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Abstract

This paper solves OLS asymptotic behavior for an AR(2) model with drifting au-
toregressive parameter sequences. We make extensive use of results regarding AR(1)
asymptotics under similar drifting parameter sequences. Then, we attempt to use our
results, follow Andrews et al. (2020), and construct a uniform confidence set for the
AR(2) parameters that has correct asymptotic size regardless of the true value of the
parameters, making them robust in finite samples. However, we show the failure of key
continuity assumptions that bars us from using this method.

1 Introduction

AR(p) processes help model important economic variables with dependence on its past
values, such as inflation and stock prices. However, inference for parameters is quite tricky,
even in the simplest AR(1) case, since we have structured dependence among our observa-
tions. The basic AR(1) model with autoregressive parameter p is as follows:

Xy = pXi 1+ et

Results for the stationary case (|p| < 1) and the explosive case (p > 1) have been known
since at latest Anderson (1959). Phillips (1987a) solved the unit root case (p = 1) using the
functional central limit theorem & la Donsker (1951).

Even before the unit root case was solved, many researchers noticed the poor finite-
sample behavior of the OLS estimator when p is close to 1, including Phillips (1977), who
demonstrated poor finite-sample approximation of the limit distribution when p > 0.8. This
behavior becomes apparent when looking at the OLS distributions for p < 1 and p = 1:
in the stationary case, the OLS estimator converges with rate y/n to a standard normal
distribution, whereas in the unit root case, we have n-convergence to the non-Gaussian unit
root distribution, which is a functional of Brownian motion. To address this issue, Phillips
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(1987b) studied local-to-unity processes, where the parameter p,, drifts to 1 as a function
of the sample size at rate n, to understand finite-sample behavior near 1 better. Studying
drifting parameter sequences of AR(1) with different convergence rates continued from Chan
and Wei (1987) through Giraitis and Phillips (2006) and Phillips and Magdalinos (2007).

The problem of poor finite-sample behavior for p near 1 falls under the general umbrella
of uniform inference. The goal is to find a confidence set C' such that C has the desired 1 —«
asymptotic coverage probability uniformly across the parameter space: lim,_,, inf, Pr(p €
C) > 1 — «. A uniform confidence set is difficult to construct for the AR(1) parameter
because the limit distribution when p = 1 differs vastly from the stationary and explosive
limit distribution. Early attempts at a uniform confidence set for p come from Stock (1991)
and Andrews (1993), of which a modified version of the former was proved to be correct
by Mikusheva (2007). More recently, Andrews et al. (2020) provided a general method for
constructing uniform confidence sets directly using the drifting parameter sequence asymp-
totics. In particular, for AR(1), since the discontinuity in the limit distribution occurs when
p = 1, one must look at drifting parameter sequences p,, converging to 1 at different rates:
these asymptotics continuously bridge the unit root distribution to the stationary distribu-
tion. Then, the critical values between the distributions vary continuously, which is the key
requirement for the method to work.

This paper tries to use the method in Andrews et al. (2020) to build a uniform confidence
set for the autoregressive parameters ¢; and ¢, in the AR(2) model:

Yt = P1Yi—1 + G2Yi—2 + €.

We study limit theory under drifting parameter sequences ¢, and ¢s,. To our knowledge, no
work has been done on AR(2) with these drifting parameter sequences. We use the conver-
gence results in Phillips (1987b), Giraitis and Phillips (2006), and Phillips and Magdalinos
(2007) for AR(1) and extend it to the AR(2) case by using either a diagonalization or Jordan
form argument. When we can diagonalize, our AR(2) process becomes two AR(1) processes,
but when we use the Jordan form, we obtain one AR(1) process and another AR(1) process
with an AR(1) innovation. However, we show that the asymptotics do not continuously
bridge distributions between different cases as in the AR(1) case. Hence, we cannot use
Andrews et al. (2020) to build a uniform confidence set.

Somewhat related work for inference of AR(2) parameters can be found in 1(2) literature,
such as in Dickey and Fuller (1979), Haldrup and Lildholdt (2002), and Haldrup (2002).
However, tests like augmented Dickey-Fuller only test for the presence of a unit root, and
they don’t provide the full asymptotics of different cases of drifting parameter sequences as
we do.

The outline of the paper is as follows. In Section 2, we review the martingale central
limit theorem, the functional central limit theorem, and asymptotics for the AR(1) model. In
Section 3, we solve asymptotics for different cases of drifting parameters in the AR(2) case,
depending on whether we diagonalize or use a Jordan form. Finally, we discuss implications
for uniform inference in Section 4. The Appendix contains some proof details.



2 Preliminaries

2.1 Central Limit Theorems

We state different central limit theorems that we will use. First, we have the vector
martingale CLT, which can be found in most measure-theoretic probability textbooks like
Pollard (1984). The vector martingale CLT will help us prove joint convergence of many
different quantities.

Theorem 2.1. (Vector Martingale Central Limit Theorem)
Let {&,; 0 1 < j <k} be an F,j-martingale difference array in R? that satisfies the
following Lindeberg condition:

kn
Ln(8) = Y E(|énsI*1{l|€n ]l > 63) — 0
j=1

for all o >0 as n — oo. Then, if

kn

> B (& Fus1) = H

j=1
as n — 0o, and H is almost surely positive definite, we have that

kn

> & —a HYZ,

j=1
where Z ~ N (0, 1) is independent of H.

Donsker (1951) proved the original functional central limit theorem, and Phillips (1987a)
used the functional limit theorem as described in Herrndorf (1984). For additional references,
see Pollard (1984) and Billingsley (1999).

Theorem 2.2. (Functional Central Limit Theorem)
Let (€;)jen S (0,0%), S, = Ele g, and W (t) be a standard Brownian motion on [0, 1].

(i) There ezists a sequence (Sk)keN on the same probability space as W (t) such that Sk =4
Sy for all k, and letting S, (t) := o~ 'n"Y28 |, we have:

sup |Sp(t) — W (t)| =, 0 as n — oco.
t€(0,1]

(ii) Let Sy(t) := o~ n"Y28 ;. We have S,(t) =4 W (t) on D0, 1].
(111) Let ¥ : D[0,1] — R be continuous. Then ¥ (S, (t)) —4 V(W (t)) on R.

The following is a corollary of the above, found in Jacod and Shiryaev (2003).



