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Abstract

This paper studies the effects of automation in economies with labor market dis-

tortions that generate worker rents—wages above opportunity cost—in some jobs. We

show that automation targets high-rent tasks, dissipating rents and amplifying wage

losses from automation. It also reduces within-group wage dispersion for exposed

groups. Automation-driven rent dissipation is inefficient and reduces (and could even

negate) the productivity gains from automation. Using data for the US from 1980

to 2016, we find evidence of sizable rent dissipation and reduced within-group wage

dispersion due to automation. Using these estimates and accounting for equilibrium

effects, we estimate that automation accounts for 52% of the increase in between-

group inequality in the US since 1980, with rent dissipation being responsible for

a fifth of this contribution. We also estimate that inefficient rent dissipation offset

60–90% of the productivity gains from automation since 1980.
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1 Introduction

The US labor market has experienced epochal changes since 1980: not only did inequality

increase greatly, but the real wages of workers without a college degree declined or stag-

nated. While there is no consensus on the causes of this development, the automation of

tasks performed by low-education workers appears to have played an important role.1

This paper studies the implications of automation for wages, productivity, and welfare in

economies with imperfect labor markets, where workers earn rents and are paid wages above

their opportunity cost (their next best option). Even though the presence of worker rents

is well documented, how automation impacts an economy with noncompetitive elements

remains unexplored.2 Our contribution is to develop a framework to analyze and quantify

the effects of automation in the presence of worker rents and to establish that these effects

differ from those in competitive models.

We consider an economy where firms allocate tasks to workers of different skills or

automate them. Worker rents distort hiring and automation decisions by creating a wedge

between the wage firms must pay workers in some tasks and their opportunity cost, for

example, because of efficiency wage considerations, constraints on firms cutting wages (due

to norms, licensing, or minimum wages), or bargaining.3 This reduces employment at

high-rent tasks and encourages firms to automate these tasks excessively.

Our first contribution is to identify a novel rent dissipation mechanism via which au-

tomation impacts the labor market: all else equal, new automation technologies target

and displace workers from high-rent tasks. Rent dissipation has important implications for

within-group wage dispersion, average wages, productivity, and welfare:

1. Within-group wage dispersion. By reallocating workers away from high-rent jobs,

automation reduces wage dispersion within groups of otherwise-identical workers.

2. Average group wages. In competitive labor markets, automation depresses the relative

demand for exposed groups of workers via a displacement effect—by reducing the

share of tasks allocated the. Rent dissipation amplifies wage losses for these groups

1See Goldin and Katz (2008), Acemoglu and Autor (2011), and Autor (2019) for overviews of US
inequality trends, and Acemoglu and Restrepo (2022) for the role of automation.

2The presence of worker rents receives support from the literature on wage losses following job displace-
ment (Ruhm, 1991; Jacobson et al., 1993; Schmieder et al., 2023), wage differentials across jobs (Krueger
and Summers, 1988; Katz and Summers, 1989; Card et al., 2018), and wage premia associated with unions
and licenses (Kleiner and Krueger, 2013; Gittleman and Kleiner, 2016; Farber et al., 2021).

3For ease of exposition, we adopt a reduced-form modeling of rents using wedges, while the Online
Supplement provides various micro-foundations that yield the representation we use in the text.
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by pushing them away from high-rent tasks and forcing them into lower-wage jobs.

3. Productivity and welfare. In competitive labor markets, automation increases TFP

by reducing the cost of producing automated tasks. In the presence of distortions,

automation generates an additional negative effect on productivity, because rent dis-

sipation is inefficient: the tasks targeted for automation are not the ones where worker

wages are high due to scarcity, but due to rents, and as a result, a planner would

have preferred to allocate more—rather than less—labor to these tasks. Inefficient

rent dissipation makes the net impact of automation on productivity ambiguous.

