
Using Natural Language Processing (NLP) to

Implement Sentiment Analysis and Keyword Extraction

on Yale Course Evaluations

Alexander J. Abinader

Advisor: Prof. Robert Wooster

May 2024

Abstract

In this project, we collect Yale course evaluations from the student run website CourseTable.

Using these text reviews, we then perform two natural language processing (NLP) techniques:

sentiment analysis and keyword extraction. The overall goal is to identify suitable NLP tools

that can quickly and effectively summarize key course information for the Yale community.

In theory, sentiment analysis would be used to calculate the percentage of students who

recommend a course, while keyword extraction would be used to identify the key skills,

strengths, weaknesses, and areas of improvement for Yale courses. The sentiment analy-

sis portion includes several pretrained and newly trained models using a manually labeled

dataset. The pretrained models prove extremely ineffective, however, the machine learning

models perform quite well. These include random forest, logistic regression, support vector

machine, and neural networks. Support vector machine (SVM) proves to be the most robust

model, boasting an F1 score of 85.9% and 77.6% for the three-class and five-class datasets

respectively. To better understand SVM’s effectiveness, we also discuss some of the math-

ematical theory behind this machine learning algorithm. We then test several pretrained

keyword extraction models, all of which produce unsatisfactory results. As an alternative,

we create a ChatGPT API to handle keyword extraction on the Yale course reviews. This

model performs extremely well and is fairly cost effective. Finally, we combine these sen-

timent analysis and keyword extraction methods to produce a proof of concept dashboard.

This serves as an example implementation of what a real application of these NLP techniques

would look like for the Yale community.

1

1 Background

Natural language processing (NLP) is a modern technology that allows computers to inter-

pret and manipulate human language. The NLP field has experienced explosive growth in

the past several years, mainly due to its vast number of important applications. Popular

technologies like speech recognition, email filtering, chatbots, predictive text, and many oth-

ers rely heavily on NLP techniques, making it a highly sought after skill for programmers

and data scientists worldwide.

Two of the most popular NLP areas include sentiment analysis and keyword extraction.

Sentiment analysis is an extremely valuable procedure that allows computers to evaluate

written text through a human lens. For example, there exist many pretrained sentiment

analysis models that have been used for a variety of popular applications such as evaluating

Amazon product reviews or rating the sentiment of social media posts such as those on

Twitter (now X).

Keyword extraction is a separate technique that automatically identifies the keywords

which summarize the main topics of a written text. A similar process called topic model-

ing also seeks to extract the key terminology present in text but goes one step further to

identify what underlying themes these words represent. Generally, in the context of shorter

written pieces (a few words to a short paragraph), keyword extraction proves more effective

at identifying terms of interest.

2 Introduction

At the end of each semester, Yale students are given optional surveys to complete where they

review their classes for that term. Within these surveys are sets of questions that provide

five multiple choice responses. For example, one of the most important questions is “What

is your overall assessment of this course?” to which students can reply with “poor”, “fair”,

“good”, “very good”, or “excellent”. Notably, this type of question and its discrete set of

responses can be converted into a numerical score. This facilitates the process of creating

summary statistics for course evaluations using this quantitative data. A student founded,

student run website named CourseTable does just that.

CourseTable is a course review website that serves the Yale community by providing

information about Yale classes. In addition to official registrar data like class enrollment

size, professor, location, distributional requirement, and others, CourseTable also uses the

official end of semester surveys that students fill out in order to publish a host of descrip-

tive statistics and reviews for Yale’s thousands of courses. Namely, CourseTable uses the

Alexander Abinader 2 Yale University

responses from the multiple choice survey questions about course overview, intellectual chal-

lenge, workload, and others in order to create three quantitative ratings: average course

rating, average workload rating, and average professor rating.

In addition to multiple choice survey questions, Yale’s official end of semester surveys

also provide room for written responses, free from any constraints. This data is presented

on CourseTable in its raw form. No analysis is performed on these textual responses.

CourseTable simply lists the questions that were asked in the registrar survey and then

prints the entire set of student replies. Analyzing this textual data is the perfect task for

NLP.

3 Related Empirical Literature

Given the practical value of implementing sentiment analysis on student course reviews, other

researchers have tackled this same problem using a variety of methodologies. In “Sentiment

Analysis of Students’ Reviews on Online Courses: A Transfer Learning Method”, the authors

use several of the same techniques we will apply in this paper [7]. These include BERT

(neural networks), decisions trees, and support vector machine. Notably, the dataset contains

over 20,000 observations which is greater than ours. Nonetheless, the authors were quite

successful, achieving nearly 90% accuracy with their best model. Given the similar nature

of our dataset and proposed sentiment analysis algorithms, this bodes well for our attempt

at this NLP task.

More complex methods have also been applied to the classification of course reviews. In

“Sentiment Analysis of Online Course Evaluation Based on a New Ensemble Deep Learning

Mode: Evidence from Chinese”, researchers attempt to train an extremely powerful model

using deep learning techniques beyond that of a simple neural network [8]. Instead, they

combine several models together in a process called ensemble learning which integrates a

variety of learning frameworks. These researchers were quite successful, boasting an F1

score (an evaluation metric defined in Section 6) of over 91%. While this approach is quite

advanced and beyond the scope of this project, some aspects of the data preprocessing are

applied in our work such as word vector generation. Moreover, the use of deep learning is a

positive sign for our attempt at utilizing neural networks in this paper.

A similar amount of research exists on the application of keyword extraction to course

reviews. These papers focus on MOOCs (massive open online courses) which are favorable

to our dataset given the greater number of observations and large pool of reviews that exist

per individual course. Notably, our dataset suffers from each distinct course having a very

small number of reviews. The models struggle to recognize keywords as these vary drastically

Alexander Abinader 3 Yale University

between courses that have nothing in common. In “Application of keyword extraction on

MOOC resources”, researchers apply both supervised and unsupervised learning techniques

to the keyword extraction task [15]. As mentioned, the extreme difference in keywords

between Yale courses makes supervised approaches highly impractical. Fortunately, these

researchers also found success with unlabeled models using a graph based approach. We will

implement several methods, one of which also utilizes a graph based framework.

Overall, the existing literature suggests that successfully implementing sentiment analysis

and keyword extraction on Yale course reviews is highly possible, although limitations in the

training datasets may prove insurmountable.

4 Data Collection and Cleaning

Collecting data for this project was a challenging task. After navigating the CourseTable

website, we found a GraphQL page which essentially provides an interactive graphical user

interface for querying data. The problem is that results were truncated to one thousand

responses and individual courses could only be queried for their reviews one at a time. This

meant that for a few hundred courses, we would have to manually query each one for three

different sets of reviews and then copy paste this information to be consolidated later on.

This would involve making almost one thousand manual queries and copy pastes.

After communicating with the CourseTable team about best approaches to collecting the

data, they made it clear that there were no API keys available for CourseTable information.

This meant there was no way to query their database directly using a programming script.

The solution came in the form of special Python libraries which would allow us to make calls

to the GraphQL page mentioned prior. Of course, this would require authentication which we

could pass by copying our cookie signature from an active GraphQL page. In simpler terms,

as long as someone was logged in to an active CourseTable session using an authenticated

Yale NetID, this would have an associated key that could be used to authenticate calls from

our Python scripts to the GraphQL endpoint. For now, this is a temporary solution as once

a session ends (the page stays active for several days) that cookie signature becomes invalid

and needs to be replaced with a fresh one.