Theorem 2.3. (Vector Martingale Functional Central Limit Theorem)
Let {&,; 0 1 < j < ky} be an F, j-martingale difference array in R? that satisfies the
following Lindeberg condition:

kn

La(8) = Y (& 17 1{]1€n,

j=1

>0}) =0

for all o >0 asn — oo. Then, if

[knt]
D Bl Fujo1) —p tH

J=1

for allt as n — oo, and H is almost surely positive definite non-random matriz, we have
that

Lknt]

> &y —a HPW (),

J=1

on D[0,1], where W (t) = (Wi (t),..., Wa(t)), and {Wy(t), ..., Wy(t)} are independent stan-

dard Brownian motions on [0, 1].

Again, the vector martingale FCLT helps us with joint convergence.

2.2 AR(1) Results

Crucial to our analysis is a complete understanding of the AR(1) asymptotic behavior
under drifting parameter sequences. Suppose we have an AR(1) process

Xy = ppn X1 + &,

with a drifting, sample-size dependent parameter sequence (p,)nen, (&¢) S (0,0%), Xy = 0,
and t € {1,...,n}. We employ the same Assumption 1 as Magdalinos and Petrova (2022),
except restricting to p, — 1. The stationary case (p, — p < 1) and the explosive case
(pn — p > 1) can be solved similarly to the mildly stationary case and the mildly explosive

case, respectively.

Assumption 1. The sequence {p,}nen satisfies p, — 1. Furthermore, assume that the
following limit exists:

¢:= lim n(p, — 1) € [—00, 0].
n—oo

Make the same categorizations as Magdalinos and Petrova (2022) as well. {p, }nen is:
o C(1): mildly stationary if ¢ = —oo

o C(i1): local-to-unity if c € R



o C(iii): mildly explosive if ¢ = +o0.

We let p,, € C(i) to mean that p, is mildly stationary, and similarly for the other cases.

We have the following AR(1) theorems. The first result for the mildly explosive case
is due to Giraitis and Phillips (2006). The rate of convergence for the OLS estimator is
(1 — p2)~Y2\/n, which is between /1, the convergence rate for the stationary case, and n,
the convergence rate for the unit root case.

Theorem 2.4. If p, € C(i), we have:
1 - pn ZXt 1 7p U

(1—p2)2—= ZXt 160 —a N(0,0%),

( - pn) 1/2\/ﬁ(pn - pn) d N(O7 1)~
Phillips (1987b) proved the local-to-unity case has OLS rate of convergence n.
Theorem 2.5. If p, € C(ii), we have:
IR [ Ak
S Xeam] 702 g1, ’
A Je(t)dW (1)
i o) 4 fl—.
Jo Je(t)2dt

where we have the Ornstein-Uhlenbeck process

Jo(t) = /Ot et dW (r).

Finally, for the mildly explosive case, we turn to Phillips and Magdalinos (2007), who
proved a convergence rate (p2 —1)~!p", which can be shown to be faster than n (see Lemma

C.3).
Theorem 2.6. If p, € C(iii), we have:
1P XL (2
(P — 1" 3oy Xeaee YZ|’
(P = 1) 0(pn — pn) —a Cauchy,

where

Z = lim Zn, Zn=—(p2 =" ple; = —(ph —1)"p," X,

n—oo

Y = lim Yy, Y,=—(p2— 1Y) p, e,

n—oo

andY and Z are independent and Y =4 Z =4 N'(0, c?).
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The beauty of these results is that we can see the continuity of the limit distributions. Let
our starting point be the local-to-unity case. As ¢ — —o0, p, tends to a mildly stationary
sequence having a standard normal limit distribution. The local-to-unity distribution also
converges to a standard normal distribution as ¢ — —oo by Phillips (1987b). Similarly, as
¢ — 00, p, tends to a mildly explosive sequence having a Cauchy limit distribution. The
local-to-unity distribution also converges to a Cauchy distribution as ¢ — oo by Phillips
(1987b) again. In both cases, the critical values as ¢ — doo vary continuously as we
travel from one parameter regime to another. Andrews et al. (2020) take advantage of this
continuity to form a uniform confidence set by inverting a test: see (2.17) and Assumptions
C1 and C2 in the paper.



3 Main Results
3.1 AR(2) Model

Now, consider an AR(2) process

Y = P1nYi—1 + Ganli—2 + &4, (1)
with drifting parameter sequences (¢1,)nen and (¢on )nen, (€¢) x (0,0%), y_1 = yo = 0, and
t € {1,...,n}. Written in companion form, we have

T = Ryme 1 + uy, (2)

where

_ Yt _¢n ¢n _5t
N e e )

Let the eigenvalues of R, be py, and ps,. We impose an assumption:
Assumption 2. R, has real eigenvalues.

Simple calculations reveal that

Pin + Pon = ¢1n7 PinP2on = _¢2n~ (3)

Assume that {p1,}nen and {pon fnen satisfy Assumption 1 with limits ¢; and ¢;. We are
interested in estimating ¢, = (¢1n, ¢2,)" = R, €1, where e; = (1,0)". Naive OLS gives us

~ " = 1
R, = ( Z 2y ( Z Tt )
=1 =1

so noting that uje; = &;, we have:

~ A

¢n - ¢n = (Rn - Rn)lel

n . n 4
— (th,lx;_l) (th,let). 4)

We introduce a rotation matrix to use our complete knowledge of AR(1) asymptotics. We
consider two cases. On one hand, we have distinct eigenvalues, so we can diagonalize R,.
Else, we have repeated eigenvalues, so we can use a Jordan form on R,,.



3.2 Distinct Eigenvalues
In the distinct eigenvalues case, we can diagonalize R,,: let
Rn = TnAnTn_17

where T}, contains the linearly independent eigenvectors, and A, is a diagonal matrix storing
the eigenvalues p1, and poy,:

T — 1 |:p1n p2n:|
" Pin — P2on 1 1 ’
T—l — 1 _an
" -1 Pin ’
0
A, = [P .
[ 0 p2n:|

We can calculate T;, easily using (3). Do the transformation X; = T, 'z; and U; = T, uy:

Xe =N Xoq + Uy, (5)

Xig| _ [pim 0] [ Xiga 4| e
X2,t 0 pon X2,t—1 —&¢|

We see that X, and X5, are just AR(1) processes, which greatly aids our analysis. Then,

T) (9o — b0) = (ZthlXéq)_l(ZXt—l&t)- (6)

We will have a normalizing diagonal matrix D,,, so we can write the OLS as follows:
DT (b — ¢n) = (D7 Xea X, D) (DY Xoae). (7)
t=1 t=1

The appropriate normalization will allow us to use Theorems 2.4, 2.5, and 2.6 on the diagonal
terms of the matrix and the terms of the vector on the RHS of (7). For the off-diagonal
terms of the matrix, we have a very helpful decomposition:

(1 - P1np2n) Z X1,t—1X2,t—1 = —X1,nX2,n — Pin Z X1,t—15t + pon Z X2,t—15t - Z 5?-

t=1 t=1 t=1 t=1
(8)

We presently begin solving asymptotics. There are six primary cases that depend on the
convergence behavior of py,, and ps, outlined in Assumption 1 (we have six rather than nine
cases since we account for symmetry).



