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Abstract

This paper solves OLS asymptotic behavior for an AR(2) model with drifting au-
toregressive parameter sequences. We make extensive use of results regarding AR(1)
asymptotics under similar drifting parameter sequences. Then, we attempt to use our
results, follow Andrews et al. (2020), and construct a uniform confidence set for the
AR(2) parameters that has correct asymptotic size regardless of the true value of the
parameters, making them robust in finite samples. However, we show the failure of key
continuity assumptions that bars us from using this method.

1 Introduction

AR(p) processes help model important economic variables with dependence on its past
values, such as inflation and stock prices. However, inference for parameters is quite tricky,
even in the simplest AR(1) case, since we have structured dependence among our observa-
tions. The basic AR(1) model with autoregressive parameter ρ is as follows:

Xt = ρXt−1 + εt.

Results for the stationary case (|ρ| < 1) and the explosive case (ρ > 1) have been known
since at latest Anderson (1959). Phillips (1987a) solved the unit root case (ρ = 1) using the
functional central limit theorem à la Donsker (1951).

Even before the unit root case was solved, many researchers noticed the poor finite-
sample behavior of the OLS estimator when ρ is close to 1, including Phillips (1977), who
demonstrated poor finite-sample approximation of the limit distribution when ρ > 0.8. This
behavior becomes apparent when looking at the OLS distributions for ρ < 1 and ρ = 1:
in the stationary case, the OLS estimator converges with rate

√
n to a standard normal

distribution, whereas in the unit root case, we have n-convergence to the non-Gaussian unit
root distribution, which is a functional of Brownian motion. To address this issue, Phillips
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(1987b) studied local-to-unity processes, where the parameter ρn drifts to 1 as a function
of the sample size at rate n, to understand finite-sample behavior near 1 better. Studying
drifting parameter sequences of AR(1) with different convergence rates continued from Chan
and Wei (1987) through Giraitis and Phillips (2006) and Phillips and Magdalinos (2007).

The problem of poor finite-sample behavior for ρ near 1 falls under the general umbrella
of uniform inference. The goal is to find a confidence set C such that C has the desired 1−α
asymptotic coverage probability uniformly across the parameter space: limn→∞ infρ Pr(ρ ∈
C) ≥ 1 − α. A uniform confidence set is difficult to construct for the AR(1) parameter
because the limit distribution when ρ = 1 differs vastly from the stationary and explosive
limit distribution. Early attempts at a uniform confidence set for ρ come from Stock (1991)
and Andrews (1993), of which a modified version of the former was proved to be correct
by Mikusheva (2007). More recently, Andrews et al. (2020) provided a general method for
constructing uniform confidence sets directly using the drifting parameter sequence asymp-
totics. In particular, for AR(1), since the discontinuity in the limit distribution occurs when
ρ = 1, one must look at drifting parameter sequences ρn converging to 1 at different rates:
these asymptotics continuously bridge the unit root distribution to the stationary distribu-
tion. Then, the critical values between the distributions vary continuously, which is the key
requirement for the method to work.

This paper tries to use the method in Andrews et al. (2020) to build a uniform confidence
set for the autoregressive parameters ϕ1 and ϕ2 in the AR(2) model:

yt = ϕ1yt−1 + ϕ2yt−2 + εt.

We study limit theory under drifting parameter sequences ϕ1n and ϕ2n. To our knowledge, no
work has been done on AR(2) with these drifting parameter sequences. We use the conver-
gence results in Phillips (1987b), Giraitis and Phillips (2006), and Phillips and Magdalinos
(2007) for AR(1) and extend it to the AR(2) case by using either a diagonalization or Jordan
form argument. When we can diagonalize, our AR(2) process becomes two AR(1) processes,
but when we use the Jordan form, we obtain one AR(1) process and another AR(1) process
with an AR(1) innovation. However, we show that the asymptotics do not continuously
bridge distributions between different cases as in the AR(1) case. Hence, we cannot use
Andrews et al. (2020) to build a uniform confidence set.

Somewhat related work for inference of AR(2) parameters can be found in I(2) literature,
such as in Dickey and Fuller (1979), Haldrup and Lildholdt (2002), and Haldrup (2002).
However, tests like augmented Dickey-Fuller only test for the presence of a unit root, and
they don’t provide the full asymptotics of different cases of drifting parameter sequences as
we do.

The outline of the paper is as follows. In Section 2, we review the martingale central
limit theorem, the functional central limit theorem, and asymptotics for the AR(1) model. In
Section 3, we solve asymptotics for different cases of drifting parameters in the AR(2) case,
depending on whether we diagonalize or use a Jordan form. Finally, we discuss implications
for uniform inference in Section 4. The Appendix contains some proof details.
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2 Preliminaries

2.1 Central Limit Theorems

We state different central limit theorems that we will use. First, we have the vector
martingale CLT, which can be found in most measure-theoretic probability textbooks like
Pollard (1984). The vector martingale CLT will help us prove joint convergence of many
different quantities.

Theorem 2.1. (Vector Martingale Central Limit Theorem)
Let {ξn,j : 1 ≤ j ≤ kn} be an Fn,j-martingale difference array in Rd that satisfies the

following Lindeberg condition:

Ln(δ) :=
kn∑
j=1

E(∥ξn,j∥21{∥ξn,j∥ > δ}) → 0

for all δ > 0 as n → ∞. Then, if

kn∑
j=1

E(ξn,jξ′n,j|Fn,j−1) →p H

as n → ∞, and H is almost surely positive definite, we have that

kn∑
j=1

ξn,j →d H
1/2Z,

where Z ∼ N (0, Id) is independent of H.

Donsker (1951) proved the original functional central limit theorem, and Phillips (1987a)
used the functional limit theorem as described in Herrndorf (1984). For additional references,
see Pollard (1984) and Billingsley (1999).

Theorem 2.2. (Functional Central Limit Theorem)

Let (εj)j∈N
iid∼ (0, σ2), Sk =

∑k
j=1 εj, and W (t) be a standard Brownian motion on [0, 1].

(i) There exists a sequence (S̃k)k∈N on the same probability space as W (t) such that S̃k =d

Sk for all k, and letting S̃n(t) := σ−1n−1/2S̃⌊nt⌋, we have:

sup
t∈[0,1]

|S̃n(t)−W (t)| →p 0 as n → ∞.

(ii) Let Sn(t) := σ−1n−1/2S⌊nt⌋. We have Sn(t) →d W (t) on D[0, 1].

(iii) Let Ψ : D[0, 1] → R be continuous. Then Ψ(Sn(t)) →d Ψ(W (t)) on R.

The following is a corollary of the above, found in Jacod and Shiryaev (2003).

3



Theorem 2.3. (Vector Martingale Functional Central Limit Theorem)
Let {ξn,j : 1 ≤ j ≤ kn} be an Fn,j-martingale difference array in Rd that satisfies the

following Lindeberg condition:

Ln(δ) :=
kn∑
j=1

E(∥ξn,j∥21{∥ξn,j∥ > δ}) → 0

for all δ > 0 as n → ∞. Then, if

⌊knt⌋∑
j=1

E(ξn,jξ′n,j|Fn,j−1) →p tH

for all t as n → ∞, and H is almost surely positive definite non-random matrix, we have
that

⌊knt⌋∑
j=1

ξn,j →d H
1/2W (t),

on D[0, 1], where W (t) = (W1(t), . . . ,Wd(t))
′, and {W1(t), . . . ,Wd(t)} are independent stan-

dard Brownian motions on [0, 1].

Again, the vector martingale FCLT helps us with joint convergence.

2.2 AR(1) Results

Crucial to our analysis is a complete understanding of the AR(1) asymptotic behavior
under drifting parameter sequences. Suppose we have an AR(1) process

Xt = ρnXt−1 + εt,

with a drifting, sample-size dependent parameter sequence (ρn)n∈N, (εt)
iid∼ (0, σ2), X0 = 0,

and t ∈ {1, . . . , n}. We employ the same Assumption 1 as Magdalinos and Petrova (2022),
except restricting to ρn → 1. The stationary case (ρn → ρ < 1) and the explosive case
(ρn → ρ > 1) can be solved similarly to the mildly stationary case and the mildly explosive
case, respectively.

Assumption 1. The sequence {ρn}n∈N satisfies ρn → 1. Furthermore, assume that the
following limit exists:

c := lim
n→∞

n(ρn − 1) ∈ [−∞,∞].

Make the same categorizations as Magdalinos and Petrova (2022) as well. {ρn}n∈N is:

• C(i): mildly stationary if c = −∞

• C(ii): local-to-unity if c ∈ R
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• C(iii): mildly explosive if c = +∞.

We let ρn ∈ C(i) to mean that ρn is mildly stationary, and similarly for the other cases.
We have the following AR(1) theorems. The first result for the mildly explosive case

is due to Giraitis and Phillips (2006). The rate of convergence for the OLS estimator is
(1 − ρ2n)

−1/2
√
n, which is between

√
n, the convergence rate for the stationary case, and n,

the convergence rate for the unit root case.

Theorem 2.4. If ρn ∈ C(i), we have:

(1− ρ2n)
1

n

n∑
t=1

X2
t−1 →p σ

2,

(1− ρ2n)
1/2 1√

n

n∑
t=1

Xt−1εt →d N (0, σ4),

(1− ρ2n)
−1/2

√
n(ρ̂n − ρn) →d N (0, 1).

Phillips (1987b) proved the local-to-unity case has OLS rate of convergence n.

Theorem 2.5. If ρn ∈ C(ii), we have:[
n−2

∑n
t=1 X

2
t−1

n−1
∑n

t=1 Xt−1εt

]
→d

[
σ2
∫ 1

0
Jc(t)

2dt

σ2
∫ 1

0
Jc(t)dW (t)

]
,

n(ρ̂n − ρn) →d

∫ 1

0
Jc(t)dW (t)∫ 1

0
Jc(t)2dt

.

where we have the Ornstein-Uhlenbeck process

Jc(t) =

∫ t

0

ec(t−r)dW (r).

Finally, for the mildly explosive case, we turn to Phillips and Magdalinos (2007), who
proved a convergence rate (ρ2n−1)−1ρnn, which can be shown to be faster than n (see Lemma
C.3).

Theorem 2.6. If ρn ∈ C(iii), we have:[
(ρ2n − 1)2ρ−2n

n

∑n
t=1 X

2
t−1

(ρ2n − 1)ρ−n
n

∑n
t=1Xt−1εt

]
→d

[
Z2

Y Z

]
,

(ρ2n − 1)−1ρnn(ρ̂n − ρn) →d Cauchy,

where

Z = lim
n→∞

Zn, Zn = −(ρ2n − 1)1/2
n∑

j=1

ρ−j
n εj = −(ρ2n − 1)1/2ρ−n

n Xn,

Y = lim
n→∞

Yn, Yn = −(ρ2n − 1)1/2
n∑

j=1

ρ−(n−j+1)
n εj,

and Y and Z are independent and Y =d Z =d N (0, σ2).
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The beauty of these results is that we can see the continuity of the limit distributions. Let
our starting point be the local-to-unity case. As c → −∞, ρn tends to a mildly stationary
sequence having a standard normal limit distribution. The local-to-unity distribution also
converges to a standard normal distribution as c → −∞ by Phillips (1987b). Similarly, as
c → ∞, ρn tends to a mildly explosive sequence having a Cauchy limit distribution. The
local-to-unity distribution also converges to a Cauchy distribution as c → ∞ by Phillips
(1987b) again. In both cases, the critical values as c → ±∞ vary continuously as we
travel from one parameter regime to another. Andrews et al. (2020) take advantage of this
continuity to form a uniform confidence set by inverting a test: see (2.17) and Assumptions
C1 and C2 in the paper.
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3 Main Results

3.1 AR(2) Model

Now, consider an AR(2) process

yt = ϕ1nyt−1 + ϕ2nyt−2 + εt, (1)

with drifting parameter sequences (ϕ1n)n∈N and (ϕ2n)n∈N, (εt)
iid∼ (0, σ2), y−1 = y0 = 0, and

t ∈ {1, . . . , n}. Written in companion form, we have

xt = Rnxt−1 + ut, (2)

where

xt =

[
yt
yt−1

]
, Rn =

[
ϕ1n ϕ2n

1 0

]
, ut =

[
εt
0

]
.

Let the eigenvalues of Rn be ρ1n and ρ2n. We impose an assumption:

Assumption 2. Rn has real eigenvalues.

Simple calculations reveal that

ρ1n + ρ2n = ϕ1n, ρ1nρ2n = −ϕ2n. (3)

Assume that {ρ1n}n∈N and {ρ2n}n∈N satisfy Assumption 1 with limits c1 and c2. We are
interested in estimating ϕn = (ϕ1n, ϕ2n)

′ = R′
ne1, where e1 = (1, 0)′. Naive OLS gives us

R̂n =
( n∑

t=1

xtx
′
t−1

)( n∑
t=1

xt−1x
′
t−1

)−1
,

so noting that u′
te1 = εt, we have:

ϕ̂n − ϕn = (R̂n −Rn)
′e1

=
( n∑

t=1

xt−1x
′
t−1

)−1( n∑
t=1

xt−1εt
)
.

(4)

We introduce a rotation matrix to use our complete knowledge of AR(1) asymptotics. We
consider two cases. On one hand, we have distinct eigenvalues, so we can diagonalize Rn.
Else, we have repeated eigenvalues, so we can use a Jordan form on Rn.
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3.2 Distinct Eigenvalues

In the distinct eigenvalues case, we can diagonalize Rn: let

Rn = TnΛnT
−1
n ,

where Tn contains the linearly independent eigenvectors, and Λn is a diagonal matrix storing
the eigenvalues ρ1n and ρ2n:

Tn =
1

ρ1n − ρ2n

[
ρ1n ρ2n
1 1

]
,

T−1
n =

[
1 −ρ2n
−1 ρ1n

]
,

Λn =

[
ρ1n 0
0 ρ2n

]
.

We can calculate Tn easily using (3). Do the transformation Xt = T−1
n xt and Ut = T−1

n ut:

Xt = ΛnXt−1 + Ut, (5)

[
X1,t

X2,t

]
=

[
ρ1n 0
0 ρ2n

] [
X1,t−1

X2,t−1

]
+

[
εt
−εt

]
.

We see that X1n and X2n are just AR(1) processes, which greatly aids our analysis. Then,

T ′
n(ϕ̂n − ϕn) =

( n∑
t=1

Xt−1X
′
t−1

)−1( n∑
t=1

Xt−1εt
)
. (6)

We will have a normalizing diagonal matrix Dn, so we can write the OLS as follows:

DnT
′
n(ϕ̂n − ϕn) =

(
D−1

n

n∑
t=1

Xt−1X
′
t−1D

−1
n

)−1(
D−1

n

n∑
t=1

Xt−1εt
)
. (7)

The appropriate normalization will allow us to use Theorems 2.4, 2.5, and 2.6 on the diagonal
terms of the matrix and the terms of the vector on the RHS of (7). For the off-diagonal
terms of the matrix, we have a very helpful decomposition:

(1− ρ1nρ2n)
n∑

t=1

X1,t−1X2,t−1 = −X1,nX2,n − ρ1n

n∑
t=1

X1,t−1εt + ρ2n

n∑
t=1

X2,t−1εt −
n∑

t=1

ε2t .