From here we were able to query all of the data using only Python code and then perform

some data cleaning in R. No more manual labor was required except for the occasional

updating of our cookie signature for authenticating GraphQL requests. We first collected

a set of classes that would be suitable for their reviews. We queried every class from the

Spring 2023 semester that had an enrollment size of at least 30 students, was worth 1

credit, and belonged to Yale College. We requested as much information as possible to

Alexander Abinader 4 Yale University

leave the door open for further data analysis down the line. This data included course id,

course code, professors, average rating, professor rating, workload rating, enrollment size,

and distributional requirement, among others. See Figure 1 for the exact GraphQL query.

Figure 1: GraphQL query for retrieving specific course listings.

1

2 {

3 computed_listing_info(where: { season_code: {_eq: "202301"},

last_enrollment :{_gt: 30}, credits :{_eq: 1}, school :{_eq: "YC"}}) {

4 course_id

5 crn

6 all_course_codes

7 course_code

8 credits

9 professor_names

10 title

11 average_rating

12 average_professor

13 average_workload

14 average_rating_same_professors

15 average_workload_same_professors

16 school

17 areas

18 skills

19 last_enrollment

20 }

21 }

22

The next step involved cleaning our data and extracting some necessary information in R.

After writing the data from Python into a CSV file, we read the table into R to make some

modifications. First, we removed any observation that contained a NULL value to ensure that

the entire dataset was comprised of complete cases. Next, we removed any duplicate course

codes. For example, each query included a field called “course code” and another called “all

course codes” meant to distinguish courses that are cross listed between departments. So,

if our dataset included one observation of MATH 241 and another of S&DS 241 which are

both Probability Theory, we only kept whichever code was listed first in the all course codes

field and deleted the others. This ensured that data would not be duplicated and therefore

have unfair weighting in our later analyses.

We continued the data cleaning process by dropping a few unnecessary columns, rounding

the ratings to three decimal places, and creating new labels for each course that would permit

further research in the sentiment analysis portion of this project. For simplicity, we removed

any language classes (L1 - L5), classes that did not meet any distributional skill or area,

Alexander Abinader 5 Yale University

and any classes that were dual listed for a skill or area. This allowed us to categorize the

remaining courses into three groups: STEM, Humanities, and Social Sciences. After cleaning

the data, we were left with 145 courses total.

The last step before collecting the course reviews and other responses was to find a unique

identifier for each course. The GraphQL query for these replies did not permit course title

or course code to act as a valid identifier. Fortunately, one of the fields included in our query

was a course id, which was unique and functioned as a valid filter for future response queries.

The last step of our data cleaning file was to extract these unique course ids and write them

to a CSV for further use by our Python scripts.

Having obtained the course ids, the final step of data collection became trivial. We simply

looped through each course id and made a query to the GraphQL endpoint with a specific

question code in mind. We then wrote each response to one row of a CSV with the course

id as an identifier. For example, if a course with id 92714 had 50 reviews, then the CSV file

would contain 50 rows each with the id 92714 and an individual review. See Figure 2 for the

GraphQL query that obtains student text responses. Additionally, see Table 1 for the three

question codes and their associated survey prompts.

Figure 2: GraphQL query for retrieving student text comments.

1

2 {

3 {

4 evaluation_narratives(where: {{ question_code :{{ _eq: {question_code }}}

course_id: {{ _eq: {course_id} }} }}) {{

5 comment

6 }}

7 }

8 }

9

Table 1: Question Codes and Descriptions

Question Code Description

YC409 Would you recommend this course to another student? Please
explain.

YC401 What knowledge, skills, and insights did you develop by taking
this course?

YC403 What are the strengths and weaknesses of this course and how
could it be improved?

After finishing the data collection, we were left with three CSV files corresponding to each of

the questions asked in the Yale end of semester surveys. There were 4,522 observations for the

Alexander Abinader 6 Yale University

recommendation prompt, 4,185 observations for the skills prompt, and 4,359 observations for

the strengths and weaknesses prompt. These comments were now ready for any pretrained

sentiment analysis and keyword extraction models. However, in order to train our own

models, we would need to label these datasets from scratch, manually. We explain this

process in Section 5.

5 Data Labeling

The first attempt at labeling involved simply going through the reviews dataset and cate-

gorizing each response as positive, negative, or neutral. We created a script to make the

process more efficient and user friendly by providing a command line interface for labeling.

Each review got printed to the command line with a prompt for what it should be labeled.

Only one review would be printed at a time and the program could be quit at any time with

our progress saved for later. The first round of labeling was more experimental and served

as a good benchmark for evaluating the rule-based sentiment analysis models that will be

discussed in Section 6.

Importantly, this was the first full scan through the dataset and there was no set of guide-

lines as to how labeling should be performed. Given the nature of Yale’s reputation and the

tendency of students to emphasize positive feedback, the resulting dataset was largely imbal-

anced. Roughly 72% of reviews were labeled as positive, whereas only ∼17.5% and ∼10.5%

were labeled as neutral and negative respectively. Even so, there were still several hundred

neutral and negative reviews which would suffice for the training tasks later on.

Three changes were made to the second round of labeling in order to maximize the accu-

racy and potential of our dataset. First, this would be the second time having looked through

the dataset reducing any potential bias from the first time viewing. Second, the dataset was

now categorized into five classes that would directly answer the prompt as stated: strongly

recommend (SR), recommend (R), neutral (NEU), don’t recommend (DR), and strongly

don’t recommend (SDR). Recall that the survey question clearly states “Would you recom-

mend this course to another student?” so labeling on the basis of answering this question

directly is preferable to a simple positive, neutral, or negative categorization. Finally, this

round of labeling was performed with a more meticulous methodology including a set of

guidelines to encourage labeling consistency. While the guidelines are quite comprehensive,

they would span multiple pages if listed here. Please see Table 2 for a few select guidelines

and corresponding sample student responses.

Alexander Abinader 7 Yale University

Table 2: Labeling Rules and Examples

Category Rule and Example

SR Rule: A yes or equivalent followed by a very positive explanation with words
like “great”, “excellent”, etc.
Example: “Yes! Fantastic introduction course to African governments and
politics.”

R Rule: A yes with some explanation that is not overwhelmingly positive.
Example: “Yes, if they have any interest in primates”

NEU Rule: Some positive and negative aspects to the review with no clear answer
to the question of recommendation.
Example: “Not a crazy amount of work and the content is definitely going to
be helpful for interviews but the exams were super difficult.”

DR Rule: Student is on the fence and says they would recommend other courses
before this one.
Example: “No, I don’t know if it’s necessary to learn about global health at
such a basic level. It’s better to take a more advanced class.”

SDR Rule: Student says they do not recommend the course and gives several rea-
sons why with little to no positive exceptions.
Example: “Not at all. Only take it if you absolutely have to for your major
(shouldn’t be a major requirement). Worst class I’ve ever taken.”