3.2.1 Pin 7é P2ns Pin € C<Z)7 P2n € C(l)’ q 7é 1

We need an additional specification here. Let

L= lim g, € [0, 00] 9)
n — s = 1uam qp s

and

(1 - p%n)1/2<1 - p%n)1/2

Qni = - . Q= nh_)rr;o Qni € [0,00). (10)
Some calculations reveal that
Qo= (1 ) o Q= ()L
! T g, Z 1+ 12

Thus, if ¢ = 0 or ¢ = o0, Q; = 0. This occurs p;, and p,, converge at different rates.
Otherwise, if ¢ # 0,00, then @; = 1 iff ¢ = 1: they converge at very similar rates. In this
section, we require that they converge at fairly different rates (¢ # 1).

Theorem 3.1. Suppose pin # pan, pin € C(1), and pan, € C(i). Let D, ;) be the following
diagonal matriz:

I (A R e 0
(4,8) = 0 (1— pgn)71/2n1/2 .
Define
I —Q;
Vi) = {—Qi ) ] :
Then, when q # 1,
n zz)ZXt 1X (z z) 0'2‘/(1',2'); (11>
D;%M’) Z Xt_lift —d N(O, 0'4‘/(2'71')), (12)
D iy T (fn — &n) —a N'(0, V7). (13)

Diagonalization yields two mildly stationary AR(1) processes. It is no surprise that the
diagonal entries of D,, (; ;) have the mildly stationary normalizations from Theorem 2.4. Also,
when py, and py, converge at different rates, (); = 0, so the components of the asymptotic
distribution are standard normal distributions. The AR(1) mildly stationary case also has
a Gaussian limit distribution, so we can imagine this case as being two independent mildly
stationary AR(1) processes.



Proof. We have:

/ - (1- P%n)nfl Z?:l X12,t—1 *
<u)ZXt 1Xi1Dpfigy = [(1—;)2 )

L= 3 ) AT YT Xy Xy (L—p3,)n 0 X3, ]

Theorem 2.4 takes care of the diagonal elements. We focus on the off-diagonal elements.
Using (8), we have:

1 & 1 ” —
(1- P%n>1/2(1 - an)l/Qﬁ tz:; X1 Xop1 = Qm( - EXl,nXZn - % Z X118

t=1

an ZXQt 1€t — —Zﬁt)

By Giraitis and Phillips (2006), we know that n=/2X,,, —,, 0 and n=%/2X,,, —, 0, so the
first term in the brackets on the RHS is 0,(1). Next, for the second term, since n(1—py,) — 00
by assumption, then n(1 — p?,) — oo, so using Theorem 2.4, we have that

1 & 1 1 «
— Xl,t—lgt = < )(1 — p2n)1/2— Xl,t—lgt —, 0.
n; (1= p1)' 2 V/n ' \/ﬁ; :

The third term goes to 0 in a similar fashion. Finally, for the last term, the WLLN implies

n~t >0 e? —, 0. Thus the off-diagonal elements converge to —Q;0? in probability. Then,
I =@

(zz ZXt 1X 1Dn%“) —p 0 |:_Qz 1 ] = CTQV(i,i).

t=1

Note that V{; ;) > 0 since we assume q¢ # 1 = Q; # 1.
Next, we have

N [ = pd) T 2N X
Dm(i’i)Zthlgt— {(1 p2 )1/2 —1/2 Zt L Xog18]

t=1
We do a martingale CLT for convergence. We have the following martingale difference array

with F,,; = o(ey, ..., 1) (from now on, the filtration will be self-evident, and the martingale
difference property is obvious):
Eop = (1= p2) P02 X e [(1=p2,) P02 X - (14)
M= p3) P R X ey (1= p3,) 20712 X5, |

Then, we have

> E(&ni& | Frat)

t=1

., Z = i) E(XT [ Frg1)
1/2 (1= p3) P EB(X 1 Xo 1| Freo1) (1= pho)n 71E(X2t UFni-1)

— g2 [ , 1<21 - P1n2)”11222:1 )5;12,16—1 , ;“ . , 1
(1—pi,) / (1 —p3,) 2n~ Zt:l X1 aXopa (1= p3,)n~ Zt:l X2,t71
_)p 0-4‘/(i7i)

10



where we used our work from before. The Lindeberg condition holds by Lemma A.1. We
conclude that

Dl Y Xiee —a N (0,6 Vi),
t=1

The continuous mapping theorem with the items just proved complete the final statement
of the theorem by (7). O

11



3.2.2 Pin 7é P2ns Pin € C<Z)7 Pan € C(“)

Theorem 3.2. Suppose pin 7 pan, pin € C(i), and pa, € C(i1). Let Dy, ;4 be the following
diagonal matriz:

(1_p ) 1/2 1/2 0
Dy, iy = [ 0 ol

Then,

1 0 NO,I
Z“)ZXt 1Xt, 1D 1“1 (“Z ZXt 1575] —d 0’2|: 1 :| 02 |:f1 ( )

0 [y Jeo(t)?dt]’ o Jeo(t)dW
' (15)

D iy T — n) =4 L 2d;\/ (Ofi) " )} .
' (16)

Diagonalization yields a mildly stationary AR(1) process and a local-to-unity AR(1)
process, and the components of the AR(2) limit distribution are the respective AR(1) limit
distributions. The diagonal entries of D, (;;;) are the normalizations from Theorem 2.4 and
Theorem 2.5.