(8)

We presently begin solving asymptotics. There are six primary cases that depend on the
convergence behavior of ρ1n and ρ2n outlined in Assumption 1 (we have six rather than nine
cases since we account for symmetry).
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3.2.1 ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i), q ̸= 1

We need an additional specification here. Let

qn :=
1− ρ21n
1− ρ22n

, q := lim
n→∞

qn ∈ [0,∞] (9)

and

Qn,i :=
(1− ρ21n)

1/2(1− ρ21n)
1/2

1− ρ1nρ2n
, Qi := lim

n→∞
Qn,i ∈ [0,∞). (10)

Some calculations reveal that

Qn,i = (1 + ρ2n)
q
1/2
n

1 + 1+ρ1n
1+ρ2n

qnρ2n
=⇒ Qi = (1 + ρ2)

q1/2

1 + q 1+ρ2
1+ρ1

ρ2
.

Thus, if q = 0 or q = ∞, Qi = 0. This occurs ρ1n and ρ2n converge at different rates.
Otherwise, if q ̸= 0,∞, then Qi = 1 iff q = 1: they converge at very similar rates. In this
section, we require that they converge at fairly different rates (q ̸= 1).

Theorem 3.1. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(i), and ρ2n ∈ C(i). Let Dn,(i,i) be the following
diagonal matrix:

Dn,(i,i) =

[
(1− ρ21n)

−1/2n1/2 0
0 (1− ρ22n)

−1/2n1/2

]
.

Define

V(i,i) =

[
1 −Qi

−Qi 1

]
.

Then, when q ̸= 1,

D−1
n,(i,i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,i) →p σ

2V(i,i), (11)

D−1
n,(i,i)

n∑
t=1

Xt−1εt →d N (0, σ4V(i,i)), (12)

Dn,(i,i)T
′
n(ϕ̂n − ϕn) →d N (0, V −1

(i,i)). (13)

Diagonalization yields two mildly stationary AR(1) processes. It is no surprise that the
diagonal entries of Dn,(i,i) have the mildly stationary normalizations from Theorem 2.4. Also,
when ρ1n and ρ2n converge at different rates, Qi = 0, so the components of the asymptotic
distribution are standard normal distributions. The AR(1) mildly stationary case also has
a Gaussian limit distribution, so we can imagine this case as being two independent mildly
stationary AR(1) processes.
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Proof. We have:

D−1
n,(i,i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,i) =

[
(1− ρ21n)n

−1
∑n

t=1X
2
1,t−1 ∗

(1− ρ21n)
1/2(1− ρ22n)

1/2n−1
∑n

t=1X1,t−1X2,t−1 (1− ρ22n)n
−1
∑n

t=1 X
2
2,t−1

]
,

Theorem 2.4 takes care of the diagonal elements. We focus on the off-diagonal elements.
Using (8), we have:

(1− ρ21n)
1/2(1− ρ21n)

1/2 1

n

n∑
t=1

X1,t−1X2,t−1 = Qn,i

(
− 1

n
X1,nX2,n −

ρ1n
n

n∑
t=1

X1,t−1εt

+
ρ2n
n

n∑
t=1

X2,t−1εt −
1

n

n∑
t=1

ε2t

)
By Giraitis and Phillips (2006), we know that n−1/2X1,n →L1 0 and n−1/2X2,n →L1 0, so the
first term in the brackets on the RHS is op(1). Next, for the second term, since n(1−ρ1n) → ∞
by assumption, then n(1− ρ21n) → ∞, so using Theorem 2.4, we have that

1

n

n∑
t=1

X1,t−1εt =
( 1

(1− ρ21n)
1/2

√
n

)
(1− ρ21n)

1/2 1√
n

n∑
t=1

X1,t−1εt →p 0.

The third term goes to 0 in a similar fashion. Finally, for the last term, the WLLN implies
n−1

∑n
t=1 ε

2
t →p σ

2. Thus the off-diagonal elements converge to −Qiσ
2 in probability. Then,

D−1
n,(i,i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,i) →p σ

2

[
1 −Qi

−Qi 1

]
= σ2V(i,i).

Note that V(i,i) > 0 since we assume q ̸= 1 =⇒ Qi ̸= 1.
Next, we have

D−1
n,(i,i)

n∑
t=1

Xt−1εt =

[
(1− ρ21n)

1/2n−1/2
∑n

t=1X1,t−1εt
(1− ρ22n)

1/2n−1/2
∑n

t=1X2,t−1εt

]
.

We do a martingale CLT for convergence. We have the following martingale difference array
with Fn,t = σ(εt, . . . , ε1) (from now on, the filtration will be self-evident, and the martingale
difference property is obvious):

ξn,t =

[
(1− ρ21n)

1/2n−1/2X1,t−1εt
(1− ρ22n)

1/2n−1/2X2,t−1εt

]
=

[
(1− ρ21n)

1/2n−1/2X1,t−1

(1− ρ22n)
1/2n−1/2X2,t−1

]
εt (14)

Then, we have
n∑

t=1

E(ξn,tξ′n,t|Fn,t−1)

= σ2

n∑
t=1

[
(1− ρ21n)n

−1E(X2
1,t−1|Fn,t−1) ∗

(1− ρ21n)
1/2(1− ρ22n)

1/2n−1E(X1,t−1X2,t−1|Fn,t−1) (1− ρ22n)n
−1E(X2

2,t−1|Fn,t−1)

]
= σ2

[
(1− ρ21n)n

−1
∑n

t=1X
2
1,t−1 ∗

(1− ρ21n)
1/2(1− ρ22n)

1/2n−1
∑n

t=1X1,t−1X2,t−1 (1− ρ22n)n
−1
∑n

t=1X
2
2,t−1

]
→p σ

4V(i,i)
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where we used our work from before. The Lindeberg condition holds by Lemma A.1. We
conclude that

D−1
n,(i,i)

n∑
t=1

Xt−1εt →d N (0, σ4V(i,i)).

The continuous mapping theorem with the items just proved complete the final statement
of the theorem by (7).
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3.2.2 ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(ii)

Theorem 3.2. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(i), and ρ2n ∈ C(ii). Let Dn,(i,ii) be the following
diagonal matrix:

Dn,(i,ii) =

[
(1− ρ21n)

−1/2n1/2 0
0 n

]
.

Then,[
D−1

n,(i,ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,ii), D

−1
n,(i,ii)

n∑
t=1

Xt−1εt

]′
→d

[
σ2

[
1 0

0
∫ 1

0
Jc2(t)

2dt

]
, σ2

[
N (0, 1)∫ 1

0
Jc2(t)dW (t)

]]′
,

(15)

Dn,(i,ii)T
′
n(ϕ̂n − ϕn) →d

[
N (0, 1)

(
∫ 1

0
Jc2(t)

2dt)−1
∫ 1

0
Jc2(t)dW (t)

]
.

(16)

Diagonalization yields a mildly stationary AR(1) process and a local-to-unity AR(1)
process, and the components of the AR(2) limit distribution are the respective AR(1) limit
distributions. The diagonal entries of Dn,(i,ii) are the normalizations from Theorem 2.4 and
Theorem 2.5.

Proof. We have:

D−1
n,(i,ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,ii) =

[
(1− ρ21n)n

−1
∑n

t=1X
2
1,t−1 ∗

(1− ρ21n)
1/2n−3/2

∑n
t=1X1,t−1X2,t−1 n−2

∑n
t=1 X

2
2,t−1

]
.

The diagonal elements of the matrix are taken care of by Theorem 2.4 and 2.5. We focus on
the off-diagonal elements. Using (8), we have:

(1− ρ21n)
1/2 1

n3/2

n∑
t=1

X1,t−1X2,t−1 = (1− ρ21n)
1/2 1

n3/2

1

1− ρ1nρ2n

(
−X1,nX2,n − ρ1n

n∑
t=1

X1,t−1εt

+ ρ2n

n∑
t=1

X2,t−1εt −
n∑

t=1

ε2t

)
By Giraitis and Phillips (2006), we know that n−1/2X1,n →L1 0, and by Phillips (1987b),
we know that σ−1n−1/2Xn →d Jc2(1). Thus, the first term in the brackets on the RHS
is Op(n

1/2). For the second term, Theorem 2.4 implies that the convergence rate is (1 −
ρ21n)

−1/2n1/2 ∈ (n1/2, n). The third term is Op(n) by Theorem 2.5. The last term is Op(n) by
WLLN. Note that 1− ρ1nρ2n ∼ 1− ρ21n since ρ1n converges slower than ρ2n by assumption.
Thus

(1− ρ21n)
1/2 1

n3/2

n∑
t=1

X1,t−1X2,t−1 = (1− ρ21n)
1/2 1

n3/2

1

1− ρ1nρ2n
Op(n)

= Op((1− ρ21n)
−1/2n−1/2)

= op(1)

12



Thus the off-diagonal elements converge to 0 in probability. Since the upper-left element
converges in probability, we conclude that

D−1
n,(i,ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,ii) →d σ

2

[
1 0

0
∫ 1

0
Jc2(t)

2dt

]
.

Clearly, this is positive-definite.
Next, we have:

D−1
n,(i,ii)

n∑
t=1

Xt−1εt =

[
(1− ρ21n)

1/2n−1/2
∑n

t=1X1,t−1εt
n−1

∑n
t=1X2,t−1εt

]
.

We must use the vector martingale FCLT for joint convergence of all terms in (7). Let

ξn,j =

[
n−1/2(1− ρ21n)

1/2X1,j−1εj
n−1/2εj

]
=

1√
n

[
(1− ρ21n)

1/2X1,j−1

1

]
εj. (17)

Then, we have

⌊nt⌋∑
j=1

E(ξn,jξ′n,j|Fn,j−1) = σ2

[
(1− ρ21n)n

−1
∑⌊nt⌋

j=1 X
2
1,j−1 ∗

(1− ρ21n)
1/2n−1

∑⌊nt⌋
j=1 X1,j−1 n−1⌊nt⌋

]
.

The top-left element goes to tσ2 by a re-scaling of Theorem 2.4. Clearly the bottom-right
element goes to t. We show that the off-diagonal elements go to 0. We have

X1,t = ρ1nX1,t−1 + εt

=⇒
⌊nt⌋∑
j=1

X1,j = ρ1n

⌊nt⌋∑
j=1

X1,j−1 +

⌊nt⌋∑
j=1

εj

=⇒ (1− ρ1n)

⌊nt⌋∑
j=1

X1,j = −X1,⌊nt⌋ +

⌊nt⌋∑
j=1

εj

=⇒ (1− ρ1n)

⌊nt⌋∑
j=1

X1,j = Op(n
1/2)

since n−1/2X1,nt →L1 0 and the FCLT implies σ−1n−1/2
∑⌊nt⌋

j=1 →d W (t) on D[0, 1]. Then,

since 1− ρ1n ∼ 1− ρ21n, we have:

(1− ρ21n)
1/2n−1

⌊nt⌋∑
j=1

X1,j−1 = Op

(
(1− ρ21n)

1/2n−1n1/2(1− ρ1n)
−1
)

= Op

(
(1− ρ21n)

−1/2n−1/2
)

= op(1).

13



Thus,

⌊nt⌋∑
t=1

E(ξn,jξ′n,j|Fn,j−1) = σ2

[
σ2t 0
0 t

]
= t

[
σ4 0
0 σ2

]
.

The Lindeberg condition holds by Lemma A.2, so the vector martingale FCLT implies that

⌊nt⌋∑
j=1

ξn,j →d

[
σ2W1(t)
σW (t)

]
on D[0, 1], where W1(t) and W (t) are independent standard Brownian motions. Next, note

that n−1
∑n

t=1 X2,t−1εt and n−2
∑n

t=1 X
2
2,t−1 are continuous functionals of

∑⌊nt⌋
j=1 n

−1/2εj by
Phillips (1987b) using an integral argument. Thus,(1− ρ21n)

1/2n−1/2
∑n

t=1X1,t−1εt
n−1

∑n
t=1 X2,t−1εt

n−2
∑n

t=1 X
2
2,t−1

→d σ
2

 W1(1)∫ 1

0
Jc2(t)dW (t)∫ 1

0
Jc2(t)

2dt


since these are just continuous functionals of

∑⌊nt⌋
j=1 ξn,j. Now, every term of (7) is a con-

tinuous function of the LHS of the above since (1 − ρ21n)n
−1
∑n

t=1X
2
1,t−1 is a function of

(1 − ρ21n)
1/2n−1/2

∑n
t=1X1,t−1εt by Giraitis and Phillips (2006). Therefore, the continuous

mapping theorem completes the proof:

Dn,(i,ii)T
′
n(ϕ̂n − ϕn) →d

(
σ2

[
1 0

0
∫ 1

0
Jc2(t)

2dt

])−1

σ2

[
N (0, 1)∫ 1

0
Jc2(t)dW (t)

]
=

[
N (0, 1)

(
∫ 1

0
Jc2(t)

2dt)−1
∫ 1

0
Jc2(t)dW (t)

]
.

14



3.2.3 ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(iii)

Theorem 3.3. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(i), and ρ2n ∈ C(iii). Let Dn,(i,iii) be the
following diagonal matrix:

Dn,(i,iii) =

[
(1− ρ21n)

−1/2n1/2 0
0 (ρ22n − 1)−1ρn2n

]
.

Then,[
D−1

n,(i,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,iii), D

−1
n,(i,iii)

n∑
t=1

Xt−1εt

]′
→d

[ [
σ2 0
0 Z2

2

]
,

[
σ2N (0, 1)

Y2Z2

] ]′
, (18)

Dn,(i,iii)T
′
n(ϕ̂n − ϕn) →d

[
N (0, 1)
Z−1

2 Y2

]
, (19)

where Z2 and Y2 follows the definition in Theorem 2.6 with innovation sequence (−εt)t∈N.
Note that Z−1

2 Y2 =d Cauchy.

Diagonalization again works very well: we get a mildly stationary AR(1) process and
a mildly explosive AR(1) process, and the components of the limit distribution are simply
the respective AR(1) limit distributions. The diagonal entries of Dn,(i,iii) are simply the
normalizations from Theorem 2.4 and 2.6 as expected.

Proof. We have:

D
−1
n,(i,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,iii)

=

[
(1 − ρ21n)n−1 ∑n

t=1 X2
1,t−1 ∗

(1 − ρ21n)1/2n−1/2(ρ22n − 1)ρ−n
2n

∑n
t=1 X1,t−1X2,t−1 (ρ22n − 1)2ρ−2n

2n

∑n
t=1 X2

2,t−1

]
.