After relabeling, the data was still very unevenly distributed across classes. The labels SR,

R, NEU, DR, and SDR made up roughly 29%, 49%, 12%, 8%, and 2% of the observations

respectively. Note that 2% is incredibly small but is expected given the propensity of Yale

students to avoid harsh criticism. We observe that the dataset is still heavily comprised of

positive reviews. In addition to this five label dataset, we also created a three label dataset

by combing the recommends (SR and R) and the don’t recommends (DR and SDR). This

is equivalent to our original labeling of positive, negative, and neutral with the exception

that it benefited from our revised labeling methodology. With the raw responses and labeled

responses in hand, we were ready to tackle sentiment analysis using both pretrained models

and models trained from scratch.

Alexander Abinader 8 Yale University

6 Sentiment Analysis

6.1 Pretrained Models

In the following sections, we will discuss three pretrained models which could act directly on

our raw dataset. This is to say that these models do not require a labeled training dataset

and can leverage their previous training and or rule-based implementation to classify our

text reviews into sentiment groups. We will first explain how each of the models works and

then present the results and assess their individual accuracy.

6.1.1 Valence Aware Dictionary for Sentiment Reasoning (VADER)

VADER is a sophisticated sentiment analysis tool that was designed primarily for social

media excerpts [1]. With that said, we believed that the syntax of a Yale student’s course

review would largely resemble that of a social media post. VADER employs a unique lexicon

that is comprised of a particular list of words and phrases. Each of these is assigned a sen-

timent score that reflects their positive, negative, or neutral valence. Unlike other models,

VADER is slightly more advanced as it can also recognize the use of language in specific so-

cial contexts such as slang, abbreviations, and more. VADER then uses a composite scoring

system that accounts for a weighted combination of individual word or phrase scores. The

final output of a VADER model is measured on a continuous scale from −1 (very negative)

to +1 (very positive) as opposed to a mere class label.

VADER’s precision is furthered by a set of heuristic rules that can interpret more gram-

matical and syntactical nuances of language. This is particularly important for Yale course

reviews. For example, VADER recognizes the significance of capitalization and factors this

in to the intensity of a sentiment. Moreover, punctuation such as exclamation points can

also drastically influence a sentiment score by bolstering whatever sentiment is at play. The

algorithm also takes into account conjunctions such as “but” which can dramatically shift

the sentiment of a sentence. Compound sentences, capitalization, and feisty punctuation are

rampant in the course review dataset, so these features are extremely desirable. Overall,

VADER is extremely adept at analyzing human sentiment and is one of the best rule-based,

lexicon powered sentiment analysis models available.

6.1.2 TextBlob

TextBlob is a simple, yet versatile library offered in Python, which allows for a powerful set

of NLP options in processing textual data, including sentiment analysis [11]. It utilizes a

combination of pretrained machine learning models coupled with a lexicon-based approach.

Alexander Abinader 9 Yale University

Unlike VADER, TextBlob’s sentiment analysis separates the polarity and subjectivity scores

for a given text. Polarity scores range from -1 (very negative) to +1 (very positive) while sub-

jectivity scores range from 0 (very objective) to +1 (very subjective). This allows TextBlob

to not only assess the sentiment of a response but also how opinionated it is.

TextBlob utilizes part-of-speech tagging and noun phrase extraction to capture the con-

text and grammatical structure of text. This allows it to understand more complex sentences

and take into account word positioning, similar to VADER. Again, this is desirable for han-

dling the nuances of Yale course reviews.

6.1.3 Robustly Optimized BERT Approach (RoBERTa)

RoBERTa is a modified version of BERT (Bidirectional Encoder Representations from Trans-

formers) which optimizes its predecessor by refining the training procedures and data volume

[14]. Unlike the simpler rule-based and lexicon-based methods of VADER and TextBlob,

RoBERTa uses deep learning (neural networks) and a vast amount of training data to learn

complex patterns and identify sentiment expressed in text. This is a much more powerful

approach that allows it to capture the nuances of text beyond just capitalization and punc-

tuation to include things like irony, sarcasm, and more.

RoBERTa’s strength lies in its bidirectional understanding of language, which allows it

to consider the full context of a word relative to words that came before and after it in a

sentence; this is much more powerful than simply considering small phrases or groupings

of words like the other models do. RoBERTa processes swaths of text data when training

the neural network which allows for a deeper understanding of textual sentiment. There are

many training datasets to choose from when running the RoBERTa model. After testing

several, we chose to implement a training set comprised of Twitter tweets as these would be

most similar in length, structure, and phraseology to a Yale course review. Unlike VADER

and TextBlob, the RoBERTa model simply outputs a list of probabilities corresponding to

the positive, negative, and neutral classes.

6.1.4 Results

In order to assess the accuracy of these pretrained models, we utilized the labeled dataset

which included just “pos”, “neg”, and “neu” labels. We read the outputs from each model

into R and then proceeded to classify each score into a label using several different techniques.

Recall that for VADER, the model outputs a simple polarity score between -1 and +1.

We first plotted the scores to analyze the shape and spread of the distribution. Using that

information, we then tested a variety of score cutoffs to represent our VADER labels. After

a bit of experimentation, we found the best breakdown to be the following:

Alexander Abinader 10 Yale University

pos = polarity > 0.05

neu = −0.05 < polarity < 0.05

neg = polarity < −0.05

After classifying the data using this breakdown, we simply calculated a percentage accuracy

using our manually labeled dataset as the “correct” one.

We took a similar approach to assessing the TextBlob model except that we now needed to

consider the subjectivity score mentioned prior. This meant that we needed to consider two

different measures that affect accuracy. Like VADER, we tested a variety of different cutoffs

for the polarity scores in order to achieve the best results. We factored in the subjectivity

scores using the following formula:

sentiment = polarity × (1− subjectivity)

This effectively weights the polarity of a text based on how subjective it is. For example,

perfect objectivity of 0 would simply make it such that sentiment = polarity whereas perfect

subjectivity of 1 would just make sentiment = 0, signaling that the text was extremely

difficult to score due to ambiguity. We then tested several cutoffs on the final sentiment

score as we did for VADER.

Surprisingly, we found that polarity alone was actually more accurate than including

subjectivty as part of the calculation. For that reason, we ended up calculating our final

results using just the polarity score by itself with the same -0.05, 0.05 cutoffs that were used

for the VADER model.

Finally came the RoBERTa model which was the simplest to assess. As the model just

output probabilities for each of our classification labels, the most obvious approach was to

just choose the label that had the highest output probability:

label = max{ppos, pneg, pneu}

Overall, the pretrained models did not perform well. Recall that our “pos” label comprised

roughly 72% of the dataset, effectively setting the baseline for accuracy. For example, an

algorithm that only output “pos” would be correct 72% of the time without employing any

sensible strategies. We summarize the results in Table 3 and also list the model run time.

Alexander Abinader 11 Yale University

Table 3: Pretrained Model Accuracy and Efficiency

Model Accuracy Running Time

Baseline 72.0% N/A
VADER 75.4% 30 seconds
TextBlob 64.8% 5 seconds
RoBERTa 76.7% 10 minutes

The results speak for themselves. We observe that TextBlob did a terrible job and actually

achieved a lower accuracy than the baseline. The VADER and RoBERTa models achieved

accuracies of just a few points above the baseline. Moreover, given the neural network

approach of the RoBERTa model, we see that it takes roughly 10 minutes to label the entire

dataset which is only 4,522 observations. If we had to choose, the VADER model clearly has

the best balance of speed and accuracy, however, even its accuracy is virtually insignificant.

