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Abstract

This paper studies covariate-adjusted estimation methods for potential

outcomes in randomized experiments. We consider a general framework with

multiple treatment arms and consider the cases of both covariate-dependent

and fixed treatment propensities. Though linear covariate adjustment is a

known technique for reducing estimator variance, its interaction with post-

stratification is less well-explored. We derive asymptotically optimal lin-

ear covariate adjustments for three types of estimators: (i) inverse propen-

sity weighted estimator, (ii) difference-in-means estimator, and (iii) post-

stratified difference-in-means estimator. Finally, we provide asymptotically

valid confidence intervals for each optimally adjusted estimator. The results

illustrate the utility of combining post-stratification and covariate adjust-

ment in randomized experiments for improved inference on potential out-

comes and, in turn, arbitrary contrasts of these potential outcomes (e.g.,

average treatment effects).
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1 Introduction

In this paper, we study covariate-adjusted estimation methods for the population means of

potential outcomes in randomized experiments. We consider a general framework with mul-

tiple treatment arms and consider both covariate-dependent and fixed treatment propensity

cases. Considering multiple treatment arms allows for an analysis of optimal inference on

arbitrary linear contrasts of expected potential outcomes. However, we focus primarily on

optimal inference for individual expected potential outcomes, as taking linear contrasts of the

resulting estimators provides estimators for the contrasts of corresponding expected poten-

tial outcomes. Throughout the paper, we examine three classes of estimators, for which we

each derive asymptotically optimal linear covariate adjustment. First, we consider the case

of treatment propensities that are a function of the underlying covariates. This assumption

of varying treatment propensities is well-motivated theoretically. For example, Hahn et al.

(2011) considered multiple stage designs, where, in the second stage, assignment to different

treatments is randomized on observed characteristics of individuals (i.e., covariates). The

idea is that results from first-stage data can suggest how to best alter conditional assign-

ment probabilities for the second wave of the experiment. We consider an inverse propensity

weighted (IPW) estimator for this case of varying treatment propensities and derive a linear

covariate adjustment that minimizes the asymptotic variance of our estimator.

Next, we consider the case of fixed treatment propensities. Hirano et al. (2003) showed

that using a nonparametric estimate of the treatment propensity is more efficient than using

the true known treatment propensity. Motivated by this result, we consider a difference-in-

means estimator that incorporates a particular nonparametric propensity score. Rather than

using an IPW estimator based on known treatment propensities, unadjusted difference-in-

means estimates the population mean of a chosen potential outcome using the sample average

among units assigned to that treatment arm. As for the IPW case, we also derive an optimal

linear covariate adjustment coefficient and the corresponding asymptotic variance.

The third leg of our results considers estimation with post-stratification. Post-stratification

is a technique by which the data are grouped into a discrete set of strata, often based on

one or two particularly predictive underlying covariates. For example, Miratrix et al. (2013)

gave the example of a medical trial experiment in which the efficacy of a cancer drug is being

tested. In their example, stratifying based on the cancer stage could improve estimation ef-

ficiency by “conditioning away” variance explained by the cancer stage. Our post-stratified

estimator extends the difference-in-means estimator in the sense that the difference-in-means

estimator corresponds to the post-stratified estimator with only a single stratum. Here, we

pay particular attention to the interaction between post-stratification and the optimal co-
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variate adjustment coefficient.

Fourth, we provide asymptotically valid confidence intervals for each optimally adjusted

estimator. The results illustrate the utility of combining post-stratification and covariate

adjustment in randomized experiments for improved inference on potential outcomes and,

in turn, arbitrary contrasts of these potential outcomes (e.g., average treatment effects).

2 Framework and Setup

We consider a randomized experiment with k treatment arms and n experimental units. Each

i ∈ {1, . . . , n} is associated with a k-vector of potential outcomes Yi = (Y1i, Y2i, . . . , Yki)
′ ∈

Rk and a p-vector of pre-treatment covariates Xi = (X1i, X2i, . . . , Xpi)
′ ∈ Rp. We assume

(Yi, Xi)
iid∼ F

where F is unknown. Once the data is drawn from the population and the covariate vec-

tors observed, a k-vector of assignment indicators Ri = (R1i,R2i, . . . ,Rki)
′ is independently

assigned to each unit i according to known propensities π(Xi) = (π1i, . . . , πki). Each unit is

assigned to exactly one treatment arm. That is,
∑k

j=1 Rji = 1 with probability one. Note

that this setup implies that (Yi, Xi,Ri) are iid. We maintain the following set of assumptions

throughout the paper:

Assumption 2.1 (Setup Assumptions).

1. The random assignment indicator vector is conditionally independent of the potential

outcomes given the p-vector of pre-treatment covariates.

2. πai = E[Rai|Xi] > 0 for all realizations of Xi and a = 1, . . . , k.

3. Each unit in the sample receives precisely one of the k treatments. Note that if there

are k−1 different treatments being tested, one of the arms corresponds to no treatment.

Assumption 2.2 (Moment Conditions).

1. For each a = 1, . . . , k, E [Y 4
ai] < ∞.

2. E [∥Xi∥4] < ∞

We are interested in estimating the expected potential outcome for each treatment arm.

That is, for each a ∈ {1, . . . , k}, we are interested in estimating E [Yai].

Remark 2.3 (Connection to Average Treatment Effects). We can extend the resulting tools

to estimate quantities of the form E [c′Yi], where c ∈ Rk is a contrast vector of choice.

For example, if k = 2 and we are interested in estimating E [Y1i − Y0i], we would choose

c = (1,−1)′.

2



2.1 Additional Notation

Beyond the notation introduced above, we will use some additional notation. We let En [·] de-
note sample averages and En [·|·] denote conditional sample averages. For instance, En [Yi] =

n−1
∑n

i=1 Yi, and En [Yi|Xi] = f(Xi) where f(x) =
∑n

i=1 Yi1{Xi=x}∑n
i=1 1{Xi=x} . LIE refers to the Law of

Iterated Expectations and LOTP to the Law of Total Probability.

3 Main Results

3.1 Optimal Covariate Adjustment for IPW Estimator

The first setting we consider is one in which treatment propensities are allowed to vary

as functions of covariates. This setting is not foreign to empirical practice, particularly

in two-stage designs. For example, Karlan & Wood (2017) estimate how donors respond

to mailed reports of charities effectiveness using a two-stage design. In their second wave,

donors’ probability of treatment assignment is a function of stratification variables related

to previous donation history and experimental status in the first wave, chosen to maximize

statistical power.

Assumption 3.1 (Varying Treatment Propensities). As outlined in the setup, the probabil-

ity of assignment to a given treatment arm is a function of the covariate vector Xi for each

unit i. That is, we have that Pr (Rai = 1|Xi) = π(Xi)a := πai, where a is a chosen treatment

arm.

We consider inverse propensited weighted (IPW) estimators. The simple, unadjusted IPW

estimator has the form

µ̂ simple
an = En

[
YaiRai

πai

]
where we recall that YaiRai takes value Yai if unit i is assigned to treatment arm a and 0

otherwise. The inverse weighting by treatment propensities, i.e. the 1
πai

scaling, ensures

both consistency and unbiasedness. Recall, importantly, that πai is defined as a function of

Xi. We can improve on µ̂ simple
an by modifying our estimator via a linear covariate adjustment

that reduces asymptotic variance by incorporating into the estimator variation in potential

outcomes predictable by the baseline covariates. In particular, we consider the following

family of estimators:

Definition 3.2 (Family of Linearly Adjusted IPW Estimators). We consider the family of

linearly adjusted IPW estimators FIPW given by

FIPW =

{
µ̂an = En

[
YaiRai

πai

]
− γ̂′

an

(
En

[
Xi (Rai − πai)

πai

])
: γ̂an

p→ γ and γ ∈ Rp

}
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where the first term of each estimator in the family is the unadjusted IPW estimator and

the second term is the covariate adjustment term.

Next, we characterize the asymptotic distribution of each estimator in FIPW.

Theorem 3.3 (Asymptotic Distribution of the Adjusted IPW Estimator). Under Assump-

tion 3.2, we have for each µ̂an ∈ FIPW that

√
n (µ̂an − E [Yai])

d→ N (0, V (γa))

where

V (γa) = Var (Yai) + E

[(
1− πai

πai

)
(Yai − γ′

aXi)
2

]
.

The theorem above establishes the asymptotic distribution of an arbitrary estimator in the

family of estimators defined above. It is useful to examine the form of the asymptotic

variance, noting in particular that it takes the form of the variance of the potential out-

come plus a squared expectation. In the case of fixed treatment assignments, we can pull

that propensity factor 1−πai

πai
out of the expectation. We will observe as we progress to the

difference-in-means section that squared expectation term improves to a variance term. Note

also that the choice of γa matters: a strong choice of γa will explain much of the variation

in Yai and thus reduce the expectation term, whereas a very poor choice of γ would increase

the asymptotic variance. Of course, we are particularly interested in finding the estimator

which yields the lowest asymptotic variance. This motivates the following definition:

Definition 3.4 (Optimally Adjusted Estimator). An estimator µ̂∗
an ∈ FIPW is optimally

adjusted if it has the form

µ̂∗
an = En

[
YaiRai

πai

]
− γ̂∗′

an

(
En

[
Xi (Rai − πai)

πai

])
where

γ̂∗
an

p→ γ∗
a ∈ argminγa∈Rp V (γa).

That is, an optimally adjusted estimator utilizes a constistent estimator for a covariate

adjustment coefficient that minimizes the asymptotic variance of the estimator. Since we

have found the form of the asymptotic variance in Theorem 3.3, we can solve for an optimally

adjusted estimator by taking first order conditions.

Assumption 3.5. The quantity E
[(

1−πai

πai

)
XiX

′
i

]
is invertible.
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Theorem 3.6 (Optimal Covariate Adjustment). Under Assumption 3.6, an optimally ad-

justed estimator under the above framework is

µ̂∗
an = En

[
YaiRai

πai

]
− γ̂∗′

an

(
En

[
Xi (Rai − πai)

πai

])
where

γ̂∗
an =

(
En

[(
1− πai

πai

)
XiX

′
i

])−1

En

[(
1− πai

πai

)
YaiRai

πai

Xi

]
and

γ̂∗
an

p→ γ∗
a =

(
E

[(
1− πai

πai

)
XiX

′
i

])−1

E

[(
1− πai

πai

)
YaiXi

]
as n → ∞.