Theorem 2.4 and Theorem 2.6 takes care of the diagonal elements. We focus on the off-
diagonal elements. Using (8), we have:

(1− ρ21n)
1/2

√
n

(ρ22n − 1)ρ−n
2n

n∑
t=1

X1,t−1X2,t−1 =
(1− ρ21n)

1/2

√
n

(ρ22n − 1)ρ−n
2n

1

1− ρ1nρ2n

·
(
−X1,nX2,n − ρ1n

n∑
t=1

X1,t−1εt

+ ρ2n

n∑
t=1

X2,t−1εt −
n∑

t=1

ε2t

)
.

We know from previously that X1,n = op(n
1/2), hence X1,n = Op((1 − ρ21n)

−1/2). Also,
X2,n = Op((ρ

2
2n−1)−1/2ρn2n) from Phillips and Magdalinos (2007). Then, X1,nX2,n = Op((1−

ρ21n)
−1/2(ρ22n − 1)−1/2ρn2n). We know that the second term is Op(n). The third term is

Op((ρ
2
2n−1)−1ρn2n) by Theorem 2.6. The last term is Op(n) by WLLN. n is a faster rate than

(1− ρ21n)
−1/2, so we can say that the rate of the bracketed term is

Op

(
(ρ22n − 1)−1ρn2n + (1− ρ21n)

−1/2(ρ2n − 1)−1/2ρn2n

)
.
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Thus,

(1− ρ21n)
1/2

√
n

(ρ22n − 1)ρ−n
2n

n∑
t=1

X1,t−1X2,t−1 =
(1− ρ21n)

1/2

√
n

(ρ22n − 1)ρ−n
2n

1

1− ρ1nρ2n

·Op

(
(ρ22n − 1)−1ρn2n + (1− ρ21n)

−1/2(ρ2n − 1)−1/2ρn2n

)
= Op

(
(1− ρ1nρ2n)

−1n−1/2[(1− ρ21n)
1/2 + (1− ρ22n)

1/2]
)

= Op

(
(1− ρ1nρ2n)

−1/2n−1/2
)

= op(1),

where we use that (1− ρ1nρ2n)
1/2 and (1− ρ21n)

1/2 + (1− ρ22n)
1/2 are the same rate (each is

dominated by the slower one). Thus the diagonal terms converges to 0, so

D−1
n,(i,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i,iii) =

[
σ2 0
0 Z2

2n

]
+ op(I2),

where the bottom-right element is by Phillips and Magdalinos (2007).
Next, we have:

D−1
n,(i,iii)

n∑
t=1

Xt−1εt =

[
(1− ρ21n)

1/2n−1/2
∑n

t=1X1,t−1εt
(ρ22n − 1)ρ−n

2n

∑n
t=1 X2,t−1εt

]
=

[
(1− ρ21n)

1/2n−1/2
∑n

t=1X1,t−1εt
Y2nZ2n

]
+ op(1),

where the second element is by Phillips and Magdalinos (2007). We will do a martingale
CLT to prove joint convergence of all terms in (7). Let

ξn,t =

(1− ρ21n)
1/2n−1/2X1,t−1

(ρ22n − 1)1/2ρ−t
2n

(ρ22n − 1)1/2ρ
−(n−t+1)
2n

 εt, =⇒
n∑

t=1

ξn,t =

(1− ρ21n)
1/2n−1/2

∑n
t=1X1,t−1εt

Z2n

Y2n

 .

(20)

Then, we have:

n∑
t=1

E(ξn,tξ′n,t|Fn,t−1) = σ2

·

 (1− ρ21n)n
−1
∑n

t=1 X
2
1,t−1 ∗ ∗

(1− ρ21n)
1/2(ρ22n − 1)1/2n−1/2

∑n
t=1 ρ

−t
2nX1,t−1 (ρ22n − 1)

∑n
t=1 ρ

−2t
2n ∗

(1− ρ21n)
1/2(ρ22n − 1)1/2n−1/2

∑n
t=1 ρ

−(n−t+1)
2n X1,t−1 (ρ22n − 1)

∑n
t=1 ρ

−n−1
2n (ρ22n − 1)

∑n
t=1 ρ

−2(n−t+1)
n


The (1,1) element converges in probability to σ2 by Theorem 2.4. The (2,2) and (3,3)
elements converge to 1 since they can be written as geometric series: to demonstrate, for the
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(2,2) element, we have

(ρ22n − 1)
n∑

t=1

ρ−2t
2n = (ρ22n − 1)

ρ−2
2n (1− ρ

−2(n+1)
2n )

1− ρ−2
2n

= 1− ρ
−2(n+1)
2n → 1

by Lemma C.3. For the (2,1) element, we have:∥∥∥(1− ρ21n)
1/2(ρ22n − 1)1/2n−1/2

n∑
t=1

ρ−t
2nX1,t−1

∥∥∥
L1

≤ (1− ρ21n)
1/2 max

1≤t≤n
∥X1,t−1∥L2

· (ρ22n − 1)1/2n−1/2

n∑
t=1

ρ−t
2n

= Op(1)(ρ
2
2n − 1)1/2n−1/21− ρ−n−1

2n

ρ2n − 1

= Op((ρ
2
2n − 1)−1/2n−1/2)

= op(1)

where the first inequality uses norm relations, the first equality holds since

∥X1,t∥2L2
= ∥

n−1∑
j=0

ρjtεt−j+1∥2L2
= σ2

t−1∑
j=0

ρ2j2n = O((1− ρ21n)
−1),

the second equality holds since ρ22n − 1 ∼ ρ2n − 1, and the last equality holds by assumption
of ρ2n.

The (3,1) element goes to 0 in the same manner. Finally, the (3,2) element is:

(ρ22n − 1)
n∑

t=1

ρ−n−1
2n = n(ρ22n − 1)ρ−n−1

2n → 0

by Lemma C.3. Therefore, the conditional variance converges to σ2diag(σ2, 1, 1). The Lin-
deberg condition holds by Lemma A.3. So, we conclude that(1− ρ21n)

1/2n−1/2
∑n

t=1 X1,t−1εt
Z2n

Y2n

 =
n∑

t=1

ξn,t →d N
(
0, σ2

σ2 0 0
0 1 0
0 0 1

).
Now, every term of (7) is a continuous function of the LHS of the above since (1−ρ21n)n

−1
∑n

t=1X
2
1,t−1

is a function of (1 − ρ21n)
1/2n−1/2

∑n
t=1 X1,t−1εt by Giraitis and Phillips (2006). Therefore,

the continuous mapping theorem completes the proof:

Dn,(i,iii)T
′
n(ϕ̂n − ϕn) →d

([
σ2 0
0 Z2

2

])−1 [
σ2N (0, 1)

Y2Z2

]
=

[
N (0, 1)
Z−1

2 Y2

]
.
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3.2.4 ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(ii)

Theorem 3.4. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(ii), and ρ2n ∈ C(ii). Let Dn,(ii,ii) be the
following diagonal matrix:

Dn,(ii,ii) =

[
n 0
0 n

]
.

Then,

[
D

−1
n,(ii,ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii,ii)

, D
−1
n,(ii,ii)

n∑
t=1

Xt−1εt

]′
→d

[ [ ∫ 1
0 Jc1

(t)2dt
∫ 1
0 Jc1

(t)Jc2
(t)dt∫ 1

0 Jc1
(t)Jc2

(t)dt
∫ 1
0 Jc2

(t)2dt

]
,

[∫ 1
0 Jc1

(t)dW (t)∫ 1
0 Jc2

(t)dW (t)

] ]′
, (21)

Dn,(ii,ii)T
′
n(ϕ̂n − ϕn) →d

[ ∫ 1
0 Jc1

(t)2dt
∫ 1
0 Jc1

(t)Jc2
(t)dt∫ 1

0 Jc1
(t)Jc2

(t)dt
∫ 1
0 Jc2

(t)2dt

]−1 [∫ 1
0 Jc1

(t)dW (t)∫ 1
0 Jc2

(t)dW (t)

]
. (22)

Diagonalization yields two local-to-unity AR(2) processes. However, rather than getting
a clean limit distribution that has AR(1) local-to-unity asymptotics in the components, we
get cross-terms. The normalization matrix Dn,(ii,ii) has n in the diagonal entries, which is
expected by Theorem 2.5.

Proof. We have:

D−1
n,(ii,ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii,ii) =

[
n−2

∑n
t=1X

2
1,t−1 n−2

∑n
t=1X1,t−1X2,t−1

n−2
∑n

t=1 X1,t−1X2,t−1 n−2
∑n

t=1X
2
2,t−1

]
.

Theorem 2.5 takes care of the matrix’s diagonal elements and the vector element. We focus
on the off-diagonal elements. Following Phillips (1987b), we know that from the FCLT that[

σ−1n−1/2X1,⌊nt⌋
σ−1n−1/2X2,⌊nt⌋

]
→d

[
Jc1(t)
Jc2(t)

]
.

since both terms are continuous functionals of the same random walk Sn(t) =
1

σ
√
n

∑⌊nt⌋
j=1 εj in

the FCLT, where convergence is on D[0, 1]. Note that integration is a continuous functional
on the space D[0, 1]. Then, the continuous mapping theorem implies

n−2

n∑
t=1

X1,t−1X2,t−1 = n−2

∫ n

0

X1,⌊r⌋X2,⌊r⌋dr

= n−1

∫ 1

0

X1,⌊nt⌋X2,⌊nt⌋dt

= σ2

∫ 1

0

X1,⌊nt⌋

σ
√
n

X2,⌊nt⌋

σ
√
n

dt

→d σ
2

∫ 1

0

Jc1(t)Jc2(t)dt.

Thus, we have found the limiting behavior of the off-diagonal elements. The matrix is
positive definite by the Cauchy-Schwarz inequality with a strict inequality since c1 ̸= c2.
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Next, we have:

D−1
n,(ii,ii)

n∑
t=1

Xt−1εt =

[
n−1

∑n
t=1X1,t−1εt

n−1
∑n

t=1X2,t−1εt

]
.

We can use the FCLT and the continuous mapping theorem again: since all terms are built
from the FCLT result that

Sn(t) →d W (t)

with convergence on D[0, 1] (see Phillips (1987b) again), we can conclude that the theorem
holds using (7).
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3.2.5 ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(iii)

Theorem 3.5. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(iii). Let Dn,(ii,iii) be the following
diagonal matrix:

Dn,(ii,iii) =

[
n 0
0 (ρ22n − 1)−1ρn2n

]
.

Then,[
D−1

n,(ii,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii,iii), D

−1
n,(ii,iii)

n∑
t=1

Xt−1εt

]′
→d

[ [
σ2
∫ 1

0
Jc1(t)

2dt 0
0 Z2

2

]
,

[
σ2
∫ 1

0
Jc1(t)dW (t)
Y2Z2

]]′
,

(23)

Dn,(ii,iii)T
′
n(ϕ̂n − ϕn) →d

[
(
∫ 1

0
Jc1(t)

2dt)−1
∫ 1

0
Jc1(t)dW (t)

Z−1
2 Y2

]
,

(24)

where Z2 and Y2 follows the definition in Theorem 2.6 with innovation sequence (−εt)t∈N.
Note that Z−1

2 Y2 =d Cauchy.

Diagonalization works cleanly in this case: we get a local-to-unity AR(1) process and
a mildly explosive AR(1) process, and the components of the limit distribution are simply
the respective AR(1) limit distributions. The diagonal entries of Dn,(ii,iii) are simply the
normalizations from Theorem 2.5 and 2.6.

Proof. We have:

D−1
n,(ii,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii,iii) =

[
n−2

∑n
t=1 X

2
1,t−1 ∗

n−1(ρ22n − 1)ρ−n
2n

∑n
t=1 X1,t−1X2,t−1 (ρ22n − 1)2ρ−2n

2n

∑n
t=1X

2
2,t−1

]
,

Theorem 2.5 and 2.6 takes care of the diagonal elements. We focus on the off-diagonal
elements. Using (8), we have:

1

n
(ρ22n − 1)ρ−n

2n

n∑
t=1

X1,t−1X2,t−1 =
1

n
(ρ22n − 1)ρ−n

2n

1

1− ρ1nρ2n

(
−X1,nX2,n − ρ1n

n∑
t=1

X1,t−1εt

+ ρ2n

n∑
t=1

X2,t−1εt −
n∑

t=1

ε2t

)
.

We know from previously thatX1,n = Op(n
1/2) andX2,n = Op((ρ

2
2n−1)−1/2ρn2n), soX1,nX2,n =

Op(n
1/2(ρ22n − 1)−1/2ρn2n). Theorem 2.5 implies the second term Op(n), and Theorem 2.6 im-

plies the third term is Op((ρ
2
2n − 1)−1ρn2n). The last term is Op(n) by the WLLN. Note that
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1− ρ1nρ2n ∼ 1− ρ22n since ρ2n converges slower than ρ1n by assumption. Then,

1

n
(ρ22n − 1)ρ−n

2n

n∑
t=1

X1,t−1X2,t−1 =
1

n
(ρ22n − 1)ρ−n

2n

1

1− ρ1nρ2n
Op

(
n1/2(ρ22n − 1)−1/2ρn2n

)
= Op

(
n−1/2(ρ22n − 1)1/2(1− ρ1nρ2n)

−1
)

= Op

(
n−1/2(ρ22n − 1)−1/2

)
= op(1).

Thus, we have:

D−1
n,(ii,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii,iii) →d

[
n−2

∑n
t=1X

2
1,t−1 0

0 Z2
2n

]
+ op(I2).

Next, we have:

D−1
n,(ii,iii)

n∑
t=1

Xt−1εt =

[
n−1

∑n
t=1 X1,t−1εt

(ρ22n − 1)ρ−n
2n

∑n
t=1 X2,t−1εt

]
=

[
n−1

∑n
t=1 X1,t−1εt
Y2nZ2n

]
.

For joint convergence of all terms in (7), we use the vector martingale FCLT. Let

ξn,j =

 σ−1n−1/2

(ρ22n − 1)1/2ρ−j
2n

(ρ22n − 1)1/2ρ
−(n−j+1)
2n

 εj. (25)

Then, we have:

⌊nt⌋∑
j=1

E(ξn,jξ′n,j|Fn,j−1) = σ2

·

 σ−2n−1⌊nt⌋ ∗ ∗
σ−1n−1/2(ρ22n − 1)1/2

∑⌊nt⌋
j=1 ρ

−j
2n (ρ22n − 1)

∑⌊nt⌋
j=1 ρ

−2j
2n ∗

σ−1n−1/2(ρ22n − 1)1/2
∑⌊nt⌋

j=1 ρ
−(n−j+1)
2n (ρ22n − 1)

∑⌊nt⌋
j=1 ρ

−n−1
2n (ρ22n − 1)

∑⌊nt⌋
j=1 ρ

−2(n−j+1)
2n

 .

