇 increase. Table 4 suggests that the number of groups can be nearly perfectly estimated
in DGPs 1.1, 1.2, 1.3 and 2.1. For the more complicated DGPs (e.g., the dynamic case in DGPs 4.1, 4.2, and 4.3 or the static panel
with serially correlated errors in DGPs 3.1, 3.2, and 3.3), the performance is not as good as that in the simple DGPs.

Table 5 presents more detailed results for the estimation of the number of groups. For DGPs 1.X and DGP 2.X where we have
static panels with independent errors, the results show that the group membership and the number of groups can be well estimated
with nearly 100% accuracy under different (𝑁, 𝑇 ) combinations. For DGPs 3.X and 4.X where we have static panels with serially
17
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Table 5
Determination of the number of groups.
DGP N T �̂� (1) �̂� (2)

1 2 3 4 ≥5 1 2 3 4 ≥5

DGP 1.1
100

100 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
200 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

200 100 0.000 0.999 0.001 0.000 0.000 0.000 1.000 0.000 0.000 0.000
200 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

DGP 1.2
100 100 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

200 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

200 100 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000
200 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000

DGP 1.3
100 100 0.000 0.999 0.001 0.000 0.000 0.000 0.000 1.000 0.000 0.000

200 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.999 0.001 0.000

200
100 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
200 0.000 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 2.1
100

100 0.000 0.933 0.058 0.009 0.000 0.000 0.936 0.060 0.003 0.001
200 0.000 0.990 0.010 0.000 0.000 0.000 0.987 0.013 0.000 0.000

200 100 0.000 0.864 0.126 0.010 0.000 0.000 0.901 0.090 0.009 0.000
200 0.000 0.989 0.011 0.000 0.000 0.000 0.990 0.010 0.000 0.000

DGP 2.2
100 100 0.000 0.919 0.074 0.007 0.000 0.000 0.930 0.067 0.003 0.000

200 0.000 0.995 0.003 0.000 0.002 0.000 0.993 0.006 0.000 0.001

200 100 0.000 0.940 0.056 0.004 0.000 0.000 0.809 0.164 0.027 0.000
200 0.000 0.994 0.006 0.000 0.000 0.000 0.982 0.018 0.000 0.000

DGP 2.3
100 100 0.000 0.940 0.055 0.005 0.000 0.000 0.000 0.946 0.039 0.015

200 0.000 0.989 0.011 0.000 0.000 0.000 0.000 0.995 0.002 0.003

200
100 0.000 0.724 0.230 0.046 0.000 0.000 0.000 0.952 0.031 0.017
200 0.000 0.990 0.010 0.000 0.000 0.000 0.000 0.992 0.006 0.002

DGP 3.1
100

100 0.000 0.880 0.097 0.022 0.001 0.000 0.890 0.062 0.031 0.017
200 0.000 0.993 0.007 0.000 0.000 0.000 0.960 0.019 0.012 0.009

200 100 0.000 0.675 0.224 0.099 0.002 0.000 0.873 0.081 0.041 0.005
200 0.000 0.985 0.015 0.000 0.000 0.000 0.971 0.023 0.005 0.001

DGP 3.2
100 100 0.000 0.868 0.109 0.023 0.000 0.000 0.897 0.099 0.004 0.000

200 0.000 0.985 0.008 0.003 0.004 0.000 0.971 0.021 0.006 0.002

200 100 0.000 0.759 0.198 0.042 0.001 0.000 0.829 0.147 0.024 0.000
200 0.000 0.940 0.055 0.005 0.000 0.000 0.987 0.013 0.000 0.000

DGP 3.3
100 100 0.000 0.889 0.100 0.011 0.000 0.000 0.000 0.932 0.055 0.013

200 0.000 0.988 0.009 0.003 0.000 0.000 0.000 0.977 0.013 0.010

200
100 0.000 0.802 0.175 0.023 0.000 0.000 0.000 0.907 0.073 0.020
200 0.000 0.965 0.035 0.000 0.000 0.000 0.000 0.988 0.010 0.002