Our second contribution is to provide reduced-form evidence on rent dissipation. Using

US data from 1980 to 2016, we document that the impact of automation on wages within

detailed demographic groups takes the distinctive pattern predicted by theory: automation

reduces wage dispersion in exposed groups, generating more pronounced wage declines

between the 70th and 95th percentiles of the within-group wage distribution than the rest.

In line with the theory, wage losses at the top of exposed groups result from workers

being displaced from higher-rent jobs. We document this fact using various proxies of rents

proposed in the literature (see Krueger and Summers, 1988; Katz and Summers, 1989).

These include: wage differences across industries and occupations (controlling for worker

characteristics), wage losses following job displacement, and quit rates, which provide an

inverse measure of rents (for workers tend to leave more attractive jobs less frequently).

Our reduced-form evidence points to sizable rent dissipation, with wages in automated

tasks exceeding worker opportunity cost by 20%-50%, with a central estimate of 35%.

Our third contribution is to quantify the general equilibrium implications of automation

for wage levels, productivity and welfare in the presence of labor market distortions. We

provide formulas for the change in wages, output, and productivity in terms of the task

displacement experienced by demographic groups, the rate of rent dissipation, and cost

savings from automation. In equilibrium, the automation of tasks performed by a group

of workers impacts others via ripple effects. Our formulas summarize these ripples by two

matrices: the propagation matrix, which encodes information on the strength of direct and

indirect competition for tasks between groups of workers, and the rent-impact matrix, which

encodes information on how task reallocation changes rents across groups.

We compute the equilibrium effects of automation using these formulas, estimates of

the propagation and rent-impact matrices, and our estimates of rent dissipation due to

automation. According to our results, automation accounts for 52% of the rise in between-
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group wage inequality since 1980. Of these, 42 percentage points are due to the baseline

displacement effects of automation. The remaining 10 percentage points are due to rent

dissipation. We also estimate that the impact of automation via costs-savings was to

increase TFP by 3% between 1980 and 2016, but the inefficiency of rent dissipation offset

60–90% of these gains. On net, automation is estimated to have increased aggregate TFP

by only 0.3–1.3% between 1980 and 2016, and aggregate consumption by just 0.45–1.95%.

Literature: Our main contribution is to develop a framework for studying the effects of

automation in labor markets with rents. There are a few works on the interplay between

technology and labor market imperfections (e.g., Aghion and Howitt, 1994; Acemoglu, 1997;

Caballero and Hammour, 1998; Mortensen and Pissarides, 1998), but these do not study

how the impact of automation on wages and productivity is changed by the presence of

worker rents, which is our focus here. Recent exceptions include Arnoud (2019) and Leduc

and Liu (2022), who explore how the threat of automation affects bargaining.

Our work also contributes to the literature on the determinants of the rise in US wage

inequality (e.g., Bound and Johnson, 1992; Katz and Murphy, 1992; Card and Lemieux,

2001). We are closest to papers exploring the effects of automation and lower equipment

prices on inequality and wages, including Autor et al. (2003) on the effects of computers

on routine tasks, the literature on capital-skill complementarity (for example, Krueger,

1993; Autor et al., 1998; Krusell et al., 2000; Burstein et al., 2019), and our previous work

Acemoglu and Restrepo (2022), which modeled and quantified the effects of automation on

the US wage structure. While we build on our previous work, neither that work nor any

other contributions in literature have studied the interplay between automation technologies

and worker rents.

On the theory front, we extend the task model in Acemoglu and Restrepo (2022) to

incorporate worker rents.4 We intentionally use a similar framework to this paper and

model rents as resulting from exogenous wedges, as in the recent literature on misallocation

(inter alia Hsieh and Klenow, 2009; Restuccia and Rogerson, 2008; Hsieh et al., 2019).

This approach maximizes the parallel with the analysis of the impact of automation in a

competitive labor market and highlights the differences due to labor market imperfections.

