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In numerous applications, the signals emitted from a dynamical system are often corrupted by
noise. To restore the original signal, one must remove the noise. This process is termed filtering.
When the underlying dynamics are nonlinear, the process is nonlinear filtering. Many nonlinear
noise-removal filters typically examine the input signal and use certain stochastic models to
make inference and estimate the most likely value for the original signal. Such a design is
known as the filtering problem in estimation and control theory. Nonlinear filtering enjoys many
applications in control of partially observed systems, target tracking, signal processing, robotics
control, financial engineering, and environment monitoring.

This article reports a new method that addresses the long-standing issue of solving compu-
tational nonlinear filtering problems. These problems have persisted for over 60 years. Unlike
the conventional method of approximating conditional means or distributions, this new method
employs deep filtering with adaptive learning rates, which offers significant computational ad-
vantages. One key advantage of this approach is that it generates robust computational results,
even when parameters change or noise perturbations occur. This breakthrough could potentially
revive the field of computational nonlinear filtering.
Nonlinear Filtering. Consider a multi-dimensional stochastic system with state X(t) at continu-
ous time t, where the precise information of X(t) is not known but only noise-corrupted obser-
vations on X(t) denoted by Y(t) is available. The dynamics of (state, observation)= (X(t), Y(t))
can be described by a pair of stochastic differential equations

dX(t) = g(X(t))dt + S(X(t))dW(t),
dY(t) = h(X(t))dt + H(t)dV(t). (1)

In the above, g(·) and h(·) are suitable vector-valued functions, S(·) and H(·) are suitable matrix-
valued functions of their arguments, and W(t) and V(t) are independent noise processes (stan-
dard Brownian motions). Nonlinear filtering focuses on estimating X(t) based on the information
of the observation Y(t) up to time t. Extensive work has been done in the literature, which can
be traced back to 1960s; see [1, 2, 3, 4, 5, 6], among others. In 1964, Kushner [2] derived the non-
linear filtering equation satisfied by a normalized conditional density (using the Itô calculus).
The equation is now referred to as the Kushner equation. Subsequently, Duncan [4], Mortensen
[5], and Zakai [6] independently derived filtering equations for un-normalized conditional den-
sities. The unnormalized equation is referred to as the Duncan-Mortensen-Zakai equation (DMZ
equation for short). Regardless the equations for normalized or unnormalized conditional den-
sities, they are partial differential equations of infinite dimensions. A typical approach is to first
find a solution to the DMZ equation, then show that it is indeed the conditional distribution
under uniqueness of the solution of the differential equation. In spite of the celebrated results
that settled the matters of nonlinear filtering theoretically, finding the solutions in closed-form
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is virtually impossible because of the nonlinearity. Thus, much effort has been devoted to find-
ing feasible computational methods ever since. The main difficulty is that the computational
schemes based on conditional distributions suffer from curse of dimensionality. Various efforts
on numerical methods for solving these equations have been made. For example, Lototsky et al.
[7] developed a spectral approach with the advantage of separation of computations involving
the observations and a system of parameters; see [9] for additional references. During the years,
although significant progress has been made, finding feasible procedures for nonlinear filtering
and constructing computable algorithms of nonlinear filtering is still an extremely challenging
task. In contrast to the theoretical work and the various attempts on finding conditional means or
conditional distributions and their approximations, we do not attempt to approximate the con-
ditional distribution but rather convert the infinite-dimensional problem to a finite-dimensional
parameter optimization problem using a machine learning approach. In lieu of numerically
solving the stochastic partial differential equations, Monte Carlo samples are generated for the
system states and observations. Then the problem is recast as finding a “function” based on the
observed random samples. The “function” is parameterized by the weights of the neural network
and estimated by stochastic approximation method [8].
Filtering Algorithms Based on Machine Learning Approach. In view of the rapid development
in the field of machine learning, we reformulate the task as a stochastic optimization problem. We
extend the traditional diffusion setup and consider the so-called switching diffusion model. The
model is as (1), but the f , g, S, and H all depend on a continuous-time Markov chain α(t) taking
values in a finite set, which is used to model hybrid uncertainty not covered by the continuous
states. Next, we present our approximation procedure.
(a) We discretize (1) by using stepsize δ > 0 and the Euler-Maruyama method (see a classical
treatment in Kloeden and Platen [10] for numerical solutions of diffusion equations) to obtain

Xn+1 = Xn + δ f (Xn, αn) +
√

δ S(Xn, αn)Wn,
Yn+1 = Yn + δg(Xn, αn) +

√
δ H(Xn, αn)Vn.