DGP 4.1
100

100 0.000 0.807 0.084 0.089 0.020 0.000 0.919 0.041 0.019 0.021
200 0.000 0.981 0.013 0.004 0.002 0.000 0.988 0.004 0.005 0.003

200 100 0.000 0.825 0.107 0.061 0.007 0.000 0.714 0.118 0.084 0.084
200 0.000 0.982 0.011 0.006 0.001 0.000 0.980 0.010 0.004 0.006

DGP 4.2
100 100 0.000 0.794 0.152 0.047 0.007 0.000 0.918 0.063 0.015 0.004

200 0.000 0.962 0.034 0.004 0.000 0.000 0.988 0.009 0.001 0.002

200 100 0.000 0.754 0.195 0.048 0.003 0.000 0.779 0.175 0.046 0.000
200 0.000 0.974 0.022 0.004 0.000 0.000 0.988 0.011 0.001 0.000

DGP 4.3
100 100 0.000 0.922 0.055 0.018 0.005 0.000 0.000 0.860 0.087 0.053

200 0.000 0.978 0.015 0.007 0.000 0.000 0.000 0.980 0.016 0.004

200
100 0.000 0.784 0.133 0.080 0.003 0.000 0.000 0.845 0.116 0.039
200 0.000 0.980 0.015 0.005 0.000 0.000 0.000 0.983 0.011 0.006

number of groups is not great when 𝑇 is small, but gradually approaches unity as 𝑇 increases. One reason for this is the larger bias
f the slope estimator caused by the presence of lagged dependent variables or serially correlated errors. Though the biases can be
emoved asymptotically, their estimation still has some impact on the finite sample performance. The other reason is that we need
o use HAC estimates of certain long-run variance objects in the STK algorithm and it is well known that a relatively large value of

is required in order for the HAC estimates to be reasonably well behaved in finite samples.
Tables 6 and 7 show results for the post-classification estimates for the first and second slope coefficients, respectively. We

ollow (Su et al., 2016) to define the evaluation criteria as bias and coverage. Specifically, we define the bias to be the weighted
ersions of bias for slope estimator from all estimated groups, i.e. Bias =

∑𝐾(𝓁)

𝑘=1 Bias(𝛼(𝓁)𝑘,1) for 𝓁 ∈ {1, 2}. Similarly, we define the
eighted version of the coverage ratio of the 95% confidence interval estimators. The “Infeasible’’ panel shows the result assuming

he number of groups is known, and the “Feasible’’ panel shows the result without knowing the number of groups. From Tables 6
nd 7, we notice that the coverage ratio for DGPs 1 and 2 is close to 95% under different combinations of 𝑁 and 𝑇 for both
he “Infeasible’’ and “Feasible’’ panels, which is due to the higher correct classification ratio. For DGPs 3 and 4, by using the STK
lgorithm, the coverage ratio is a bit lower for 𝑇 = 100, which is due to the inaccuracy of the group number and membership
stimators; but the coverage probabilities approaches 0.95 quickly when 𝑇 doubles.
18
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Table 6
Point estimation of 𝛼(1)⋅,1 and 𝛼(2)⋅,1 .

DGP N T Infeasible Feasible

Before the break After the break Before the break After the break

Bias (× 106) Coverage Bias (× 106) Coverage Bias (× 106) Coverage Bias (× 106) Coverage

1.1
100

100 2.585 0.951 −2.869 0.946 2.585 0.951 −2.869 0.946
200 −1.944 0.944 −8.920 0.945 −1.958 0.944 −8.920 0.945

200
100 −1.096 0.943 1.407 0.947 −1.096 0.943 1.407 0.947
200 −1.910 0.945 0.960 0.947 −1.910 0.945 0.960 0.947

1.2
100

100 −1.050 0.949 −27.398 0.941 −1.050 0.949 −27.398 0.941
200 −5.449 0.930 7.616 0.953 −5.449 0.930 7.655 0.953