Proof. We have:

IR _ 1—p2 ) )n 'S X2, %
D1 X, X' D7t = [ ( in) =1 L1 L .
n,(4,i) ; t=13 1 (4,i0) (1 — P%n)l/Qn 3/2 Zt:l X111 X041 n 2275:1 X22,t—1

The diagonal elements of the matrix are taken care of by Theorem 2.4 and 2.5. We focus on
the off-diagonal elements. Using (8), we have:

1 1

n3/21 — pippon

1 n
(1-— pfn)wm ZXl,t—lXZ,t—l =(1- P%n)m

t=1

< — X1 Xopn = Pin Z X116

t=1
n

+ Pon Z Xoi 16t — Z 5?)
t=1

t=1

By Giraitis and Phillips (2006), we know that n=%/2X;,, —;, 0, and by Phillips (1987b),
we know that o~ 'n"'2X,, —,; J.,(1). Thus, the first term in the brackets on the RHS
is O,(n'/?). For the second term, Theorem 2.4 implies that the convergence rate is (1 —
p2.) V2012 € (n'/2 n). The third term is O,(n) by Theorem 2.5. The last term is O,(n) by

WLLN. Note that 1 — py,p9, ~ 1 — p%n since py, converges slower than po, by assumption.
Thus

1 1
n3/2 - P1nP2n
= Oy((1 = p},) 7" 2n7172)

1 n
(1- p%”)mm ZXl,t—IXQ,t—l = (1-p},)"?

Op(n)



Thus the off-diagonal elements converge to 0 in probability. Since the upper-left element
converges in probability, we conclude that

0

—1 ! —
Dn,(i,ii);thXt—l (127, _>d‘7 [0 fo 62 2dt]

Clearly, this is positive-definite.
Next, we have:

B - 1—p3 )220 X ye
DS Xe = | T 2 K :
n,(i,i) ; t=1=t [ nt Y Xo1es

We must use the vector martingale FCLT for joint convergence of all terms in (7). Let

n12(1 — 22 V12X, . e 1 (1= 22X, .
s = [ ( Piy) Lj-1 J:| _ ﬁ {( pln)l Lj 1} €. (17)

Then, we have

Lnt) B .
S E(6s6 Fagr) —o? | (LA DS X
j=1 R (1= p2)2n —12 I X1, ntnt

The top-left element goes to to? by a re-scaling of Theorem 2.4. Clearly the bottom-right
element goes to t. We show that the off-diagonal elements go to 0. We have

X1t = pinXi—1 + &
[nt] | nt] | nt]

= ZXl,j = P1in ZXl,jfl + 25]'
=1 j=1 j=1

[nt] [nt]
= (1 - pin) ZXLJ' = —X1|m) + ij

[nt)
= (1= pw) ) X = 0p(n'?)

J=1

since n~Y2X, ,,; =, 0 and the FCLT implies o~ !n~1/2 ZJLZJ —q W (t) on D[0,1]. Then,
since 1 — py, ~ 1 — p?,, we have:

[nt]
(1=p}) Pt Y X0 = Oy ((1=p3,)" 0! 1/2(1_p1n)_1>

1 (a
=
—0 ( -1/2,, 1/2>
(1).

= 0p(

13



Thus,

) a’t 0 ot 0
/ 2 _

The Lindeberg condition holds by Lemma A.2, so the vector martingale FCLT implies that

%5” it

on D|0, 1], where Wi (t) and W (t) are independent standard Brownian motions. Next, note

that n=' 3\ | Xoy 16 and n2) " | X3, | are continuous functionals of ZL"” —1/2

Phillips (1987b) using an integral argument. Thus,

€j by

(1= p3,) /2012 Yo Xito1e ' W1(1)
ntY  Xoyae —g 02 fo e (
2y, X22,t71 fo o ( 2dt

since these are just continuous functionals of ZW &nj- Now, every term of (7) is a con-
tinuous function of the LHS of the above since (1 — pi,)n~' >/, X7, | is a function of
(1 —p2 )20~ Y25"" X1, 1 by Giraitis and Phillips (2006). Therefore, the continuous
mapping theorem completes the proof:

D (i Th (0 — bn) —va (0' [0 M 020 th} )102 { I gég),;%/(t)}

- [(f; Qdiwofol | Tea >] |

14



3.2.3 Pin 7é P2ns Pin € C<Z)7 Pan € C(“Z)

Theorem 3.3. Suppose pin # pan, pin € C(i), and py, € C(iii). Let Dy 1) be the
following diagonal matriz:

Do iy — [(1 — 2 )22 0 } .
Y 0 (p%n - 1)_1pgn
Then,
n n / 2 QN( ) /
~1 / ~1 -1 o“ 0 o 0,1
Dn,(i,iii)ZXt—lXt—an,(i,iii)’Dn,(i,iii) ZXt—lgt] —d [{0 Z%} J { A ] ) (18)
t=1 t=1
~ N(0,1
Dn,(i,iii)Trll((bn — On) —d |:ZQ(_1}/2):| ) (19)

where Zy and Yy follows the definition in Theorem 2.6 with innovation sequence (—&;)ien-
Note that Zy Yy =4 Cauchy.

Diagonalization again works very well: we get a mildly stationary AR(1) process and
a mildly explosive AR(1) process, and the components of the limit distribution are simply
the respective AR(1) limit distributions. The diagonal entries of D, (; ;) are simply the
normalizations from Theorem 2.4 and 2.6 as expected.

Proof. We have:

2\ —1xn 2
(1= pip)n™ " iy X7 421 *

n
-1 ’ —1
D E X¢_1Xy_1D_ s s :|: 2 \1/2 —1/2, 2 - 2 2 —2 2 .
., (4,di1) =1 AUD) (1 - P1n,) /2p =1/ (Pzn - 1).‘727? 211:1 X1 t—1X2,t—1 (Pzn -1 Pznn Z?:1 X2)1,71

Theorem 2.4 and Theorem 2.6 takes care of the diagonal elements. We focus on the off-
diagonal elements. Using (8), we have:

(1=pi)"? 5 RS (1=pi)"* _ 1
S 1)y S X Koy = (21—
NG (2 )Pa ; Lt—142,¢—1 NG (3 )P3 1= pinpom
: ( - Xl,nXQ,n — Pin Z Xl,t—lft
t=1
+ pPon Z Xoy 16 — Z€?>-
t=1 t=1

We know from previously that X;,, = o0,(n'/?), hence X1, = O,((1 — p?,)"%?). Also,
Xon = O,((p%, —1)"Y2p8 ) from Phillips and Magdalinos (2007). Then, X1, X5, = O,((1—
P2 ) V2 (2, — 1)7Y2p8 ). We know that the second term is O,(n). The third term is
O,((p3,—1)"1p5.) by Theorem 2.6. The last term is O,(n) by WLLN. n is a faster rate than
(1 — p3,)7/2, so we can say that the rate of the bracketed term is

