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1. Background

In statistical analysis, one common assumption we often make is that
we have access to independently and identically distributed (i.i.d.) samples. In
practice, this assumption can become fallacious. Problems arise when the
data is prone to systematic bias, which can happen when the data collection,
selection, or processing inadvertently favors certain outcomes, leading to
biased datasets. Works have been done to identify the source of these biases
and to create efficient algorithms for statistical analysis at the presence of
the biases. For example, two fundamental types of biases, truncation bias
and self-selection bias, are analyzed and studied in Zampetakis’s paper [9].
It is proven that there exist efficient algorithms that manage to estimate the
distribution with either kind of bias.

In this paper, we will introduce the friction model, in which we generalize
the idea of systematic bias into the setting where the data we observe have
been transformed through some friction function. Traditionally, we think
of friction as insensitivity to small changes in the state of the world. This
model of friction in economics was first introduced by Rosett [7] in 1959. For
example, investors’ behavior will not change when the yield fluctuates by a
small amount because of transaction costs. In this paper, we will generalize
this idea of friction into a wide family of functions, and then analyze the
possibility of performing statistical analysis for problems such as Mean
Estimation and Linear Regression.

Summary of Results. For both Mean Estimation and Linear Regression, this
report gives a sufficient condition to identify the mean of the Gaussian or the
regression parameters in the presence of friction (Theorem 8 and Proposition
17). Specifically for Mean Estimation, we also construct unidentifiable in-
stances of friction function for an arbitrary number of Gaussians by drawing
a connection to the Consensus-Halving problem (Theorem 9). Eventually, we
develop an efficient algorithm that estimates the mean of the Gaussian with
certain probability of success (Theorem 16).

2. Friction Model and Problems

For the purpose of this paper, we allow a friction function to be virtually
any real function. We will zoom in onto specific kinds of functions in later
sections.

Definition 1. A friction function is any real-valued function ϕ defined on R.
We make the assumption that the friction function is always known to us.

Now we introduce the two main problems this paper will try to solve,
both of which are naturally given rise by the friction model.
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2.1. Problem Setting 1 – Mean Estimation. Let zi ∈ R be samples drawn
from a univariate normal N (µ∗, σ2), whose variance σ2 is known. Suppose
these x values are transformed through a known friction function ϕ, result-
ing in observed samples yi = ϕ(zi). We are interested in (1) whether it
is statistically possible to identify the population mean µ∗; and (2) if so, a
computationally efficient way to construct an estimator.

Example 1 (Sigmoid). The following example uses the sigmoid function as
the friction function. This is the simplest example, and the easiest to deal with
– if we observe the red samples, all we need to do is to transform them back
to the blue ones with the inverse mapping, and then estimate the population
mean.

Example 2 (Classification). For a non-trivial example, consider the following
friction function

ϕ(x) =

{
1, x ∈ [−1, 1]
0, x /∈ [−1, 1]

i.e., ϕ(x) = 1[−1,1]. This time it is not too obvious that we can still identify
the mean only by observing two discrete values. We will show this in a
more general setting in the next section. Also note that this friction function
corresponds to the standard classification problem, where we observe which
“class” each sample belongs to and estimate the population statistics.

2.2. Problem Setting 2 – Linear Regression. Let xi ∈ R be independent vari-
ables. Let noises ζi be independent and identically distributed (i.i.d) variables
drawn from a standard normal distribution N (0, 1). Consider the friction
version of the linear regression problem: for a true parameter ω∗ ∈ R, we
observe the samples ϕ(ω∗xi + ζi), where ϕ is some known friction function.
We are still interested in finding a statistically and computationally efficient
way to construct an estimator for ω∗.

Example 3 (Truncation). Besides classification in Example 2, a few other clas-
sic examples of statistics using biased data can be represented by the friction
models. For example, if we are only able to observe samples that fall into a
measurable set B ⊆ R, this is the problem of truncated or censored samples. In
our case, the corresponding friction function is

ϕ(x) = 1B(x) · x.