We also provide new formulas for the aggregate effects of automation on wages, output, and

productivity in economies with labor market distortions. These formulas relate to several

4These models, in turn, build on prior works exploring the effects of technologies and trade and task
models, including Zeira (1998), Acemoglu and Zilibotti (2001), Acemoglu and Autor (2011), and Acemoglu
and Restrepo (2018), as well as Grossman and Rossi-Hansberg ’s (2008) model of offshoring.
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recent papers exploring how technology affects productivity and welfare in economies with

inefficiencies (see Baqaee and Farhi, 2020; Basu et al., 2022; Dávila and Schaab, 2023).

On the empirical front, our main addition to the literature is to study the implications

of automation both for between-group and within-group wage inequality. Recent work by

Kogan et al. (2021) and Danieli (2024) explores the effects of technological change on within-

group inequality, though with little overlap with our approach. We document that groups

exposed to automation have seen lower wage growth over time, and that this relative wage

decline is more pronounced between the 70th and 95th percentiles of the within-group wage

distribution. We also show that this can be explained by a shift away from high-rent jobs.

This pattern contrasts with the common view in the literature that inequality has a fractal

nature (meaning that it has risen at all levels of aggregation, e.g., Katz, 1994), because it is

driven by rising demand for skills within as well as between groups (see Acemoglu, 2002).

Our theory suggests a more nuanced pattern, where automation can cause an increase in

wage inequality between groups and a decline within groups impacted by automation.

Finally, our work contributes to the literature on worker rents and their implications

for wages and efficiency. This literature has proposed several reasons why workers earn

rents, ranging from efficiency wage considerations (Akerlof, 1984; Shapiro and Stiglitz,

1984; Bulow and Summers, 1986), to the use of wages to recruit and retain workers under

imperfect information (Stiglitz, 1985), or holdup problems and bargaining (McDonald and

Solow, 1981; Grout, 1984; Pissarides, 2000). This literature shows that worker rents can

be distortionary and lead to too little employment in high-rent jobs.5 Recent work by

Stansbury and Summers (2020) has also explored the implications of declining worker

rents, but emphasizes the erosion of labor market power, rather than automation.

Organization of the paper: Section 2 presents our theoretical framework. Section 3

documents reduced-form evidence in support of the rent dissipation mechanism. Section

4 outlines our approach for estimating the general equilibrium effects of automation. The

Appendix includes the main proofs, while the (online) Supplement provides the remaining

proofs, extensions, robustness checks and data details.

5These distortions can justify second-best policy interventions and imply that technology or trade can
have adverse welfare effects. Katz and Summers (1989) pointed out that worker rents call for industrial
policy to increase employment in high-rent jobs. The flip side of this claim is that trade can reduce welfare
if it shifts employment away from high-rent jobs. This insight goes back to work on immiserizing growth by
Bhagwati (1968) and relates to our result that automation can reduce welfare with labor market distortions.
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2 Theory: Automation and Labor Market Distortions

This section presents our conceptual framework and derives our main theoretical results.

We study a one-sector model and extend our results to a multi-sector one in Section 4.

2.1 Single-Sector Model

Setup: A unique final good y is produced by combining complementary tasks x ∈ T

(where the set of tasks T ⊂ Rd has mass M). Task quantities, yx, are aggregated with a

constant elasticity of substitution λ ∈ (0,1):6

y = (
1

M ∫T
(M ⋅ yx)

λ−1
λ ⋅ dx)

λ/(λ−1)

.

There is a discrete set of labor types (demographic groups in our application) indexed

by g, where g ∈ G = {1,2, . . . ,G}. Workers in a group share the same productivity across

tasks and have different comparative advantages from workers in other groups. Tasks can

also be performed using task-specific capital, equipment, or software, denoted by kx for

task x. The total production of task x is therefore

yx = ψkx ⋅ kx +∑
g

ψgx ⋅ ℓgx.

Here, ℓgx is the amount of labor of type g allocated to task x, while kx is the amount

of task-specific capital used for this task, and ψgx and ψkx represent the productivity of

different factors in the production of task x and encode their comparative advantages.