There are two main reasons for the failure of these pretrained models. First, they were

all trained and designed to run on different types of text such as social media posts. More

importantly however, is the simple fact that our dataset is not designed to perform strict

sentiment analysis. Recall that the specific prompt we are working with in these course

reviews is “Would you recommend this course to another student? Please explain.” Note

that this is a yes or no question with an optional explanation. When labeling the dataset,

we observed many responses that were as simple as “yes” or “no” and for that reason the

models often get these classifications wrong. In fact, we investigated the models and found

that for answers like these they were more likely to give a classification of neutral rather

than positive or negative. Fortunately, using our own labeled datasets and training models

from scratch, we could easily capture these cases and achieve much higher accuracy than the

pretrained models ever could.

6.2 Models

We may now leverage the training datasets that we manually labeled. In doing so, we could

train models from scratch by utilizing cross validation, splitting the data 80-20 for training

and testing respectively. In the following sections, we will provide a high level overview of

the four models we tested. Then, we will present the results and assess model efficacy using

a variety of metrics.

Alexander Abinader 12 Yale University

6.2.1 Random Forest

Our first method for sentiment classification was random forest. Random forest is an en-

semble learning method that operates by constructing multiple decision trees during the

training process and then outputting the class that was most frequently identified during

classification of individual trees [5]. This is important as basing the results on many trees

helps to prevent overfitting as well as using randomness to enhance model learning.

In our implementation, we begin by preparing the dataset for training and evaluation.

This involves reading in the data, shuffling it, and creating the standard 80-20 cross vali-

dation split. This helps to test the model on data it has never seen which is important for

generalizing the model’s abilities to new scenarios and preventing overfitting.

An extremely important step is processing the text data such that it is viable for a ma-

chine learning method like random forest. Here, we use a hashing vectorizer which converts

our text reviews into a numerical format as numerical data is necessary for machine learning

algorithms. This hashes word occurrences while preserving the sparsity of the dataset which

essentially means keeping track of word frequencies throughout our set of reviews. Such an

approach is extremely useful for datasets with a large vocabulary.

After the data has been read and processed, a random forest classifier is ready to be

trained. The training process involves learning the patterns and relationships between words

in our reviews which are then used to predict the sentiment label of reviews in our testing

set. We also record a variety of assessment metrics and record the time required for the

data preprocessing, processing, training, and evaluation cycle. These will be discussed and

compared with our other models in the results section.

6.2.2 Logistic Regression

The preprocessing approach is largely the same as for random forest. We read in the labeled

dataset and apply cross validation to obtain separate sets of training and testing reviews.

Equivalent to the hashing vectorizer, this program uses count vectorization which effectively

converts the text into a matrix of token counts. These tokens are small text components

which in NLP are usually single words. Thus, this process essentially converts the text into

a numerical format representing word frequency.

There is also TF-IDF transformation (Term Frequency-Inverse Document Frequency)

which is a technique that reflects the importance of a word to a document in a collection or

in this case a single review to the entire corpus of reviews. This helps to adjust for words

that are naturally more common. The components are calculated as follows:

TF (t) =
Number of times term t appears in a document

Total number of terms in the document

Alexander Abinader 13 Yale University

IDF (t) = log(
Total number of documents

Number of documents with term t in it
)

TFIDF (t, d) = TF (t, d)× IDF (t), for a term t in document d

This approach to processing the data and constructing a feature vector has a number of

benefits. It better enables the model to understand relevance and context of words. It

also helps to reduce the dimensionality by eliminating features that have minimal or no

informative characteristics [3].

Once features have been extracted, the program is ready to train a logistic regression

classifier. While this machine learning method usually deals with binary classification tasks,

we can set the relevant parameter to “multinomial” and the solver to “lbfgs” in order to

extend logistic regression to classification with several labels. In our case, this is 3 or 5

labels depending on our dataset. Finally, we extract the relevant evaluation metrics and

record the total time of the model life cycle.

6.2.3 Neural Network

Next, we apply deep learning to our sentiment analysis task. Our program takes similar data

preprocessing steps. In this case, a tokenizer converts the text into a sequence of integers

that represent specific words in a dictionary. This is quite similar to the hashing vectorizer

and count vectorization methods mentioned prior.

The neural network uses a sequential model which is especially important for text clas-

sification tasks given that sequences of words are common and vary drastically in meaning.

An embedding layer maps each word index to a dense vector which is followed by an LSTM

(long short-term memory) layer. This LSTM layer is crucial as it captures the memory of

prior elements. There is also a dense layer which uses the ReLU activation function and

provides additional learning to the model. This is complemented by a dropout layer which

randomly selects a subset of input units to negate, preventing overfitting. The final layer is

a dense layer which uses the softmax activation function to output a probability distribution

over the sentiment classes.

Our neural network was created using the keras library [4]. The model was compiled

with categorical crossentropy as the loss function which is optimal for multi-classification

problems. Deep learning involves a host of parameters that can be modified to enhance

performance. These include number of LSTM units, number of dense layer neurons, dropout

rate, number of training epochs, activation functions, and loss functions, among others. We

experimented with a variety of combinations in order to yield the best results.

Alexander Abinader 14 Yale University

6.2.4 Support Vector Machine

As with logistic regression, feature extraction is performed by transforming the text reviews

into a TF-IDF matrix. The same 80-20 cross validation split is used for creating the training

and testing data. We are then able to train an SVM classifier which can be modified to

support multi-label classification tasks. The same evaluation metrics are extracted as with

our previous models.

The driving principle behind SVM is to find a hyperplane that best divides the dataset

into classes. SVM performs well in high dimensional spaces which makes it extremely de-

sirable for a task like sentiment analysis. This is because in text classification the feature

space that results from vectorization can (and likely will be) extremely large. There is also

versatility in choosing what kernel to use: these determine how data points will be separated.

We discuss more in depth SVM theory in Section 7.

6.2.5 Adjustments

Two key improvements were made when preprocessing the data in order to achieve better

results. This involved disabling and changing default behaviors for the packages and libraries

used in all of our models. First, we disabled the “lowercase” setting which is the default

case when vectorizing the data. Recall that these models have been designed to handle

sentiment analysis which usually implies a simple positive, negative, or neutral label. The

problem here is that we aren’t performing sentiment analysis exactly but rather answering

the question of recommendation with regard to Yale courses. Moreover, recall that one of our

datasets was labeled such that it includes 5 classes as opposed to just 2 or 3. For this reason,

the nuance of capitalization is extremely important and the programs were augmented to

reflect this. For example, according to our labeling rubric as demonstrated in Table 2,

the response “yes” receives a label of “recommend (R)” whereas “YES” receives a label of

“strongly recommend (SR)”. One unique characteristic of the Yale course evaluation dataset

is that a sizeable percentage of replies are only one or two words. Thus, this distinction in

capitalization is indispensable.