The diagonal terms converge to σ−2t, 1 and 1 respectively, where we use geometric series and
Lemma C.3 to prove convergence for the (2,2) and (3,3) element as in the proof of Theorem
3.3. For the (2,1) element, we have:

σ−1n−1/2(ρ22n − 1)1/2
⌊nt⌋∑
j=1

ρ−j
2n = Op((ρ

2
2n − 1)−1/2n−1/2) = op(1).

The (3,1) element converges to 0 similarly. The (3,2) element goes to 0 by Lemma C.3.
Therefore, the conditional variance converges to σ2diag(σ−2t, 1, 1). The Lindeberg condi-
tion holds by Lemma A.4. Note that the second and third term have no t-dependence, so
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we can view the second and third components of ξn,j as constant functions in the space
D[0, 1]. Therefore, they converge to what the vector martingale CLT would imply, while the
first component of ξn,j converges to the vector martingale FCLT-implied Brownian motion.
Therefore, we have that

⌊nt⌋∑
j=1

ξn,j →d

(
W (t), Z2, Y2

)
on D[0, 1]. Thus, joint convergence of all terms in (7) holds since both n−2

∑n
t=1X

2
1,t−1 and

n−1
∑n

t=1 X1,t−1εt derive from σ−1n−1/2
∑⌊nt⌋

j=1 εj, so we can use the FCLT and the continuous
mapping theorem. Thus, we conclude that

Dn,(ii,iii)T
′
n(ϕ̂n − ϕ) →d

([
σ2
∫ 1

0
Jc1(t)

2dt 0
0 Z2

2

])−1 [
σ2
∫ 1

0
Jc1(t)dW (t)
Y2Z2

]
=

[
(
∫ 1

0
Jc1(t)

2dt)−1
∫ 1

0
Jc1(t)dW (t)

Z−1
2 Y2

]
.
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3.2.6 ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii)

Let qn and q be defined as in (9), and change the definition of Qn,i and Q slightly:

Qn,iii :=
(ρ21n − 1)1/2(ρ21n)

1/2 − 1

1− ρ1nρ2n
, Qiii := lim

n→∞
Qn,iii ∈ [0,∞). (26)

The properties between q and Qiii outlined before Theorem 3.1 still hold.

Theorem 3.6. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii). Let Dn,(iii,iii) be the following
diagonal matrix:

Dn,(iii,iii) =

[
(ρ21n − 1)−1ρn1n 0

0 (ρ22n − 1)−1ρn2n

]
.

Then, when q ̸= 1,[
D−1

n,(iii,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(iii,iii), D

−1
n,(iii,iii)

n∑
t=1

Xt−1εt

]′
→d

[[
Z2

1 QiiiZ1Z2

QiiiZ1Z2 Z2
2

]
,

[
Y1Z1

Y2Z2

]]′
,

(27)

Dn,(iii,iii)T
′
n(ϕ̂n − ϕn) →d

[
Z2

1 QiiiZ1Z2

QiiiZ1Z2 Z2
2

]−1 [
Y1Z1

Y2Z2

]
.

(28)

where Z1 and Y1 follows the definition in Theorem 2.6 with innovation sequence (εt)t∈N, and
Z2 and Y2 have innovation sequence (−εt)t∈N.

Diagonalization yields two mildly explosive AR(1) processes. The diagonal entries of
Dn,(iii,iii) follow the rates of Theorem 2.6 as expected. Also, when ρ1n and ρ2n converge at
different rates, Qiii = 0, hence the components of the limiting distribution are just the limit
distributions of a mildly explosive AR(1) process.

Proof. We have:

D−1
n,(iii,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(iii,iii) =

[
(ρ21n − 1)2ρ−2n

1n

∑n
t=1X

2
1,t−1 ∗

(ρ21n − 1)ρ−n
1n (ρ22n − 1)ρ−n

2n

∑n
t=1X1,t−1X2,t−1 (ρ22n − 1)2ρ−2n

2n

∑n
t=1X

2
2,t−1

]
.

The diagonal elements in the matrix are covered by Theorem 2.6. We focus on the off-
diagonal elements. From before, we know that X1,nX2,n = Op((ρ

2
1n − 1)−1/2ρn1n(ρ

2
2n −

1)−1/2ρn2n), the second term is Op((ρ
2
1n − 1)−1ρn1n), the third term is Op((ρ

2
2n − 1)−1ρn2n),

and the last term is Op(n). Thus, from (8), we have:

n∑
t=1

X1,t−1X2,t−1 = − 1

1− ρ1nρ2n
X1,nX2,n(1 + op(1)).

Then, we have from Phillips and Magdalinos (2007),

(ρ21n − 1)ρ−n
1n (ρ

2
2n − 1)ρ−n

2n

n∑
t=1

X1,t−1X2,t−1 = Qn,iiiZ1nZ2n + op(1).
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Again by Phillips and Magdalinos (2007), we have:

D−1
n,(iii,iii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(iii,iii) =

[
Z2

1n Qn,iiiZ1nZ2n

Qn,iiiZ1nZ2n Z2
2n

]
+ op(I2)

Next, we have:

D−1
n,(iii,iii)

n∑
t=1

Xt−1εt =

[
(ρ21n − 1)ρ−n

1n

∑n
t=1 X1,t−1εt

(ρ22n − 1)ρ−n
2n

∑n
t=1 X2,t−1εt

]
=

[
Y1nZ2n

Y2nZ2n

]
.

We only need to show joint convergence of Z1n, Y1n, Z2n, and Y2n. Let

ξn,t =


−(ρ21n − 1)1/2ρ−t

1n

−(ρ21n − 1)1/2ρ
−(n−t+1)
1n

(ρ22n − 1)1/2ρ−t
2n

(ρ22n − 1)1/2ρ
−(n−t+1)
2n

 εt,
n∑

t=1

ξn,t =


Z1n

Y1n

Z2n

Y2n

 . (29)

Then, we have:

Vn =
n∑

t=1

E(ξn,tξ′n,t|Fn,t−1) = σ2

·


(ρ21n − 1)

∑n
t=1 ρ

−2t
1n Vn,12 Vn,13 Vn,14

Vn,21 (ρ21n − 1)
∑n

t=1 ρ
−2(n−t+1)
1n Vn,23 Vn,24

Vn,31 Vn,32 (ρ22n − 1)
∑n

t=1 ρ
−2t
2n Vn,34

Vn,41 Vn,42 Vn,43 (ρ22n − 1)
∑n

t=1 ρ
−2(n−t+1)
2n


where Vn is symmetric and

Vn,21 = (ρ21n − 1)
n∑

t=1

ρ−n−1
1n ,

Vn,31 = −(ρ21n − 1)1/2(ρ22n − 1)1/2
n∑

t=1

(ρ1nρ2n)
−t,

Vn,41 = −(ρ21n − 1)1/2(ρ22n − 1)1/2
n∑

t=1

ρ−t
1nρ

−(n−t+1)
2n ,

Vn,23 = −(ρ21n − 1)1/2(ρ22n − 1)1/2
n∑

t=1

ρ
−(n−t+1)
1n ρ−t

2n,

Vn,24 = −(ρ21n − 1)1/2(ρ22n − 1)1/2
n∑

t=1

(ρ1nρ2n)
−(n−t+1),

Vn,34 = (ρ22n − 1)
n∑

t=1

ρ−n−1
2n .
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The diagonal terms of Vn converge to 1 by using geometric series. Vn,21 and V4,3 converge to
0 by Lemma C.3. Vn,31 and Vn,24 converge to Q by using geometric series. Finally, for Vn,41

(and similarly Vn,23), we have:

Vn,41 = −(ρ21n − 1)1/2(ρ22n − 1)1/2
n∑

t=1

ρ−t
1nρ

−(n−t+1)
2n

= −(ρ21n − 1)1/2(ρ22n − 1)1/2ρ−n−1
2n

n∑
t=1

ρ−t
1nρ

t
2n

= −(ρ21n − 1)1/2(ρ22n − 1)1/2ρ−n−1
2n

ρ2n
ρ1n

(1− (ρ2n
ρ1n

)n+1)

1− ρ2n
ρ1n

= −(ρ21n − 1)1/2(ρ22n − 1)1/2ρ−n
2n

1− (ρ2n
ρ1n

)n+1

ρ1n − ρ2n

= −(ρ21n − 1)1/2(ρ22n − 1)1/2
ρ−n
2n − ρ−n

1n
ρ2n
ρ1n

ρ1n − ρ2n
→ 0.

We conclude that

Vn →p σ
2


1 0 Qiii 0
0 1 0 Qiii

Qiii 0 1 0
0 Qiii 0 1


Clearly this is positive definite since Qiii ̸= 1. Thus, with the Lindeberg condition from
Lemma A.5, we conclude that

Z1n

Y1n

Z2n

Y2n

 =
n∑

t=1

ξn,t →d


Z1

Y1

Z2

Y2

 := N
(
0, σ2


1 0 Qiii 0
0 1 0 Qiii

Qiii 0 1 0
0 Qiii 0 1

).
Then, by continuous mapping theorem, we can get the limiting distribution over our nor-
malized OLS:

Dn,(iii,iii)T
′
n(ϕ̂n − ϕn) →d

[
Z2

1 QiiiZ1Z2

QiiiZ1Z2 Z2
2

]−1 [
Y1Z1

Y2Z2

]
.
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3.3 Repeated Eigenvalues

In the repeated eigenvalues case, we can no longer diagonalize Rn, but we can employ
the Jordan form. Let

Rn = T̃nJnT̃
−1
n ,

with

T̃n =
1

ρ2n

[
0 ρ2n
−1 ρn

]
,

T̃−1
n =

[
ρn −ρ2n
1 0

]
,

Jn =

[
ρn 0
1 ρn

]
,

where we use (3). The Jordan matrix has the following power properties:

Jk
n = ρk−1

n

[
ρn 0
k ρn

]
,

J−k
n = ρ−k−1

n

[
ρn 0
−k ρn

]
.

Transforming the companion form in (2) with Xt = T̃−1
n xt and Ut = T̃−1

n ut, we get

Xt = JnXt−1 + Ut, (30)

[
X1,t

X2,t

]
=

[
ρn 0
1 ρn

] [
X1,t−1

X2,t−1

]
+ εt

[
ρn
1

]
.

Since we cannot diagonalize, we cannot separate Xt into two AR(1) processes. This generally
makes the asymptotics harder to prove. Similar to the distinct eigenvalues case, we must
find a suitable normalization diagonal matrix Dn, so our OLS will look like (7):

DnT̃
′
n(ϕ̂n − ϕn) =

(
D−1

n

n∑
t=1

Xt−1X
′
t−1D

−1
n

)−1(
D−1

n

n∑
t=1

Xt−1εt
)
. (31)

To help us with the off-diagonal terms of the matrix, the following decomposition is helpful:

(I4 − Jn ⊗ Jn)
n∑

t=1

vec(Xt−1X
′
t−1)

= vec
(
−

n∑
t=1

UtU
′
t + Jn

n∑
t=1

Xt−1U
′
t +

n∑
t=1

UtX
′
t−1J

′
n −XnX

′
n

)
. (32)

Furthermore, we must use the vec operator and the Kronecker product ⊗. We list some key
facts in Lemma C.4.

We now solve for asymptotics. We will have three cases depending on the regime of ρn.
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3.3.1 ρn ∈ C(i)

Theorem 3.7. Suppose ρn ∈ C(i). Let Dn,(i) be the following diagonal matrix:

Dn,(i) =

[
(1− ρ2n)

−1/2 0
0 (1− ρ2n)

−3/2

]
.

Define

V(i) :=

[
1 1
1 2

]
.

Then,
√
nDn,(i)T̃

′
n(ϕ̂n − ϕn) →d N (0, V −1

(i) ). (33)

We can see the effects of having to use a Jordan form rather than a diagonalization in this
theorem. We have a strange (1 − ρ2n)

−3/2-normalization for the second component because
the rotation couldn’t separate X1,t from X2,t: the second component is an AR(1) process
with an AR(1) innovation. Furthermore, the components of the limit distribution no longer
resemble each other, as was in Theorem 3.1.

Proof. From (30), we see that the X2t has an innovation that includes an AR(1) term in
the C(i) case, so we expect to need to normalize according to XnX

′
n. We can write Xn =∑n

j=1 J
n−j
n Uj =

∑n−1
j=0 J

j
nUn−j, so:

E(XnX
′
n) =

n−1∑
j=0

J j
nE(Un−jU

′
n−j)(J

j
n)

′

= σ2

n−1∑
j=0

ρ2(j−1)
n

[
ρn 0
j ρn

] [
ρn
1

] [
ρn 1

] [ρn j
0 ρn

]

= σ2

[
ρ2n
∑n−1

j=0 ρ
2j
n ρn

∑n−1
j=0 ρ

2j
n (j + 1)

ρn
∑n−1

j=0 ρ
2j
n (j + 1)

∑n−1
j=0 ρ

2j
n (j + 1)2

]

∼ σ2

[
(1− ρn)

−1 1
4
(1− ρn)

−2

1
4
(1− ρn)

−2 1
4
(1− ρn)

−3

]
by Lemma B.1. Then, if we let

Dn,(i) =

[
(1− ρ2n)

−1/2 0
0 (1− ρ2n)

−3/2

]
,

we have

D−1
n,(i)E(XnX

′
n)D

−1
n,(i) ∼ σ2

[
1 1

4
(1− ρ2n)

2(1− ρn)
−2

1
4
(1− ρ2n)

2(1− ρn)
−2 1

4
(1− ρ2n)

3(1− ρn)
−3

]
= σ2

[
1 1

4
(1 + ρn)

2

1
4
(1 + ρn)

2 1
4
(1 + ρn)

3

]
→ σ2

[
1 1
1 2

]
.

27



Similarly, the above calculations imply that

max
1≤t≤n

E∥D−1
n,(i)Xt∥2 < ∞ (34)

.
Now, we expect n−1/2D−1

n,(i) normalization to be enough to make equation (32) stable.

However, we actually require another normalization to ensure convergence. By (32), we
know that

(I4 − Jn ⊗ Jn)
1

n

n∑
t=1

vec(Xt−1X
′
t−1) = vec(Gn)

:= vec
(
− 1

n

n∑
t=1

UtU
′
t + Jn

1

n

n∑
t=1

Xt−1U
′
t +

1

n

n∑
t=1

UtX
′
t−1J

′
n −

1

n
XnX

′
n

)
.