(2)

(b) We set the number of training samples as Nsample, the training window size as n0, and the
total number of steps in the time horizon of the state and observation as N.
(c) We use Monte Carlo and (2) to generate data. For a sample point ω, use (2) to obtain (i)
{Yn(ω), Yn+1(ω), . . . , Yn+n0−1(ω)}: input of the neural network with fixed sample point ω, n =
n0, . . . , N, and (ii) Xn+n0−1(ω): the corresponding state as the target.
(d) Then we use the least squares error between the target and calculated output as a loss function
for the deep neural network training to generate a weight vector denoted by ϑ. Next, we use these
weight vectors to another set of Monte Carlo samples of the actual dynamic system. We refer to
the corresponding calculated DNN (Deep Neural Network)) output X̃n as the deep filter.

We view estimates of Xn as a function of the observation (Y0, Y1, . . . , Yn) and use the deep
learning methods and the artificial neural network to find the function.
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In contrast to the existing machine learning literature,
we propose a systematic approach. The strategy is while
we are updating the parameter ϑ, we also adaptively
update the learning rates. The updated learning rates
are used in the next step parameter estimation for ϑ. We
construct a pair of sequences of estimates for (ϑ, γ) in
two loops. The estimate of ϑ requires more iterations,
whereas the estimate of γ uses less frequent iterations.

The resulting algorithm is given in Algorithm 1. This
algorithm can also be presented using a flow chat type diagram as below. As demonstrated in
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Algorithm 1 Deep filtering with adaptive learning rates

1: function DF(ϑ0
0, γ0)

2: for n← 0 to Epoch do
3: for k← 0 to `− 1 do
4: ϑn`

k+1 = ϑn`
k − γn∇ϑ J(ϑn`

k , ξn`
k )

5: ϑ+
n = ϑn`

` − (γn + ∆)∇ϑ J(ϑn`
` , ξn`

` )
6: ϑ−n = ϑn`

` − (γn − ∆)∇ϑ J(ϑn`
` , ξn`

` )

7: Ĝn = (χ(ϑ+
n , ζ+n )− χ(ϑ−n , ζ−n ))/(2∆)

8: γn+1 = γn − εĜn

[9], under rather broad conditions, (a) γn converges to the optimal learning rate γ∗, (b) the
approximation error bounds are obtained.
Numerical Examples. Here we briefly illustrate our approach by using a couple of examples.
The details of the example, including various nonlinear functions used, the coefficients involved,
and the numerical values can be found on GitHub at
https://github.com/hongjiang-qian/siam-news/blob/main/examples.pdf.
Note that we can show that the Euler-Maruyama approximations (Xn, αn) and (Yn, αn), converge
to the solution of the switching diffusions. Thus we will start with the discrete-time approxima-
tions rather than the original continuous-time systems.

Example 1 Consider a two-dimensional nonlinear system that involves sinusoidal nonlinear-
ity and a Markov switching process. The state and observation variables x and y are both
2-dimensional. The computation results are given in Figure ??. The performance in terms of
relative errors is robust w.r.t. the initial learning rates.
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Figure 1: The training loss is presented on the top left and the path of adaptive learning rate is
on the top right. The bottom figures plot the sample paths of out-of-sample state and the sample
paths that of the deep filters.

Example 2 Motivated by a target tracking problem, consider a 6-dimensional dynamical system
of a two-dimensional moving particle. In the observation equation, the first two components
represent the distance and angle, respectively. Numerical results are displayed in Figure ??.
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Figure 2: The training loss graph is on the top left and the path of adaptive learning rate is
plotted on the top right. The sample paths of out-of-sample state and that of the deep filters are
plotted in the rest of figures for each of the components.

Summary. This article presented a recent development on a new computational method to solve
challenging nonlinear filtering problems. Let us make a few observations.

(i) In general, filtering involving random switching is a difficult problem. There is no easy
way out not to mention any ready-made method from the computational tool box. Our deep
filtering algorithm offers an effective procedure.

(ii) Although the algorithm targets nonlinear filtering, it is naturally applicable to linear sys-
tems. We have carried out numerical experiments for linear systems as well and compared them
with the Kalman filters that are known to be optimal. We noted that the Kalman filters depend
heavily on the nominal models used, whereas such dependence is less pronounced with deep
filtering.

(iii) In nonlinear filtering, treating functions involving sinusoidal signals are more difficult
and often the computation breaks down. Deep filters can treat such signals with no substantial
difficulties.

(iv) Sparsity in the model can render undesirable output. In such a case, a recommendation
is to use a deep filter together with some regularization procedures.

(v) In switching diffusions, if the Markov chain is also part of the state to be restored, a deep
filter can be used to device a computational procedure. So far, the computational can be carried
out, but the computational accuracy needs to be further improved.

Finally, the computational filtering method presented here, based on a deep learning ap-
proach, opens up new avenues for solving numerous problems in which computing and estimat-
ing unknown signals of systems are needed. What reported in this article uses a straight forward
implementation. To improve the performance, to modify, and to improve the basic algorithms
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will be much welcomed.
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