200
100 4.770 0.949 1.866 0.951 4.770 0.949 1.866 0.951
200 1.317 0.941 1.874 0.945 1.317 0.941 1.874 0.945

1.3
100

100 −0.961 0.943 11.417 0.944 −1.050 0.949 −27.398 0.941
200 −4.213 0.951 −5.002 0.941 −5.449 0.930 7.655 0.953

200
100 −1.571 0.938 −3.756 0.938 4.770 0.949 1.866 0.951
200 0.403 0.941 −4.159 0.945 1.317 0.941 1.874 0.945

2.1
100

100 14.840 0.944 9.410 0.950 14.816 0.943 9.406 0.950
200 −7.222 0.951 1.795 0.951 −7.222 0.951 1.795 0.951

200
100 0.916 0.940 3.575 0.948 0.916 0.940 3.575 0.948
200 0.452 0.948 −0.797 0.947 0.452 0.948 −0.797 0.947

2.2
100

100 −21.379 0.946 0.234 0.937 −21.379 0.946 0.234 0.937
200 0.264 0.942 −15.542 0.953 0.264 0.942 −15.542 0.953

200
100 −1.379 0.945 −1.489 0.951 −1.379 0.944 −1.489 0.951
200 −1.101 0.950 1.127 0.949 −1.101 0.950 1.127 0.949

2.3
100

100 −8.610 0.945 5.254 0.952 −8.610 0.945 5.261 0.952
200 0.927 0.949 5.840 0.949 0.927 0.949 5.840 0.949

200
100 −1.560 0.943 −2.569 0.941 −1.560 0.943 −2.569 0.941
200 −0.775 0.947 4.408 0.947 −0.775 0.947 4.386 0.947

3.1
100

100 −20.928 0.955 −73.947 0.945 −26.250 0.927 −77.613 0.920
200 3.066 0.949 −12.443 0.937 2.884 0.940 −13.116 0.934

200
100 −2.663 0.951 −8.742 0.944 −3.517 0.857 −7.730 0.888
200 −3.747 0.949 −2.107 0.945 −3.642 0.939 −1.971 0.938

3.2
100

100 −55.980 0.952 −10.846 0.943 −58.714 0.926 −15.109 0.863
200 −2.774 0.950 4.690 0.946 −3.218 0.945 4.913 0.942

200
100 6.979 0.951 8.879 0.945 6.287 0.858 6.894 0.848
200 −1.704 0.947 0.438 0.945 −2.122 0.928 0.381 0.940

3.3
100

100 −25.340 0.950 37.639 0.907 −29.905 0.924 37.016 0.890
200 2.042 0.947 −6.431 0.960 1.667 0.940 −6.245 0.960

200
100 −2.391 0.946 14.364 0.892 −2.735 0.891 13.680 0.840
200 4.339 0.943 4.890 0.942 4.493 0.932 5.113 0.938

4.1
100

100 800.620 0.930 −466.590 0.929 777.650 0.928 −454.980 0.924
200 126.760 0.931 550.210 0.942 126.220 0.942 548.160 0.943

200
100 −224.960 0.931 −339.020 0.939 −214.900 0.904 −313.430 0.876
200 417.320 0.938 412.500 0.947 415.110 0.941 410.700 0.944

4.2
100

100 −3.211 0.944 6.014 0.951 −4.703 0.825 8.954 0.905
200 6.454 0.942 0.517 0.946 6.842 0.923 0.522 0.942

200
100 1.971 0.940 4.962 0.936 1.368 0.801 4.866 0.808
200 0.255 0.947 −0.288 0.957 0.267 0.932 −0.300 0.951

4.3
100

100 −4.827 0.949 6.005 0.916 −4.505 0.903 7.458 0.855
200 −3.008 0.941 −4.816 0.943 −3.223 0.927 −5.046 0.934

200
100 3.672 0.943 0.956 0.891 2.999 0.794 0.904 0.822
200 −1.348 0.944 0.737 0.943 −1.340 0.931 0.801 0.935

7. Empirical study

In this section we apply the proposed model to analyze the time-varying latent group structure of real house price changes in
etropolitan Statistical Areas (MSAs) in the United States.