In the above theorems we have established a covariate-adjusted IPW estimator for E [Yai]

that achieves the lowest asymptotic variance among estimators in the family FIPW defined

above.

Remark 3.7 (Optimal Covariate Adjustment for Arbitrary Contrasts). What if, instead

of estimating E [Yai], we are interested in estimating E [c′Yai] for some c ∈ Rk? A natural

estimator to try given the above results would be c′µ̂∗
an. However, given our setup with

treatment propensities as functions of the covariates, the optimal covariate adjustment may

depend on the choice of contrast vector. That is, we should be able to do even better than

simply using the optimal covariate adjustment for each arm. Though we do not solve for an

explicit optimal covariate adjustment, as it is generally not unique, we find a single equation

that the optimal covariate adjustment must satisfy. See Appendix B.

3.2 Optimal Covariate Adjustment for Difference-in-Means

In the previous section, we operated in a more general setting of treatment propensities that

vary by Xi. We now transition to a setting with constant treatment propensities.

Assumption 3.8 (Constant Treatment Propensities). The treatment propensities are no

longer a function of Xi. That is, (π1, . . . , πk) is constant.

Though it may seem intuitive to continue using an IPW estimator as defined in the previous

section, we find that a difference-in-means estimator that utilizes a non-parametric estimate

of treatment propensities rather than the known treatment propensities actually achieves a

weakly smaller asymptotic variance for the same choice of covariate adjustment coefficient.

Our simple, unadjusted difference-in-means estimator for E [Yai] has the form

µ̂ simple
an = En

[
YaiRai

En [Rai]

]
.
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Note that this is identical to the estimator from the previous section except that πai(Xi) has

been replaced by En [Rai]. Though it may seem counterintuitive, we will show that replacing

πa with the estimator En [Rai] reduces asymptotic variance. As in the previous section, we

consider linear covariate adjustment.

Definition 3.9 (Family of Linearly Adjusted Difference-in-Means Estimators). We consider

the family of linearly adjusted difference-in-means estimators FDIM given by

FDIM =

{
µ̂an = En

[
YaiRai

En [Rai]

]
− γ̂′

an

(
En

[
Xi (Rai − En [Rai])

En [Rai]

])
: γ̂an

p→ γ and γ ∈ Rp

}
where the first term of each estimator in the family is the unadjusted difference-in-means

estimator and the second term is the covariate adjustment term.

Note that the covariate adjustment coefficient γ̂an is an estimated quantity. However, as we

will see in the following theorem, the asymptotic variance of our estimator depends only on

the probability limit of γ̂an, denoted γa. This fact implies that when we find an optimal

adjustment coefficient that is unknown and needs to be estimated, an estimator based on

a consistent estimator of this optimal adjustment coefficient enjoys the same asymptotic

variance as the infeasible estimator that utilizes the true optimal adjustment coefficient.

Theorem 3.10 (Asymptotic Distribution of the Adjusted Difference-in-Means Estimator).

Under Assumptions 2.1, 2.2, and 3.8, we have for each µ̂an ∈ FDIM that

√
n (µ̂an − E [Yai])

d→ N (0, V (γa))

where

V (γa) = Var (Yai) +

(
1− πa

πa

)
Var (Yai − γ′

aXi) .

Remark 3.11 (Difference-in-Means achieves lower variance than IPW). Let’s compare the

distribution of the IPW estimator from Theorem 3.3 with that of the difference-in-means

estimator from the above theorem under the assumption of constant treatment propensities.

Note that they are identical, except that in the former, the second term is E
[
Ỹ 2
ai

]
, whereas

in the latter, it is Var
(
Ỹai

)
, where Ỹai = Yai−γ′

aXi. Since Var
(
Ỹai

)
= E

[
Ỹ 2
ai

]
−
(
E
[
Ỹai

])2
,

this confirms that using an estimate of the treatment propensity is in fact superior to using

the true treatment propensity in this setting.

We proceed by defining and deriving the optimally adjusted difference-in-means estimator.

Definition 3.12 (Optimally Adjusted Estimator). An estimator µ̂∗
an ∈ FDIM is optimally

adjusted if it has the form

µ̂∗
an = En

[
YaiRai

En [Rai]

]
− γ̂∗′

an

(
En

[
Xi (Rai − En [Rai])

En [Rai]

])
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where

γ̂∗
an

p→ γ∗
a ∈ argminγa∈Rp V (γa).

Assumption 3.13. The quantity Var (Xi) is invertible.

Theorem 3.14 (Optimal Covariate Adjustment). An optimally adjusted estimator under

the above framework is

µ̂∗
an = En

[
YaiRai

En [Rai]

]
− γ̂∗′

an

(
En

[
Xi (Rai − En [Rai])

En [Rai]

])
where

γ̂∗
an = En

[
(Xi − En [Xi]) (Xi − En [Xi])

′]−1
(
En [XiYaiRai]

En [Rai]
− En [Xi]

En [YaiRai]

En [Rai]

)
and

γ̂∗
an

p→ γ∗
a = Var (Xi)

−1Cov (Xi, Yai)

as n → ∞.

It is worth comparing the optimal adjustment coefficient above to that of the IPW estimator

under the assumption of constant treatment propensities. In particular, we have as a direct

consequence of Theorem 3.6 that with constant treatment propensities, the optimal covariate

adjustment coefficient for IPW is

γ∗, IPW
a = (E [XiX

′
i])

−1
E [YaiXi]

whereas in Theorem 3.14 above we found the optimal covariate adjustment for difference-in-

means

γ∗, DIM
a = Var (Xi)

−1Cov (Xi, Yai)

= (E [XiX
′
i]− E [Xi] E [X ′

i])
−1

(E [XiYai]− E [Xi] E [Yai])

Thus, γ∗, IPW
a corresponds precisely to γ∗, DIM

a when the covariates Xi have mean zero.

3.3 Optimal Covariate Adjustment for Post-Stratification

Maintaining the constant treatment propensity assumption from the previous section, we

take difference-in-means further by considering post-stratification. Post-stratification is a

form of adjustment: we stratify the experimental units using a variable Si that is a function

of the information available prior to treatment (such as covariates), estimate the expected po-

tential outcome within each stratum, and then take a weighted average of these in-stratum
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estimates to get the overall estimator. The benefits of post-stratification are substantial.

Miratrix et al. (2013) show that post-stratification can substantially improve upon the sim-

ple difference-in-means estimator under various randomization schemes if the stratification

variable is well-chosen, including the Bernoulli scheme considered in this paper. Moreover,

they find that post-stratification is asymptotically equivalent to stratifying units prior to

treatment into pre-defined blocks and then randomizing within blocks, a technique known

as blocking. The ability of post-stratification to improve estimator efficiency has prompted

work on applying the technique to various types of estimators. For instance, Pashley et al.

(2023) apply post-stratification to improve the bias, variance, and standard error estimates of

instrumental variables estimators. Another direction of research examines how to choose the

post-stratification rule optimally: Kim et al. (2023) propose a predictive regression model-

based method to determine mappings from the covariate space to the stratification variable.

We will focus on the interaction between post-stratification and optimal linear covariate

adjustment. To implement post-stratification, we introduce a stratification variable Si with

discrete, finite support. Our simple, unadjusted post-stratified estimator for E [Yai] has the

form

µ̂ simple
an = En

[
YaiRai

En [Rai|Si]

]
which is identical to the simple difference-in-means estimator from the previous estima-

tor from the previous section, except that we utilize a conditional treatment propensity

En [Rai|Si] in the place of En [Rai]. Thus, instead of re-estimating a general propensity score,

we re-estimate treatment propensities for each stratum.

Assumption 3.15 (Finite Strata). We assume that there are a finite number of strata

{1, . . . , k}. This denotes the support of Si.

Definition 3.16 (Family of Linearly Adjusted Post-stratified Estimators). We consider the

family of linearly adjusted post-stratified estimators FPS given by

FPS =

{
µ̂an = En

[
YaiRai

En [Rai|Si]

]
− γ̂′

an

(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
: γ̂an

p→ γ and γ ∈ Rp

}
where the first term of each estimator in the family is the unadjusted post-stratified estimator

and the second term is the covariate adjustment term.

Theorem 3.17 (Asymptotic Distribution of the Adjusted Post-Stratified Estimator). Under

Assumptions 2.1, 2.2, 3.8, and 3.15, we have for each µ̂an ∈ FPS that

√
n (µ̂an − E [Yai])

d→ N (0, V (γa))
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as n → ∞, where

V (γa) = Var (Yai) +

(
1− πa

πa

)
E [Var (Yai − γ′

aXi|Si)] .

Remark 3.18 (Post-Stratification Weakly Improves on Difference-in-Means Asymptoti-

cally). We should take a moment to analyze how post-stratification improves upon the

asymptotic variance of the generic difference-in-means estimator from the previous section.

Comparing Theorem 3.17 to 3.12, we see that the two asymptotic variances are identical ex-

cept that Var (Yai − γ′
aXi) has been replaced by the conditional expectation of this variance

given Si. Since

E [Var (Yai − γ′
aXi|Si)] = Var (Yai − γ′

aXi)− Var (E [Yai − γ′
aXi|Si]) by the LOTV

≤ Var (Yai − γ′
aXi) ,

Theorem 3.17 implies that post-stratification yields a weakly smaller asymptotic variance

than regular difference-in-means.

Of course, as Miratrix et al. (2013) pointed out, post-stratification can adversely affect

estimator variance in finite samples if the number of strata is too large and the stratification

variable is poorly chosen.

Definition 3.19 (Optimally Adjusted Estimator). An estimator µ̂∗
an ∈ FPS is optimally

adjusted if it has the form

µ̂∗
an = En

[
YaiRai

En [Rai|Si]

]
− γ̂∗′

an

(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
where

γ̂∗
an

p→ γ∗
a ∈ argminγa∈Rp V (γa).

Assumption 3.20. The quantity E [Var (Xi|Si)] is invertible.

Theorem 3.21 (Optimal Covariate Adjustment). An optimally adjusted estimator under

the above framework is

µ̂∗
an = En

[
YaiRai

En [Rai|Si]

]
− γ̂∗′

an

(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
where

γ̂∗
an = (En [XiX

′
i]− En [En [Xi|Si] En [X

′
i|Si]])

−1
En

[
En [XiYaiRai|Si]

En [Rai|Si]
− En [Xi|Si]

En [YaiRai|Si]

En [Rai|Si]

]
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and

γ̂∗
an

p→ γ∗
a = (E [Var (Xi|Si)])

−1 E [Cov (Xi, Yai|Si)]

as n → ∞.