Efficient learning from censored or truncated samples has been extensively
studied by a few papers. It turns out there is a polynomial-time algorithm
that recovers the mean in the truncated version of Mean Estimation (and Vari-
ance Estimation as well) [3]. In the truncated version of Linear Regression,
there is also a polynomial-time algorithm with success probability of at least
2/3 that provides a close estimate of the regression parameters [4]. Note that
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Figure 1. One thousand samples drawn from N (2, 1) with
friction function ϕ = sigmoid.

one more improvement the methods in these papers have over our friction
model is the additional assumption that we only need an oracle access to the
set B, whereas in our case the friction function is available to us.
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Figure 2. One thousand samples drawn from N (2, 1) with
friction function ϕ = 1[−1,1].

3. Preliminaries

We begin with a family of functions that will be the building blocks of
most of our results.

Definition 2. Let F denote the set of real-valued functions whose level sets
are all convex. In other words, if f ∈ F , then the set {x ∈ R : f (x) = C} is
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convex for any C ∈ f (R).

Remark 1. Trivially, any monotone function is in F . Any 1-to-1 function is in
F . This is because for these functions, the level sets are either singletons or
intervals, which are convex in R.

Remark 2. Note the nuance between F and the family of quasicon-
vex functions, for which the definition is the same except that the set
{x ∈ dom( f ) : f (x) ≤ C} is considered. Not all quasiconvex function is in
F , for example, f (x) = x2.

Definition 3. (Truncated Gaussian Distribution) Let N (µ, σ2) be a normal dis-
tribution with mean µ and covariance σ2, with the probability density func-
tion

N (µ, σ2; x) =
1√
2πσ

exp

(
−1

2

(
x− µ

σ

)2
)

.

Then let S ⊆ Rk be a measurable subset. We define the probability mass of S
under this Gaussian measure by

N (µ, σ2; S) =
∫

S
N (µ, σ; x)dx.

Finally, we define the S-truncated normal distribution as the normal distribution
conditioned on that the values fall in S. Equivalently, the truncated normal
distribution has the probability density function

N (µ, σ2, S; x) =

{
1

N (µ,σ2;S) · N (µ, σ2; x) x ∈ S
0 x /∈ S

.

4. Mean Estimation

4.1. Identifiability. In this section, we will be exploring which kinds of fric-
tion functions will allow us to identify the population mean µ∗.

To estimate the population mean µ∗ ∈ R, we construct the log-likelihood
function

Lϕ(µ; y1, . . . , yn) =
n

∑
i=1

log

(
Pr

x∼N (µ,σ2)
[ϕ(x) = yi]

)
,

which can be written in the following form assuming we draw infinitely
many samples:

Lϕ(µ; µ∗) = Ez∼N (µ∗ ,σ2) log

(
Pr

x∼N (µ,σ2)
[ϕ(x) = ϕ(z)]

)
.
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As we later shall prove, the Maximum Likelihood Estimator (MLE) µ̃ =
arg maxµ Lϕ(µ; µ∗) will recover µ∗. First, we want to find sufficient condi-
tions under which we can find the optimizer, one of which is strong convex-
ity of Lϕ(µ; µ∗). We wish to prove it for F , the family of friction function ϕ
defined. We start with a simple example.

Example 4 (1-to-1 Function). Consider the simplest case where ϕ is any 1-to-1
function (e.g., ϕ = id). Then

Lϕ(µ; µ∗) = Ez∼N (µ∗ ,σ2) log

(
Pr

x∼N (µ,σ2)
[x = z]

)

= Ez∼N (µ∗ ,σ2) log
(

1√
2πσ

e−
(z−µ)2

2σ2

)
= Ez∼N (µ∗ ,σ2)

[
− (z− µ)2

2σ2 − log
(√

2πσ
)]

.

The first-order derivative is

∇µLϕ(µ; µ∗) = Ez∼N (µ∗ ,σ2)

[
z− µ

σ2

]
and the second-order derivative is

∇2
µLϕ(µ; µ∗) = Ez∼N (µ∗ ,σ2)

[
− 1

σ2

]
= − 1

σ2 ≤ 0,

so Lϕ is concave.

We wish to generalize this result to a more representative family of
functions.

Proposition 4. For any ϕ ∈ F , the corresponding log-likelihood Lϕ(µ; µ∗) is
concave.

To prove this result, we make use of the following lemma.

Theorem 5 (Brascamp-Lieb Inequality [2]). Let g be convex function on Rd and
let S be a convex set on Rd. Let N (µ, Σ) be the Gaussian distribution on Rd. It
holds that

E
x∼NS

[
g
(

x + µ− E
x∼NS

[x]
)]
≤ E

x∼N
[g(x)].