.1. Model

Studies of U.S. house price changes are plentiful in the literature. Malpezzi (1999), Capozza et al. (2002), Gallin (2006),
nd Ortalo-Magne and Rady (2006) all show that the house price changes are closely correlated with real income in the long run. Su
t al. (2023) consider a heterogeneous spatial panel and show that real income growth affects the U.S. house prices in different ways
19
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Table 7
Point estimation of 𝛼(1)⋅,2 and 𝛼(2)⋅,2 .

DGP N T Infeasible Feasible

Before the break After the break Before the break After the break

Bias (× 106) Coverage Bias (× 106) Coverage Bias (× 106) Coverage Bias (× 106) Coverage

1.1
100

100 −4.719 0.940 −6.319 0.946 −4.719 0.940 −6.319 0.946
200 5.155 0.946 14.429 0.945 5.142 0.945 14.429 0.945

200
100 −2.820 0.950 1.496 0.948 −2.820 0.950 1.496 0.948
200 3.204 0.945 0.981 0.954 3.204 0.945 0.981 0.954

1.2
100

100 8.533 0.943 −11.589 0.946 8.533 0.943 −11.589 0.946
200 8.833 0.944 9.115 0.934 8.833 0.944 9.129 0.934

200
100 −1.538 0.937 0.576 0.936 −1.538 0.937 0.576 0.936
200 0.995 0.948 −0.492 0.954 0.995 0.948 −0.492 0.954

1.3
100

100 −8.825 0.942 −32.224 0.945 8.533 0.943 −11.589 0.946
200 −8.965 0.948 −2.501 0.945 8.833 0.944 9.129 0.934

200
100 −2.725 0.949 0.993 0.938 −1.538 0.937 0.576 0.936
200 0.106 0.951 2.084 0.942 0.995 0.948 −0.492 0.954

2.1
100

100 8.126 0.942 9.711 0.947 8.189 0.941 9.746 0.946
200 −2.655 0.940 9.249 0.950 −2.655 0.940 9.249 0.950

200
100 −1.002 0.950 1.024 0.953 −1.002 0.950 1.024 0.953
200 −1.151 0.944 1.497 0.948 −1.151 0.944 1.497 0.948

2.2
100

100 9.206 0.942 −4.963 0.952 9.206 0.942 −4.963 0.952
200 −0.573 0.946 1.023 0.936 −0.573 0.946 1.023 0.936

200
100 −0.595 0.938 −0.130 0.952 −0.587 0.938 −0.130 0.952
200 −0.744 0.950 0.621 0.953 −0.744 0.950 0.621 0.953

2.3
100

100 3.676 0.940 1.835 0.940 3.676 0.940 1.839 0.940
200 1.101 0.945 −2.676 0.944 1.101 0.945 −2.676 0.944

200
100 1.829 0.949 −2.656 0.944 1.829 0.949 −2.656 0.944
200 −1.445 0.947 −5.561 0.943 −1.445 0.947 −5.576 0.943

3.1
100

100 −11.637 0.955 1.353 0.945 −14.410 0.927 4.101 0.920
200 16.489 0.949 −17.001 0.937 17.287 0.940 −18.482 0.934

200
100 17.505 0.951 −3.263 0.944 15.237 0.857 −3.898 0.888
200 −2.454 0.949 1.127 0.945 −2.526 0.939 1.170 0.938

3.2
100

100 2.483 0.952 37.786 0.943 3.202 0.926 40.094 0.863
200 −10.538 0.950 −3.229 0.946 −11.557 0.945 −3.690 0.942

200
100 −1.127 0.951 5.599 0.945 0.515 0.858 5.876 0.848
200 −3.999 0.947 1.501 0.945 −4.038 0.928 1.419 0.940

3.3
100

100 4.883 0.950 36.994 0.907 6.623 0.924 37.547 0.890
200 −2.816 0.947 −36.774 0.960 −2.898 0.940 −37.607 0.960