Remark 3.22. Note that the optimal covariate adjustment coefficient is identical to that

from the generic difference-in-means section but with variances replaced by expectations of

conditional variances and covariances replaced by expectations of conditional covariances.

Intuitively, post-stratification is a powerful tool for reducing the estimator variance because

it eliminates fluctuations in the potential outcome of interest predictable by S. In particular,

building on Remark 3.21, we observe that the maximum improvement is achieved asymp-

totically relative to the generic difference-in-means estimator when Var (E [Yai − γ′
aXi|Si]) is

maximized. Thus, intuitively, Si should be chosen so as to maximize the heterogeneity of

E [Yai − γ′
aXi|Si] across strata. That is E [Yai − γ′

aXi|Si = s] should vary greatly for different

values of s, where s ∈ {1, . . . , k}.

4 Inference

Finally, we derive asymptotically valid confidence intervals for E [Yai] using each of the three

estimators considered. In so doing, we harness the efficiency gains from covariate adjustment

and post-stratification for superior inference.

Theorem 4.1 (Inference for IPW). Let µ̂an be the covariate-adjusted IPW estimator from

Section 3.1. Then an asymptotically valid 1− α CI for E [Yai] isµ̂an − z1−α/2

√
V̂n (γ̂an)

n
, µ̂an + z1−α/2

√
V̂n (γ̂an)

n

 .

where

V̂n (γ̂an) = En

[
Y 2
aiRai

πai

]
−
(
En

[
YaiRai

πai

])2

+ En

[(
1− πai

πai

)(
RaiY

2
ai

πai

− 2γ̂′
anXi

RaiYai

πai

+ (γ̂′
anXi)

2

)]
.

Theorem 4.2 (Inference for Difference-in-Means). Let µ̂an be the covariate-adjusted difference-

in-means estimator from Section 3.2. Then an asymptotically valid 1− α CI for E [Yai] isµ̂an − z1−α/2

√
V̂n (γ̂an)

n
, µ̂an + z1−α/2

√
V̂n (γ̂an)

n


where

V̂n (γ̂an) = An +

(
1− πa

πa

)
(An +Bn + 2Cn)
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with

An = En

[
RaiY

2
ai

πa

]
−
(
En

[
RaiYai

πa

])2

Bn = γ̂′
an En

[
(Xi − En [Xi]) (Xi − En [Xi])

′] γ̂an
Cn = γ̂′

an

(
En

[
Xi

YaiRai

πa

]
− En [Xi] En

[
YaiRai

π

])
.

Theorem 4.3 (Inference for Post-Stratified Estimator). Let µ̂an be the post-stratified esti-

mator from Section 3.3. Then an asymptotically valid 1− α CI for E [Yai] isµ̂an − z1−α/2

√
V̂n (γ̂an)

n
, µ̂an + z1−α/2

√
V̂n (γ̂an)

n


where

V̂n (γ̂an) = An +

(
1− πa

πa

)
(Bn + Cn + 2Dn)

with

An = En

[
RaiY

2
ai

πa

]
−
(
En

[
RaiYai

πa

])2

Bn = En

[
En

[
Y 2
aiRai

πa

∣∣∣∣Si

]
−
(
En

[
YaiRai

πa

∣∣∣∣Si

])2
]

Cn = γ̂′
an En [En [XiX

′
i|Si]− En [Xi|Si] En [X

′
i|Si]] γ̂an

Dn = γ̂an En

[
En

[
Xi

YaiRai

πa

∣∣∣∣Si

]
− En [Xi|Si] En

[
YaiRai

πa

∣∣∣∣Si

]]
.

Remark 4.4. The above inference theorems are formulated to work for a generic choice of

linear adjustment coefficient so as to retain flexibility. To achieve the tightest confidence

intervals, a researcher should utilize an optimal covariate adjustment coefficient γ̂an = γ̂∗
an.

These are derived in Theorems 3.6, 3.14, and 3.21, respectively.

5 Concluding Remarks

In this paper, we introduce three types of covariate-adjusted estimation for a chosen expected

potential outcome of the form E [Yai]: inverse propensity weighted estimation, difference-in-

means estimation, and post-stratified estimation. We show that each estimator improves

upon the former in a constant marginal treatment propensities framework by achieving a

weakly smaller asymptotic variance. This result allows us to construct increasingly tighter

confidence intervals for each family of estimators considered. Throughout, we derive asymp-

totically optimal linear covariate adjustments, which improve estimator efficiency relative to

11



the baseline. The optimally adjusted post-stratified estimator combines the tools of post-

stratification and linear covariate adjustment for maximal effect: post-stratifying on highly

predictive categories while employing linear covariate adjustment with an adjustment coeffi-

cient that is predictive within strata, researchers can significantly reduce the standard errors

of their estimates. Though we focus on estimating a single potential outcome throughout, the

results can be utilized to estimate ATE-like quantities. For instance, in a binary treatment

scenario where the researcher is interested in E [Y1i − Y0i], they can estimate this quantity

by θ̂∗1n − θ̂∗0n, where θ̂∗an is the optimally adjusted post-stratified estimator from Section 3.3.
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A Appendix

A.1 Proofs for Section 3.1

Proof of Theorem 3.3. Note that we can rewrite µ̂an as

µ̂an = En [Yai] + En

[
(Yai − γ̂′

anXi) (Rai − πai)

πai

]
= En [Yai] + En

[
(Yai − γ′

aXi) (Rai − πai)

πai

]
+ En

[
(γ′

a − γ̂′
an)Xi (Rai − πai)

πai

]
.

12



We can first check that the third term is op (1/
√
n). In particular,

√
nEn

[
(γ′

a − γ̂′
an)Xi (Rai − πai)

πai

]
= (γ′

a − γ̂′
an)

√
nEn

[
Xi (Rai − πai)

πai

]
.

Since (γ′
a − γ̂′

an)
p→ 0 as n → ∞ by assumption, and

√
nEn

[
Xi(Rai−πai)

πai

]
d→ Z ∼ N

(
0,Var

(
Xi(Rai−πai)

πai

))
as n → ∞ under our moment conditions by the CLT, combining results gives

√
nEn

[
(γ′

a − γ̂′
an)Xi (Rai − πai)

πai

]
p→ 0Z = 0

as n → ∞. Thus, we can focus our analysis on the first two terms. We have

E

[
(Yai − γ′

aXi) (Rai − πai)

πai

]
= E

[
E

[
(Yai − γ′

aXi) (Rai − πai)

πai

∣∣∣∣Xi

]]
by LIE

= E

[
1

πai

E [Yai − γ′
aXi|Xi] E [Rai − πai|Xi]

]
by conditional independence

= 0 because E [Rai − πai|Xi] = 0

Therefore, since (Yai,Rai, Xi) are iid, E [Y 2
ai] < ∞, and E

[(
(Yai−γ′

aXi)(Rai−πai)
πai

)2]
< ∞ by

Assumption 3.2, we have by the CLT that

√
n

(
En

[
Yai

(Yai−γ′
aXi)(Rai−πai)

πai

]
− E

[
Yai

0

])
d→ Z ∼ N (0,Σ)

as n → ∞, where

Σ = Var

(
Yai

(Yai−γ′
aXi)(Rai−πai)

πai

)
.

Note that Σ is diagonal because

Cov

(
Yai,

(Yai − γ′
aXi) (Rai − πai)

πai

)
=E [Yai] E

[
(Yai − γ′

aXi) (Rai − πai)

πai

]
− E

[
Yai (Yai − γ′

aXi) (Rai − πai)

πai

]
= 0− E

[
1

πai

E [Yai (Yai − γ′
aXi) |Xi] E [Rai − πai|Xi]

]
by LIE and conditional independence

= 0.

It follows that

√
n (µ̂an − E [Yai])

d→ a′Z ∼ N (a′0, a′Σa)

13



as n → ∞, where a = (1, 1)′. Using the result above that Σ is diagonal, we have a′Σa =

Var (Yai) + Var
(

(Yai−γ′
aXi)(Rai−πai)

πai

)
. Let’s simplify the variance term. We have

Var

(
(Yai − γ′

aXi) (Rai − πai)

πai

)
=E

[(
(Yai − γ′

aXi) (Rai − πai)

πai

)2
]

=E

[
E

[(
(Yai − γ′

aXi) (Rai − πai)

πai

)2 ∣∣∣∣Xi

]]
by LIE

=E

[
E
[
(Yai − γ′

aXi)
2 |Xi

] 1

π2
ai

E
[
(Rai − πai)

2 |Xi

]]
by conditional independence

=E

[
E
[
(Yai − γ′

aXi)
2 |Xi

] πai (1− πai)

π2
ai

]
using the variance of a Bernoulli r.v.

=E

[
E

[
(Yai − γ′

aXi)
2

(
1− πai

πai

) ∣∣∣∣Xi

]]
=E

[
(Yai − γ′

aXi)
2

(
1− πai

πai

)]
by LIE

Combining results, we have

√
n (µ̂an − E [Yai])

d→ N
(
0,Var (Yai) + E

[
(Yai − γ′

aXi)
2

(
1− πai

πai

)])
as n → ∞. □

Proof of Theorem 3.6. By Theorem 3.3, minimizing the asymptotic variance of µ̂an is equiv-

alent to solving

argminγa E

[
(Yai − γ′

aXi)
2

(
1− πai

πai

)]
.

The gradient vector of the function being minimized is

∇γa E

[
(Yai − γ′

aXi)
2

(
1− πai

πai

)]
= E

[
2 (Yai − γ′

aXi) (−Xi)

(
1− πai

πai

)]
= −2E

[
(YaiXi −XiX

′
iγa)

(
1− πai

πai

)]
so the FOC is

E

[
(YaiXi −XiX

′
iγ

∗
a)

(
1− πai

πai

)]
= 0p

=⇒ E

[(
1− πai

πai

)
YaiXi

]
= E

[(
1− πai

πai

)
XiX

′
i

]
γ∗
a

=⇒ γ∗
a = E

[(
1− πai

πai

)
XiX

′
i

]−1

E

[(
1− πai

πai

)
YaiXi

]
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under the assumption that E
[(

1−πai

πai

)
XiX

′
i

]
is invertible.