Named as the Brascamp-Lieb Inequality, this inequality was first proven
by Brascamp and Lieb for the special case g(x) = |x|α [2]. Later, Hargé
generalized this proof to any convex function g. The proof makes use of



9

optimal transform of measure [5], and will not be discussed in details in this
paper. As we later will see, we only need the original version of the inequality
proved by Brascamp and Lieb, where α = 2.

Proof of Proposition 4: Let s1, s2, . . . (does not need to be finite) take on distinct
values in the image of f . Let S1, S2, . . . be the corresponding preimages. By
definition of F , the Si’s are convex. The corresponding log-likelihood is

Lϕ(µ; µ∗) = Ez∼N (µ∗ ,σ2) log

(
Pr

x∼N (µ,σ2)
[ϕ(x) = ϕ(z)]

)

=
∫

i

[
Pr [ϕ(z) = si] ·Ez∼N (µ∗ ,σ2)

[
log

(
Pr

x∼N (µ,σ2)
[ϕ(x) = si]

)]
| z ∈ Si

]

The expectations are not dependent on z, so we can omit them. The above
expression simplifies to

Lϕ(µ; µ∗) =
∫

i

[
Pr

z∼N (µ∗ ,σ2)
[ϕ(z) = si] · log

(
Pr

x∼N (µ,σ2)
[x ∈ Si]

)]

=
∫

i

[
Pr

z∼N (µ∗ ,σ2)
[ϕ(z) = si] · logN (µ, σ2; Si)

]
.(4.1)

Below we derive the first-order and the second-order derivative of

logN (µ, σ2; S) = log
∫

S

1√
2πσ

e−
(z−µ)2

2σ2 dz,

where S ⊆ R is convex. The first-order derivative is

∇µ logN (µ, σ2; S) =

∫
S

z−µ

σ2
1√
2πσ

e−
(z−µ)2

2σ2 dz∫
S

1√
2πσ

e−
(z−µ)2

2σ2 dz

=

∫
S

z−µ

σ2 e−
(z−µ)2

2σ2 dz∫
S e−

(z−µ)2

2σ2 dz

= Ez∼NS

[
z− µ

σ2

]
.
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The second-order derivative is

∇2
µ logN (µ, σ2; S) =

∫
S

(
−1
σ2 + (z−µ)2

σ4

)
e−

(z−µ)2

2σ2 dz∫
S e−

(z−µ)2

2σ2 dz
−

∫S
z−µ

σ2 e−
(z−µ)2

2σ2 dz∫
S e−

(z−µ)2

2σ2 dz


2

= Ez∼NS

[
(z− µ)2 − σ2

σ4

]
−
(

Ez∼NS

[
z− µ

σ2

])2

=
1
σ4

(
Varz∼NS(z− µ)− σ2

)
=

1
σ4

(
Varz∼NS(z)−Varz∼N (z)

)
To show this is negative, we use Lemma 5. In our case, consider the convex
function g(z) = z2:

Ez∼Ns

[
(z + µ−Ez∼Ns [z])

2
]
≤ Ez∼N

[
z2
]

⇔ Ez∼Ns

[
z2
]
+ 2(µ−Ez∼Ns [z])Ez∼Ns [z] + (µ−Ez∼Ns [z])

2 ≤ Ez∼N
[
z2
]

⇔ Ez∼Ns

[
z2
]
− 2 (Ez∼Ns [z])

2 + µ2 + (Ez∼Ns [z])
2 ≤ Ez∼N

[
z2
]

⇔ Ez∼Ns

[
z2
]
+ µ2 − (Ez∼Ns [z])

2 ≤ Ez∼N
[
z2
]

⇔ Ez∼Ns

[
z2
]
− (Ez∼Ns [z])

2 ≤Ez∼N
[
z2
]
− µ2

⇔ VarNS(z)−VarN (z) ≤ 0

Then we have

∇2
µ logN (µ, σ2; Si) ≤ 0

for each Si. By equation (4.1), the second-order derivative of the log-
likelihood function is a linear combination

∇2
µLϕ(µ; µ∗) =

∫
i

[
Pr

z∼N (µ∗ ,σ2)
[ϕ(z) = si] · ∇2

µ logN (µ, σ2; Si)

]
≤ 0,

hence the log-likelihood function is concave.
□

Remark 3. The 1-to-1 function is a special case of this result where all Si’s are
singletons, which are all convex in R. These friction functions will have an
infinite number of level sets. Despite identifiability, we will later discuss a
way to transform 1-to-1 functions for our algorithm to run.