200
100 0.862 0.946 1.760 0.892 0.893 0.891 0.970 0.840
200 −1.075 0.943 −0.074 0.942 −1.272 0.932 0.098 0.938

4.1
100

100 −0.701 0.954 −13.215 0.942 −1.035 0.928 −11.774 0.924
200 1.478 0.945 −1.950 0.947 1.918 0.942 −2.076 0.943

200
100 −5.307 0.949 7.131 0.942 −4.162 0.904 8.046 0.876
200 −1.571 0.947 0.887 0.946 −1.572 0.941 0.825 0.944

4.2
100

100 −103.180 0.942 −38.453 0.935 −96.421 0.944 −33.687 0.939
200 6.837 0.942 1.376 0.941 6.480 0.946 0.894 0.945

200
100 −9.551 0.924 −7.917 0.911 −8.665 0.941 −9.627 0.932
200 21.592 0.945 −14.624 0.945 21.663 0.951 −14.520 0.950

4.3
100

100 −62.162 0.906 59.367 0.901 −59.560 0.931 54.449 0.928
200 −17.481 0.942 −13.186 0.942 −17.536 0.939 −13.243 0.939

200
100 5.517 0.925 83.088 0.915 5.671 0.944 79.796 0.940
200 −15.681 0.947 6.905 0.945 −15.653 0.945 6.860 0.944

for different MSAs. In this application, we examine whether there exist latent group structures for the real income growth elasticity
of house price changes and whether these structures change over the time dimension. More specifically, we consider the following
panel data model with IFEs and two-way slope heterogeneity

𝜋𝑖𝑡 = 𝜆′𝑖𝑓𝑡 + 𝛩1,𝑖𝑡𝑔𝑖𝑛𝑐𝑖𝑡 + 𝛩2,𝑖𝑡𝑔𝑖𝑛𝑐𝑖,𝑡−1 + 𝑒𝑖𝑡, (19)

where the dependent variable 𝜋𝑖𝑡 measures the percentage of real house price growth for MSA 𝑖 at time period 𝑡. The 𝜆𝑖 and 𝑓𝑡 are
the individual fixed effects and time fixed effects, the covariate 𝑔𝑖𝑛𝑐𝑖𝑡 denotes the percentage of income growth for MSA 𝑖 at time
period 𝑡, and 𝑔𝑖𝑛𝑐𝑖,𝑡−1 is the lagged value of 𝑔𝑖𝑛𝑐𝑖𝑡. Unlike Aquaro et al. (2021) and Su et al. (2023) who consider individual fixed
effects and additive two-way fixed effects, respectively, we allow the model to have IFEs. In the above model, we allow the slope
20
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Fig. 2. Group classification result 1975Q3-1987Q4.

parameters
(

𝛩1,𝑖𝑡, 𝛩2,𝑖𝑡
)

to exhibit latent group structures along the cross-sectional dimension and an unknown break along the time
dimension.

7.2. Data

The dataset is obtained from Aquaro et al. (2021), which contains the quarterly data for 377 MSAs over 1975 to 2014. To
construct the growth rate and the lagged term, we lose two periods of observations, giving 𝑇 = 158. Similar to Su et al. (2023), we
deseasonalize the growth rate of real house price and real income. We do not de-factor the variables since our model contains IFEs
to control the common shocks.

7.3. Empirical results

We first apply the SVT to estimate the ranks of 𝛩0 = {𝜆′𝑖𝑓𝑡}, 𝛩1 = {𝛩1,𝑖𝑡} and 𝛩2 = {𝛩2,𝑖𝑡}. The estimates are: �̂�0 = 1, �̂�1 = 2,
and �̂�2 = 2. Before applying the proposed estimation algorithm in Section 3, we first test the presence of a structural break as in
Section F.1 of the online supplement. We first construct the sup-𝐹 test statistic sup𝑇1∈𝜖 𝐹𝑖(𝑇1) for each MSA, and then obtain the
final test statistic as 𝐹𝑁𝑇 (1|0) = max