There is an inelastic supply ℓg of workers of type g to be allocated across tasks, so that

∫
T
ℓgx ⋅ dx ≤ ℓg.

We treat task-specific machines, {kx}x∈T , as intermediate goods. They are produced

within the same period using the final good at a constant unit cost 1/qx. If qx = 0, task x

cannot be performed by capital. This implies that total consumption equals net output:

c = y − ∫
T
(kx/qx) ⋅ dx.

6Throughout, we let “dx” denote the Lebesgue measure over Rd and ∫T fx ⋅ dx denote the Lebesgue
integral of the function fx over T . The set T is assumed measurable.
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Labor market distortions and equilibrium: We consider a market equilibrium with

labor market distortions modeled using task-specific wedges. A firm performing task x

using labor of type g must pay a group- and task-specific wage:

wgx = µgx ⋅wg.

Here wg > 0 is the base wage of group g, and µgx > 0 is an exogenous wedge that varies

across tasks. Workers in group g employed in task x receive the wage wgx, inclusive of

the wedge. We treat {µgx}g∈G,x∈T as an attribute of tasks that forces firms to pay workers

wages that exceed their pay in other jobs.7

The labor market operates as follows: firms take base wages wg and wedges µgx as given

and decide how many workers from each group to hire for task x at a wage wgx. Workers

prefer to be employed at higher-rent jobs, but these are rationed in equilibrium: firms only

hire workers for each task until the value of the marginal product of labor (VMPL) equals

the wage, wgx. Workers are assigned at random to tasks until firms’ labor demands are

satisfied, and the base wage wg adjusts to ensure all workers are employed.

Formally, a market equilibrium is given by a vector of base wages w = {wg}g∈G , output

(GDP) y, an allocation of tasks {Tg}g∈G,Tk, task prices {px}x∈T , hiring plans {ℓgx}gx∈G×T ,

and capital production plans {kx}x∈T such that:

E1 Tasks prices are equal to the minimum unit cost of performing the relevant task:

px =min

⎧⎪⎪
⎨
⎪⎪⎩

1

qx ⋅ ψkx
,

⎧⎪⎪
⎨
⎪⎪⎩

wg ⋅ µgx
ψgx

⎫⎪⎪
⎬
⎪⎪⎭g

⎫⎪⎪
⎬
⎪⎪⎭

.

E2 The allocation of tasks to factors minimizes costs. That is, tasks

Tg = {x ∶ px =
wg ⋅ µgx
ψgx

}

are performed by workers of type g, and tasks

Tk = {x ∶ px =
1

qx ⋅ ψkx
}

7Our notation can capture multiple dimensions of worker rents. A subset of tasks could represent
jobs at a firm where workers are unionized. Another subset may represent jobs at an industry or region
where wages are artificially high because of licenses. Other tasks could share technological attributes that
make monitoring workers challenging and lead to higher efficiency wages. Throughout, we take the wedges
{µgx}g∈G,x∈T as given, and our empirical evidence supports the notion that this is a good approximation,
though in general some of these wedges can adjust in response to changes in technology or other factors.

6



are performed by capital.

E3 Task-level demands for labor and capital are given by

ℓgx = y ⋅
1

M
⋅ ψλ−1gx ⋅ (µgx ⋅wg)

−λ for x ∈ Tg,

kx = y ⋅
1

M
⋅ ψλ−1kx ⋅ q

λ
x for x ∈ Tk.

E4 The labor market clears for all g ∈ G, ∫T ℓgx⋅dx = ℓg. Workers from group g are rationed

across tasks in Tg, with ℓgx assigned to task x. Even though there is rationing, there

is no unemployment because base wages adjust to clear labor markets.8

E5 The ideal price index condition holds:

1 = (
1

M ∫T
p1−λx ⋅ dx)

1
1−λ

.