Second, we modified the regular expression (regex) pattern that determines how sentences

are to be broken down into tokens. For our purposes, a token is essentially just a word and

long phrases or sentences are “tokenized” so that the data can then be vectorized. While

the exact syntax differs between each of our scripts, consider the token pattern below which

is the default behavior of our SVM package using sklearn:

r’(?u)\b\w\w+\b’

Alexander Abinader 15 Yale University

This regex pattern matches any two or more word characters (primarily letters but can

also include digits, underscores, etc.) meaning that it doesn’t handle punctuation. It also

doesn’t consider words that are only one letter, however, this should work fine for our

purposes. Much like capitalization, punctuation is extremely important for our dataset,

especially for the 5 label iteration of our data. Specifically, it’s extremely important that

we capture the nuance of the exclamation point (!) as this is a key determinant of whether

a student simply “recommends” or “strongly recommends” a class. The same holds true

for “don’t recommend” and “strongly don’t recommend”. For example, according to our

labeling guidelines, a simple “yes” receives a label of R while a “yes!” receives a label of

SR. This distinction is important and extremely abundant in the dataset. While the syntax

varies by model we showcase the SVM updated token pattern below for illustrative purposes:

r’(?u)\b\w\w+\b|!’

This modifies the tokenizer to capture exclamation points and is a key driver of improved

performance in the 5 label dataset.

6.2.6 Results

Now we can summarize our results and identify potential areas of improvement. Although

the dataset is extremely unbalanced, we first illustrate our results using a simple accuracy

measure and also list the time each model took to completely train and run. This is exactly

how we evaluated our pretrained models, except now we will evaluate them using the two

newer datasets henceforth referred to as the “3-Label” dataset (R, NEU, DR) and the “5-

Label” dataset (SR, R, NEU, DR, SDR). We showcase the results in Tables 4 and 5.

Table 4: Machine Learning Model Accuracy and Efficiency (3-Label)

Model Accuracy Running Time

Logistic Regression 85.3% 1 second
Random Forest 78.1% 4 minutes
SVM (Linear) 87.1% 2 seconds
Neural Network 81.7% 1 minute

Alexander Abinader 16 Yale University

Table 5: Machine Learning Model Accuracy and Efficiency (5-Label)

Model Accuracy Running Time

Logistic Regression 75.1% 1 second
Random Forest 64.6% 6 minutes
SVM (Linear) 78.8% 3 seconds
Neural Network 77% 1.5 minutes

We quickly notice that support vector machine (SVM) boasts the highest accuracy closely

followed by logistic regression. Importantly, these two methods are also significantly faster

than either random forest or neural networks making them extremely portable and efficient

in addition to their strong performance.

We now move to more advanced metrics of accuracy which better capture the strength

of classification models especially ones that have severe imbalances in the dataset. Given

our multi-classification problem and highly uneven dataset, these metrics provide a more

nuanced view [13]:

Precision: Precision is calculated for each individual class as the ratio of true positive

predictions for that class to the total number of predictions made for that class. It quantifies

the accuracy of the positive predictions made by a classification model.

Precisioni =
TPi

TPi + FPi

• TPi is the number of true positive predictions for class i

• FPi is the number of false positive predictions for class i

Recall: Recall is defined for each individual class as the ratio of true positive predictions to

the total number of actual positive predictions. It measures the ability of a model to identify

all relevant instances within a dataset.

Recalli =
TPi

TPi + FNi

• TPi is the number of true positive predictions for class i

• FNi is the number of false negative predictions for class i

F1 Score: F1 is a metric balanced between precision and recall. It is actually the harmonic

mean of precision and recall and is crucial for evaluating models with imbalanced datasets.

Alexander Abinader 17 Yale University

F1 Scorei = 2× Precisioni ×Recalli
Precisioni +Recalli

For all three of these advanced metrics, we may take a macro average which weights all

of the classes equally or take a weighted average. We utilize the latter in order to better

compensate for imbalances in the dataset.

Now that we understand the relevant metrics we can better quantify our model perfor-

mance. See the advanced classification metrics for the 3-Label and 5-Label datasets in Tables

6 and 7 respectively.

Table 6: Machine Learning Model Advanced Metrics (3-Label)

Model Precision Recall F1 Score

Logistic Regression 83.4% 85.3% 82.6%
Random Forest 81.1% 78.1% 70.9%
SVM (Linear) 85.9% 87.1% 85.9%
Neural Network 84.9% 81.7% 82.8%

Table 7: Machine Learning Model Advanced Metrics (5-Label)

Model Precision Recall F1 Score

Logistic Regression 74.4% 75.1% 73.8%
Random Forest 71.3% 64.6% 59.1%
SVM (Linear) 79.5% 78.8% 77.6%
Neural Network 77.1% 77.0% 76.9%

Once again, we notice that SVM performed the best even when using these advanced metrics.

We also observe that the percentages for these metrics are a bit lower as compared to our

simple accuracy measure. This is expected given that our models are being penalized for

having such high proportions of R and SR reviews. Nonetheless, these results, especially

SVM, are quite promising. The pretrained models assessed at the beginning of this section

are not nearly as robust.

6.2.7 Extensions

As an additional exercise, we also investigated whether these results would differ based on

the type of reviews the models were trained on. Recall that in Section 4, we categorized

the reviews into the following academic disciplines: STEM, Humanities, and Social Sciences.

We hypothesized that given the varying student demographics in each of these fields, the

Alexander Abinader 18 Yale University

composition of reviews would differ and therefore lead to inconsistent results.

For example, we believe that STEM students are less likely to write long, verbose reviews

as compared to Humanities students (which includes all writing classes). Moreover, we also

maintain that Humanities students use more specific language which might make the models

better able to identify important words that signal a specific sentiment. As SVM was our

most effective model, we decided to rerun it on both the 3-Label and 5-Label datasets using

these three academic areas as subsets to train and test separately. We report our results in

Tables 8 and 9.

Table 8: SVM Model by Academic Discipline (3-Label)

Discipline Accuracy Precision Recall F1 Score

STEM 84.7% 83.3% 84.7% 82.7%
Humanities 92.0% 92.7% 92.0% 89.1%
Social Sciences 89.7% 90.1% 89.7% 87.9%

Table 9: SVM Model by Academic Discipline (5-Label)

Discipline Accuracy Precision Recall F1 Score

STEM 75.8% 75.8% 75.8% 74.3%
Humanities 71.2% 75.2% 71.8% 67.1%
Social Sciences 72.2% 73.5% 72.2% 70.6%

The results are fascinating. It appears that for the 3-Label dataset, the STEM model

certainly performed worse than both the Social Sciences and Humanities models. This is

consistent with our predictions and having manually inspected the data, we maintain that

the STEM classes undoubtedly had shorter, less meaningful reviews. Looking at the 5-Label

dataset, however, we notice that the scores are much more consistent with STEM actually

performing marginally better than the others.

This actually makes sense given the imbalanced size of the subsets. As we know, the more

observations the model has to train on, the better it will perform. This becomes increasingly

important as the number of classes increases such as from 3 labels to 5 labels. In this case,

STEM comprises 2,455 of the reviews, whereas Social Sciences and Humanities make up only

1,256 and 811 observations respectively. This difference in dataset size is very likely the key

contributor to the STEM model’s relatively better performance.

Another possibility is that certain academic disciplines just have better reviews in general.

For example, Humanities classes might have almost all positive reviews as compared to STEM

whose distribution is more even. This would cause the 3-Label model to have better accuracy

Alexander Abinader 19 Yale University

but the 5-Label would still suffer from the insufficient training set. Regardless, these results

tell an interesting story, worthy of further exploration and analysis.