𝑖∈[𝑁]
sup𝑇1∈𝜖 𝐹𝑖(𝑇1) = 2161.65. As given in Bai and Perron (1998), the 1% critical value for the

sup-𝐹 test statistic for an individual time series regression is 19.25. Even though we have not formally established the asymptotic
distribution of 𝐹𝑁𝑇 (1|0), its value for our data is much larger than the 1% upper-percentile of the supremum of 377 independent
variables that share the null distribution of sup𝑇1∈𝜖 𝐹𝑖(𝑇1) as formally given by Bai and Perron (1998). This provides strong evidence
for the rejection of the null that there is no structural break in the slope coefficients

{

𝛩1,𝑖𝑡, 𝛩2,𝑖𝑡
}

.
Assuming the presence of a structural break, we apply the proposed multi-stage estimation result in Section 3 to estimate the

break date and numbers of groups before and after the break.3 The estimated break date is given by �̂�1 = 51, which suggests that
the structural break happens at the first quarter in 1988. We conjecture that this break may be related to the catastrophic stock
market crash that occurred on October 1987, which is considered to be the first contemporary global financial crisis event.

By setting 𝜍𝑁 = 𝑁−2 for the STK algorithm as in the simulations, we obtain the estimated prior- and post-break numbers of
groups given by �̂� (1) = 6 and �̂� (2) = 2, respectively.4 As for the group structure, Figs. 2 and 3 use six and two different types of

3 In the presence of multiple breaks, we conjecture we can either estimate the multiple breaks simultaneously or estimate one break at a time via a sequential
approach.

4 Fig. 1 indicates that the number of groups is estimated via the homogeneity test. So our algorithm does not require one to set the maximum number of
groups per se, which is quite different from existing approaches based on either K-means or C-Lasso. Nevertheless, in empirical applications, one can set the
21
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Fig. 3. Group classification result 1988Q1-2014Q4.

Table 8
Results for the pooled regressions.

Pooled (full sample) Pooled (1975𝑄3 − 1987𝑄4) Pooled (1988𝑄1 − 2014𝑄4)
(1) (2) (3)

𝑔𝑖𝑛𝑐𝑖𝑡 0.1021∗∗∗ 0.0904∗∗∗ 0.0702∗∗∗

(0.0067) (0.0119) (0.0065)
𝑔𝑖𝑛𝑐𝑖,𝑡−1 0.0590∗∗∗ 0.0392∗∗∗ 0.0401∗∗∗

(0.0067) (0.0117) (0.0066)
#individuals 377 377 377

𝑁𝑜𝑡𝑒: Column (1) reports the pooled regression results for the full sample. Columns (2) and (3) report the pooled
regression results for the subsamples before and after the estimated break point, respectively. Slope estimates
are all bias-corrected with the analytical form shown in Theorem 4.4. Values in parentheses are standard errors
and ∗∗∗ indicates significance at 1% level.

color to show the classification results for the 377 MSAs during 1975Q3 to 1987Q4 and 1988Q1 to 2014Q4, respectively. Table 8
reports the pooled regression results for the full sample in column (1), the subsample before the estimated break point in column (2),
and the subsample after the estimated break point in column (3). All the slope estimators are bias-corrected following the analytical
form shown in Theorem 4.4. The pooled regression results in Table 8 show that real income growth has positive and significant
effect on house prices. Comparing the two subsamples before and after the estimated break, we observe that, with a 1 percentage
increase in real income growth, the real house price growth rate will increase 0.09 percentage before 1988, which is 0.02 percentage
points higher than that after 1988. The slope estimates for the lagged term are similar for the two subsamples.