In what follows, we normalize wedges so that µgx ≥ 1 and assume that there is a positive

mass of tasks for which µgx = 1 for all g. This normalization implies that base wages can

be interpreted as the wage that workers from group g earn in jobs that pay no rents.

We also assume that rents and task productivities are bounded from above and impose

the following restrictions on the task space that simplify our exposition:

Assumption 1 (Restrictions on the task space)

� For each task x ∈ T , there exists at least one g ∈ G such that ψgx > 0.

� For each g ∈ G, the set {x ∈ T st: ψgx > 0, ψg′x = 0 for all g′ ≠ g and ψkx = 0 or qx = 0}

has positive measure.

� For each g ∈ G, the integrals ∫{x∶ψgx>0}
ψλ−1gx ⋅ µ

−λ
gx ⋅ dx and ∫{}x∶ψgx>0}

ψλ−1gx ⋅ µ
1−λ
gx ⋅ dx are

bounded.

� Comparative advantage is strict. For any two groups g ≠ g′ and constants a, b > 0, the

set of tasks for which ψgx/µgx = a ⋅ψg′x/µg′x and ψgx/µgx = b ⋅qx ⋅ψkx has measure zero.

8See Supplement S2 for micro-foundations based on efficiency wages (as in Shapiro and Stiglitz, 1984)
or bilateral bargaining (as in Grout, 1984), which yield the formulation of worker rents used here.
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This assumption ensures the existence of a unique equilibrium where all workers perform

a positive mass of tasks. It also simplifies the characterization of equilibrium by imposing

strict comparative advantage, removing any indeterminacy in task allocations. In addition,

we adopt the (innocuous) tie-breaking rule that when indifferent, tasks are allocated to

capital or the group with the highest index g. Strict comparative advantage implies such

ties occur over sets of measure zero.

2.2 Equilibrium with Labor Market Rents

Following Acemoglu and Restrepo (2022), we characterize the equilibrium in terms of task

shares. Define the task shares of worker group g and capital as

Γg(w) =
1

M ∫Tg(w)
ψλ−1gx ⋅ µ

−λ
gx ⋅ dx for g ∈ G,

Γk(w) =
1

M ∫Tk(w)
(ψkx ⋅ qx)

λ−1 ⋅ dx.

The integrals are computed over the set of tasks allocated to worker groups and capital

when base wages are w, denoted by Tg(w) and Tk(w). Task shares summarize how the value

of tasks assigned to workers and capital varies with base wages. Assumption 1 ensures that

task shares are bounded, positive, and differentiable (from strict comparative advantage).

In addition, define the average group rent earned by g workers in tasks in Tg(w) as

µg(w) =
1

Γg(w)
⋅ ∫
Tg(w)

ψλ−1gx ⋅ µ
1−λ
gx ⋅ dx for g ∈ G.

Proposition 1 (Equilibrium representation) The market equilibrium exists and is

unique. The base wage vector w and output level y solve the equations

wg =(
y

ℓg
)

1
λ

⋅ Γg(w)
1
λ for g ∈ G,(1)

1 =(Γk(w) +∑
g

Γg(w) ⋅ µg(w) ⋅w
1−λ
g )

1/(1−λ)

.(2)

Equation (1) ensures that base wages clear labor markets. Equation (2) is the ideal

price index condition. Equations (1) and (2) are similar to the implications of a standard

CES production function combining capital and labor. The key difference is that the CES
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shares are endogenous and given by task shares, which depend on technology and rents. In

what follows, we denote task shares and average group rents in equilibrium by Γg and µg.

Our next proposition explains how rents distort equilibrium allocations.

Proposition 2 (Inefficiency) The equilibrium is inefficient:

� it features too little employment in high-rent tasks;

� it involves inefficient automation of tasks for which

(3)
wg ⋅ µg
ψgx

<
1

ψkx ⋅ qx
<
wg ⋅ µgx
ψgx

.