0p<(p§n — 1)+ (L= pt) 2 (pan — 1)‘1/2,0§n>-

15



Thus,

(1—p2 )2, < (1—pi)" — 1
n _ 1 n X B X = A ¥ VN _ 1 n____ -
—\/ﬁ (P35, — D)o Z 1,—1X2,4-1 n (P2, — VP2, 1= pinpom

t=1
Oy (03, = 1)l + (1= p2) ™2 (pan = 1) 203, )
= 0, (1 = prapan) 07211 = 1)+ (1= p3,)7)
= 0, ((1 = piapn) /20 112)
= 0,(1),

where we use that (1 — p1np2.)/? and (1 — p2, )2 4 (1 — p3,)"/? are the same rate (each is
dominated by the slower one). Thus the diagonal terms converges to 0, so

2

_ o 0
n (2,312) ZXt 1X£ 1 (zzu) |:O 222 :| +OP([2>’

where the bottom-right element is by Phillips and Magdalinos (2007).
Next, we have:

~ - 1—pi )27 2500 X, 1511
DL NTX, g = { =
n,wm; =15 (3 — Dpan Doy Xop1ee

_ 1= p},) A1 Do X118 1
N YZnZQn + Op( )7

where the second element is by Phillips and Magdalinos (2007). We will do a martingale
CLT to prove joint convergence of all terms in (7). Let

1 —(pinf”?;;); Ko S (L= )0 20 Xy
gn,t = Pop, — 1 p;n Et, = €n7t = Z2n
(3, — 1) 2p5 ™Y Yon
(20)
Then, we have:
ZE(fn,t&,t‘fn,tﬂ) =0’
t=1
(L= pf)n ' >0 XTy B " *
(1 - p )1/2(/) 2n 1)1/2 12 Zt 1 p2 X1 t—1 (,O%n ) Zt 1 p_ *

_ (n—t+1 —n— n —2(n—t+1
(1= 2203 — )20 2 o TN (2 = ) ot (3 — DS 2

The (1,1) element converges in probability to ¢ by Theorem 2.4. The (2,2) and (3,3)
elements converge to 1 since they can be written as geometric series: to demonstrate, for the
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(2,2) element, we have

_92 —2(n+1)
P n(l — Pon ) —2(n+1
(P53 — ZP2 (03, — 1= 1_10272 :1—P2n(+)_>1
2n

by Lemma C.3. For the (2,1) element, we have:

| =) 268, = o2y x| < (= 2" max (Xt
1 >

t=1

(3, — )PP !
t=1
—n—1

1
_ 1/2,,~1/22 ~ Poan__
(1) (p3, — 1)?n~ o — 1

= Oyl(p3, = 1)/*n'1?)

= 0p(1)

where the first inequality uses norm relations, the first equality holds since

n—1 t—1
. 9 _
IXll7, = 1) plejualli, =Y pi = O((1 = pi,) ),
j=0

=0

the second equality holds since p3, — 1 ~ ps, — 1, and the last equality holds by assumption
of P2n-
The (3,1) element goes to 0 in the same manner. Finally, the (3,2) element is:

(P3n — Zpg n(p3, — Dpar™" =0

by Lemma C.3. Therefore, the conditional variance converges to o?diag(c?,1,1). The Lin-
deberg condition holds by Lemma A.3. So, we conclude that

(1- P%n)lﬂnilm 2?21 X116 n a2 0 0
Za =Y Gu—anN (0020 1 0|)
Yo, t=1 0 01

Now, every term of (7) is a continuous function of the LHS of the above since (1—p3,)n™' 31| X7,
is a function of (1 — p2,)/?n=Y23"" X, 1 by Giraitis and Phillips (2006). Therefore,
the continuous mapping theorem completes the proof:

—1
TN 2 0 2N 07 1
Dy i,iiy T (b — ) —>a ( ﬁ) 222] ) {U Yz(Zz )1

-]
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3.24 Pin 7é P2ns Pin € C(“)? Pan € C(”)

Theorem 3.4. Suppose pin # pan, pin € C(i1), and py, € C(ii). Let D, () be the
following diagonal matrix:
n 0
D, (is,i5) = {0 n} :

Then,
1 n , 1 1 n ! Y Je, (£)2dt Y Jey () Jey, (0)dt] [ [1 T, aw )] ]’
Doy (it t; Xe—1 Xy 1D Ga,00) P ad,00) t=21 Xt*lst} —d [ [fol 3)61 (tl)Jc2 (t)dt 0 I 1JC2 (t)%dt ’ fgl JC; (t)dW (t) ? 21
. JEdey (D%dt J Tey (0 Jeg (Ddt] T[S Tey (AW (1)
Dritiny Tn(Fn = #n) =2 {f(} Tey eyt g @ta | oG wawe) @Y

Diagonalization yields two local-to-unity AR(2) processes. However, rather than getting
a clean limit distribution that has AR(1) local-to-unity asymptotics in the components, we
get cross-terms. The normalization matrix D, ;i) has n in the diagonal entries, which is
expected by Theorem 2.5.

Proof. We have:

n —aNn 32 o\
i) 2 X1 Xi Doy = |2 D X Xoer TP XE

t=1

Theorem 2.5 takes care of the matrix’s diagonal elements and the vector element. We focus
on the off-diagonal elements. Following Phillips (1987b), we know that from the FCLT that

a‘ln_1/2X1 |t Jey (t)
[a_ln—lﬂszJ —d JCQ(t) '

Lnt)

since both terms are continuous functionals of the same random walk S,,(t) = #ﬁ >ji &jin

the FCLT, where convergence is on D]0, 1]. Note that integration is a continuous functional
on the space D[0,1]. Then, the continuous mapping theorem implies

n2 ZXl,tlethfl = n2/ Xl,LTJXQ,U"J dr
=1 0

1
an/ X1, |nt) Xo, [ nt) dt
0

" X4 nt) Xojn
202/ Lint) X2nt] 4,
0 ovn oyn

1
—g 02 / Je, (), (t)dt.
0

Thus, we have found the limiting behavior of the off-diagonal elements. The matrix is
positive definite by the Cauchy-Schwarz inequality with a strict inequality since ¢; # cs.