Note that the concavity proved above does not guarantee identifiability.
We still need that the likelihood Lϕ(µ; µ∗) is strictly concave around µ∗. To
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show this, we prove the following lemma.

Lemma 6. For any convex S ⊆ R, we have

Varz∼NS(z)−Varz∼N (z) = 0

if and only if S = R, where N denotes the Gaussian N (µ, σ2) and NS the S-
truncated Gaussian N (µ, σ2, S).

Proof: The “if” statement is immediate. To prove the other direction, with-
out loss of generality, it suffices to show the statement for any µ and all
convex S centered at 0 (since we are proving this for any µ, we can get all
cases by translating S and the Gaussians). We know Varz∼N (z) = σ2. We
construct the function ψ : R≥0 → R,

ψ(s) = Varz∼N[−s,s]
(z)−Varz∼N (z) = Varz∼N[−s,s]

(z)− σ2.

We want to show ψ(s) = 0 implies s = ∞. Note that we can write Varz∼N[−s,s]
as

Varz∼N[−s,s]
(z) =

∫
[−s,s]

(x−Ez∼N[−s,s]
[z])2 1
N (µ, σ2; [−s, s])

N (µ, σ2; x)dx.

Let µs = Ez∼N[−s,s]
[z]. Then we can rewrite

Varz∼N[−s,s]
(z) =

∫
[−s,s](x− µs)2N (µ, σ2; x)dx

N (µ, σ2; [−s, s])

=

∫
[−s,s](x− µs)2N (µ, σ2; x)dx∫

[−s,s]N (µ, σ2; x)dx
.

First thing, we immediately know that ψ(s) is continuous (and differentiable)
in s by the Leibniz rule. Besides, we know ψ(0) = 0− σ2 and ψ(+∞) = 0.
To reach the desired result, we need to show that ψ(s) is strictly monotone
increasing. First, to get some intuition, let’s visualize the behavior of the
variance on a symmetric set, which is what we expected:
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Figure 3. Varz∼N[−s,s]
are monotone increasing.

To prove this, we keep expanding the variance:

Varz∼N[−s,s]
(z) =

∫
[−s,s](x− µs)2N (µ, σ2; x)dx∫

[−s,s]N (µ, σ2; x)dx

=

∫
[−s,s] x2N (µ, σ2; x)dx∫
[−s,s]N (µ, σ2; x)dx

− 2µs

∫
[−s,s] xN (µ, σ2; x)dx∫
[−s,s]N (µ, σ2; x)dx

+ µ2
s .

Note that

µs =

∫
[−s,s] xN (µ, σ2; x)dx∫
[−s,s]N (µ, σ2; x)dx

,

so we end up with

Varz∼N[−s,s]
(z) =

∫
[−s,s] x2N (µ, σ2; x)dx∫
[−s,s]N (µ, σ2; x)dx

− µ2
s .

Now taking derivative w.r.t. s:

∂

∂s
Varz∼N[−s,s]

(z) =
(N (µ, σ2; s) +N (µ, σ2;−s))(s2N (S)−ES[x2])

N (S)2 −

2 · ES[x]
N (S)

(N (µ, σ2; s)−N (µ, σ2;−s))sN (S)− (N (µ, σ2; s) +N (µ, σ2;−s))ES[x]
N (S)2
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Refactor the expression into coefficients of N (µ, σ2; s) and N (µ, σ2;−s), we
get (ignoring the N (S)2 in the denominator):

coef(N (µ, σ2; s)) =
(sN (S)−ES[x])2 + ES[x]2

N (S)
−ES[x2]

coef(N (µ, σ2; s)) =
(sN (S) + ES[x])2 + ES[x]2

N (S)
−ES[x2]

which are both positive if we expand them back to the integral form.
□

Therefore, to get identifiability, we only need to remove all the constant
functions from F . The strict concavity points to possibility of efficiently
estimating µ∗ for friction functions ϕ ∈ F . Before moving on, we check that
the maximum likelihood estimator indeed identifies the true mean.

Proposition 7. The log-likelihood function Lϕ(µ; µ∗) achieves maximum at µ =
µ∗.