Of course, γ∗
a needs to be estimated. A sensible estimator is

γ̂∗
an =

(
En

[(
1− πai

πai

)
XiX

′
i

])−1

En

[(
1− πai

πai

)
YaiRai

πai

Xi

]
Let’s check that γ̂∗

an is consistent for γ∗
a. By WLLN’s,

En

[(
1− πai

πai

)
XiX

′
i

]
p→ E

[(
1− πai

πai

)
XiX

′
i

]
as n → ∞

and

En

[(
1− πai

πai

)
YaiRai

πai

Xi

]
p→ E

[(
1− πai

πai

)
YaiRai

πai

Xi

]
as n → ∞

= E

[
E

[(
1− πai

πai

)
YaiRai

πai

Xi

∣∣∣∣Xi

]]
= E

[(
1− πai

πai

)
E [Yai|Xi] E [Rai|Xi]

πai

]
by conditional independence

= E

[
E

[(
1− πai

πai

)
Yai|Xi

]]
because πai = E [Rai|Xi].

Under the assumption that

E

[(
1− πai

πai

)
XiX

′
i

]
is invertible, we have by Slutsky’s Theorem with h(a, b) = a−1b that(
En

[(
1− πai

πai

)
XiX

′
i

])−1

En

[(
1− πai

πai

)
YaiRai

πai

Xi

]
p→ E

[(
1− πai

πai

)
XiX

′
i

]−1

E

[(
1− πai

πai

)
YaiXi

]
as n → ∞. That is, γ̂∗

an

p→ γ∗
a as n → ∞. □

A.2 Proofs for Section 3.2

Proof of Theorem 3.10. We can rewrite the covariate-adjusted estimator µ̂an as

µ̂an = En

[
YaiRai

En [Rai]

]
− γ̂′

an

(
En

[
Xi (Rai − En [Rai])

En [Rai]

])
=

En [YaiRai]

En [Rai]
− γ̂′

an

(En [XiRai]− En [Xi] En [Rai])

En [Rai]

= En [Yai] + En

[
Yai (Rai − En [Rai])

En [Rai]

]
− γ̂′

an

(En [XiRai]− En [Xi] En [Rai])

En [Rai]
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We to find the asymptotic variance of the estimator defined above. That is, we want to find

the limiting variance of
√
n (µ̂an − E [Yai]).

The third term in the final expression above can be rewritten as

γ̂′
an

(En [XiRai]− En [Xi] En [Rai])

En [Rai]

= γ′
a

(En [XiRai]− En [Xi] En [Rai])

En [Rai]
+ (γ̂an − γa)

′ (En [XiRai]− En [Xi] En [Rai])

En [Rai]

Note that

√
n

(
En

(
Xi (Rai − En [Rai])

En [Rai]

])
=
√
n

(
En

(
(Xi − E [Xi]) (Rai − En [Rai])

En [Rai]

])
=
√
n

(
En

(
(Xi − E [Xi]) (Rai − πa)

En [Rai]

])
+
√
n

(
En

(
(Xi − E [Xi]) (πa − En [Rai])

En [Rai]

])
=

√
n (En [(Xi − E [Xi]) (Rai − πa)])

En [Rai]
+

√
n (En [Xi − E [Xi]]) (πa − En [Rai])

En [Rai]

d→ Z1

E [Rai]
+

Z2 · 0
E [Rai]

as n → ∞

=Z1

where Z1 ∼ N (0,Var ((Xi − E [Xi]) (Rai − πa))) and Z2 ∼ N (0,Var (Xi − E [Xi])). For the

second-to-last step, we apply the CLT and WLLNs, and combine using Slutsky’s Theorem.

Since γ̂an − γa
p→ 0 as n → ∞ by the consistency assumption, combining results gives

(γ̂an − γa)
′ (En [XiRai]− En [Xi] En [Rai])

En [Rai]

p→ 0′Z1 = 0.

Thus, µ̂an has the same asymptotic distribution as

θ̂an, infeasible = En [Yai] + En

[
Yai (Rai − En [Rai])

En [Rai]

]
− γ′

a

(En [XiRai]− En [Xi] En [Rai])

En [Rai]

which is analogous to our estimator but with γ̂an replaced by its probability limit. Thus, we

can focus our attention exclusively on the infeasible estimator above for the rest of the proof

as it is asymptotically equivalent to the feasible estimator θ̂an. Note that

θ̂an, infeasible = En [Yai] + En

[
Ỹai (Rai − En [Rai])

En [Rai]

]

= En [Yai] +
En

[
Ỹai (Rai − En [Rai])

]
En [Rai]
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where Ỹai = Yai − γ′
aXi. Moreover, let µ̃a = E [Yai − γ′

aXi]. We can rewrite the numerator of

the second term above as follows:

En

[
Ỹai (Rai − En [Rai])

]
= En

[(
Ỹai − En

[
Ỹai

])
(Rai − En [Rai])

]
= En

[(
Ỹai − En

[
Ỹai

])
(Rai − πa)

]
= En

[(
Ỹai − µ̃a

)
(Rai − πa)

]
+ En

[(
µ̃a − En

[
Ỹai

])
(Rai − πa)

]
= En

[(
Ỹai − µ̃a

)
(Rai − πa)

]
+
(
µ̃a − En

[
Ỹai

])
(En [Rai]− πa)

Therefore,

√
n

En [Yai] +
En

[
Ỹai (Rai − En [Rai])

]
En [Rai]

− µ̃a


=
√
n (En [Yai]− E [Yai]) +

√
n

En

[
Ỹai (Rai − En [Rai])

]
En [Rai]


=
√
n (En [Yai]− E [Yai]) +

√
n

En

[(
Ỹai − µ̃a

)
(Rai − En [Rai])

]
En [Rai]


=
√
n (En [Yai]− E [Yai]) +

√
n
(
En

[(
Ỹai − µ̃a

)
(Rai − πa)

]
+
(
µ̃a − En

[
Ỹai

])
(En [Rai]− πa)

)
En [Rai]

=
√
n (En [Yai]− E [Yai]) +

√
nEn

[(
Ỹai − µ̃a

)
(Rai − πa)

]
En [Rai]

+

√
n
(
µ̃a − En

[
Ỹai

])
(En [Rai]− πa)

En [Rai]

Now we find the asymptotic variance of the above expression. The first two terms can be

analyzed by applying multivariate CLT and Slutsky’s Theorem. We also show that the third

term goes to zero in probability. By the multivariate CLT, we have

√
n

(
En [Yai]− E [Yai]

En

[(
Ỹai − µ̃a

)
(Rai − πa)

]) d→ N

(
0,Var

(
Yai(

Ỹai − µ̃a

)
(Rai − πa)

))

Note that

Cov
(
Yai,

(
Ỹai − µ̃a

)
(Rai − πa)

)
= E

[
Yai

(
Ỹai − µ̃a

)
(Rai − πa)

]
− E [Yai] E

[(
Ỹai − µ̃a

)
(Rai − πa)

]
= E

[
Yai

(
Ỹai − µ̃a

)]
E [(Rai − πa)]− E [Yai] E

[(
Ỹai − µ̃a

)]
E [(Rai − πa)]

= 0
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where we use the independence assumptions in the second step. Therefore, the off-diagonal

entries of

Var

(
Yai(

Ỹai − µ̃a

)
(Rai − πa)

)

are zero. Moreover, (
1
1

En[Rai]

)
p→

(
1
1
πa

)
by the WLLNs and Slutsky’s Theorem. Combining results using Slutsky’s Theorem, we have

√
n (En [Yai]− E [Yai]) +

√
nEn

[(
Ỹai − µ̃a

)
(Rai − πa)

]
En [Rai]

=

(
1
1

En[Rai]

)′
√
n

(
En [Yai]− E [Yai]

En

[(
Ỹai − µ̃a

)
(Rai − πa)

])

d→N

0,Var (Yai) +
Var

((
Ỹai − µ̃a

)
(Rai − πa)

)
π2
a


Moreover,

√
n
(
µ̃a − En

[
Ỹai

])
(En [Rai]− πa)

En [Rai]

p→ 0

as n → ∞ because
√
n
(
µ̃a − En

[
Ỹai

])
d→ Z ∼ N

(
0,Var

(
Ỹai

))
by the CLT, (En [Rai]− πa)

p→

0 by WLLNs, and En [Rai]
p→ πa by WLLNs as n → ∞, so combining results using Slutsky’s

Theorem yields the claim. Thus,

√
n (µ̂an − E [Yai])

d→ N

0,Var (Yai) +
Var

((
Ỹai − µ̃a

)
(Rai − πa)

)
π2
a


and where µ̃a = E [Yai − γ′

aXi].

Note that we can rewrite the second term of the asymptotic variance found above. In
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particular, we have

Var
((

Ỹai − E
[
Ỹai

])
(Rai − πa)

)
π2
a

=
Var

(
Ỹai − E

[
Ỹai

])
Var (Rai − πa)

π2
a

=
Var

(
Ỹai

)
(πa) (1− πa)

π2
a

=

(
1− πa

πa

)
Var

(
Ỹai

)
=

(
1− πa

πa

)
Var (Yai − γ′

aXi)

where for the first equality we use the fact that
(
Ỹai − E

[
Ỹai

])
and (Rai − πa) are indepen-

dent mean zero random variables. This completes the proof. □

Proof of Theorem 3.14. From Theorem 3.10, we have that minimizing the asymptotic

variance of our estimator amounts to minimzing Var
((

Ỹai − µ̃a

)
(Rai − πa)

)
, where Ỹai =

Yai − γ′
aXi and µ̃a = E

[
Ỹai

]
. First note that

Var
((

Ỹai − µ̃a

)
(Rai − πa)

)
=E

[
Var

((
Ỹai − µ̃a

)
(Rai − πa) |Rai

)]
+Var

(
E
[(

Ỹai − µ̃a

)
(Rai − πa) |Rai

])
by LOTV

=E
[
(Rai − πa)

2Var
(
Ỹai

)]
+Var (0)

=Var
(
Ỹai

)
Var (Rai)

=Var
(
Ỹai

)
πa (1− πa)

Thus, minimizing the asymptotic variance of our estimator amounts to minimizing Var
(
Ỹai

)
.