To examine the difference for each of the 6 estimated groups before the break, Table 9 reports the post-classification regression
results for each estimated group before the estimated break. Even though the effects of real income growth are positive for all
estimated groups, they differ vastly across groups. The effect of real income growth for Group 2 is the highest, followed by Groups
5 and 3, and the effects of real income growth on real house prices in all of these three groups are higher than 0.15 percent.
In contrast, the effects of real income growth for the remaining three groups, viz., Groups 1, 4, and 6, are less than 0.07 percent.
Similarly, Table 10 reports the post-classification regression results for each estimated group after the estimated break. The estimated

maximum number of groups that serves as an upper bound for the algorithm to stop. Here we set the maximum number of groups to be 10, which is not
reached in the iteration.
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Table 9
Results for the post-classification regressions before the break.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
(1) (2) (3) (4) (5) (6)

𝑔𝑖𝑛𝑐𝑖𝑡 0.0301 0.3169∗∗∗ 0.1522∗∗∗ 0.0168 0.1877∗∗ 0.0661∗∗∗

(0.0345) (0.0292) (0.0408) (0.0561) (0.0775) (0.0153)
𝑔𝑖𝑛𝑐𝑖,𝑡−1 0.1217∗∗∗ −0.0191 −0.0089 −0.0298 −0.1269∗ 0.0331∗∗∗

(0.0348) (0.0288) (0.0407) (0.0560) (0.0754) (0.0151)
#individuals 60 92 35 12 36 142

𝑁𝑜𝑡𝑒: Each column reports the regression results for each estimated group during 1977Q3-1987Q4. Slope estimates are all
bias-corrected with the analytical form shown in Theorem 4.4. Values in parentheses are standard errors. ∗∗∗, ∗∗ , and ∗ indicate
significance at 1% level, 5% level, 10% level, respectively.

Table 10
Results for the post-classification regressions after the
break.

Group 1 Group 2
(1) (2)

𝑔𝑖𝑛𝑐𝑖𝑡 0.0670∗∗∗ 0.0714∗∗∗

(0.0130) (0.0079)
𝑔𝑖𝑛𝑐𝑖,𝑡−1 0.0870∗∗∗ 0.0275∗∗∗

(0.0135) (0.0079)
#individuals 103 274

𝑁𝑜𝑡𝑒: Each column reports the regression results for
each estimated group during 1988Q1-2014Q4. Slope
estimators are all bias-corrected. Values in parentheses
are standard errors. ∗∗∗ indicates significance at 1% level.

slope coefficients for both groups are statistically significant. Especially, during 1988Q1-2014Q1, the slope estimate for the lagged
term in the first group is much higher than that for the second group.

We also applied the C-Lasso algorithm of Su et al. (2016) to estimate the group structure before and after the estimated break
point. The C-Lasso approach in conjunction with IC detects 2 groups both before and after the break. In view of the six groups
detected by our present algorithm, we conjecture that the difference may due to the smaller time periods before the break.

8. Conclusion

This paper considers a linear panel data model with interactive fixed effects and two-way heterogeneity such that the
heterogeneity across individuals is captured by latent group structures and the heterogeneity across time is captured by an unknown
structural break. We allow the model to have different group numbers, or different group memberships, or just changes in the
slope coefficients for some specific groups before and after the break. To estimate the unknown structural break, the number of
groups and group memberships before and after the break point, we propose an estimation algorithm with initial nuclear norm
regularized estimates, followed by row- and column-wise linear regressions. Then, the break point estimator is obtained by binary
segmentation and the group structure together with the number of groups are estimated simultaneously using a sequential testing K-
means algorithm. We show that the structural break estimator, the group number estimators, and the group membership estimators
before and after the break point are all consistent, and the final post-classification slope coefficient estimators enjoy the oracle
property.

There are several interesting topics for further research. First, even though we discuss a possible test for the existence of a break in
the panel data models with latent group structures in the online supplement, we have not fully worked out the asymptotic theory,
a challenge that deserves separate treatment. Second, we assume the presence of a single break in the data and it is interesting
to extend our theory to allow for multiple breaks. Third, the present treatment rules out both unit-root-type nonstationarity and
nonstochastic trending nonstationarity and it is interesting to extend our theory to allow for nonstationarity in the data. We will
pursue these topics in future research.
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