Proof: It suffices to show ∇µLϕ(µ; µ∗) = 0 at µ = µ∗. There is

∇µLϕ(µ = µ∗; µ∗) = ∑
i

[
Pr

z∼N (µ∗ ,σ2)
[ϕ(z) = si] · ∇µ logN (µ∗, σ2; Si)

]
= ∑

i

[
N (µ∗, σ2; Si) · ∇µ logN (µ∗, σ2; Si)

]

= ∑
i

∫
Si

1√
2πσ

e−
(z−µ∗)2

2σ2 dz ·
∫

Si

z−µ∗

σ2 e−
(z−µ∗)2

2σ2 dz∫
Si

e−
(z−µ∗)2

2σ2 dz


= ∑

i

∫
Si

1√
2πσ

z− µ∗

σ2 e−
(z−µ∗)2

2σ2 dz

=
∫ 1√

2πσ

z− µ∗

σ2 e−
(z−µ∗)2

2σ2 dz

= Ez∼N (µ∗ ,σ2)

[
z− µ∗

σ2

]
= 0,

as desired. □

Combining all the results above, we get the following theorem.

Theorem 8. µ∗ is identifiable for any friction function ϕ ∈ F that are not constant.
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The construction of the family of functions F is fairly natural. Consider
the following non-example that lies out of F .

Example 5 (Unidentifiable). Let ϕ(x) =

{
1, x ̸∈ [−1, 1]
0, x ∈ [−1, 1]

. We see ϕ /∈ F

since ϕ−1(1) is not convex in R. Now suppose we sample from the Gaussian
N (µ∗, 1) where µ∗ > 1 and feed the samples through ϕ. It is impossible
to identify µ∗ with any means, for the simple reason that ϕ is symmetric
across x = 0 and demolishes all information about the sign of the sample.
Specifically, the log-likelihood function Lϕ(µ; µ∗) cannot be concave, because
if µ̃ maximizes Lϕ(µ; µ∗), then there is Lϕ(µ̃; µ∗) = Lϕ(−µ̃; µ∗), and it is easy
to show that Lϕ(µ̃; µ∗) ̸= Lϕ(0; µ∗).

Meanwhile, the family F leaves out some friction functions for which
the mean is still identifiable. Consider the following non-symmetric example.

Example 6 (Asymmetric Identifiability). Consider the friction function

ϕ(x) =

{
1, x ∈ (−1, 0] ∪ [1, ∞)

0, x ∈ (−∞,−1] ∪ (0, 1)
. The level sets are not constant. However,

the mean is still identifiable in this case, because there is a 1-to-1 mapping
between µ ∈ R and the probability mass that N (µ, σ2) assigns to the set
(−1, 0] ∪ [1, ∞). In other words, one can check that the probability mass of
S = (−1, 0] ∪ [1, ∞), i.e.,

N (µ, σ2; S) =
∫
(−1,0]

N (µ, σ2; x)dx +
∫
[1,∞]
N (µ, σ2; x)dx

is monotone increasing in µ. Therefore, estimating N (µ, σ2; S) with the
observed samples would allow us to recover the population mean.

4.2. Non-Identifiability. In the previous subsection, we tried to solve the
question: what friction functions will allow us to identify the Gaussian’s
mean? In this section, we want study the reverse problem, that whether
we can find friction functions that will make it impossible to identify the
mean. This problem has a trivial answer, which is yes because we can always
make two Gaussians unidentifiable by constructing a friction function that is
symmetric between the two Gaussians, so that each Gaussian assign the same
probability weight to each outcome.

A more interesting question is: given m > 2 Gaussians, can we still find
a nontrivial friction function that makes the m Gaussians unidentifiable?
Here, nontrivial means the friction function is not constant, because by the
discussion above, a constant function trivially leads to unidentifiability.



15

We first present the final theorem of this section, and make our way up
there.

Theorem 9. Given m > 2 Gaussians, there always exist a friction function ϕ such
that ϕ(x) ∈ {0, 1} and ϕ uses at most m discontinuity points, and ϕ makes the
given Gaussians unidentifiable.

This result is derivative from the famous Consensus-Halving (or Cake-
Cutting) problem.