Define

∆n =

[
1 0
1 1− ρ2n

]
. (35)

We will normalize by ∆nGn∆
′
n. We have the following facts by Lemma B.2:

∥n−1/2∆nXn∥L2 = op(1), (36)

∆n
1

n

n∑
t=1

UtU
′
t∆

′
n →p σ

2ρ2

[
1 1
1 1

]
, (37)∥∥∥∥∥vec(∆nJn

1

n

n∑
t=1

Xt−1U
′
t∆

′
n

)∥∥∥∥∥
2

L2

= o(1), . (38)

Then, we have

(I4 − Jn ⊗ Jn)
1

n

n∑
t=1

vec(Xt−1X
′
t−1) = vec(Gn)

= (∆−1
n ⊗∆−1

n )vec(∆nGn∆
′
n)

= (∆n ⊗∆n)
−1σ2vec

[
1 1
1 1

]
+ op(1),

and since

1

n

n∑
t=1

vec(Xt−1X
′
t−1) = (Dn,(i) ⊗Dn,(i))

n∑
t=1

vec(D−1
n,(i)Xt−1X

′
t−1D

−1
n,(i)),

we have

Mnvec
( 1
n
D−1

n,(i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i)

)
= σ2vec

[
1 1
1 1

]
+ op(1),
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where

Mn = (∆n ⊗∆n)(I4 − Jn ⊗ Jn)(Dn,(i) ⊗Dn,(i))

=


1 0 0 0
1 1− ρ2n 0 0
1 0 1− ρ2n 0
1 1− ρ2n 1− ρ2n (1− ρ2n)

2



·


1− ρ2n 0 0 0
−ρn 1− ρ2n 0 0
−ρn 0 1− ρ2n 0
−1 −ρn −ρn 1− ρ2n



·


(1− ρ2n)

−1 0 0 0
0 (1− ρ2n)

−2 0 0
0 0 (1− ρ2n)

−2 0
0 0 0 (1− ρ2n)

−3



=


1 0 0 0

1− ρn 1 0 0
1− ρn 0 1 0

(ρn − 2)ρn 1− ρn 1− ρn 1

 .

Then,

M−1
n =


1 0 0 0

ρn − 1 1 0 0
ρn − 1 0 1 0

ρ2n − 2ρn + 2 ρn − 1 ρn − 1 1

→


1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

 ,

hence

vec
( 1
n
D−1

n,(i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i)

)
= σ2ρ2M−1

n


1
1
1
1

+ op(1)

= σ2


1
1
1
2

+ op(1)

= σ2vec

[
1 1
1 2

]
+ op(1),

so

1

n
D−1

n,(i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i) →p σ

2V(i).

Clearly V(i) is positive definite.
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Finally, we return to the original OLS in (31). We have:

√
nDn,(i)T̃

′
n(ϕ̂n − ϕn) =

( 1
n
D−1

n,(i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i)

)−1(
n−1/2D−1

n,(i)

n∑
t=1

Xt−1εt

)
(39)

The second term on the RHS satisfies a martingale CLT. Define

ξn,t = n−1/2D−1
n,(i)Xt−1εt =⇒

n∑
t=1

ξn,t = n−1/2D−1
n,(i)

n∑
t=1

Xt−1εt (40)

We have

n∑
t=1

E(ξn,tξ′n,t|Fn,t−1) = σ2 1

n
D−1

n,(i)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(i) →p σ

4V(i)

from our work above. The Lindeberg condition holds by Lemma B.3, so we conclude that

n−1/2D−1
n,(i)

n∑
t=1

Xt−1εt =
n∑

t=1

ξn,t →d N (0, σ4V(i)),

and continuous mapping theorem together with (39) implies

√
nDn,(i)T̃

′
n(ϕ̂n − ϕn) →d N (0, V −1

(i) ).
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3.3.2 ρn ∈ C(ii)

Theorem 3.8. Suppose ρn ∈ C(ii). Let Dn,(ii) be the following diagonal matrix:

Dn,(ii) =

[
n 0
0 n2

]
.

Define

Hc(r) :=

∫ r

0

ec(r−u)Jc(u)du.

Then,

Dn,(ii)T̃
′
n(ϕ̂n − ϕn) →d

[ ∫ 1

0
Jc(r)

2dr
∫ 1

0
Jc(r)Hc(r)dr∫ 1

0
Jc(r)Hc(r)dr

∫ 1

0
Hc(r)

2dr

]−1 [∫ 1

0
Jc(r)dW (r)∫ 1

0
Hc(r)dW (r)

]
. (41)

Again, the second component requires an n2-normalization rather than an n-normalization.
Furthermore, the limit distribution involves Hc(r) rather than only Jc(r).

Proof. In this case, it is easier to analyze each term of the OLS expansion separately rather
than try to work with vectors. From (30), we have:

X1,t = ρnX1,t−1 + ρnεt,

X2,t = ρnX2,t−1 +X1,t−1 + εt.

Focus on the matrix term in (31). For r ∈ [0, 1], we have by recursion:

X2,⌊nr⌋ =

⌊nr⌋∑
j=1

ρ⌊nr⌋−j
n (X1,j−1 + εj)

=

⌊nr⌋∑
j=1

ρ⌊nr⌋−j
n X1,j−1 +Op(n

1/2)

= ρ−1
n

∫ ⌊nr⌋

0

ρ⌊nr⌋−⌊u⌋
n X1,⌊u⌋du+Op(n

1/2)

= nρ−1
n

∫ ⌊nr⌋/n

0

ρ⌊nr⌋−⌊ns⌋
n X1,⌊ns⌋ds+Op(n

1/2).

Then, by Lemma B.4, we have

σ−1n−3/2X2,⌊nr⌋ = ρ−1
n

∫ ⌊nr⌋/n

0

ρ⌊nr⌋−⌊ns⌋
n

X1,⌊ns⌋

σ
√
n

ds+Op(n
−1) →d Hc(r).

where the convergence is on D[0, 1]. Then, we know

σ−2n−2

n∑
t=1

X2
1,t−1 →d

∫ 1

0

Jc(r)
2dr
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from Phillips (1987b), and we use the same strategy in the following argument:

σ−2n−4

n∑
t=1

X2
2,t−1 = σ−2n−4

∫ n

0

X2
2,⌊r⌋dr

=

∫ 1

0

(
X2,⌊nr⌋

σn3/2

)2

dr

→d

∫ 1

0

Hc(r)
2dr.

Importantly, we know joint convergence[
X1,⌊nr⌋

σ
√
n

,
X2,⌊nr⌋

σn3/2

]′
→d

[
Jc(r), Hc(r)

]′
on D[0, 1]×D[0, 1] since both limits derive continuously from the basic FCLT result. Thus,
we should pick our normalizing diagonal matrix to be Dn,(ii) = diag(n, n2). We have

σ−2n−3

n∑
t=1

X1,t−1X2,t−1 =

∫ 1

0

X1,⌊nr⌋

σ
√
n

X2,⌊nr⌋

σn3/2
dr →d

∫ 1

0

Jc(r)Hc(r)dr.

So, we have via continuous mapping:

D−1
n,(ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii) →d σ

2

[ ∫ 1

0
Jc(r)

2dr
∫ 1

0
Jc(r)Hc(r)dr∫ 1

0
Jc(r)Hc(r)dr

∫ 1

0
Hc(r)

2dr

]
.

This is positive definite by Cauchy-Schwarz (clearly equality does not hold).
Next, we analyze the vector term in (31) and its components.

∑n
t=1X1,t−1εt converges

as in Theorem 2.5 since we have innovations ρnεt = (1 + O(1/n))εt. For
∑n

t=1X2,t−1εt, let
St =

∑t
j=1 εt, and let S̃t = W (Tt) be the Skorokhod embedding of St into the probability

space that the Brownian motion lives in (see Billingsley (1995)). Using recursion, we have:

X1,t =
t∑

j=1

ρt−j
n εj

=
t∑

j=1

ρt−j
n ∆Sj

= ρ−1
n St − ρtn

t∑
j=1

Sj(ρ
−j−1
n − ρ−j

n )

= ρ−1
n

(
St − (1− ρn)

t∑
j=1

Sjρ
t−j
n

)
=d ρ

−1
n

(
S̃t − (1− ρn)

t∑
j=1

S̃jρ
t−j
n

)
=: X̃1,t.
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Then, we have that

σ−2n−2

n∑
t=1

X2,t−1εt = σ−2n−2

n∑
t=1

( t−1∑
j=1

ρt−1−j
n X1,j−1

)
εt + op(1)

=d σ
−2n−2

n∑
t=1

( t−1∑
j=1

ρt−1−j
n X̃1,j−1

)
∆S̃t + op(1).

We investigate the term in the parentheses:

σ−1n−3/2

t−1∑
j=1

ρt−1−j
n X̃1,j−1 = ρ−1

n σ−1n−3/2

t−1∑
j=1

ρt−1−j
n

(
S̃j−1 − (1− ρn)

j−1∑
i=1

S̃iρ
j−1−i
n

)
= ρ−1

n σ−1n−3/2

t−1∑
j=1

ρt−1−j
n

(
S̃j−1 − (1− ρn)

∫ j

0

S̃⌊r⌋ρ
j−1−⌊r⌋
n dr

)
= ρ−2

n σ−1n−3/2

∫ t−1

0

ρt−1−⌊u⌋
n

(
S̃⌊u⌋ − (1− ρn)

∫ ⌊u⌋+1

0

S̃⌊r⌋ρ
⌊u⌋−⌊r⌋
n dr

)
du

= ρ−2
n

∫ t−1
n

0

ρ
n( t−1

n
)−⌊nu⌋

n

( S̃⌊nu⌋

σ
√
n
− n(1− ρn)

∫ ⌊nu⌋
n

+ 1
n

0

S̃⌊nr⌋

σ
√
n
ρ⌊nu⌋−⌊nr⌋
n dr

)
du.

Define

gn(x) =

∫ x

0

ρ
n( t−1

n
)−⌊nu⌋

n

( S̃⌊nu⌋

σ
√
n
− n(1− ρn)

∫ ⌊nu⌋
n

+ 1
n

0

S̃⌊nr⌋

σ
√
n
ρ⌊nu⌋−⌊nr⌋
n dr

)
du,

and

g(x) =

∫ x

0

ec(x−u)
(
W (u) + c

∫ u

0

W (r)ec(u−r)dr
)
du

=

∫ x

0

ec(x−u)Jc(u)du

= Hc(x),

where the second equality holds by integration by parts. FCLT, Lemma B.4, and continuity
imply

sup
1≤t≤n

∣∣∣gn(t/n)− g(t/n)
∣∣∣→p 0.

Then, by Lemma B.5, we have

σ−2n−2

n∑
t=1

( t−1∑
j=1

ρt−1−j
n X̃1,j−1

)
∆S̃t = ρ−2

n σ−1n−1/2

n∑
t=1

gn

(t− 1

n

)
∆W (Tt)

=

∫ 1

0

Hc(t)dW (t) + op(1).
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We conclude that

σ−2n−2

n∑
t=1

X2,t−1εt →d

∫ 1

0

Hc(t)dW (t).

Using the FLCT and continuity again, we conclude via (31) that

Dn,(ii)T̃
′
n(ϕ̂n − ϕn) =

(
D−1

n,(ii)

n∑
t=1

Xt−1X
′
t−1D

−1
n,(ii)

)−1(
D−1

n,(ii)

n∑
t=1

Xt−1εt

)
→d

[ ∫ 1

0
Jc(r)

2dr
∫ 1

0
Jc(r)Hc(r)dr∫ 1

0
Jc(r)Hc(r)dr

∫ 1

0
Hc(r)

2dr

]−1 [∫ 1

0
Jc(r)dW (r)∫ 1

0
Hc(r)dW (r)

]
.
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3.3.3 ρn ∈ C(iii)

Theorem 3.9. Suppose ρn ∈ C(iii). Let Dn,(iii) be the following diagonal matrix:

Dn,(iii) =

[
(ρ2n − 1)−1/2 0

0 (ρ2n − 1)−3/2

]
.

Define

ξ := N (0, V1), V1 := σ2

[
1 −1
−1 2

]
and

Vξ :=

[
ξ21 −ξ1(ξ1 − ξ2)

−ξ1(ξ1 − ξ2) ξ21 + (ξ1 − ξ2)
2

]
.

Furthermore, let

V(iii) := σ2


1 −1 0 1
−1 2 0 −1
0 0 0 0
1 −1 0 1

 .

Then,

(ρ2n − 1)−1/2Jn
nDn,(iii)T̃

′
n(ϕ̂n − ϕn) →d

(
ξ′ ⊗ (Vξ)

−1
)
N (0, V(iii)) (42)

.

Proof. Similar to the C(i) case, we expect to need to normalize according to XnX
′
n. We

have

J−n
n Xn =

n∑
j=1

J−j
n Uj,

and

E
[
(J−n

n Xn)(J
−n
n Xn)

′
]
=

n∑
j=1

J−j
n E(UjU

′
j)(J

−j
n )′

= σ2

n∑
j=1

ρ2(−j−1)
n

[
ρn 0
−j ρn

] [
ρn
1

] [
ρn 1

] [ρn −j
0 ρn

]

= σ2

[
ρ2n
∑n−1

j=0 ρ
−2j
n −ρ−1

n

∑n−1
j=1 ρ

−2j
n j

−ρ−1
n

∑n−1
j=1 ρ

−2j
n j ρ−2

n

∑n
j=1 ρ

−2j
n j2

]

∼ σ2

[
(ρ2n − 1)−1 −1

4
(ρn − 1)−2

−1
4
(ρn − 1)−2 1

4
(ρn − 1)−3

]
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by Lemma B.6. Then, if we let

Dn,(iii) =

[
(ρ2n − 1)−1/2 0

0 (ρ2n − 1)−3/2

]
,

we have

D−1
n,(iii)E

[
(J−n

n Xn)(J
−n
n Xn)

′
]
D−1

n,(iii) → V1 = σ2

[
1 −1
−1 2

]
.

Clearly V1 is positive definite.
Let

ξn := D−1
n,(iii)J

−n
n Xn.

A martingale CLT with

ζn,j := D−1
n,(iii)J

−j
n Uj, ξn =

n∑
j=1

ζn,j, (43)

implies that

ξn →d ξ := N (0, V1)

since the conditional variance is
n∑

j=1

E
(
ζn,jζ

′
n,j|Fn,j−1

)
= D−1

n,(iii)E
[
(J−n

n Xn)(J
−n
n Xn)

′
]
D−1

n,(iii) → V1.

The Lindeberg condition holds by Lemma (B.7).
Next, recall the decomposition in (32). By taking the opposite signs, we have:

(Jn ⊗ Jn − I4)
n∑

t=1

vec(Xt−1X
′
t−1)

= vec
( n∑

t=1

UtU
′
t − Jn

n∑
t=1

Xt−1U
′
t −

n∑
t=1

UtX
′
t−1J

′
n +XnX

′
n

)
.

Note that

Xn = Jn
nDn,(iii)ξn

=⇒ vec(XnX
′
n) =

(
Jn
nDn,(iii) ⊗ Jn

nDn,(iii)

)
vec(ξnξ

′
n).