18



Next, we have:

n -1 n
D71 g X161 = {n 1Zt:1 Xe-16
n, (4,it) L P B G I
i—1 thl 2;t—1¢ct

We can use the FCLT and the continuous mapping theorem again: since all terms are built
from the FCLT result that

Sn(t) —a W(t)

with convergence on D0, 1] (see Phillips (1987b) again), we can conclude that the theorem
holds using (7). O
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3.2.5 Pin 7é P2ns Pin € C(“)? Pan € C(Z”)

diagonal matriz:

n 0
Pnisin = [0 (P}, — 1)‘1/)%} '
Then,

/ /
n n 2 rl 2 2 rl
_ _ _ Jo, (t)*dt O Jo, (0)dW (t
Dn%zzlu) ZXt—lXt,—an,%ii,iii)’Dn,lii,iii) ZXt—lgt] —d {0 fo 1( ) ] ) {U fo 1( ) ( )] ] )
t=1 t=1

_ 0 Z22 Yo Zs
' (23)
~ [l 2 —1 rl
Dy (i ity T (9n — dn) —>a (o Jeu (2) dt)Z‘ 1{2 Jer (t)dW(t)} 7
2 2
(24)

where Zy and Yy follows the definition in Theorem 2.6 with innovation sequence (—&;)en-
Note that Z; Y, =4 Cauchy.

Diagonalization works cleanly in this case: we get a local-to-unity AR(1) process and
a mildly explosive AR(1) process, and the components of the limit distribution are simply

normalizations from Theorem 2.5 and 2.6.

Proof. We have:

Dl Zn:Xt—lX, D1l _ [ o n2y nXIQ,tfl , , 2* . , ]

i t=1 P i) n=H (05, — Dpan Doy X1 Xoe1 (P2, — 1)%p2," Doy Xoi1]’
Theorem 2.5 and 2.6 takes care of the diagonal elements. We focus on the off-diagonal
elements. Using (8), we have:

1 e 1 o1 a
ﬁ(pgn —1)pan ; X1 Xop1 = E(pgn — oo m( = X1nXom = P1n ; X118
+ Pon Z Xo 161 — Z 5?) .
t=1 t=1

We know from previously that X;,, = O,(n'/?) and Xy, = O,((p3,—1)"2p8 ), 50 X1 n X0, =
O, (n*?(p3, — 1)71/2p2 ). Theorem 2.5 implies the second term O,(n), and Theorem 2.6 im-
plies the third term is O,((p3, — 1)~ 'ph,). The last term is O,(n) by the WLLN. Note that

20



1 — piapon ~ 1 — p3,. since po, converges slower than py, by assumption. Then,

1 e 1 _ 1
E(pgn - ]‘)an ZXl,t—let—l - ﬁ(pgn - 1)1027?1 _ OP <n1/2(p§n - 1) 1/2p§n>

= 0, (n 2 = 1)1 = prapen) )
= Oy (n (3, — 1))
= 0,(1).

Thus, we have:

_ n2y" X2 .0
Dn (ii,ii1) ZXt 1 X 1Dn%im‘i) —d [ Ztol bt 72 } +0p(12)-
2n

..... ZXt 164 = 2 n! 221;1 X;ll,t—left _ n~! Z?Zl Xi-1& ‘
n (4t,4i7) — 1)p2n Zt:l X2,t71€t }/énZQn

For joint convergence of all terms in (7), we use the vector martingale FCLT. Let

o—1n—1/2

Gng=| (P —D"p | e (25)
(p% _1)1/2 —(n—j+1)

2n

Then, we have:

[nt]
ZE(gn,]€;7j|fn7],1) =0

Jj=1

o2t nt| *
_ n n —2j
1/2( 2n )1/2 Z} tIJ p2n (pgn )Zgl- tl p2n] *
1. — n n—j+1 n —n— n —2(n—j+1
o' 1/2<p2n W pOp oS (S VDY) i PN (S VD Wy i J S
The diagonal terms converge to 0~2t, 1 and 1 respectively, where we use geometric series and

Lemma C.3 to prove convergence for the (2,2) and (3,3) element as in the proof of Theorem
3.3. For the (2,1) element, we have:

[nt]
g 1n_1/2 p?n 1/2 Zan - pZn 1>_1/2n_1/2) - 0p<1)‘

The (3,1) element converges to 0 similarly. The (3,2) element goes to 0 by Lemma C.3.
Therefore, the conditional variance converges to o2diag(c~>t,1,1). The Lindeberg condi-
tion holds by Lemma A.4. Note that the second and third term have no t-dependence, so
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we can view the second and third components of &, ; as constant functions in the space
DJ0,1]. Therefore, they converge to what the vector martingale CLT would imply, while the
first component of &, ; converges to the vector martingale FCLT-implied Brownian motion.
Therefore, we have that

[nt]

an] —d < ),Zz,Y2>

on DI0,1]. Thus, joint Convergence of all terms in (7) holds since both n™2 Y7} | X7, | and

n~t> X1 4-18 derive from o~ tn 12 ZWJ £;, 0 we can use the FCLT and the continuous
mapping theorem. Thus, we conclude that

D iy T (b — &) — ({ o cl (t)%dt oDl {0—2 folJcl(t)dW(t)]

Z3 Y22,

[ Jo T ( th21{/ Jl(t)dW(t)].
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3.2.6  p1n £ Pany pin € Cliii), pan € Cliid)
Let ¢, and ¢ be defined as in (9), and change the definition of @),,; and @ slightly:

(p%n B 1)1/2(p%n)1/2 —1
1— P1nP2n

Qniii = , Qi = lim Qp i € [0,00). (26)
n—oo

The properties between ¢ and ();; outlined before Theorem 3.1 still hold.

Do e — (p%n - 1)_1p711n 0
n, (44i,i14) 0 (p%n - 1)71p3n '

, _
72 Qiii 2\ Z Y. Z

) , _ _ 1 114142 141
D (iiiiii)ZXt 1 X 1D (i4,ii3) D (i i) ZXt 15t] —d [Q“’iZlZQ Z2 } ’ |:}/2Z2:|

t=1 t=1
(27)

72 QuZiZy ' iz,
QiiiZIZ2 Z22 Y2Z2 '
(28)

D (i3 i14) T’ (¢ — ¢n) —

where Z1 and Y follows the definition in Theorem 2.6 with innovation sequence (£¢)ien, and
Zy and Yy have innovation sequence (—&;)ien-

Diagonalization yields two mildly explosive AR(1) processes. The diagonal entries of

dlfferent rates, (Q;; = 0, hence the components of the hmltlng distribution are Just the limit
distributions of a mildly explosive AR(1) process.