Definition 10 (Consensus-Halving). Let object A be a measurable bounded
set in R. There are m features. Each feature i is a bounded continuous (w.r.t
Lebesgue) measure µi. The Consensus-Halving problem studies if we can cut
the object A into two parts so that each feature is divided evenly into the two
parts (equal measure).

The following theorem is established by Alon and West [1] on the
Consensus-Halving problem.

Lemma 11. The object A can be divided into two portions A+ and A− using m + 1
pieces, such that µi(A+) = µi(A−) for all i ∈ {1, . . . , m}.

Proof : Since A is bounded, it suffices to show the theorem for A = [0, 1].
We define a m-cut x ∈ Rm using x1, x2, . . . , xm ∈ [−1, 1]. The actual cuts
will be the absolute values |x1|, |x2|, . . . , |xm|. This results in m + 1 intervals,
which we call S1, S2, . . . , Sm+1. We always assign Sm+1 to A− and assign Sk
to A+ if xk < 0 and to A− otherwise for all 1 ≤ k ≤ m.

By this procedure, we will get the measure of the ith feature on A+

defined by the cut x as

µi(A+)(x) =
m

∑
j=1

1{xj < 0} ·
(

µi

(
j

∑
k=1
|xk|
)
− µi

(
j−1

∑
k=1
|xk|
))

and similarly

µi(A−)(x) = 1−µi

(
m

∑
k=1
|xk|
)
+

m

∑
j=1

1{xj ≥ 0} ·
(

µi

(
j

∑
k=1
|xk|
)
− µi

(
j−1

∑
k=1
|xk|
))

.
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We wish to prove the existence of x ∈ Rm such that µi(A+)(x) =
µi(A−)(x) for all i. Define the difference

fi(x) = µi(A−)(x)− µi(A+)(x)

= 1− µi

(
m

∑
k=1
|xk|
)
+

m

∑
j=1

sgn(xj) ·
(

µi

(
j

∑
k=1
|xk|
)
− µi

(
j−1

∑
k=1
|xk|
))

.

Obviously fi is continuous. Then define F : Bm(0, 1) → Rm such that
Fi(x) = fi(x). F is continuous, and note that by the property of a cut, F is
defined with the boundary Sm = {|x1|+ . . . + |xm| = 1}. At the boundary,
one can check the antipodal condition F(x) = −F(−x) for all x ∈ Sm, since

fi(x) =
m

∑
j=1

sgn(xj) ·
(

µi

(
j

∑
k=1
|xk|
)
− µi

(
j−1

∑
k=1
|xk|
))

= −
m

∑
j=1

sgn(−xj) ·
(

µi

(
j

∑
k=1
|xk|
)
− µi

(
j−1

∑
k=1
|xk|
))

= − fi(−x).

By the Borusk-Ulam theorem, this indicates there exists x∗ ∈ Bm(0, 1) such
that

(4.2) F(x∗) = 0,

then the division A+(x∗) and A−(x∗) is the desired division.
□

Remark 4. Note that this only shows existence. An efficient algorithm to
construct an ε-approximate solution is given by Simmons and Su [8]. As we
will see below, our theorem is a direct derivative of the Consensus-Halving
problem. Hence, the construction will also help us construct a ε-approximate
friction function.

Proof of Theorem 9: In our version of the problem, each Gaussian represents
a feature, with µi(x) = N (µ, σ2; x). The object to be divided is R. The
problem with applying the above lemma directly to this problem is that R is
not bounded. A way to get around this is to transform the intervals to into
their probability mass under the standard normal distribution. Concretely,
for each cut length ℓi, we can transform it from xi > 0 such that∫ xi

xi−1

N (0, 1; z)dz = |ℓi|.

In this way, if we are going to partition the unbounded set R into intervals
separated by x′is, we have transformed the set into a bounded set [0, 1], be-
cause

|ℓ1|+ |ℓ2|+ . . . + |ℓm| =
m

∑
i=1

∫ xi

xi−1

N (0, 1; z)dz =
∫ ∞

−∞
N (0, 1; z)dz = 1
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The only remaining thing we need to do is to transform the features (which
are Gaussians) onto the set [0, 1]. Since the transformation above is bounded
and continuous, the transformed features will still be bounded continuous
measures. Using Lemma 11, we will get a m-cut on the set [0, 1/2] that
assigns equal mass to each of the transformed features on the two divided
subsets. Transforming the cut back using equation (4.2), we get a m-cut on
R that assign equal mass to each of the original features. In other words, let
R+ and R− be the final divisions. Then we have

N (µi, σ2; R+) = N (µi, σ2; R−) =
1
2

for all 1 ≤ i ≤ m. In particular, we have

(4.3) N (µi, σ2; R+) = N (µj, σ2; R+)

for any i, j ∈ {1, 2, . . . , m}. Now consider the friction function

ϕ(x) = 1R+(x).