We have

Var
(
Ỹai

)
= Var (Yai − γ′

aXi)

= Var (Yai) + Var (γ′
aXi)− 2Cov (Yai, γ

′
aXi)

= Var (Yai) + γ′
aVar (Xi) γa − 2γ′

aCov (Xi, Yai)

Taking the derivative with respect to γa, we have

∂

∂γa
Var

(
Ỹai

)
= 2Var (Xi) γa − 2Cov (Xi, Yai) .
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Therefore, the FOC is

2Var (Xi) γ
∗
a − 2Cov (Xi, Yai) = 0p

=⇒ Var (Xi) γ
∗
a = Cov (Xi, Yai)

=⇒ γ∗
a = Var (Xi)

−1Cov (Xi, Yai)

assuming that Var (Xi) is invertible.

A consistent estimator of γ∗
a is given by

γ̂∗
an = En

[
(Xi − En [Xi]) (Xi − En [Xi])

′]−1
(
En [XiYaiRai]

En [Rai]
− En [Xi]

En [YaiRai]

En [Rai]

)
Let’s check that the above estimator is consistent for γ∗

a. We have

En

[
(Xi − En [Xi]) (Xi − En [Xi])

′] = En [XiX
′
i]− En [Xi] En [Xi]

′

p→ E [XiX
′
i]− E [Xi] E [Xi]

′ as n → ∞ by WLLNs + Slutsky’s Thm

= Var (Xi) .

Moreover, we have also by WLLNs and Slutksy’s Theorem that

En [XiYaiRai]

En [Rai]
− En [Xi]

En [YaiRai]

En [Rai]

p→ E [XiYaiRai]

E [Rai]
− E [Xi]

E [YaiRai]

E [Rai]
as n → ∞

=
E [XiYai] E [Rai]

E [Rai]
− E [Xi]

E [Yai] E [Rai]

E [Rai]

= E [XiYai]− E [Xi] E [Yai]

= Cov (Xi, Yai)

Combining results using Slutsky’s Theorem with h(x, y) = x−1y yields γ̂∗
an

p→ γ∗
a as n → ∞,

as desired. □

A.3 Proofs for Section 3.3

Proof of Theorem 3.17. Let’s begin by rewriting our estimator µ̂an. We have

µ̂an = En

[
YaiRai

En [Rai|Si]

]
− γ̂′

an

(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
= En [Yai] + En

[
Yai (Rai − En [Rai|Si])

En [Rai|Si]

]
− γ̂′

an

(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
= En [Yai] + En

[
Ỹai (Rai − En [Rai|Si])

En [Rai|Si]

]
− (γ̂an − γa)

′
(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
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where Ỹai = Yai − γ′
aXi. Let’s first show that the third term is op (1/

√
n), so that we can

focus on the first two terms of the final expansion above. By the consistency of γ̂an, we have

that (γ̂an − γa)
p→ 0 as n → ∞. Let the support of Si be given by {1, . . . , k}. Then

En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

]
=En

[
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

∣∣∣∣Si

]]
=

k∑
s=1

En [1{Si = s}] En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

∣∣∣∣Si = s

]

=
k∑

s=1

En [1{Si = s}] En [Xi (Rai − En [Rai|Si]) |Si = s]

En [Rai|Si = s]

=
k∑

s=1

En [1{Si = s}] En [(Xi − En [Xi|Si]) (Rai − En [Rai|Si]) |Si = s]

En [Rai|Si = s]

=
k∑

s=1

En [1{Si = s}] En [(Xi − En [Xi|Si]) (Rai − E [Rai|Si]) |Si = s]

En [Rai|Si = s]

=
k∑

s=1

En [1{Si = s}] En [(Xi − E [Xi|Si]) (Rai − E [Rai|Si]) |Si = s]

En [Rai|Si = s]

+
k∑

s=1

En [1{Si = s}] En [(E [Xi|Si]− En [Xi|Si]) (Rai − E [Rai|Si]) |Si = s]

En [Rai|Si = s]

=
k∑

s=1

En [1{Si = s}] En [(Xi − E [Xi|Si]) (Rai − E [Rai|Si])1{Si = s}] /En [1{Si = s}]
En [1{Si = s}Rai] /En [1{Si = s}]

+
k∑

s=1

En [1{Si = s}] (E [Xi|Si = s]− En [Xi|Si = s]) (En [Rai|Si = s]− E [Rai|Si = s])

En [Rai|Si = s]

=
k∑

s=1

En [1{Si = s}]
En [1{Si = s}Rai]

En [(Xi − E [Xi|Si]) (Rai − E [Rai|Si])1{Si = s}]

+
k∑

s=1

(En [1{Si = s}])2

En [Rai1{Si = s}]

(
E [Xi1{Si = s}]
E [1{Si = s}]

− En [Xi1{Si = s}]
En [1{Si = s}]

)
×
(
En [Rai1{Si = s}]
En [1{Si = s}]

− E [Rai1{Si = s}]
E [1{Si = s}]

)
Note that En [1{Si = s}] p→ E [1{Si = s}] and En [1{Si = s}Rai]

p→ E [1{Si = s}Rai] as n →
∞ by WLLNs. Therefore, applying Slutsky’s Theorem,

En [1{Si = s}]
En [1{Si = s}Rai]

p→ E [1{Si = s}]
E [1{Si = s}Rai]
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as n → ∞, so En[1{Si=s}]
En[1{Si=s}Rai]

= Op(1). Moreover, noting that

E [(Xi − E [Xi|Si]) (Rai − E [Rai|Si])1{Si = s}] = E [(Xi − E [Xi|Si])1{Si = s}] E [Rai − E [Rai]]

= 0

we have

En [(Xi − E [Xi|Si]) (Rai − E [Rai|Si])1{Si = s}] = Op

(
1√
n

)
by the CLT. Similarly,

(En [1{Si = s}])2

En [Rai1{Si = s}]
= Op(1)

by a combination of the WLLNs and Slutsky’s Theorem. For ease of notation, let a =

E [Xi1{Si = s}], b = E [1{Si = s}], an = En [Xi1{Si = s}], and bn = En [1{Si = s}]. Then
a

b
− an

bn
=

abn − anb

bbn

=
a (bn − b)− b (an − a)

bbn
.

We know that a (bn − b) = Op

(
1√
n

)
and b (an − a) = Op

(
1√
n

)
by the CLT. Moreover,

(bbn)
−1 = Op(1) by WLLNs and Slutsky’s Theorem. Thus,

a

b
− an

bn
= Op(1)

(
Op

(
1√
n

)
+Op

(
1√
n

))
= Op

(
2√
n

)
The same argument above holds if we let a = E [Rai1{Si = s}] and an = En [Rai1{Si = s}].
Compiling results, we have

k∑
s=1

En [1{Si = s}]
En [1{Si = s}Rai]

En [(Xi − E [Xi|Si]) (Rai − E [Rai|Si])1{Si = s}]

+
k∑

s=1

(En [1{Si = s}])2

En [Rai1{Si = s}]

(
E [Xi1{Si = s}]
E [1{Si = s}]

− En [Xi1{Si = s}]
En [1{Si = s}]

)
×
(
En [Rai1{Si = s}]
En [1{Si = s}]

− E [Rai1{Si = s}]
E [1{Si = s}]

)
=

k∑
s=1

Op(1)Op

(
1√
n

)
+

k∑
s=1

Op(1)Op

(
2√
n

)
Op

(
2√
n

)
=Op

(
k√
n

)
+Op

(
4k

n

)
=Op

(
k√
n

)
.
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Therefore,

√
n (γ̂an − γa)

′
(
En

[
Xi (Rai − En [Rai|Si])

En [Rai|Si]

])
=

√
nop(1)Op

(
k√
n

)
= kop(1)Op(1)

= op(1)

so we can ignore the third term in the expanded for of µ̂an in determining its asymptotic

distribution.

Next, note that

En

[
Ỹai (Rai − En [Rai|Si])

En [Rai|Si]

]

=En


(
Ỹai − En

[
Ỹai|Si

])
(Rai − En [Rai|Si])

En [Rai|Si]


=En


(
Ỹai − En

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]


=En


(
Ỹai − E

[
Ỹai|Si

])
(Rai − En [Rai|Si])

En [Rai|Si]

+ En


(
E
[
Ỹai|Si

]
− En

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]



Let’s show that the second term above is op

(
1√
n

)
, so we can also ignore it asymptotically.

We have
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En


(
E
[
Ỹai|Si

]
− En

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]


=En

En


(
E
[
Ỹai|Si

]
− En

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]

∣∣∣∣Si


=En


(
E
[
Ỹai|Si

]
− En

[
Ỹai|Si

])
(En [Rai|Si]− E [Rai|Si])

En [Rai|Si]


=

k∑
s=1

En [1{Si = s}] En


(
E
[
Ỹai|Si

]
− En

[
Ỹai|Si

])
(En [Rai|Si]− E [Rai|Si])

En [Rai|Si]

∣∣∣∣Si = s


=

k∑
s=1

(En [1{Si = s}])2

En [Rai1{Si = s}]

E
[
Ỹai1{Si = s}

]
E [1{Si = s}]

−
En

[
Ỹai1{Si = s}

]
En [1{Si = s}]


×
(
En [Rai1{Si = s}]
En [1{Si = s}]

− E [Rai1{Si = s}]
E [1{Si = s}]

)
We showed above that this expression with Ỹai replaced by Xi is Op

(
4k
n

)
. Since the above

argument still goes through with Ỹai instead of Xi, we have that the expression Op

(
4k
n

)
.

This implies

√
nEn


(
E
[
Ỹai|Si

]
− En

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]

 p→ 0

as n → ∞, so we can ignore this term when considering the asymptotic variance of µ̂an.

To summarize, we have shown thus far that

√
n (µ̂an − E [Yai])

has the same limiting distribution as

√
n

En [Yai] + En


(
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]

− E [Yai]

 .
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Note that

En


(
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]


=En

En


(
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]

∣∣∣∣Si


=

k∑
s=1

En [1{Si = s}] En


(
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si])

En [Rai|Si]

∣∣∣∣Si = s


=

k∑
s=1

En [1{Si = s}]
En [Rai|Si = s]

En

[(
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si]) |Si = s

]
.

For each s ∈ {1, . . . , k}, we have

En

[(
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si]) |Si = s

]
=
En

[
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

]
En [1{Si = s}]

Note that E [Rai|Si = s] = E [Rai] = πa by our assumptions. Moreover, Rai is independent of

Yai and 1{Si = s}. Thus,

E
[
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

]
= 0.