7 Theory

Given the superior performance of support vector machine on our sentiment analysis task, in

this section, we will provide some discussion of SVM theory [2]. We will also test and assess

the use of other kernel functions as Section 6 only focused on the linear kernel. Through this

theoretical lens, we may find insights as to why SVM is such a powerful machine learning

algorithm for sentiment analysis in particular.

SVM is an extension of the simpler classifier: maximal margin classifier. In a p-dimensional

space, a hyperplane constitutes a flat, affine subspace of p−1 dimensions. The most intuitive,

visual example is a two-dimensional plane in a three-dimensional space. In a p-dimensional

setting, the hyperplane is defined as follows

β0 + β1X1 + β2X2 + β3X3 + ...+BpXp = 0

where X is a vector of length p. If this equation were greater than zero, than X lies on

one side of the hyperplane whereas less than zero designates the other side. In essence, the

hyperplane divides the p-dimensional space into two halves.

Now suppose that we have n observations in this p-dimensional space which can be

represented in an n × p matrix X. Assume that each of these observations belongs to one

of two classes: yi ∈ {−1, 1}. The maximal margin classifier relies on the identification of a

separating hyperplane, a hyperplane that perfectly separates our observations into these two

classes. This can be represented as

β0 + β1xi1 + β2xi2 + β3xi3 + ...+Bpxip > 0

indicating that an observation belongs to one class, whereas

β0 + β1xi1 + β2xi2 + β3xi3 + ...+Bpxip < 0

means that observation belongs to the other class. Naturally, if a hyperplane does exist that

can satisfy these constraints, then an infinite number of hyperplanes exist. Consider a line

separating two groups of points on a plane. We can rotate that line around in infinitesimally

small amounts and still divide those two groups. This is where the “maximal” portion of

the maximal margin classifier plays a role.

Alexander Abinader 20 Yale University

The idea is to create the optimal separating hyperplane by maximizing the distance of the

plane from the training observations. This is done by calculating the perpendicular distance

of each point from the plane and then maximizing the minimum of these distances. In other

words, we want the closest of these points to be as far as possible when compared to any

other hyperplane configuration. The observations with minimum distances to the hyperplane

constitute our support vectors as their position dictates how the hyperplane would have to

change in response to their movement. The maximal margin hyperplane can be solved for

by the following optimization problem:

max
β0,...,Bp,M

M, subject to

p∑
j=1

β2
j = 1

yi(β0 +B1xi1 + ...+Bpxip) ≥ M, ∀i = 1, 2, ..., n

Notably, such a separating hyperplane does not always exist. If one did, the classification

task would become extremely trivial. Thus, we must handle the non-separable case. This is

where the simpler maximal margin classifier evolves into support vector classifiers.

When it is mathematically infeasible to separate the observations into exactly two classes,

we can instead solve for a hyperplane that almost separates the two classes using a soft mar-

gin. This is actually preferable even if a separating hyperplane does exist as it provides

greater resistance to outliers. For example, there could be one single observation that causes

the hyperplane to shift drastically whereas if it were ignored, the remaining observations

would be better classified. This is analogous to a single extreme outlier completely altering

the line of best fit on a scatter plot. This modification improves robustness in the over-

all model. Misclassifying a couple of observations in exchange for better classification of

the remaining training set is a worthwhile tradeoff when generalized to testing data. The

optimization problem is quite similar:

max
β0,...,Bp,ϵ1,...,ϵn,M

M, subject to

p∑
j=1

β2
j = 1

yi(β0 +B1xi1 + ...+Bpxip) ≥ M(1− ϵi)

ϵi ≥ 0,
n∑

i=1

ϵi ≤ C

The only modifications are the inclusion of slack variables ϵ1, ..., ϵn and a nonnegative tuning

parameter C. Coupled together, these allow the model to violate pure separation which helps

prevent overfitting. Specifically, the slack variables permit observations to be on the wrong

side of the margin or hyperplane while C determines the quantity and severity of violations

the model can tolerate. Observations that lie on or on the wrong side of the margin for their

Alexander Abinader 21 Yale University

class are referred to as support vectors.

Technically speaking, the support vector classifier we just discussed is the same as a

support vector machine using a linear kernel. In fine-tuning our support vector machine for

optimal performance, we tested several other kernels. The results are presented in Tables 10

and 11.

Table 10: SVM Model Performance by Kernel (3-Label)

Kernel Accuracy Precision Recall F1 Score

Linear 87.1% 85.9% 87.1% 85.9%
RBF 84.5% 83.6% 84.5% 81.9%
Sigmoid 88.4% 87.5% 88.4% 87.0%
Poly2 85.4% 84.9% 85.4% 83.2%
Poly3 83.4% 83.2% 83.4% 79.7%
Poly4 79.0% 79.1% 79.0% 72.2%
Poly5 78.1% 80.1% 78.1% 70.0%

Table 11: SVM Model Performance by Kernel (5-Label)

Kernel Accuracy Precision Recall F1 Score

Linear 78.8% 79.5% 78.8% 77.6%
RBF 78.2% 78.8% 78.2% 76.4%
Sigmoid 74.6% 75.1% 74.6% 73.9%
Poly2 80.3% 80.9% 80.3% 79.4%
Poly3 70.3% 73.1% 70.3% 66.6%
Poly4 64.3% 70.0% 64.3% 57.7%
Poly5 63.1% 71.8% 63.1% 55.9%

We notice that the linear kernel performs well on both datasets. For the 3-Label data,

sigmoid actually achieves the highest accuracy and F1 score. The same holds true for the

second degree polynomial in the 5-Label dataset which indicates that the feature space can

be better separated using a nonlinear boundary. Regardless, the difference in performance

is minimal at best. Another interesting observation is that all of our evaluation metrics

decline as the polynomial degree increases. This means that separation of the dataset is not

captured well by these more complex patterns and the model suffers from overfitting. Given

the strong performance of the linear kernel coupled with its simplicity, we will continue to

utilize this version of SVM for the remainder of this paper.

Importantly, we have not yet discussed how SVM works for multiple classes as the theory

discussed thus far only models two groups. Generalizing SVM to more than two classes is

Alexander Abinader 22 Yale University

actually quite simple and can be executed through two different approaches. The first is

one-versus-one classification in which an SVM is created for every pair of classes
(
k
2

)
. After-

wards, each observation is classified by every SVM and the class which was output with the

highest frequency is then chosen. Alternatively, there is also one-versus-all classification in

which an SVM is fit for every class against all other classes simultaneously. An observation

is then assigned to the class for which an SVM model classified it with the highest degree of

confidence. The multi-class approach used in our programs is one-versus-one.

Overall, the theory behind SVM is intriguing and it provides some clarity as to why this

machine learning algorithm is ideal for sentiment analysis. SVM is able to handle extremely

high dimensional spaces with tact mathematical maturity. While number of dimensions

varies by data preprocessing approach, feature vectors can easily reach thousands of dimen-

sions when vectorizing large sets of text with wide ranging vocabularies. Thus, SVM is able

to handle these extremely large cases in an effective, yet rapid manner. They are also very

robust due to the support vectors which allows them to prevent overfitting on such dense

feature spaces as compared to other classifiers.

8 Keyword Extraction

8.1 Models

We attempted to perform keyword extraction on the corpus of student reviews that list what

key skills they learned in a class. We used several different models, however, the performance

of each was lackluster. This is mainly due to drastic variations in the dataset between classes.