Next, we have ∥∥∥J−n
n D−1

n,(iii)Jn

n∑
t=1

Xt−1U
′
tD

−1
n,(iii)(J

−n
n )′

∥∥∥
∞

≤ op(1), (44)

∥∥∥J−n
n D−1

n,(iii)

n∑
t=1

UtU
′
tD

−1
n,(iii)(J

−n
n )′

∥∥∥
∞

≤ op(1) (45)
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by Lemma B.8. Note that we just need the max norm (the largest element) since we will
eventually vectorize. Then, the inverse property of the Kronecker product implies(

Jn
nDn,(iii) ⊗ Jn

nDn,(iii)

)−1

= D−1
n,(iii)J

−n
n ⊗D−1

n,(iii)J
−n
n ,

hence

An

n∑
t=1

vec(Xt−1X
′
t−1) = vec(ξnξ

′
n) + op(1),

where, using the mixed product property of the Kronecker product the commutativity of
certain matrices, we have:

An =
(
D−1

n,(iii)J
−n
n ⊗D−1

n,(iii)J
−n
n

)(
Jn ⊗ Jn − I4

)
=
(
D−1

n,(iii) ⊗D−1
n,(iii)

)(
J−n
n ⊗ J−n

n

)(
Jn ⊗ Jn − I4

)
=
(
D−1

n,(iii) ⊗D−1
n,(iii)

)(
Jn ⊗ Jn − I4

)(
J−n
n ⊗ J−n

n

)
.

Then, we have:(
D−1

n,(iii) ⊗D−1
n,(iii)

)(
Jn ⊗ Jn − I4

)
vec
(
J−n
n

n∑
t=1

Xt−1X
′
t−1(J

−n
n )′

)
= vec(ξnξ

′
n) + op(1).

To do the proper normalization, we do:

Bnvec
(
D−1

n,(iii)J
−n
n

n∑
t=1

Xt−1X
′
t−1(J

−n
n )′D−1

n,(iii)

)
= vec(ξnξ

′
n) + op(1),

where

Bn =
(
D−1

n,(iii) ⊗D−1
n,(iii)

)(
Jn ⊗ Jn − I4

)(
Dn,(iii) ⊗Dn,(iii)

)
=
(
D−1

n,(iii)JnDn,(iii) ⊗D−1
n,(iii)JnDn,(iii)

)
− I4

=

[
ρn 0

ρ2n − 1 ρn

]
⊗
[

ρn 0
ρ2n − 1 ρn

]
− I4

= (ρ2n − 1)


1 0 0 0
ρn 1 0 0
ρn 0 1 0

ρ2n − 1 ρn ρn 1

 .

Let Mn be the matrix. Then

Mn → M :=


1 0 0 0
1 1 0 0
1 0 1 0
0 1 1 1

 .
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This is invertible, so we have additionally:

M−1
n → M−1 =


1 0 0 0
−1 1 0 0
−1 0 1 0
2 −1 −1 1

 .

Thus, we have:

vec
(
(ρ2n − 1)D−1

n,(iii)J
−n
n

n∑
t=1

Xt−1X
′
t−1(J

−n
n )′D−1

n,(iii)

)
= M−1vec(ξnξ

′
n) + op(1).

We can expand the RHS and do asymptotics since we know the limiting distribution of ξn:

M−1vec(ξnξ
′
n) =


1 0 0 0
−1 1 0 0
−1 0 1 0
2 −1 −1 1




ξ21,n
ξ1,nξ2,n
ξ1,nξ2,n
ξ22,n

 =


ξ21,n

−ξ1,n(ξ1,n − ξ2,n)
−ξ1,n(ξ1,n − ξ2,n)
ξ21,n + (ξ1,n − ξ2,n)

2

 .

We have by the continuous mapping theorem on ξn:

V
(n)
ξ :=

[
ξ21,n −ξ1,n(ξ1,n − ξ2,n)

−ξ1,n(ξ1,n − ξ2,n) ξ21,n + (ξ1,n − ξ2,n)
2

]
→ Vξ :=

[
ξ21 −ξ1(ξ1 − ξ2)

−ξ1(ξ1 − ξ2) ξ21 + (ξ1 − ξ2)
2

]
.

Then, since M−1vec(ξnξ
′
n) = vec(Vξ) + op(1), we have

(ρ2n − 1)D−1
n,(iii)J

−n
n

n∑
t=1

Xt−1X
′
t−1(J

−n
n )′D−1

n,(iii) →d Vξ.

Next, we must deal with the vector term in the OLS. We have:

(ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

Xt−1εt = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( t−1∑
j=1

J t−1−j
n Uj

)
εt

= (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=1

J t−1−j
n Uj

)
εt

− (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=t

J t−1−j
n Uj

)
εt.

We want the second term to be op(1). Let Rn be the second term:

Rn = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=t

J t−1−j
n Uj

)
εt. (46)
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In Lemma B.9, we show that ∥Rn∥∞ = op(1), so

(ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

Xt−1εt = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=1

J t−1−j
n Uj

)
εt + op(1)

=
(
(ρ2n − 1)1/2D−1

n,(iii)

n∑
t=1

J−(n−t+1)
n εtDn,(iii)

)(
D−1

n,(iii)

n∑
j=1

J−j
n Uj

)
+ op(1)

= Nnξn + op(1),

(47)

since

ξn = D−1
n,(iii)J

−n
n Xn = D−1

n,(iii)

n∑
j=1

J−j
n Uj

and we define

Nn := (ρ2n − 1)1/2D−1
n,(iii)

n∑
t=1

J−(n−t+1)
n εtDn,(iii)

= (ρ2n − 1)1/2
n∑

t=1

εtρ
−(n−t+1)
n

[
ρn 0

−(n− t+ 1)(ρ2n − 1) ρn

]
.

We truncate each term to get independence, just as in the proof of Theorem 2.6. Let kn be
a sequence so that

kn(ρ
2
n − 1) → ∞, kn/n → 0.

Such a sequence exists since ρn is in the C(iii) regime. Now, truncate as follows:

ξ̃n = D−1
n,(iii)

kn∑
j=1

J−j
n Uj

Ñn = (ρ2n − 1)1/2
n∑

t=kn+1

εtρ
−(n−t+1)
n

[
ρn 0

−(n− t+ 1)(ρ2n − 1) ρn

]
.

(48)

By Lemma B.10, we have ξn = ξ̃n + op(1) and Nn = Ñn + op(1). Furthermore, ξ̃n and Ñn

are independent since they are sums of disjoint εt. Let Ṽ
(n)
ξ be V

(n)
ξ with corresponding

truncated components ξ̃1,n and ξ̃2,n. Thus, we have:

(ρ2n − 1)−1/2Jn
nDn,(iii)T̃

′
n(ϕ̂n − ϕn) = (Ṽ

(n)
ξ )−1Ñnξ̃n + op(1).

It remains to show the asymptotics of the above. We achieve a limit distribution by vec-
torizing Nn and doing a martingale CLT. Let vn,t = (ρn,−(n − t + 1)(ρ2n − 1), 0, ρn)

′, and
define

χn,t = (ρ2n − 1)1/2ρ−(n−t+1)
n vn,tεt, vec(Nn) =

n∑
t=1

χn,t. (49)
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We apply the martingale CLT. For the conditional variance, we have

n∑
t=1

E
(
χn,tχ

′
n,t|Fn,t

)
=

n∑
t=1

E
[
(ρ2n − 1)ρ−2(n−t+1)

n vn,tv
′
n,tε

2
t |Fn,t

]
= σ2(ρ2n − 1)

n∑
t=1

ρ−2(n−t+1)
n vn,tv

′
n,t

= σ2


1 −(ρ2n − 1)2

∑n
t=1 ρ

−2t
n t 0 1

−(ρ2n − 1)2
∑n

t=1 ρ
−2t
n t (ρ2n − 1)3

∑n
t=1 ρ

−2t
n t2 0 −(ρ2n − 1)2

∑n
t=1 ρ

−2t
n t

0 0 0 0
1 −(ρ2n − 1)2

∑n
t=1 ρ

−2t
n t 0 1


→ V(iii)

:= σ2


1 −1 0 1
−1 2 0 −1
0 0 0 0
1 −1 0 1


using Lemma B.6. The Lindeberg condition holds by Lemma B.11. Then, we have that

vec(Nn) →d N (0, V(iii)) =⇒ vec(Ñn) →d N (0, V(iii)).

Therefore, we have:

(ρ2n − 1)−1/2Jn
nDn,(iii)T̃

′
n(ϕ̂n − ϕn) = vec

(
(Ṽ

(n)
ξ )−1Ñnξ̃n

)
+ op(1)

=
(
ξ̃′n ⊗ (Ṽ

(n)
ξ )−1

)
vec(Ñn) + op(1).

By independence of ξ̃n and Ñn, we conclude that we converge in distribution to a mixed
Gaussian distribution by (31):

(ρ2n − 1)−1/2Jn
nDn,(iii)T̃

′
n(ϕ̂n − ϕn) →d

(
ξ′ ⊗ (Vξ)

−1
)
N (0, V(iii)). (50)

The mixed normal has a positive definite variance by Lemma B.12.
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3.4 Close Distinct Eigenvalues

Recall the definition of q from (9). The problem with q = 1 is that we get a singular
limit matrix in both the C(i) and C(i) case and the C(iii) and C(iii) case. We must use a
different normalization. Luckily, we can modify the Jordan form method. Define

Tn(θn) =
1

θ2n

[
0 θ2n
−1 θn

]
,

T−1
n (θn) =

[
θn −θ2n
1 0

]
for some free parameter θn. Using (3), we have

T−1
n (θn)RnTn(θn) =

[
θn −θ2n
1 0

] [
ρ1n + ρ2n −ρ1nρ2n

1 0

]
1

θ2n

[
0 θ2n
−1 θn

]
=

[ρ1nρ2n
θn

θn(ρ1n + ρ2n)− ρ1nρ2n − θ2n
ρ1nρ2n

θ2n
ρ1n + ρ2n − ρ1nρ2n

θn

]
.

Notice that choosing θn = ρ1n or θn = ρ2n makes the above resemble a Jordan form:

θn = ρ1n =⇒ T−1
n (ρ1n) =

1

ρ21n

[
0 ρ21n
−1 ρ1n

]
, T−1

n (ρ1n)RnTn(ρ1n) =

[
ρ2n 0
ρ2n
ρ1n

ρ1n

]
,

θn = ρ2n =⇒ T−1
n (ρ2n) =

1

ρ22n

[
0 ρ22n
−1 ρ2n

]
, T−1

n (ρ2n)RnTn(ρ2n) =

[
ρ1n 0
ρ1n
ρ2n

ρ2n

]
.

The idea is that the above should behave similarly to the Jordan form since ρ1n/ρ2n should
be close to 1. We make this notion precise: we have

δn := 1− 1 + ρ2n
1 + ρ1n

1− ρ21n
1− ρ22n

= 1− 1 + ρ2n
1 + ρ1n

q → 0

so then

ρ1n = ρ2n + (1− ρ2n)δn,

=⇒ ρ1n
ρ2n

= 1 +
1

ρ2n
(1− ρ2n)δn.

Now, do the familiar transformation with Xt = T−1
n (ρ2n)xt, Kn = T−1

n (ρ2n)RnTn(ρ2n), and
Ut = T−1

n (ρ2n)ut:

Xt = KnXt−1 + Ut, (51)

[
X1,t

X2,t

]
=

[
ρ1n 0
ρ1n
ρ2n

ρ2n

] [
X1,t−1

X2,t−1

]
+

[
ρ2n
1

]
εt.
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3.4.1 ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i), q = 1

In this case, since both eigenvalues are near-stationary, Kn behaves like the Jordan de-
composition in the repeated C(i) case. The OLS estimator is the same as in Theorem 3.7:

Theorem 3.10. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i), and q = 1. Let Dn(ρ2n) be the
following diagonal matrix:

Dn(ρ2n) =

[
(1− ρ22n)

−1/2 0
0 (1− ρ22n)

−3/2

]
.

Define

V(i) =

[
1 1
1 2

]
.

Then,

√
nDn(ρ2n)Tn(ρ2n)

′(ϕ̂n − ϕn) →d N (0, V −1
(i) ). (52)

Proof. The proof follows similarly to the proof in Theorem 3.7, where we define Dn(ρ2n) as
above, and ∆n(ρ2n) as ∆n with ρn replaced by ρ2n in (35).
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3.4.2 ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii), q = 1

In this case, we need to be more careful since K−n
n will not be a good approximation for

J−n
n . We have two cases depending on how close ρ1n and ρ2n are to each other. Define

τ := lim
n→∞

n(ρ2n − ρ1n) ∈ [−∞,∞].

We care about τ because we have

ρ−n
2n =

(
ρ1n +

n(ρ2n − ρ1n)

n

)−n

= ρ−n
1n

(
1 +

1

ρ1n

n(ρ2n − ρ1n)

n

)−n

= ρ−n
1n (1 + o(1))e−ρ−1

1n n(ρ2n−ρ1n),

hence ρ−n
2n ∼ ρ−n

1n when τ = 0.
We can see the two cases appear through the following calculation. Let rn := (ρ1n −

ρ2n)/ρ2n → 0, so

Kn
n =

([
ρ2n 0
0 ρ2n

]
+

[
ρ1n − ρ2n 0

ρ1n
ρ2n

0

])n

= ρn2n

(
I2 +

[
rn 0
ρ1n
ρ22n

0

])n

= ρn2n

n∑
j=0

(
n

j

)[
rn 0
ρ1n
ρ22n

0

]j

= ρn2n

[
1 +

∑n
j=1

(
n
j

)
rjn 0

ρ1n
ρ22n

r−1
n

∑n
j=1

(
n
j

)
rjn 1

]

= ρn2n

[
(1 + rn)

n 0
ρ1n
ρ22n

r−1
n

(
(1 + rn)

n − 1
)

1

]
=

[
ρn1n 0

ρ1n
ρ2n

ρn1n−ρn2n
ρ1n−ρ2n

ρn2n

]
=⇒ K−n

n =

[
ρ−n
2n 0

ρ1n
ρ2n

ρ−n
1n −ρ−n

2n

ρ1n−ρ2n
ρ−n
1n

]
.

Then,

ρ−n
1n − ρ−n

2n

ρ1n − ρ2n
= −nρ−n

1n

1−
(
1 + 1

ρ1n

n(ρ2n−ρ1n)
n

)−n

n(ρ2n − ρ1n)
= −nρ−n

1n (1 + o(1))
1− eτ/ρ1

τ
,

ρ−n
2n = ρ−n

1n

(
1 +

1

ρ1n

n(ρ2n − ρ1n)

n

)−n

= ρ−n
1n (1 + o(1))e−τ/ρ1 .
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Thus, τ = 0 implies

ρ−n
1n − ρ−n

2n

ρ1n − ρ2n
= −nρ−n

1n (1 + o(1)),

ρ−n
2n = ρ−n

1n (1 + o(1)),

hence

K−n
n = (I2 + o(I2))J

−n
n ,

where Jn is defined at the beginning of section 3.3 with ρn replaced by ρ2n. Therefore, when
τ = 0, we have the same OLS result. When τ ̸= 0, we have normalization by Kn

n rather than
by Jn

n .