Let

gsn = En

[
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

]
and

gsi = 1{Si = s}
(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s]) .

Then by the multivariate CLT,

√
n



En [Yai]− E [Yai]

g1n

g2n
...

gkn


d→ N (0,Σ)
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as n → ∞, where Σ = Var (Yai, g1i, g2i, . . . , gki)
′. Note that for a, b ∈ {1, . . . , k} with a ̸= b,

Cov

(
1{Si = a}

(
Ỹai − E

[
Ỹai|Si = a

])
(Rai − E [Rai|Si = a]) ,

1{Si = b}
(
Ỹai − E

[
Ỹai|Si = b

])
(Rai − E [Rai|Si = b])

)
= 0

because 1{Si = a}1{Si = b} = 0, since a unit can be assigned to only one bucket. We also

note that

Cov
(
Yai,1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

)
=E

[
(Yai − E [Yai])

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

]
=E

[
(Yai − E [Yai])

(
Ỹai − E

[
Ỹai|Si = s

])]
E [Rai − E [Rai|Si = s]]

=0.

Therefore, Σ is diagonal. Next, note that

En [1{Si = s}]
En [Rai|Si = s]

· 1

En [1{Si = s}]
=

1

En [Rai|Si = s]
.

Define

cn =

(
1,

1

En [Rai|Si = 1]
, . . . ,

1

En [Rai|Si = k]

)′

=

(
1,

En [1{Si = 1}]
En [Rai1{Si = 1}]

, . . . ,
En [1{Si = k}]

En [Rai1{Si = k}]

)′

By WLLNs and Slutsky’s Theorem,

cn
p→ c

as n → ∞, where

c =

(
1,

E [1{Si = 1}]
E [Rai1{Si = 1}]

, . . . ,
E [1{Si = k}]

E [Rai1{Si = k}]

)′

=

(
1,

1

E [Rai|Si = 1]
, . . . ,

1

E [Rai|Si = k]

)′

=

(
1,

1

πa

, . . . ,
1

πa

)′

.
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Combing results, the asymptotic distribution
√
n (µ̂an − E [Yai]) is

N (c′0, c′Σc)

=N

(
0,Var (Yai) +

k∑
s=1

c2sΣs+1,s+1

)

=N

0,Var (Yai) +
k∑

s=1

Var
(
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

)
π2
a

 .

Now we just need to rewrite the second term in the asymptotic variance expression. Note

that
k∑

s=1

Var
(
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

)
=

k∑
s=1

E

[(
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

)2]
−
(
E
[
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

])2
=

k∑
s=1

E

[(
1{Si = s}

(
Ỹai − E

[
Ỹai|Si = s

])
(Rai − E [Rai|Si = s])

)2]

=
k∑

s=1

E

[(
1{Si = s}

(
Ỹai − E

[
Ỹai|Si

])
(Rai − πa)

)2]

=
k∑

s=1

E

[
1{Si = s}

((
Ỹai − E

[
Ỹai|Si

])
(Rai − πa)

)2]
because 1{Si = s} ∈ {0, 1}

=
k∑

s=1

E [1{Si = s}]
E

[
1{Si = s}

((
Ỹai − E

[
Ỹai|Si

])
(Rai − πa)

)2]
E [1{Si = s}]

=
k∑

s=1

E [1{Si = s}] E
[((

Ỹai − E
[
Ỹai|Si

])
(Rai − πa)

)2 ∣∣∣∣Si = s

]

=
k∑

s=1

E [1{Si = s}] Var
((

Ỹai − E
[
Ỹai|Si

])
(Rai − πa)

∣∣∣∣Si = s

)
=E

[
Var

((
Ỹai − E

[
Ỹai|Si

])
(Rai − πa)

∣∣∣∣Si

)]
.

Therefore, recalling that Ỹai = Yai − γ′
aXi, we have by substitution that

√
n (µ̂an − E [Yai])

d→ N (0, V (γa))
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as n → ∞, where

V (γa) = Var (Yai) +
E [Var ((Yai − γ′

aXi − E [Yai − γ′
aXi|Si]) (Rai − πa) |Si)]

π2
a

.

We can rewrite the second term in the variance expression above. Note that

E
[
Var

((
Ỹai − E

[
Ỹai|Si

])
(Rai − πa) |Si

)]
π2
a

=
E
[
Var

(
Ỹai − E

[
Ỹai|Si

]
|Si

)
Var (Rai − πa|Si)

]
π2
a

=
E
[
Var

(
Ỹai|Si

]]
Var (Rai − πa)

π2
a

=

(
1− πa

πa

)
E
[
Var

(
Ỹai|Si

)]
=

(
1− πa

πa

)
E [Var (Yai − γ′

aXi|Si)]

For the first equality, we use the fact that
(
Ỹai − E

[
Ỹai|Si

])
and (Rai − πa) are condition-

ally independent given Si and also have conditional mean zero given Si. This completes the

proof. □

Proof of Theorem 3.21. Using the result of Theorem 3.17, note that minimizing the asymp-

totic variance amounts to minimizing the quantity

E
[
Var

((
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si]) |Si

)]
.

By the Law of Total Variance

E
[
Var

((
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si]) |Si

)]
=Var

((
Ỹai − E

[
Ỹai|Si

])
(Rai − E [Rai|Si])

)
− Var

(
E
[(

Ỹai − E
[
Ỹai|Si

])
(Rai − E [Rai|Si]) |Si

])
=Var

((
Ỹai − E

[
Ỹai|Si

])
(Rai − πa)

)
because the second term is just zero

=Var
(
Ỹai − E

[
Ỹai|Si

])
Var (Rai − πa)

where the last step follows from the fact that
(
Ỹai − E

[
Ỹai|Si

])
and (Rai − πa) are inde-

pendent and each have mean zero. Thus, our minimization problem further reduces to
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minimizing

Var
(
Ỹai − E

[
Ỹai|Si

])
=E

[
Var

(
Ỹai − E

[
Ỹai|Si

] ∣∣∣∣Si

)]
+Var

(
E

[
Ỹai − E

[
Ỹai|Si

] ∣∣∣∣Si

])
by LOTV

=E
[
Var

(
Ỹai|Si

)]
+ 0

=E
[
Var

(
Ỹai|Si

)]
=E [Var (Yai|Si) + γ′

aVar (Xi|Si) γa − 2γ′
a Cov (Xi, Yai|Si)] by the definition of Ỹai

=E [Var (Yai|Si)] + γ′
a E [Var (Xi|Si)] γa − 2γ′

a E [Cov (Xi, Yai|Si)]

Taking the derivative with respect to γa and forming the FOC, we have

2E [Var (Xi|Si)] γ
∗
a − 2E [Cov (Xi, Yai|Si)] = 0p.

Thus,

γ∗
a = E [Var (Xi|Si)]

−1 E [Cov (Xi, Yai|Si)] .

Our proposed estimator for γ∗
a is

γ̂∗
an = (En [XiX

′
i]− En [En [Xi|Si] En [X

′
i|Si]])

−1
En

[
En [XiYaiRai|Si]

En [Rai|Si]
− En [Xi|Si]

En [YaiRai|Si]

En [Rai|Si]

]
.

We need to check that it is consistent. For the consistency argument, we proceed in chunks.

We have

En [XiX
′
i]

p→ E [XiX
′
i]

as n → ∞ by WLLNs. Moreover,

En [En [Xi|Si] En [X
′
i|Si]]

=
k∑

s=1

En [1{Si = s}] En [Xi|Si = s] En [X
′
i|Si = s]

=
k∑

s=1

En [1{Si = s}] En [Xi1{Si = s}]
En [1{Si = s}]

En [X
′
i1{Si = s}]

En [1{Si = s}]

p→
k∑

s=1

E [1{Si = s}] E [Xi1{Si = s}]
E [1{Si = s}]

E [X ′
i1{Si = s}]

E [1{Si = s}]
as n → ∞ by WLLNs and Slutsky’s Theorem

=
k∑

s=1

E [1{Si = s}] E [Xi|Si = s] E [X ′
i|Si = s]

=E [E [Xi|Si] E [X ′
i|Si]] .
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Combining results using Slutsky’s Theorem, we have

(En [XiX
′
i]− En [En [Xi|Si] EnX

′
i|Si])

−1

p→ (E [XiX
′
i]− E [E [Xi|Si] E [X ′

i|Si]])
−1

as n → ∞

=(E [E [XiX
′
i|Si]− E [Xi|Si] E [X ′

i|Si]])
−1

=(E [Var (Xi|Si)])
−1 .

Next, we have

En

[
En [XiYaiRai|Si]

En [Rai|Si]
− En [Xi|Si]

En [YaiRai|Si]

En [Rai|Si]

]
=

k∑
s=1

En [1{Si = s}]
(
En [XiYaiRai|Si = s]

En [Rai|Si = s]
− En [Xi|Si = s]

En [YaiRai|Si = s]

En [Rai|Si = s]

)

=
k∑

s=1

En [1{Si = s}]
(
En [1{Si = s}XiYaiRai] /En [1{Si = s}]

En [Rai1{Si = s}] /En [1{Si = s}]

− En [Xi1{Si = s}]
En [1{Si = s}]

· En [YaiRai1{Si = s}] /En [1{Si = s}]
En [Rai1{Si = s}] /En [1{Si = s}]

)
p→

k∑
s=1

E [1{Si = s}]
(
E [1{Si = s}XiYaiRai] /E [1{Si = s}]

E [Rai1{Si = s}] /E [1{Si = s}]

− E [Xi1{Si = s}]
E [1{Si = s}]

· E [YaiRai1{Si = s}] /E [1{Si = s}]
E [Rai1{Si = s}] /E [1{Si = s}]

)
by WLLN’s + Slutsky’s Theorem

=
k∑

s=1

E [1{Si = s}]
(
E [1{Si = s}XiYaiRai] /E [1{Si = s}]

E [Rai1{Si = s}] /E [1{Si = s}]

=
k∑

s=1

E [1{Si = s}]
(
E [XiYaiRai|Si = s]

E [Rai|Si = s]
− E [Xi|Si = s]

E [YaiRai|Si = s]

E [Rai|Si = s]

)
=E

[
E [XiYaiRai|Si]

E [Rai|Si]
− E [Xi|Si]

E [YaiRai|Si]

E [Rai|Si]

]
=E

[
E [XiYai|Si] E [Rai|Si]

E [Rai|Si]
− E [Xi|Si]

E [Yai|Si] E [Rai|Si]

E [Rai|Si]

]
=E [E [XiYai|Si]− E [Xi|Si] E [Yai|Si]]

=E [Cov (Xi, Yai|Si)] .