For the recommendation question, the format of student replies was relatively consistent

such that the models could learn off of the 4,000+ observations. However, the difference in

responses between the key skills learned in a class like “Discrete Math” vs. “The Rise of

China” for instance is too much for the models to effectively determine what terms qualify

as keywords.

For this reason, we attempted to batch the replies into smaller groups where the keywords

would be similar. There is no official, numerical metric we can provide to quantify the models’

success. However, simply scrolling through examples of course titles and their corresponding

key skills indicate that the models had little to none. For that reason, we do not recommend

using any of these models for the task at hand. Nonetheless, we will briefly summarize each

model and its implementation.

Alexander Abinader 23 Yale University

8.1.1 KeyBERT

KeyBERT is a model used for keyword extraction which is derived from the same BERT

embeddings that were used in the sentiment analysis portion from Section 6 [6]. It constructs

a neural network and attempts to identify potential keywords by analyzing word occurrences

and frequencies in specific reviews relative to the corpus of documents. There are modifiable

parameters such as ngram range and stop words which allow the user to influence how many

words comprise a key phrase and what kinds of stop words should be ignored or removed.

After experimenting with different parameters we were unable to obtain satisfactory results.

8.1.2 RAKE and YAKE

RAKE (Rapid Automatic Keyword Extraction) and YAKE (Yet Another Keyword Extrac-

tor) are both very similar unsupervised learning algorithms [12] [9]. Despite subtle differ-

ences, they function in largely the same way. Both models tokenize the data by removing

stop words and punctuation. They then analyze the frequency and co-occurence statistics of

words within each review to filter out potential key phrases. Unlike RAKE, YAKE also takes

into account word position within a sentence or paragraph and therefore yielded slightly bet-

ter results. These models also offer modifiable parameters such as ngram range which we

attempted to fine tune. YAKE was slightly more successful than the others but still not

suitable for this task.

8.1.3 TextRank

TextRank was adapted from another algorithm originally designed for ranking web pages

[10]. It builds a graph with words as vertices and edges to represent co-occuring relationships

between words in the larger text. This data structure is then used to derive the importance

of a word and it is iteratively updated to factor in the importance of words that it connects

to. TextRank also offered modifiable parameters which we aimed to perfect. Once again,

the algorithm was highly ineffective. Words and phrases drawn from the set of skills reviews

were often meaningless, grammatically illogical, or included irrelevant stop words such as

“is”, “a”, “at”, etc.

8.2 ChatGPT API

Recall that the motivation of this project was to identify suitable strategies for keyword

extraction that would prove effective in a real implementation. Given the limitations of

the dataset and the failure of the keyword extraction models tested thus far, we decided

to implement and fine tune a ChatGPT API to address this challenge. We purchased a

Alexander Abinader 24 Yale University

ChatGPT API and tested a variety of models, prompts, and parameters to achieve the best

results in a cost effective manner.

In fact, to run the API hundreds of times while testing, tweaking, and implementing our

proof of concept dashboard (Section 9), we only incurred a cost of roughly $0.50. This was

extremely good news. Consider the fact that CourseTable only lists around 4,000 courses

each semester. If we wanted to use the API to synthesize important information, we would

only need to run it one time per class per survey question. In this case, we would run

it on the skills survey prompt as well as the strengths/weaknesses/improvements prompt.

This means that the API would only have to run about 8,000 times to generate all of the

requisite information needed for a semester’s listing. This would only cost tens of dollars to

successfully implement.

Choosing the best model and set of parameters as well as crafting a satisfactory prompt

proved quite the challenge. We opted to use the gpt-3.5-turbo-instruct which yielded great

results yet was much more cost effective than any 4.0 model. One downside of the model is

that it imposes a token limit inclusive of the prompt and the corresponding reply. The reply

is not a concern, as we are requesting the model to return a simple list of words or phrases no

more than a few dozen tokens. However, for extremely large classes with a sizeable collection

of survey replies, the token limit can be easily exceeded.

To remedy this, we decided to batch a random sample of 20 reviews or just take all of the

reviews if there were less than 20. By randomly sampling, we fairly represent the students’

perspectives and are able to batch all of the reviews into one singular API call. This is

extremely efficient in terms of cost and speed. See an example API creation in Figure 3.

Figure 3: ChatGPT API Call

1

2 response = client.completions.create(

3 prompt=prompt ,

4 model="gpt -3.5-turbo -instruct",

5 max_tokens =100,

6 temperature =0.2

7)

8

In the above, we set the maximum number of tokens to 100 forcing ChatGPT to limit the

size of its response and achieve a concise list of keywords. We also set the temperature

parameter to 0.2 which determines how random or deterministic we want the API to be-

have when synthesizing the results. While we achieve some randomness when grouping the

reviews to pass into the model, we opt for a more deterministic response. For the prompt

Alexander Abinader 25 Yale University

argument, we crafted a meticulously worded set of instructions and then passed the cleaned

set of reviews to ChatGPT as a numbered list. Below, we list the specific prompt used for

the skills reviews and the strengths/weaknesses/improvements reviews respectively.

The following are a set of student responses to this end of semester survey

question: “What knowledge, skills, and insights did you develop by taking this

course?” I would like for you to read through the responses and summarize the key

knowledge, skills, and insights in a list. These can be words or SHORT phrases

on broader topics and please order them by importance. Only list 4 to 7 items!

Here are the responses: \n{skills string}

The following are a set of student responses to this end of semester survey ques-

tion: “What are the strengths and weaknesses of this course and how could it be

improved?” I would like for you to read through the responses and summarize

the key strengths, weaknesses, and improvements in 3 separate lists. These can

be words or SHORT phrases. Only list 3 to 5 items for each list! Here are the

responses: \n{swi string}

We used the above prompts to extract keywords for those two survey questions. Notably,

{skills string} and {swi string} get replaced with a set of twenty (or less) reviews that

have been cleaned and organized into an easily legible numbered list. After fine tuning

the prompts, parameters, and overall request structure, we found the ChatGPT API to

be far superior to the previous models. Moreover, the performance was so impressive we

would even recommend it for a practical implementation of this concept. In Section 9, we

demonstrate such an application.

9 Dashboard

Ultimately, the goal of this project was to test different sentiment analysis and keyword

extraction models in the hopes of identifying suitable methods for a practical implementation.

In theory, this would exist as an additional feature to CourseTable or an equivalent website

used by faculty and students alike to extract key course information quickly and accurately.

As currently designed, CourseTable just lists every student reply to the three registrar survey

questions as shown in Figure 4.

Alexander Abinader 26 Yale University

Figure 4: CourseTable Reviews List

While this is a great feature of CourseTable, there would clearly be value to having NLP tools

that could instantaneously list the key skills, strengths, weakness, and areas of improvement

from a course’s reviews as well as quantify the percentage of students who recommend that

class. This would be useful for professors to quickly glean information about their course but

more so for students who could grasp the essence of a class in mere seconds while searching

through hundreds of potential choices. To demonstrate this functionality, we went ahead

and created a simple dashboard, powered by the best methods we have uncovered in this

project thus far. Specifically, it uses support vector machine to classify the recommendation

reviews into our five categories (SR, R, NEU, DR, SDR) and uses the ChatGPT API as

discussed in the previous section to extract keywords regarding skills, strengths, weaknesses,

and improvements. When the user accesses the page, they are presented with a simple

interface to enter a course code, season (fall, summer, or spring), and year (2012 to 2023) as

shown in Figure 5.