Proof. We have:

2 _1)2p—2n2n X2 %
Dyt X, X, Do = (P In 2at=1 11 o .
n, (i44,147) Z . , ({4,147) (p%n - 1)p1n (p%n - 1)p2n Zt:l Xl,t—1X2,t—1 (p%n ) p2n Zt 1X2t 1
The diagonal elements in the matrix are covered by Theorem 2.6. We focus on the off-
diagonal elements. From before, we know that X;,X2, = O,((p3, — 1)~ 1/2p1n(,02n —
1)7Y2p2 ), the second term is O,((p?, — 1)71p%,), the third term is O,((p3, — 1)71p8 ),
and the last term is O,(n). Thus, from (8), we have:

" 1
X121 X941 = —— X1, X0 (1 +0,(1)).
> XKoo =~ X X1+ 0y(1)

Then, we have from Phillips and Magdalinos (2007),

(P10 = Do (03, — Do > Xiam1Xou 1 = QuiiiiZinZon + 0p(1).

t=1
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Again by Phillips and Magdalinos (2007), we have:

1 , _ o 1n n,iii L 1In42n
Dy, i m)ZXt X Dn i = |:Qn,iiiZInZQn Z3,

-1 - _ [t —
Dy, i i) ZXt—lgt = (g2, —

We only need to show joint convergence of Z1,,, Y1, Za,, and Y5,,. Let

)102n Zt 1 Xo—18¢

<p2n - /1>1/2(p_72+1 " Zln
_ (pln - 1)1 2 _nn _ Yln
S R R S
(3, — 1)V2pp Y Yan
Then, we have:
Vi = ZE(fn,tgq,mAfn,t—l) =0’
t=1
(Ptn = 1) 220 P Voiz Viia
n —2(n—t
Vn,21 (p%n - 1) t=1 pln( ) Vn,23 ot
Vn,31 Vn,32 (p%n - 1) t=1 p;n
Vn741 Vn,42 Vn,43 (P%n -

where V,, is symmetric and

Va1 = (p1, — Zp_n !

Vit = —(ph — D203, — ”menﬂ
—t —(n—t+1)

Viar = —(pt, — 1)1/2 1/2 Zplrtbp2n " )

n

—(n—t+1) —
Vn,23 = _(p%n - 1>1/2(p2n 1)1/2 Zplrf " )p2'rf)

t=1
n

_<p%n - 1)1/2(p%n - 1)1/2 Z(plnp?n)i(nit+l)a

t=1
Z p—n 1

Vn,24 -

Visa = (p5, —

24

),01n Zt 1X1t 1€¢ — }anQn
}/2nZ2n '

} + 0p(12)

(29)
Vn,14
Vn,24
Vn,34
n —2(n—t+1
1) t=1 p2n( o



The diagonal terms of V,, converge to 1 by using geometric series. V;, o1 and V3 converge to
0 by Lemma C.3. V,, 31 and V}, 24 converge to () by using geometric series. Finally, for V,, 4
(and similarly V}, 23), we have:

—t —(n—t+1
Vaa = —(P%n - 1)1/2 Pzn 1/2 Zplé 275 o

—(p3, = 1) (p3, — 1)"?p5, 1Zp1np§n

2 1/2 1/2 —n— 1/%(1 B <%)n+l)

Pln
_ (P2n\n+1
_<p2 - 1)1/2(p2 — 1)1/2'07”%
1n 2n 2
Pin P2an
p2n - ph:bpzn
2 1/2 1/2 Pin
(pl ) (p2 ) Pin — P2n

— 0.

We conclude that
1 0 Qui O

0 1 0 Qu

2 11

Vo =y 0 Qiii 0 1 0
0 Qi O 1

Clearly this is positive definite since Q;; # 1. Thus, with the Lindeberg condition from
Lemma A.5, we conclude that

Zin A 1 0 Qi O
Yi| % i| 20 1 0 Qu
ZLon _tzlén’t T Zo '_N<070 Qiii 0 1 0 )
Yon - Y, 0 Qi O 1

Then, by continuous mapping theorem, we can get the limiting distribution over our nor-
malized OLS:

Z2 QleQ -1 Y71Z1
/ 217
Dy it ity Ty — 6n) —a [QleZz 73 YaZo|
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3.3 Repeated Eigenvalues

In the repeated eigenvalues case, we can no longer diagonalize R,, but we can employ
the Jordan form. Let

with

n 1 0

V2
e { L Pnl |
where we use (3). The Jordan matrix has the following power properties:

0
Jk — k-1 [ﬂn } ’
n=Pn L o

0
Jk — k1 {Pn } '
n Pn —k pn

-l {pn _pﬂ

Transforming the companion form in (2) with X; = T,: Lz, and U, = T luy, we get

Xt - JnXt—l + Ut7 (30)

X P 0| [ X1 Pn
Y= ’ +¢€ .
[Xz,t} [ L pnl| [Xoi1 "1
Since we cannot diagonalize, we cannot separate X; into two AR(1) processes. This generally

makes the asymptotics harder to prove. Similar to the distinct eigenvalues case, we must
find a suitable normalization diagonal matrix D,,, so our OLS will look like (7):

DT (b — ¢n) = (DS Xea X, D) (DY Xomaen). (31)
t=1 t=1
To help us with the off-diagonal terms of the matrix, the following decomposition is helpful:

(Ii— T ® Ju) > wvee(X1 X, )

t=1

- vec( SO 1Y XU+ S UXL T - ang). (32)
t=1 t=1 t=1

Furthermore, we must use the vec operator and the Kronecker product ®. We list some key
facts in Lemma C.4.
We now solve for asymptotics. We will have three cases depending on the regime of p,,.
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3.3.1 p, € C(i)
Theorem 3.7. Suppose p, € C(i). Let D, ;) be the following diagonal matriz:
ARG
Pt = { 0 (1=p2) ]
Define

11
Viy = [1 21'

VD, T (6n = n) —a N(0, V). (33)

We can see the effects of having to use a Jordan form rather than a diagonalization in this
theorem. We have a strange (1 — p2)~%2-normalization for the second component because
the rotation couldn’t separate X;, from Xy,: the second component is an AR(1) process
with an AR(1) innovation. Furthermore, the components of the limit distribution no longer
resemble each other, as was in Theorem 3.1.

Then,

Proof. From (30), we see that the Xy has an innovation that includes an AR(1) term in
the C(i) case, so we expect to need to normalize according to X, X,. We can write X,, =

S U = U, s

j=1%n
n—1
E(X,X) = > JEUn U, ;)( )
j=0
n—1 .
P J pn| |1 0 pn
A Y S Y an”l&piJ(JH)
an? o (G+1) i Al +1)* |
NO’ |:1( _p'n, 12 %(]‘_pn) 2:|
1L=p)7 (L —pu)7?
by Lemma B.1. Then, if we let
(1— p2)-1/2 0 }
Dn i) — ¢ )
(0 |: 0 (1 - pn) 3/2
we have
] ] | L1 = p2)2(1 = p,)2
DL E(X, X' )D! 02{ o 4 o "
OEEXDo o~ g e~ py2 du— - g,
Ct o 0
11+ p0)* (14 pn)
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Similarly, the above calculations imply that

max E|| D, X;[* < oo (34)

1<t<n

Now, we expect n~Y QDJ%Z.) normalization to be enough to make equation (32) stable.