The m Gaussians will not be identifiable because each of them assign equal
probability mass to R+, as shown by equation (4.3), which completes the
proof.

□

4.3. Algorithm. Going back to the log-likelihood function in equation (4.1),
in this section we propose an efficient algorithm to estimate µ∗ using Projected
Stochastic Gradient Descent (PSGD) to optimize the log-likelihood. Before we
start, we yet need to refine the class of friction functions we are working
with. Inside F , consider the following class of functions.

Definition 12. Let S denote the set of all the level sets of ϕ. Let µ define the
distribution NS(µ) over S that is naturally induced by the probability mass
of N (µ, σ2) on the elements of S, i.e.,

Pr
T∼NS(µ)

[T = Si] = Pr
z∼N (µ)

[z ∈ Si] .

Definition 13. (Information Preservation) Let λ ∈ [0, 1]. We say S is λ-info
preserving with regard to N (µ∗) if for any µ, there is

KL (NS(µ) ∥ NS(µ∗)) ≥ λ ·KL (N (µ) ∥ N (µ∗)) ,

where KL(· ∥ ·) denotes the Kullback–Leibler divergence.

Remark 5. We consider functions with the information preservation property
because this would result in strong concavity. Specifically, if N (µ) and
N (µ∗) coincide, there must be µ = µ∗. Note that our previous class of
function F overlaps non-trivially with these functions.
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For the rest of this section, we make the following assumptions:

Assumption 1. The set of level sets of the friction function ϕ ∈ F is λ-info
preserving.

Assumption 2. The number of values that ϕ takes is bounded by constant.
(This leaves out the most common functions such as the continuous ones.
We will later discuss a way to get around this assumption.)

Assumption 3. The absolute value of µ∗ is bounded by some k ∈ R≥0, i.e.,
µ∗ ∈ [−k, k]. The bound k is known to us.

Given these assumptions, we propose the following PSGD algorithm for
Mean Estimation:

Algorithm 1 Projected SGD for Mean Estimation

1: Input: optimizer bounded by k, friction function ϕ, data ϕ(xti )
N
i=1.

2:
3: µ(0) ← arbitrary point in P = [−k, k].
4: for t = 1, 2, . . . , T do
5: for each level set Si of ϕ do
6: sample (zi)t drawn from N (µ(t), σ2, Si)
7: end for
8: calculate the gradient estimate ξ(t) using (zi)t and equation (4.1)

9: by unbiased gradient, E
[
ξ(t) | µ(t−1)

]
= ∇µLϕ(µt−1; µ∗)

10: χ(t) ← µ(t−1) − 1√
t
ξ(t)

11: µ(t) ← arg minµ∈P
∥∥∥µ− χ(t)

∥∥∥
12: end for
13: return µ(T)

14:

To show this algorithm works and finishes in finite time, we have the
following theorem on SGD convergence from Shamir and Zhang [6]:

Theorem 14. Suppose that F is convex, and that for some constants D, G, it holds
that E

[
∥ξt∥2

]
≤ G2 for all t, and supµ,µ′∈P ∥µ− µ′∥ ≤ D. Consider SGD with

step sizes ηt = c/
√

t where c > 0 is a constant. Then for any T > 1, it holds that

E
[

F
(

µ(T)
)
− F (µ∗)

]
≤
(

D2

c
+ cG2

)
2 + log(T)√

T
.

We check the following conditions for our PSGD algorithm:
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Proposition 15. The following conditions are met:
(1) supµ,µ′∈P |µ− µ′| is bounded.
(2) The PSGD has an initial starting point in the projection set.
(3) The stochastic gradient is unbiased.
(4) The second moment of the stochastic gradient is bounded.
(5) The log-likelihood function is convex everywhere, and strongly convex

around µ∗.