Theorem 3.11. Suppose ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii), and q = 1. Define ξ, Vξ,
and V(iii) as in Theorem 3.9. Define

Dn(ρ2n) =

[
(ρ22n − 1)−1/2 0

0 (ρ22n − 1)−3/2

]
.

If τ = 0, then

(ρ2n − 1)−1/2Jn
nDn(ρ2n)Tn(ρ2n)

′(ϕ̂n − ϕn) →d

(
ξ′ ⊗ (Vξ)

−1
)
N (0, V(iii)). (53)

If τ ̸= 0, then

(ρ2n − 1)−1/2Kn
nDn(ρ2n)Tn(ρ2n)

′(ϕ̂n − ϕn) →d

(
ξ′ ⊗ (Vξ)

−1
)
N (0, V(iii)). (54)

Proof. The proof follows Theorem 3.9.
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4 Discussion

The results in Section 3 establish asymptotic limit theory for drifting AR(2) parameter
sequences ϕ1n and ϕ2n with cases depending on the eigenvalues ρ1n and ρ2n of the companion
matrix. Section 3.2 covers the case when ρ1n ̸= ρ2n and they are far apart, Section 3.3 covers
the case when ρ1n = ρ2n, and Section 3.4 covers the case when the eigenvalues are distinct
but close.

Continuity in the limit distributions of AR(2) does occur between some cases. We have
continuity between cases where the components of the OLS limit distribution are independent
AR(1) limit distributions:

• ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i), Qi = 0 versus ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(ii).

• ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(ii) versus ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(iii).

• ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(iii) versus ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(iii).

• ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(iii) versus ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii),
Qiii = 0.

For example, consider the second case. We see from Theorem 3.2 and Theorem 3.3 that the
limit distributions are independent AR(1) limit distributions joined in a vector. The first
component is the same for both. For the second component, recall from Section 2.2 that
as c2 → ∞, ρ2n tends from a local-to-unity sequence to a mildly explosive sequence, which
has a Cauchy limit distribution. The local-to-unity distribution also approaches a Cauchy
distribution as c2 → ∞, hence we have a continuous bridge between these cases.

We also have continuity between cases where the convergence rates are already similar:

• ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i), q = 1 versus ρn ∈ C(i).

• ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii), q = 1 versus ρn ∈ C(iii).

As we saw in Section 3.4, we do a Jordan-esque decomposition in the cases where the
eigenvalues are distinct but close together, so we end up with a limit distribution exactly
the same as when the eigenvalue sequences are the same.

However, continuity fails across the other cases. Discontinuity in the limit distributions
occurs between cases where ρ1n and ρ2n have different convergence speeds versus similar
convergence speeds. There are discontinuities between the following cases:

• ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i), q ̸= 1 versus ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(i),
q = 1.

• ρ1n ̸= ρ2n, ρ1n ∈ C(i), ρ2n ∈ C(ii) versus ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(ii).

• ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(iii) versus ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(ii).

• ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii), q ̸= 1 versus ρ1n ̸= ρ2n, ρ1n ∈ C(iii), ρ2n ∈ C(iii),
q = 1.
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For example, consider the first case. The eigenvalues are distinct and mildly explosive, but
we compare when they have different convergence speeds versus when they converge at a
similar rate. The limit distribution when they have different convergence speeds is

N (0, V −1
(i,i)), V(i,i) =

[
1 −Qi

−Qi 1

]
by Theorem 3.1 and the limit distribution for the other is

N (0, V −1
(i) ), V(i) =

[
1 1
1 2

]
.

by Theorem 3.10. When q → 1, then Q → 1, so V(i,i) becomes singular, whereas V(i) is
invertible. Clearly, the limit distributions are discontinuous.

We are unable to comment on the continuity between ρ1n ̸= ρ2n, ρ1n ∈ C(ii), ρ2n ∈ C(ii)
versus ρn ∈ C(ii) because of a lack of understanding of Hc(r). Since both cases have the
same convergence rate n, we suspect that the distributions vary continuously, but it is unclear
how.

Failure of continuity means that we cannot use Andrews et al. (2020) to build a uniform
confidence set since we violate Assumptions C1 and C2 in the paper. The procedure for
AR(1) relied on creating a confidence set by inverting a test and using the continuously
varying critical values from the limiting distributions generated from the drifting parameter
sequences (see (2.17) of Andrews et al. (2020)). We tried to extend the successful results of
AR(1) to AR(2) but found that it does not work.

Failure to construct a uniform confidence set for AR(2) with Andrews et al. (2020) does
not mean that it is impossible. Other methods for constructing uniform confidence sets
exist, such as Mikusheva (2007) and Magdalinos and Petrova (2022). The more recent paper
uses endogenously constructed instruments to do uniform inference for AR(1). Perhaps the
method could be extended to AR(2).
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Appendix

A Proof Details of Section 3.2

Lemma A.1. The martingale difference sequence ξn,t defined in (14) satisfies the Lindeberg
condition.

Proof. Each component of ξn,t satisfies a univariate Lindeberg condition by Giraitis and
Phillips (2006), hence the Lindeberg condition is satisfied for the vector by Lemma C.2.

Lemma A.2. The martingale difference sequence ξn,j defined in (17) satisfies the Lindeberg
condition.

Proof. The first component of ξn,j satisfies a univariate Lindeberg condition by Giraitis and
Phillips (2006). The second component is easily seen to satisfy it as well:

n∑
j=1

E
(
|n−1/2εj|21{|n−1/2εj| > δ}

)
=

1

n

n∑
j=1

E
(
ε2j1{ε2j > nδ}

)
≤ max

1≤j≤n
E
(
ε2j1{ε2j > nδ}

)
→ 0

by uniform integrability of the innovation sequence (since it is iid). Thus, the Lindeberg
condition is satisfied for the vector by Lemma C.2.

Lemma A.3. The martingale difference sequence ξn,t defined in (20) satisfies the Lindeberg
condition.

Proof. The first component satisfies a univariate Lindeberg condition by Giraitis and Phillips
(2006). The second and third components satisfy univariate Lindeberg conditions by Phillips
and Magdalinos (2007). Hence the Lindeberg condition is satisfied for the vector by Lemma
C.2.

Lemma A.4. The martingale difference sequence ξn,j defined in (25) satisfies the Lindeberg
condition.

Proof. The first component satisfies a univariate Lindeberg condition by the same proof in
Lemma A.2. The second and third components satisfy univariate Lindeberg conditions by
Phillips and Magdalinos (2007). Hence the Lindeberg condition is satisfied for the vector by
Lemma C.2.

Lemma A.5. The martingale difference sequence ξn,t defined in (29) satisfies the Lindeberg
condition.

Proof. Each component of ξn,t satisfies a univariate Lindeberg condition by Phillips and
Magdalinos (2007), hence the Lindeberg condition is satisfied for the vector by Lemma
C.2.
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B Proof Details of Section 3.3

Lemma B.1. Suppose ρn ∈ C(i). Then, we have

n∑
j=1

jkρ2jn ∼ (1− ρn)
−1−kΓ(k + 1)

2k+1

for all k > 0.

Proof. Write the sum as an integral with the change of variables u = (1− ρn)x:

n∑
j=1

jkρ2jn =

∫ n+1

1

⌊x⌋kρ2⌊x⌋n dx

= (1− ρn)
−1−k

∫ (1−ρn)(n+1)

1−ρn

(
⌊(1− ρn)

−1u⌋
(1− ρn)−1

)k

ρ2⌊(1−ρn)−1u⌋
n du.

From the assumptions, we know that 1 − ρn → 0 and ρn ∈ C(i). Noting that ln(1 + z) =
z +O(z2) as z → 0, we have:

ρ2⌊(1−ρn)−1u⌋
n =

(
1− (1− ρn)

)2⌊(1−ρn)−1u⌋

= exp
{
2⌊(1− ρn)

−1u⌋ ln
(
1− (1− ρn)

)}
= exp

{
2⌊(1− ρn)

−1u⌋
(
− (1− ρn) +O((1− ρn)

2)
)}

= exp
{
2⌊(1− ρn)

−1u⌋
(
− (1− ρn) +O((1− ρn)

2)
)}

= exp
{
− 2⌊(1− ρn)

−1u⌋/(1− ρn)
−1 +O(1− ρn)

)}
→ e−2u.

Therefore, we have

(1− ρn)
1+k

n∑
j=1

jkρ2jn →
∫ ∞

0

uke−2udu = 2−(1+k)

∫ ∞

0

yke−ydy =
Γ(k + 1)

21+k
.

Lemma B.2. The equations (36), (37), and (38) are true.

Proof. For (36), we can use the operator norm and (34). Note that the operator norm equals
the largest singular value (see any functional analysis text, such as Rudin (1991)):

∥n−1/2∆nXn∥L2 = ∥n−1/2∆nDn,(i)D
−1
n,(i)Xn∥L2

≤ ∥n−1/2∆nDn,(i)∥op∥D−1
n,(i)Xn∥L2

=

∥∥∥∥∥n−1/2

[
(1− ρ2n)

−1/2 0
(1− ρ2n)

−1/2 (1− ρ2n)
−1/2

] ∥∥∥∥∥
op

∥D−1
n,(i)Xn∥L2

= Op(n
−1/2(1− ρ2n)

−1/2)

= op(1).
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We prove (37) next with WLLN:

∆n
1

n

n∑
t=1

UtU
′
t∆

′
n →p σ

2

[
1 0
1 0

] [
1 1
1 0

] [
1 1
0 0

]
= σ2

[
1 1
1 1

]
.

For (38), note that the previous paragraph implies that each component of ∆nUt is O(1).
Then, using the operator norm again, we have:∥∥∥∥∥vec(∆nJn

1

n

n∑
t=1

Xt−1U
′
t∆

′
n

)∥∥∥∥∥
2

L2

=

∥∥∥∥∥ 1n
n∑

t=1

(∆nUt)⊗ (∆nJnXt−1)

∥∥∥∥∥
2

L2

= n−2

n∑
t=1

∥∆nUt∥2L2∥∆nJnXt−1∥2L2

= O(1)n−2

n∑
t=1

∥∆nJnXt−1∥2L2

≤ O(1)n−1 max
1≤t≤n

∥∆nJnXt−1∥2L2 .

We have the bound

∥∆nJnXt−1∥2 =

∥∥∥∥∥
[
1 0
1 1− ρ2n

]
ρn−1
n

[
ρn 0
n ρn

] [
X1,t−1

X2,t−1

] ∥∥∥∥∥
2

=

∥∥∥∥∥
[

X1,t−1ρ
n
n

X1,t−1(ρ
n
n + nρn−1

n (1− ρ2n)) +X2,t−1ρ
n
n(1− ρ2n)

] ∥∥∥∥∥
2

= X2
1,t−1ρ

2n
n +X2

1,t−1

(
ρnn + nρn−1

n (1− ρ2n)
)2

+X2
2,t−1ρ

2n
n

(
1− ρ2n

)2
+ 2X1,t−1X2,t−1

(
ρnn + nρn−1

n (1− ρ2n)
)
ρnn
(
1− ρ2n

)
≤ X2

1,t−1ρ
2n
n +X2

1,t−1

(
ρnn + nρn−1

n (1− ρ2n)
)2

+X2
2,t−1ρ

2n
n

(
1− ρ2n

)2
+
(
X2

1,t−1 +X2
2,t−1

)(
ρnn + nρn−1

n (1− ρ2n)
)
ρnn
(
1− ρ2n

)
≤ X2

1,t−1 +X2
1,t−1 +X2

2,t−1

(
1− ρ2n

)2
+
(
X2

1,t−1 +X2
2,t−1

)
(1− ρ2n) + op(1)

≤ 3X2
1,t−1 + 2

(
1− ρ2n

)2
X2

2,t−1 + op(1)

by using ρnn ≤ 1 and Lemma C.3. From (34), we know that

max
1≤t≤n

E
(
(1− ρ2n)

−1X2
1,t + (1− ρ2n)

−3X2
2,t

)
= O(1),

so we can say that

∥∆nJnXt−1∥2R2 ≤ Op((1− ρ2n)
−1).

Thus, ∥∥∥vec(∆nJn
1

n

n∑
t=1

Xt−1U
′
t∆

′
n

)∥∥∥2
L2

≤ Op

(
n−1(1− ρ2n)

−1
)
= op(1).
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Lemma B.3. The martingale difference sequence ξn,t defined in (40) satisfies the Lindeberg
condition.

Proof. The key is (34): by Holder’s inequality, we have uniform integrability of ∥D−1
n,(i)Xt∥2.

Let (an)n∈N be a sequence of numbers to be chosen later. We have

Ln(δ) =
n∑

t=1

E(∥ξn,t∥21{∥ξn,t∥ > δ})

=
1

n

n∑
t=1

E
(
∥D−1

n,(i)Xt−1∥2ε2t1{∥D−1
n,(i)Xt−1∥2ε2t > nδ2}

)
≤ max

1≤t≤n
E
(
∥D−1

n,(i)Xt−1∥2ε2t1{∥D−1
n,(i)Xt−1∥2ε2t > nδ2}

)
≤ max

1≤t≤n
E
(
∥D−1

n,(i)Xt−1∥2ε2t1{∥D−1
n,(i)Xt−1∥2ε2t > nδ2}1{∥D−1

n,(i)Xt−1∥2 ≤ an}
)

+ max
1≤t≤n

E
(
∥D−1

n,(i)Xt−1∥2ε2t1{∥D−1
n,(i)Xt−1∥2ε2t > nδ2}1{∥D−1

n,(i)Xt−1∥2 > an}
)

≤ an max
1≤t≤n

E
(
ε2t1{ε2t > nδ2/an}

)
+ σ2E

(
∥D−1

n,(i)Xt−1∥21{∥D−1
n,(i)Xt−1∥2 > an}

)
→ 0

by uniform integrability of ε2t and ∥D−1
n,(i)Xt∥2, and picking an such that an → ∞, n/an → ∞,

and an max1≤t≤n E
(
ε2t1{ε2t > nδ2/an}

)
→ 0.

Lemma B.4. Suppose ρn ∈ C(ii). Then,

ρ⌊nx⌋−⌊ny⌋
n → ec(x−y).

Proof.

ρ⌊nx⌋−⌊ny⌋
n =

[(
1 +

n(ρn − 1)

n

)n] ⌊nx⌋
n

− ⌊ny⌋
n → ec(x−y).