Combining results one more time gives

γ̂∗
an

p→ (E [Var (Xi|Si)])
−1 E [Cov (Xi, Yai|Si)] as n → ∞

= γ∗
a

as desired. □
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A.4 Proofs for Section 4

Proof of Theorem 4.1. By Theorem 3.3, we have

√
n (E [Yai]− µ̂an)

d→ N (0, V (γa)) .

where

V (γa) = Var (Yai) + E

[(
1− πai

πai

)
(Yai − γ′

aXi)
2

]
= E

[
Y 2
ai

]
− (E [Yai])

2 + E

[(
1− πai

πai

)(
Y 2
ai − 2γ′

aXiYai + (γ′
aXi)

2
)]

and γa is the probability limit of γ̂an. We just need to check that

V̂n (γ̂an) = En

[
Y 2
aiRai

πai

]
−
(
En

[
YaiRai

πai

])2

+ En

[(
1− πai

πai

)(
RaiY

2
ai

πai

− 2γ̂′
anXi

RaiYai

πai

+ (γ̂′
anXi)

2

)]
is a consistent estimator for V (γa). We proceed term by term. Note first that

En

[
Y 2
aiRai

πai

]
p→ E

[
Y 2
aiRai

πai

]
as n → ∞ by WLLNs

= E

[
E
[
Y 2
ai|Xi

] Rai

πai

]
by LIE

= E
[
Y 2
ai

]
.

We will utilize the unbiasedness of similar IPW-style estimators for moments of Yai through-

out the proof. Similarly,(
En

[
YaiRai

πai

])2
p→
(
E

[
YaiRai

πai

])2

by WLLNs and Slutsky’s Theorem

= (E [Yai])
2 .

Now we analyze the third term. We have

En

[(
1− πai

πai

)(
RaiY

2
ai

πai

− 2γ̂′
anXi

RaiYai

πai

+ (γ̂′
anXi)

2

)]
=En

[(
1− πai

πai

)(
RaiY

2
ai

πai

)]
− 2γ̂′

an En

[(
1− πai

πai

)
RaiYai

πai

]
+ γ̂′

an En

[(
1− πai

πai

)
XiX

′
i

]
γ̂an

p→E

[(
1− πai

πai

)(
RaiY

2
ai

πai

)]
− 2γ′

a E

[(
1− πai

πai

)
RaiYai

πai

]
+ γ′

a E

[(
1− πai

πai

)
XiX

′
i

]
γa

=E

[(
1− πai

πai

)
Y 2
ai

]
− 2γ′

a E

[(
1− πai

πai

)
Yai

]
+ γ′

a E

[(
1− πai

πai

)
XiX

′
i

]
γa

=E

[(
1− πai

πai

)(
Y 2
ai − 2γ′

aXiYai + (γ′
aXi)

2
)]
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The convergence in probability step follows from a combination of WLLNs and Slutsky’s

Theorem, as well as the consistency of γ̂an for γa. Combining the results for each of the three

terms gives V̂n (γ̂an)
p→ V (γa) as n → ∞. Therefore, an asymptotically valid 1 − α CI for

E [Yai] is µ̂an − z1−α/2

√
V̂n (γ̂an)

n
, µ̂an + z1−α/2

√
V̂n (γ̂an)

n

 .

as claimed. □

Proof of Theorem 4.2. From Theorem 3.14, we have

√
n (E [Yai]− µ̂an)

d→ N (0, V (γa))

where

V (γa) = Var (Yai) +

(
1− πa

πa

)
Var (Yai − γ′

aXi)

= Var (Yai) +

(
1− πa

πa

)
(Var (Yai) + γ′

aVar (Xi) γa + 2γ′
a Cov (Xi, Yai))

and γa is the probability limit of γ̂an. We just need to check that

V̂n (γ̂an)
p→ V (γa)

as n → ∞. Recall from the theorem statement that

V̂n (γ̂an) = An +

(
1− πa

πa

)
(An +Bn + 2Cn)

with

An = En

[
RaiY

2
ai

πa

]
−
(
En

[
RaiYai

πa

])2

Bn = γ̂′
an En

[
(Xi − En [Xi]) (Xi − En [Xi])

′] γ̂an
Cn = γ̂′

an

(
En

[
Xi

YaiRai

πa

]
− En [Xi] En

[
YaiRai

π

])
.

First, we have

An
p→ E

[
RaiY

2
ai

πa

]
−
(
E

[
RaiYai

πa

])2

by WLLNs and Slutsky’s Theorem

=
E [Rai] E [Y 2

ai]

πa

−
(
E [Rai] E [Yai]

πa

)2

= E
[
Y 2
ai

]
− (E [Yai])

2

= Var (Yai)
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as desired. Next, we have

Bn = γ̂′
an (En [XiX

′
i]− En [Xi] En [X

′
i]) γ̂an

p→ γ′
a (E [XiX

′
i]− E [Xi] E [X ′

i]) γa

= γ′
aVar (Xi) γa

where in the second step we use WLLNs, Slutsky’s Theorem, and the consistency of γ̂an.

Finally, we have

Cn
p→ γ′

a

(
E

[
XiYaiRai

πa

]
− E [Xi] E

[
YaiRai

πa

])
as n → ∞

= γ′
a (E [XiYai]− E [Xi] E [Yai])

= γ′
a Cov (Xi, Yai) .

Combining results, we have,

V̂n (γ̂an)
p→ Var (Yai) +

(
1− πa

πa

)
(Var (Yai) + γ′

aVar (Xi) γa + 2γ′
aCov (Xi, Yai))

= V (γa)

as desired. Thus, an asymptotically valid 1− α CI for E [Yai] isµ̂an − z1−α/2

√
V̂n (γ̂an)

n
, µ̂an + z1−α/2

√
V̂n (γ̂an)

n

 .

as claimed. □

Proof of Theorem 4.3. We will give a proof sketch rather than the complete proof. Recall

that

√
n (µ̂an − E [Yai])

d→ N (0, V (γa))

as n → ∞, where

V (γa) = Var (Yai) +

(
1− πa

πa

)
E [Var (Yai − γ′

aXi|Si)]

= Var (Yai) +

(
1− πa

πa

)
(E [Var (Yai|Si)] + γ′

a E [Var (Xi|Si)] γa + 2γ′
a E [Cov (Xi, Yai|Si)]) .

Recall in our that statement that

V̂n (γ̂an) = An +

(
1− πa

πa

)
(Bn + Cn + 2Dn)
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with

An = En

[
RaiY

2
ai

πa

]
−
(
En

[
RaiYai

πa

])2

Bn = En

[
En

[
Y 2
aiRai

πa

∣∣∣∣Si

]
−
(
En

[
YaiRai

πa

∣∣∣∣Si

])2
]

Cn = γ̂′
an En [En [XiX

′
i|Si]− En [Xi|Si] En [X

′
i|Si]] γ̂an

Dn = γ̂an En

[
En

[
Xi

YaiRai

πa

∣∣∣∣Si

]
− En [Xi|Si] En

[
YaiRai

πa

∣∣∣∣Si

]]
.

Analogously to the proof of Theorem 4.2, we can show that

An
p→ Var (Yai)

Bn
p→ E [Var (Yai|Si)]

Cn
p→ γ′

a E [Var (Xi|Si)] γa

Dn
p→ γ′

a E [Cov (Xi, Yai|Si)]

as n → ∞. Combining results gives V̂n (γ̂an)
p→ V (γa) as n → ∞. Thus, an asymptotically

valid 1− α CI for E [Yai] isµ̂an − z1−α/2

√
V̂n (γ̂an)

n
, µ̂an + z1−α/2

√
V̂n (γ̂an)

n


as desired. □

B Remark on Arbitrary Contrast in Section 3.1

We proceed with assumptions from Section 3.1, except that we now introduce some additional

notation.

B.1 Additional Notation

We introduce some special notation. Let

µ = E[Yi]

= E[(Y1i, Y2i, . . . , Yki)
′].
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Then let

πππi =


E [R1i|xi]

E [R2i|xi]
. . .

E [Rki|xi]



=


π1i

π2i

. . .

πki

 ∈ Rk×k.

We assume that πππi is known function of xi. Moreover, let RRRi be defined as

RRRi =


R1i

R2i

. . .

Rki

 ∈ Rk×k.

LIE refers to the law of iterated expectations. Ik is the k × k identity matrix.

B.2 Simple Estimator

A simple estimator for µ to consider is

µ̂n = n−1

n∑
i=1

RRRiπππ
−1
i Yi

We can check that this estimator is unbiased. Let µ̂na denote the a-th element of µ̂n. Then

we have
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E[µ̂na ] = E

[
n−1

n∑
i=1

YaiRai

E [Rai|xi]

]

= E

[
YaiRai

E [Rai|xi]

]
by identically distributed assumption

= E

[
E

[
YaiRai

E [Rai|xi]

∣∣∣∣xi

]]
by LIE

= E

[
E(YaiRai|xi)

E [Rai|xi]

]
= E

[
E [Yai|xi] E [Rai|xi]

E [Rai|xi]

]
by conditional independence assumption

= E [E [Yai|xi]]

= E [Yai] by LIE

= E [Yai]

for each a = 1, . . . , k. Thus, E [µ̂n] = µ.

Under the assumption that Σ = Var
[
RRRiπππ

−1
i Yi

]
exists, we have by the CLT that

√
n(µ̂n − µ)

d→ N (0,Σ)

as n → ∞.

B.3 Asymptotic Variance with Covariate Adjustment

A covariate-adjusted estimator to consider is

µ̂N
n = n−1

n∑
i=1

[
RRRiπππ

−1
i Yi −

(
RRRiπππ

−1
i − Ik

)
Nxi

]

where

N =


N11 N12 . . . N1p

N21 N22 . . . N2p

...
...

. . .
...