However, we actually require another normalization to ensure convergence. By (32), we
know that

n

1 /
(Iy—J, ® Jn)ﬁ Z vee(Xi—1X;_) = vec(Gy)

t=1

1< 1< 1 < 1
:zw4——§jmw+ﬁr§ &4w+—§jmm4%——xxg.
n n n n

t=1 t=1 t=1

Define

A, = E 1_0[)721} . (35)

We will normalize by A, G,A!. We have the following facts by Lemma B.2:

||n_1/2Aan||L2 - Op(1>7 (36)

1 n

Ang Z U, =, 0o E ﬂ ’ (37)
t=1

2

=o(1),. (38)

Lo

1 n
vec(Aanﬁ Z Xt_lUt’A;)
=1

Then, we have

n

1
(Iy — Jp ® Jn)— Z vee( X1 X[ ) = vec(Gy)
n
t=1
= (AP @ A Yvee(A,GLA!)
= (A, ®A,) toPvec E H + 0,(1),
and since
1 & , - 1 / -1
n > _vee(Xe1 Xy 1) = (Dugy ® Dugi) ) vee(Dy, (n X1 X1 D)),
t=1 t=1
we have

1, < . 11
anec(ﬁDnb) Z Xt—le{—an,b’)> = o?vec L J + 0,(1),

t=1
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where

M, = (A @ Ay)(Is = Jo @ J,)(Dagiy ® D)

1 0 0 0
|1 1=p2 0 0
10 1-p2 0

1—p2 0 0 0
—Pn 1- pi 0 0
—Pn 0 - :0121 0
| -1 —p —pn 1=l
[(1—pp)~"! 0 0 0
0 (1—p2)2 0 0
0 0 (1—pp)2 0
0 0 0" (1)
1 0 0 0
B 1—p, 1 0 0
a 1—pn 0 1 0
(Pn—=2)pn 1—py 1—p, 1
Then,
1 0 0 0 1000
1 pn — 1 1 0 0 0100
M, pn— 1 0 1 ol 7 loo1o0
P =200 +2 pp—1 p,—1 1 1 0 01
hence
1
1 & 1
U@C(ED;E) Z Xt_le:—an,%i)) = O-QPQMn ! 1 + OP(]')
t=1 1
1
1
=0’ 1 + 0,(1)
2

SO

~D, 1 Z; Xi 1 X[ 1Dyl = Vi
t=
Clearly V;) is positive definite.
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Finally, we return to the original OLS in (31). We have:
o 1 n 1 n
VD@ Ti(bn = 00) = (S Duty Do Xia XDyl ) (072050, " Xiae)  (39)
t=1 t=1
The second term on the RHS satisfies a martingale CLT. Define

Gor=n"PD 1 Xie = Y &Gu=n"2D 1Y Xie (40)

t=1 t=1

We have

n

ZE(gnvtS;L,tlfn,t—l) =0

t=1

51

—1 -1 4
=Dty D X XiaDygy = o' Vi
t=1

from our work above. The Lindeberg condition holds by Lemma B.3, so we conclude that
”_1/2D;b) Z X168t = Z fn,t —d N(O, U4V(z‘))>
t=1 t=1

and continuous mapping theorem together with (39) implies

\/ﬁDn,(i)Té(ﬁgn — ¢n) —a N (O, V(i_)l)-
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3.3.2 p, € C(ii)

Theorem 3.8. Suppose p, € C(ii). Let Dy, @) be the following diagonal matrix:

n 0

Define
H.(r):= /T e 1, (u) du.
Then,
s fo (r)2dr fo (r)dr fl J(r)dW (r)
P Taln =) [fo e ] [ch<r>dW<r>]' “

Again, the second component requires an n-normalization rather than an n-normalization.
Furthermore, the limit distribution involves H,(r) rather than only J.(7).

Proof. In this case, it is easier to analyze each term of the OLS expansion separately rather
than try to work with vectors. From (30), we have:

Xl,t - anl,t—l + pn€t7
Xoy = pnXog1 + X1 + &4

Focus on the matrix term in (31). For r € [0, 1], we have by recursion:

Xy = 3 )

nrj

_ ZanrJ ]X1 L+ Op(n1/2>

[nr]

_ pT—Ll/ prthTJ_LUJXLLquu + Op(n1/2)

0
) [nr]/n "

= np, / P UK gy ds + Op(n'2).

0
Then, by Lemma B.4, we have
[nr]/n
o X |y = pl/ plrr= ns) X1 Sl gs 40 L) =g Ho(r).
) n 0 n 0_\/ﬁ

where the convergence is on D[0, 1]. Then, we know
1
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from Phillips (1987b), and we use the same strategy in the following argument:

a’2n’4ZX22t L =0 °n" / X3 L dr
x 2
. 2,|nr|
_/ <0n3/2> dr
—)d/ H

] ~a [20), Hc(r)}'

Importantly, we know joint convergence

[Xl,LnrJ XQ,\_nrj

o\/n’ on3/?

on D[0,1] x D|0, 1] since both limits derive continuously from the basic FCLT result. Thus,
we should pick our normalizing diagonal matrix to be D, ;) = diag(n, n?). We have

- ! X1 |nr] X |nr] !
o 2n3 2:)(1775_1)(271&_1 = / ’ = dr —y / Je(r)H(r)dr.
o 0

3/2
on
t=1 0 n

So, we have via continuous mapping:

r)2dr f r)dr
y ZXt X, D> 1,, 3y 02 [ fo 0 ]
e ) ) Jo Jelr)Ho(r)dr fo

This is positive definite by Cauchy-Schwarz (clearly equality does not hold).

Next, we analyze the vector term in (31) and its components. Z:Zl X116+ converges
as in Theorem 2.5 since we have innovations p,e; = (1 + O(1/n))e;. For > 7 | Xo, 16y, let
S, = Z;Zl g, and let S, = W (T;) be the Skorokhod embedding of S; into the probability
space that the Brownian motion lives in (see Billingsley (1995)). Using recursion, we have:

X =