Lemma B.5. Let (W (t),Ft) be standard Brownian motion on [0, 1]. Let the Skorokhod
embedding of the random walk St into this space be given by St =d W (Tt) Suppose we have
real functions (gn) satisfying

sup
1≤t≤n

∣∣∣gn( t
n

)
− g
( t
n

)∣∣∣→p 0,

with g : [0, 1] → R is continuous. Assuming gn and g are Ft-measurable, then

1

σ
√
n

n∑
t=1

gn

(t− 1

n

)
∆W (Tt) →p

∫ 1

0

g(t)dW (t).

Proof. This is a straightforward result from the definition of the stochastic integral. See a
textbook such as Karatzas and Shreve (1998).
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Lemma B.6. Suppose ρn ∈ C(iii). Then, we have

n∑
j=1

jkρ−2j
n ∼ (ρn − 1)−1−kΓ(k + 1)

2k+1

for all k > 0.

Proof. The proof is the same as for Lemma B.1.

Lemma B.7. The martingale difference sequence ζn,j defined in (43) satisfies the Lindeberg
condition.

Proof. First, note that

ζn,j = D−1
n,(iii)J

−j
n Uj = (ρ2n − 1)1/2

[
ρ−j+1
n

(−j + 1)ρ−j
n (ρ2n − 1)

]
εj.

We prove Lindeberg conditions for each component. We take advantage of uniform integra-
bility of the innovation sequence since they are iid. For the first component, we have:

n∑
j=1

E
(
|(ρ2n − 1)1/2ρ−j+1

n εj|21{|(ρ2n − 1)1/2ρ−j+1
n εj| > δ}

)
=

n∑
j=1

(ρ2n − 1)ρ2(−j+1)
n E

(
ε2j1{ε2j > δ2(ρ2n − 1)−1ρ−2(−j+1)

n }
)

≤ E
(
ε2j1{ε2j > δ2(ρ2n − 1)−1}

)
(ρ2n − 1)

n∑
j=1

ρ2(−j+1)
n

= E
(
ε2j1{ε2j > δ2(ρ2n − 1)−1}

)
(ρ2n − 1)

ρ2n(1− ρ
2(−n)
n )

ρ2n − 1

→ 0.

We have the inequality since ρ
−2(−j+1)
n ≥ 1. Next, we have:

n∑
j=1

E
(
|(ρ2n − 1)3/2(−j + 1)ρ−j

n εj|21{(ρ2n − 1)3/2(−j + 1)ρ−j
n εj > δ}

)
=

n∑
j=1

(ρ2n − 1)3(−j + 1)2ρ−2j
n E

(
ε2j1{ε2j > δ2(ρ2n − 1)−3(−j + 1)−2ρ2jn }

)
≤ E

(
ε2j1{ε2j > δ2(ρ2n − 1)−3}

)
(ρ2n − 1)3

n∑
j=1

(j − 1)2ρ−2j
n

= E
(
ε2j1{ε2j > δ2(ρ2n − 1)−3}

)
(ρ2n − 1)3O((ρ2n − 1)−3)

→ 0.

We use Lemma B.6 for the sum.
Using Lemma C.2, we conclude that ζn,j satisfies the Lindeberg condition.
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Lemma B.8. The equations (44) and (45) are true.

Proof. The key for this lemma is that ∥J−n
n ∥∞ = O(nρ−n

n ) and ∥D−1
n,(iii)∥∞ = O((ρ2n − 1)3/2)

by inspection. For (44), note that (47) implies that ∥(ρ2n − 1)1/2D−1
n,(iii)J

−n
n

∑n
t=1Xt−1εt∥∞ =

Op(1), so we have:∥∥∥J−n
n D−1

n,(iii)Jn

n∑
t=1

Xt−1U
′
tD

−1
n,(iii)(J

−n
n )′

∥∥∥
∞

≤
∥∥∥J−n

n D−1
n,(iii)Jn

n∑
t=1

Xt−1U
′
t

∥∥∥
∞
∥D−1

n,(iii)∥∞∥J−n
n ∥∞

= Op

(
(ρ2n − 1)−1/2)

)
∥D−1

n,(iii)∥∞∥J−n
n ∥∞

= Op

(
n(ρ2n − 1)ρ−n

n

)
= op(1)

by Lemma C.3. For (45), WLLN implies ∥
∑n

t=1 UtU
′
t∥∞ = Op(n), so∥∥∥J−n

n D−1
n,(iii)

n∑
t=1

UtU
′
tD

−1
n,(iii)(J

−n
n )′

∥∥∥
∞

≤ Op(n)∥D−1
n,(iii)∥

2
∞∥J−n

n ∥2∞ = op(1)

by Lemma C.3.

Lemma B.9. ∥Rn∥ as defined in (46) is op(1).

Proof. First, we split Rn into R1n and R2n:

Rn = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=t

J t−1−j
n Uj

)
εt

= (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

J−1
n Utεt

+ (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=t+1

J t−1−j
n Uj

)
εt

= R1n +R2n,

with

R1n = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

J−1
n Utεt,

R2n = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

( n∑
j=t+1

J t−1−j
n Uj

)
εt.

We use that ∥J−n
n ∥∞ = O(nρ−n

n ) and ∥D−1
n,(iii)∥∞ = O((ρ2n − 1)3/2) as in Lemma B.8. For

R1n, using WLLN on
∑n

t=1 Utεt, we have:

∥R1n∥∞ ≤ Op(n)∥(ρ2n − 1)1/2D−1
n,(iii)J

−n
n ∥∞

= Op(n)(ρ
2
n − 1)1/2∥D−1

n,(iii)∥∞∥J−n
n ∥∞

= Op

(
n2(ρ2n − 1)2ρ−n

n

)
= op(1)
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by Lemma C.3. For R2n, we can do a change of sums as follows:

R2n = (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
t=1

n∑
j=t+1

J t−1−j
n

[
ρn
1

]
εjεt

= (ρ2n − 1)1/2D−1
n,(iii)J

−n
n

n∑
j=2

j−1∑
t=1

J t−1−j
n

[
ρn
1

]
εjεt

= (ρ2n − 1)1/2
n∑

j=2

( j−1∑
t=1

D−1
n,(iii)J

−(n+j−t+1)
n

[
ρn
1

]
εt

)
εj.

Then, we can see:

E∥R2n∥2 = σ2(ρ2n − 1)
n∑

j=2

∥∥∥∥∥
j−1∑
t=1

D−1
n,(iii)J

−(n+j−t+1)
n

[
ρn
1

]
εt

∥∥∥∥∥
2

= σ4(ρ2n − 1)
n∑

j=2

j−1∑
t=1

∥∥∥∥∥D−1
n,(iii)J

−(n+j−t+1)
n

[
ρn
1

] ∥∥∥∥∥
2

= σ4(ρ2n − 1)2
n∑

j=2

j−1∑
t=1

ρ−2(n+j−t+1)
n

∥∥∥∥∥
[

ρ2n
−(n+ j − t+ 1)(ρ2n − 1)

] ∥∥∥∥∥
2

= (1 +O(1))(ρ2n − 1)4
n∑

j=2

j−1∑
t=1

ρ−2(n+j−t+1)
n (n+ j − t+ 1)2

≤ (1 +O(1))(ρ2n − 1)4(4n)2ρ−2n
n

n∑
j=2

ρ−2(j−1)
n

j−1∑
t=1

ρ2tn

= (ρ2n − 1)4n2ρ−2n
n O(n(ρ2n − 1)−1)

= O(ρ−2n
n n3(ρ2n − 1)3)

= o(1),

where we use Lemma C.3. We conclude ∥Rn∥∞ = op(1).

Lemma B.10. Let ξ̃n and Ñn be defined as in (48). Then

ξn = ξ̃n + op(1),

Nn = Ñn + op(1).

Proof. The lemma is obvious once observing that ξ̃n only weights terms that carry non-trivial
magnitude in the sum that describes ξn: ∥J−j

n ∥∞ is greater for smaller j, and near 0 for larger
j. The same observation holds for Ñn.

Lemma B.11. The martingale difference sequence χn,t defined in (49) satisfies the Linde-
berg condition.
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Proof. The proof of this lemma is very similar to Lemma B.7. We solve component-wise
Lindeberg conditions. The third component is trivial. For the first and last components, by
uniform integrability of the innovation sequence (it is iid), and since we have:

n∑
t=1

E
(
|(ρ2n − 1)1/2ρ−(n−t)

n εt|21{|(ρ2n − 1)1/2ρ−(n−t)
n εt| > δ}

)
=

n∑
t=1

(ρ2n − 1)ρ−2(n−t)
n E

(
ε2t1{ε2t > δ2(ρ2n − 1)−1ρ2(n−t)

n }
)

≤ E(ε211{ε21 > δ2(ρ2n − 1)−1})(ρ2n − 1)
n∑

t=1

ρ−2(n−t)
n

= E(ε211{ε21 > δ2(ρ2n − 1)−1})(ρ2n − 1)
ρ2n(1− ρ

−2(n−1)
n )

ρ2n − 1

→ 0.

The inequality comes from ρ
2(n−t)
n ≥ 1, hence 1{ε2t > δ2(ρ2n − 1)−1ρ

2(n−t)
n } ≤ 1{ε1 > δ(ρ2n −

1)−1/2}. For the second component, using uniform integrability again, we have:

n∑
t=1

E
(
|(ρ2n − 1)3/2ρ−(n−t+1)

n (n− t+ 1)εt|21{|(ρ2n − 1)3/2ρ−(n−t+1)
n (n− t+ 1)εt| > δ}

)
=

n∑
t=1

(ρ2n − 1)3ρ−2(n−t+1)
n (n− t+ 1)2E

(
ε2t1{ε2t > δ2(ρ2n − 1)−3ρ2(n−t+1)

n (n− t+ 1)−2}
)

≤ E
(
ε211{ε21 > δ2(ρ2n − 1)−3}

)
(ρ2n − 1)3

n∑
t=1

t2ρ−2t
n

= E
(
ε211{ε21 > δ2(ρ2n − 1)−3}

)
(ρ2n − 1)3O((ρ2n − 1)−3)

→ 0.

We use Lemma B.6 for the sum.
Using Lemma C.2, we conclude that χn,t satisfies the Lindeberg condition.

Lemma B.12. The variance matrix in the distribution of (50) is positive definite.

Proof. First, we have

ξ′ ⊗ (Vξ)
−1 =

[
ξ1 ξ2

]
⊗ ξ−4

1

[
ξ21 + (ξ1 − ξ2)

2 ξ1(ξ1 − ξ2)
ξ1(ξ1 − ξ2) ξ21

]
=

[
ξ31 + ξ1(ξ1 − ξ2)

2 ξ21(ξ1 − ξ2) ξ21ξ2 + ξ2(ξ1 − ξ2)
2 ξ1ξ2(ξ1 − ξ2)

ξ21(ξ1 − ξ2) ξ31 ξ1ξ2(ξ1 − ξ2) ξ21ξ2

]
.

Then, we have(
ξ′ ⊗ (Vξ)

−1
)
V(iii)

(
ξ′ ⊗ (Vξ)

−1
)′

= σ2ξ−4
1

[
ξ21 + (ξ1 − ξ2)

2 ξ1(ξ1 − ξ2)
ξ1(ξ1 − ξ2) ξ21

]
.

The determinant is then σ2 > 0.
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C Additional Lemmas

We first present a technical lemma from Cytrynbaum (2024).

Lemma C.1. For any positive constants (ak)
d
k=1 and δ > 0, we have:

d∑
k=1

ak1
{ d∑

k=1

ak > δ
}
≤ d

d∑
k=1

ak1
{
ak >

δ

d

}
Proof. If

∑d
k=1 ak ≤ δ, then the left-hand side is 0, so the inequality holds trivially. Else,

∃k′ such that ak′ > δ/d (if not, the sum would be less than δ). Let k′ correspond to the
maximum such ak′ . Then

d∑
k=1

ak1
{ d∑

k=1

ak > δ
}
≤ dak′ ≤ d

d∑
k=1

ak1
{
ak >

δ

d

}
.

To help us with the Lindeberg conditions, we introduce a lemma that says if the compo-
nents of a martingale difference sequence satisfy univariate Lindeberg conditions, then the
vector satisfies the vector Lindeberg condition.

Lemma C.2. Suppose ξn,j = [ξ
(1)
n,j , . . . , ξ

(d)
n,j ] is a Fn,j-martingale difference array with 1 ≤

d < ∞. For δ > 0, define

L(i)
n (δ) :=

kn∑
j=1

E
(
|ξ(i)n,j|21{|ξ

(i)
n,j| > δ}

)
for 1 ≤ i ≤ d and

Ln(δ) :=
kn∑
j=1

E
(
∥ξn,j∥21{∥ξn,j∥ > δ}

)
.

If L
(i)
n (δ) → 0 for all δ and i, then Ln(δ) → 0 for all δ.
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Proof. We use Lemma C.1:

Ln(δ) =
kn∑
j=1

E
(
∥ξn,j∥21{∥ξn,j∥ > δ}

)
=

kn∑
j=1

E
(
∥ξn,j∥21{∥ξn,j∥2 > δ2}

)
=

kn∑
j=1

E
( d∑

i=1

|ξ(i)n,j|21
{ d∑

i=1

|ξ(i)n,j|2 > δ2
})

≤
kn∑
j=1

E
(
d

d∑
i=1

|ξ(i)n,j|21
{
|ξ(i)n,j|2 >

δ2

d

})
= d

d∑
i=1

kn∑
j=1

E
(
|ξ(i)n,j|21

{
|ξ(i)n,j| >

δ√
d

})
= d

kn∑
j=1

L(i)
n (d−1/2δ)

→ 0.

The following is a lemma from Phillips and Magdalinos (2007).

Lemma C.3. Parameterize ρn as follows: ρn = 1 + c/kn for some sequence kn.

(a) When ρn is in the C(i) regime, ρnn = o(kn/n).

(b) When ρn is in the C(iii) regime, ρ−n
n = o(kn/n).

Note that k−1
n ∼ (1− ρn) ∼ (1− ρ2n) in the C(i) case, and k−1

n ∼ (ρn − 1) ∼ (ρ2n − 1) in

the C(iii) case. Therefore,
(
n(1− ρ2n)

)k
ρnn → 0 in the C(i) case and

(
n(ρ2n − 1)

)k
ρ−n
n → 0 in

the C(iii) case for any k ≥ 0.
The following are facts about vec and ⊗.

Lemma C.4.

• If x, y ∈ Rn, then vec(xy′) = y ⊗ x.

• If A, B, and C are matrices such that ABC is well-defined, then vec(ABC) = (C ′ ⊗
A)vec(B).

• If A, A, B, C, and D are matrices such that AC and BD are well-defined, then
(A⊗B)(C ⊗D) = AC ⊗BD.
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