Efficiency requires the VMPL to be equalized across tasks assigned to workers of a group

and the VMPL that workers could achieve in automated tasks to be below the VMPL in

tasks assigned to them. The proposition shows that worker rents distort both margins.9

First, rents distort employment decisions: firms hire workers until the VMPL equals the

task-specific wage wg ⋅ µgx, and therefore, the VMPL in tasks with high rents exceeds the

VMPL in lower-rent tasks. Consequently, hiring decisions are inefficient and output can be

increased by reallocating workers towards higher-rent tasks. This first source of inefficiency

depends on the variance of rents across tasks assigned to each group—a common intuition

in the missallocation literature (e.g., Hsieh and Klenow, 2009).

The second and more novel inefficiency concerns automation. Tasks for which (3)

holds are inefficiently automated: reallocating some of g workers to these tasks from non-

automated ones would raise output (per reallocated worker) by px ⋅ψgx−wg ⋅µg—their VMPL

in task x minus their average VMPL in other tasks. These gains are positive whenever (3)

holds. Firms inefficiently automate these tasks because the wage they face exceeds the op-

portunity cost of workers (given by their average VMPL). This second source of inefficiency

depends on the difference in rents that firms would have paid workers in automated tasks

and the rents earned by workers elsewhere in the economy. Notably, it can be present even

if there is no dispersion in rents among tasks assigned to workers in equilibrium.

2.3 Effects of Automation

The previous section characterized the equilibrium and established two sources of ineffi-

ciency. This section studies how new automation technologies affect wages and productivity.

9Besides worker rents, there are no inefficiencies in this economy. The market equilibrium is efficient in
the absence of rents (as in Acemoglu and Restrepo, 2022) or when µgx = µg for all g ∈ G and x ∈ T .

9



New automation technologies are represented by an exogenous increase in qx from zero

to a positive level q′x > 0 for tasks in A T
g in Tg across all groups g ∈ G. The sets {A T

g }g∈G are

technologically determined and contain tasks that could not be initially automated but are

now feasible to automate. For example, advances in robotics in the 1980s and 1990s made

it possible to automate industrial tasks such as welding or painting, previously performed

by blue-collar workers. The development of enterprise software systems made it feasible to

automate clerical tasks performed by clerks and assistants.

We provide formulas for the first-order effects of new automation technologies, obtained

by assuming that the sets A T
g are “small” and in the interior of Tg.10 Our formulas

characterize the effects of automation in terms of the following objects, all written as

functions of wages and employment in the initial equilibrium, {A T
g }g∈G and q′x > 0:

� The set of tasks Ag (as a subset of A T
g ) that firms choose to automate at initial wage

levels:

Ag = {x ∈ A
T
g ∶

wg ⋅ µgx
ψgx

≥
1

q′x ⋅ ψkx
} .

(We focus on the relevant case where the set Ag has positive measure, so that there

is additional automation in equilibrium.)

� The direct task displacement experienced by group g:

d lnΓdg =
∫Ag

ℓgx ⋅ dx

∫Tg ℓgx ⋅ dx
.

(This measures the reduction in g’s task share from the automation of tasks in Ag,

and is given by the initial share of group g employment in newly-automated tasks.)

� The average cost savings from automating tasks in Ag,

πg =
∫Ag

ℓgx ⋅ µgx ⋅ πgx ⋅ dx

∫Ag
ℓgx ⋅ µgx ⋅ dx

,

where the πgx’s are cost savings from automating task x in Ag,

πgx =
1

λ − 1

⎡
⎢
⎢
⎢
⎢
⎣

(
q′x ⋅ ψkx ⋅wg ⋅ µgx

ψgx
)

λ−1

− 1

⎤
⎥
⎥
⎥
⎥
⎦

≥ 0.