Proof : (1) and (2) is trivial given by Assumption 2. (3) is given by equation
(4.1). (5) is immediate from Proposition 4 and the definition of information
preservation. To check (4), notice that the stochastic gradient is

∑
S
N (µ∗, σ2; S)(x− zS),

where x ∼ N (µ, σ2) and zS ∼ N (µ, σ2, S). Since x and z are independent,
the variance of the stochastic gradient is equal to

Var(x) + ∑
S

(
N (µ∗, σ2; S)

)2
Var(zS).

By Proposition 4, we have Var(zS) ≤ Var(x) = σ2. Hence, the variance is
bounded by

σ2

(
1 + ∑

S
N (µ∗, σ2; S)2

)
= σ2

(
1 + ∑

S
N ∗(S)2

)
.

Note that ∑SN ∗(S) = 1. Since each N ∗(S) is non-negative, we easily get
∑SN ∗(S)2 ≤ 1, hence an upper bound of the variance by 2σ2. To show the
second moment is bounded, we still need to show the expected value of the
stochastic gradient is bounded. This is a more tricky, and it comes down to
proving that

∑
S
N (µ∗, σ2; S)ENS [|x|]

is bounded. We can prove an approximate version of this by considering the
intersection between S’s and the ball B(0, k + log 1

δ ) for some δ, and then all
|x| will have bounded values.

□

Note that Theorem 14 only shows the expected convergence. To get a
certain probability of success, we use the following "boosting" trick from
[3]: we can amplify the probability of success to 1 − δ by repeating the
optimization process log( 1

δ ) times from scratch and keep the optimizer that
achieves the maximum log-likelihood. Combining these results, we have the
following theorem:
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Theorem 16. Given the bound of true mean k, the bound of the second moment of
stochastic gradient G2, the friction function ϕ, and observed data ϕ(xti )

N
i=1, repeat

the PSGD algorithm we proposed with step sizes ηt = c/
√

t and step numbers
T > 1 for log( 1

δ ) times independently and keep the best optimizer µ̂. Then it holds
with probability 1− δ that

Lϕ(µ
∗; µ∗)−Lϕ(µ̂; µ∗) ≤

(
k2

c
+ cG2

)
2 + log(T)√

T
,

in other words the total runtime is T log( 1
δ ).

Remark 6. To try to loosen up our assumptions, consider any monotone con-
tinuous function, which is definitely identifiable, yet will not be accepted
by our algorithm. One way to make such a function pass is by discretizing
such a function into a step function, i.e., to give up information on the exact
value of the samples we see and only observe the bins of the values. This is
not optimal, and whether there exists a more efficient alternative is an open
question.

5. Linear Regression

For convenience, set zi = ω∗xi + ζi for each i, then zi ∼ N (ω∗xi, 1). We
construct the log-likelihood function

Lϕ(ω; x1, . . . , xn, ϕ(z1), . . . , ϕ(zn)) =
n

∑
i=1

log
(

Pr
αi∼N (ωxi ,1)

[ϕ(αi) = ϕ(zi)]

)
,

which we write as Lϕ(ω; ω∗) for short. Notice that this log-likelihood func-
tion is different from the previous one in that the αi’s are drawn from different
distributions rather than the same one. Still, we get similar results as before:

Proposition 17. For ϕ ∈ F , the corresponding log-likelihood Lϕ(ω; ω∗) is concave.

Proof: Write

Lϕ(ω; ω∗) =
n

∑
i=1

log
(

Pr
αi∼N (ωxi ,1)

[ϕ(αi) ∈ Si]

)
for convex Si = ϕ−1(ϕ(zi)) ⊆ R. We proved in Proposition 4 that the loga-
rithm in the expression above is concave with respect to the mean ωxi. Since
xi is known, the logarithm is concave with respect to ω, hence Lϕ(ω; ω∗) is
concave.

□
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6. Open Problems

As we mentioned in the previous sections, there are many results that
have not been solved by this paper. We list a few open questions stemming
from our discussions:

• Does there exist an exact way to characterize the family of friction
functions that leads to identifiability in Mean Estimation?
• Besides running the PSGD algorithm on the discretized function, is

there a more efficient algorithm to optimize the log-likelihood associ-
ated with functions whose number of level sets is not bounded?
• Can we develop a similar PSGD algorithm for Linear Regression?

The major difficulty we will encounter is that we will have to sample
without replacement at each step. An algorithm with such technique
has been developed for the truncation version of regression [4].
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