Nk1 Nk2 . . . Nkp

 ∈ Rk×p
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is the covariate adjustment coefficient matrix. The expanded form of µ̂N
n is

µ̂N
n = n−1

n∑
i=1


Y1iR1i

π1i
−
(

R1i

π1i
− 1
)∑p

j=1N1jxji

Y2iR2i

π2i
−
(

R2i

π2i
− 1
)∑p

j=1N2jxji

...
YkiRki

πki
−
(

Rki

πki
− 1
)∑p

j=1Nkjxji



= n−1

n∑
i=1


Y1iR1i

π1i
−N11

(
x1iR1i

π1i
− x1i

)
−N12

(
x2iR1i

π1i
− x2i

)
− . . .−N1p

(
xpiR1i

π1i
− xpi

)
Y2iR2i

π2i
−N21

(
x1iR2i

π2i
− x1i

)
−N22

(
x2iR2i

π2i
− x2i

)
− . . .−N2p

(
xpiR2i

π2i
− xpi

)
...

YkiRki

πki
−Nk1

(
x1iRki

πki
− x1i

)
−Nk2

(
x2iRki

πki
− x2i

)
− . . .−Nkp

(
xpiRki

πki
− xpi

)


Note that for each a = 1, . . . , k and j = 1, . . . , p,

E

(
xjiRai

πai

)
= E

(
E

(
xjiRai

πai

∣∣∣∣xi

))
by LIE

= E

(
xji E (Rai|xi)

E (Rai|xi)

)
= E(xji).

Thus, we have that

E
(
µ̂N
n

)
= E (µ̂n)

= µ

for any choice of N. That is, the covariate-adjusted estimator is unbiased for µ regardless of

our our choice of N.

To find the asymptotic distribution of
√
n(µ̂N

n − µ), we apply the CLT. We have

√
n(µ̂N

n − µ)
d→ N (0,ΣN)

where

ΣN = Var
[
RRRiπππ

−1
i Yi −

(
RRRiπππ

−1
i − Ik

)
Nxi

]
.

B.4 Optimal Covariate Adjustment given Contrast Vector

Suppose that instead of doing inference on µ itself, we want to do inference on c′µ, where

c ∈ Rk. We call c the contrast vector. This kind of situation would arise if we want to,

say, compare two treatment arms. We estimate c′µ using c′µ̂N
n . It follows from the result in
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the previous section that
√
n(c′µ̂N

n − c′µ)
d→ N (0, c′ΣNc). Since we want to minimize the

asymptotic variance of our estimator given a choice of contrast vector c, we want to find the

choice of N which minimizes c′ΣNc.

To solve the aforementioned optimization problem, let’s first expand ΣN :

ΣN = Var


Y1iR1i

π1i
−
(

R1i

π1i
− 1
)∑p

j=1N1jxji

Y2iR2i

π2i
−
(

R2i

π2i
− 1
)∑p

j=1N2jxji

...
YkiRki

πki
−
(

Rki

πki
− 1
)∑p

j=1Nkjxji


It follows that

ΣN
r,s = Cov

(
YriRri

πri

−
(

Rri

πri

− 1

) p∑
j=1

Nrjxji,
YsiRsi

πsi

−
(

Rsi

πsi

− 1

) p∑
j=1

Nsjxji

)

= Cov

(
YriRri

πri

,
YsiRsi

πsi

)
− Cov

(
YriRri

πri

,

(
Rsi

πsi

− 1

) p∑
j=1

Nsjxji

)

− Cov

((
Rri

πri

− 1

) p∑
j=1

Nrjxji,
YsiRsi

πsi

)

+ Cov

((
Rri

πri

− 1

) p∑
j=1

Nrjxji,

(
Rsi

πsi

− 1

) p∑
j=1

Nsjxji

)

= Cov

(
YriRri

πri

,
YsiRsi

πsi

)
−

p∑
j=1

Nsj Cov

(
YriRri

πri

,

(
Rsi

πsi

− 1

)
xji

)

−
p∑

j=1

Nrj Cov

(
YsiRsi

πsi

,

(
Rri

πri

− 1

)
xji

)

+

p∑
j=1

p∑
q=1

NrjNsq Cov

((
Rri

πri

− 1

)
xji,

(
Rsi

πsi

− 1

)
xqi

)
.

Then
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c′ΣNc =
k∑

r=1

k∑
s=1

crcsΣ
N
r,s

=
k∑

r=1

k∑
s=1

crcs Cov

(
YriRri

πri

,
YsiRsi

πsi

)
− 2

k∑
r=1

k∑
s=1

crcs

p∑
j=1

Nsj Cov

(
YriRri

πri

,

(
Rsi

πsi

− 1

)
xji

)

+
k∑

r=1

k∑
s=1

crcs

p∑
j=1

p∑
q=1

NrjNsq Cov

((
Rri

πri

− 1

)
xji,

(
Rsi

πsi

− 1

)
xqi

)
We need to find N∗ such that

∂

∂N

k∑
r=1

k∑
s=1

crcsΣ
N
r,s

evaluated at N∗ is equal to 0p×k. Note that for fixed choices a ∈ {1, 2, . . . , k} and t ∈
{1, 2, . . . , p}, we have

∂

∂Nat

k∑
r=1

k∑
s=1

crcsΣ
N
r,s = 0− 2

k∑
r=1

crca Cov

(
YriRri

πri

,

(
Rai

πai

− 1

)
xti

)
+ 2c2aNatCov

((
Rai

πai

− 1

)
xti,

(
Rai

πai

− 1

)
xti

)
+

k∑
s=1

p∑
q=1(s,q)̸=(a,t)

cacsNsq Cov

((
Rai

πai

− 1

)
xti,

(
Rsi

πsi

− 1

)
xqi

)

+
k∑

r=1

p∑
j=1(r,j)̸=(a,t)

crcaNrj Cov

((
Rri

πri

− 1

)
xji,

(
Rai

πai

− 1

)
xti

)

= −2
k∑

r=1

crcaCov

(
YriRri

πri

,

(
Rai

πai

− 1

)
xti

)

+ 2
k∑

r=1

p∑
j=1

crcaNrj Cov

((
Rri

πri

− 1

)
xji,

(
Rai

πai

− 1

)
xti

)
Therefore, the FOC corresponding to Nat, where a ∈ {1, . . . , k} and t ∈ {1, . . . , p}, is

k∑
r=1

p∑
j=1

crcaNrj Cov

((
Rri

πri

− 1

)
xji,

(
Rai

πai

− 1

)
xti

)
=

k∑
r=1

crca Cov

(
YriRri

πri

,

(
Rai

πai

− 1

)
xti

)
.

39



Let’s simplify the covariance expressions. Noting that

E

[(
Rri

πri

− 1

)
xji

]
= E

[
E

[(
Rri

πri

− 1

)
xji

∣∣∣∣xi

]]
= E

[
xji E

[
Rri

πri

− 1

∣∣∣∣xi

]]
= E

[
xji

(
πri

πri

− 1

)]
= 0,

we have

Cov

((
Rri

πri

− 1

)
xji,

(
Rai

πai

− 1

)
xti

)
= E

[(
Rri

πri

− 1

)(
Rai

πai

− 1

)
xjixti

]
= E

[(
Rri

πri

)(
Rai

πai

)
xjixti

]
− E

[(
Rri

πri

− 1

)
xjixti

]
− E

[(
Rai

πai

− 1

)
xjixti

]
+ E [xjixti]

= E

[(
Rri

πri

)(
Rai

πai

)
xjixti

]
+ E [xjixti] .

When r ̸= a,

E

[(
Rri

πri

)(
Rai

πai

)
xjixti

]
= 0

because each unit is assigned to exactly one treatment by assumption and thus RriRai = 0.

When r = a, we have

E

[(
Rri

πri

)(
Rai

πai

)
xjixti

]
= E

[
R2
ri

π2
ri

xjixti

]
= E

[
Rri

π2
ri

xjixti

]
because Rri ∈ {0, 1}

= E

[
E

[
Rri

π2
ri

xjixti

∣∣∣∣xi

]]
= E

[
1

πri

xjixti

]
= E

[
1

πai

xjixti

]
Therefore,

k∑
r=1

p∑
j=1

crcaNrj Cov

((
Rri

πri

− 1

)
xji,

(
Rai

πai

− 1

)
xti

)

=

p∑
j=1

c2aNaj E

[
1

πai

xjixti

]
+

k∑
r=1

p∑
j=1

crcaNrj E [xjixti] .
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Rewriting the FOC corresponding to Nat, we have

p∑
j=1

c2aNaj E

[
1

πai

xjixti

]
+

k∑
r=1

p∑
j=1

crcaNrj E [xjixti] =
k∑

r=1

crca Cov

(
Yri

πri

,

(
Rai

πai

− 1

)
xti

)
.

Let’s try simplifying the right side. We have

Cov

(
YriRri

πri

,

(
Rai

πai

− 1

)
xti

)
= E

[(
YriRri

πri

)(
Rai

πai

− 1

)
xti

]
= E

[(
YriRri

πri

)(
Rai

πai

)
xti

]
− E

[(
YriRri

πri

)
xti

]
.

For the first term, note that the expectation equals zero when r ̸= a. When r = a, we have

E

[(
YaiRai

πai

)(
Rai

πai

)
xti

]
= E

[
YaiRai

π2
ai

xti

]
because Rai ∈ {0, 1}

= E

[
E

[
YaiRai

π2
ai

xti

∣∣∣∣xi

]]
by LIE

= E

[
E [Yai|xi] E [Rai|xi]

xti

π2
ai

]
by conditional independence

= E

[
E [Yai|xi]xti

πai

]
= E

[
Yaixti

πai

]
by LIE.

For the second term, we have

−E

[(
YriRri

πri

)
xti

]
= −E

[
E

[(
YriRri

πri

)
xti

∣∣∣∣xi

]]
= −E

[
E

[
YriRri

∣∣∣∣xi

]
xti

πri

]
= −E

[
E [Yri|xi] E [Rri|xi]

xti

πri

]
= −E [E [Yri|xi]xti]

= −E [Yrixti] by LIE.

Therefore,

k∑
r=1

crca Cov

(
YriRri

πri

,

(
Rai

πai

− 1

)
xti

)
= c2a E

[
Yaixti

πai

]
−

k∑
r=1

crca E [Yrixti]

Rewriting the FOC corresponding to Nat one more time, we have

p∑
j=1

c2aNaj E

[
1

πai

xjixti

]
+

k∑
r=1

p∑
j=1

crcaNrj E [xjixti] = c2a E

[
Yaixti

πai

]
−

k∑
r=1

crca E [Yrixti]

In general, the above equation has many solutions, so the optimal adjustment coefficient is

not unique.
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