Alexander Abinader 27 Yale University

Figure 5: NLP Dashboard Input Form

This includes some error handling such as ensuring a valid course is provided and drop down

menus to enforce selection of a valid season and year. After the user submits, the backend

will take their entry, scrape the necessary data from the CourseTable database as performed

in Section 4, run the SVM sentiment analysis model, make the ChatGPT API requests, and

finally output the results to the user. This process takes a mere five seconds. In Figure 6,

we provide an example of what the recommendation output looks like.

Figure 6: NLP Dashboard Recommendation Output

Similarly, Figure 7 illustrates the keyword extraction output for skills, strengths, weaknesses,

and areas of improvement.

Alexander Abinader 28 Yale University

Figure 7: NLP Dashboard Keyword Output

Overall, the dashboard signals promising potential for these NLP techniques. Students and

faculty would surely benefit from easy access to this consolidated information.

10 Conclusion

In this project, we tested several sentiment analysis and keyword extraction models on Yale

course reviews. The hope was to identify a set of suitable NLP tools for a practical applica-

tion which would serve the faculty and student body. We described the data collection and

cleaning process in detail such that our datasets can be replicated.

For sentiment analysis, we tested three pretrained models: VADER, TextBlob, and

RoBERTa. These consist of both rule-based and deep learning models, however, they yielded

disappointing results. We then tested some models that were built from scratch using our

own labeled training datasets. These included the machine learning algorithms logistic re-

gression, random forest, neural networks, and support vector machine. The results varied,

but SVM was the most robust model with an accuracy of 87% and 78% for the 3-Label and

5-Label datasets respectively.

Given the success and portability of SVM, we then discussed some mathematical theory

and explained why this machine learning technique was particularly effective. We also tested

several other kernels including RBF, sigmoid, and multiple polynomials. A few of these per-

formed well, however, none performed significantly better than linear. We opted to keep the

Alexander Abinader 29 Yale University

linear kernel due to its balance of efficacy and simplicity.

Next, we tackled keyword extraction. We utilized a number of preexisting models in-

cluding KeyBERT, RAKE, YAKE, and TextRank. These employed a variety of methods

including deep learning and graph based frameworks. All four of these models were ex-

tremely ineffective. As an alternative, we created and fine tuned a ChatGPT API to handle

the keyword extraction tasks. The API worked extremely well and was certainly viable for

a real NLP application.

Finally, we combined all of the best procedures we uncovered throughout the project.

This was comprised of an SVM model using a linear kernel for sentiment analysis and the

ChatGPT API for keyword extraction. We combined these programs into a backend that

powered a proof of concept dashboard meant to realize the vision behind this project. While

experimental, the dashboard provides sophisticated information about Yale courses in just a

few seconds. Overall, the potential of these applications is quite promising and would serve

the Yale community well.

Alexander Abinader 30 Yale University

References

[1] C. J. Hutto and E. Gilbert, “VADER: A parsimonious rule-based model for sentiment

analysis of social media text,” in Proc. ICWSM 2014, 2014, pp. 216-225.

[2] G. James, D. Witten, T. Hastie, and R. Tibshirani, “Support Vector Machines,” in An

Introduction to Statistical Learning, New York: Springer, 2013, pp. 337-372.

[3] J. Doe, “Sentiment analysis using logistic regression and naive Bayes,” Towards Data

Science, Oct. 1, 2020. [Online]. Available: https://towardsdatascience.com/sentiment-

analysis-using-logistic-regression-and-naive-bayes-16b806eb4c4b.

[4] J. Smith, “An easy tutorial about sentiment analysis with deep learn-

ing and Keras,” Towards Data Science, Feb. 15, 2021. [Online]. Avail-

able: https://towardsdatascience.com/an-easy-tutorial-about-sentiment-analysis-with-

deep-learning-and-keras-2bf52b9cba91.

[5] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

[6] M. Grootendorst, “KeyBERT: Minimal Keyword Extraction with BERT,” GitHub,

2020. [Online]. Available: https://github.com/MaartenGr/KeyBERT.

[7] Ngoc, Thanh & Thi, Mai & Thi, Hang. (2021). “Sentiment Analysis of Students’ Reviews

on Online Courses: A Transfer Learning Method,” 10.46254/AP01.20210122.

[8] Pu, Xiaomin, Guangxi Yan, Chengqing Yu, Xiwei Mi, and Chengming Yu. (2021).

“Sentiment Analysis of Online Course Evaluation Based on a New Ensemble Deep

Learning Mode: Evidence from Chinese” Applied Sciences 11, no. 23: 11313.

https://doi.org/10.3390/app112311313.

[9] R. Campos, V. Mangaravite, A. Pasquali, A. Jorge, C. Nunes, and A. Jatowt, “YAKE!

Keyword extraction from single documents using multiple local features,” Information

Sciences, vol. 509, pp. 257-289, 2020.

[10] R. Mihalcea and P. Tarau, “TextRank: Bringing order into texts,” in Proc. of the 2004

Conference on Empirical Methods in Natural Language Processing (EMNLP 2004),

2004, pp. 404-411.

[11] S. Loria, “TextBlob: Simplified Text Processing.” [Online]. Available:

https://textblob.readthedocs.io/en/dev/.

Alexander Abinader 31 Yale University

[12] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword extraction from

individual documents,” in Text Mining: Applications and Theory, M. W. Berry and J.

Kogan, Eds. Wiley, 2010, pp. 1-20.

[13] T. Kanstren, “A look at precision, recall, and F1 score,” Towards Data Science, Mar.

3, 2022. [Online]. Available: https://towardsdatascience.com/a-look-at-precision-recall-

and-f1-score-36b5fd0dd3ec.

[14] Y. Liu et al., “RoBERTa: A robustly optimized BERT pretraining approach,” arXiv

preprint arXiv:1907.11692, 2019.

[15] Z. Jiang, C. Miao and X. Li, “Application of keyword extraction on MOOC resources,”

in International Journal of Crowd Science, vol. 1, no. 1, pp. 48-70, March 2017, doi:

10.1108/IJCS-12-2016-0003.

Alexander Abinader 32 Yale University

Acknowledgments

There were many more sources used in the creation of this project beyond those that were

directly cited in this report. All of these are included as hyperlinks in our code archive as

well as our GitHub repository.

We give a special thank you to the CourseTable staff for allowing us to use their dataset and

helping us troubleshoot the data collection process!

Alexander Abinader 33 Yale University

	Background
	Introduction
	Related Empirical Literature
	Data Collection and Cleaning
	Data Labeling
	Sentiment Analysis
	Pretrained Models
	Valence Aware Dictionary for Sentiment Reasoning (VADER)
	TextBlob
	Robustly Optimized BERT Approach (RoBERTa)
	Results

	Models
	Random Forest
	Logistic Regression
	Neural Network
	Support Vector Machine
	Adjustments
	Results
	Extensions

	Theory
	Keyword Extraction
	Models
	KeyBERT
	RAKE and YAKE
	TextRank

	ChatGPT API

	Dashboard
	Conclusion