10Formally, we assume the sets A T
g have measure less than ϵ for some small ϵ > 0 and are in the interior

of Tg. See the Appendix for the exact definition and the Supplementary Materials for further details and
the characterization of the approximation error in these first-order equations.
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� The average rent earned by group g workers in newly-automated tasks

µAg =
∫Ag

ℓgx ⋅ µgx ⋅ dx

∫Ag
ℓgx ⋅ dx

.

We first take this average rent as given and later provide conditions under which

adoption endogenously targets high-rent tasks.

The objects ⟨{d lnΓg}g∈G,{πg}g∈G,{{µAg}g∈G}⟩ summarize the direct impact of new au-

tomation technologies on task shares and average group rents holding wages constant.11

In equilibrium, task shares and group rents also change as tasks are reassigned in re-

sponse to wage changes. We refer to these as ripple effects. Figure 1 illustrates the direct

and ripple effects. The left panel depicts an equilibrium allocation of tasks to g, g′, and

capital. The right panel represents new automation technologies in the set A T
g , and the set

of automated tasks in Ag ⊂ A T
g . Following the displacement of g workers from Ag, there

is an endogenous reassignment of tasks from other factors towards g, as this group sees a

relative wage decline. This reassignment shapes the extent to which the incidence of the

displacement effects from automation are shared between g and other groups.

A T
g

Figure 1: The Task Allocation and the Effects of Automation. The left panel
provides an example of a task space and an equilibrium allocation of tasks to g, g′, and capital.
The right panel illustrates the direct task displacement and ripple effects.

11These objects can be viewed as ex ante sufficient statistics: they are functions of initial wages and
allocations (which depend on primitives) and parameters describing the capabilities of new automation
technologies (which are taken as exogenous). They do not depend on new equilibrium prices or quantities.
This implies that our key equations link changes in prices and quantities to pre-determined objects.
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To illustrate the role of direct and ripple effects, differentiate (1) to obtain:

d lnwg =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg +

1

λ
⋅ ∑
g′

∂ lnΓg(w)

∂ lnwg′
⋅ d lnwj for g ∈ G.

The term d lnΓdg represents the direct task displacement experienced by workers from group

g and the third term represents ripple effects—equilibrium task reassignment in response

to wage changes. Using these equations to solve for d lnwg, we derive:

d lnwg =
1

λ
⋅Θg ⋅ stack (d ln y − d lnΓ

d
j) , with Θ = (1 −

1

λ
⋅ JΓ)

−1

.

Here stack(xj) denotes the column vector (x1, x2, . . . , xG), and JΓ denotes the G×G Jaco-

bian with entries JΓ,g,g′ = ∂ lnΓg(w)/∂ lnwg′ . As in Acemoglu and Restrepo (2022), we refer

to Θ as the propagation matrix. Each entry θgg′ is non-negative and captures the extent to

which shocks that reduce the base wage of group g′ affect group g via ripple effects.12

In our economy with distortions, we also need to keep track of how ripples affect average

group rents. This information is summarized by the rent-impact matrix :

M= Jµ ⋅ (1 −
1

λ
⋅ JΓ)

−1

,

where Jµ is a G ×G Jacobian with entries Jµ,g,g′ = ∂ lnµg(w)/∂ lnwg′ . This matrix tracks

the change in average rents across groups as tasks are reassigned in response to a change in

wages. Its entries summarize whether the competition between group g′ and g takes place

at tasks where g workers earn above-average rents (in which case the entry is positive) or

below-average rents (in which case it is negative).

The next proposition provides formulas for the first-order effects of new automation

technologies on wages, rents, and productivity.

Proposition 3 (Equilibrium Effects of Automation on Wages and Output)

Consider new automation technologies in small interior sets {A T
g }g∈G with direct effects

⟨{d lnΓg}g∈G,{πg}g∈G,{{µAg}g∈G}⟩. The first-order impacts on base wages and output are

12The propagation matrix takes the form of a Leontief inverse because it accumulates successive rounds
of reallocation. Acemoglu and Restrepo (2022) show that this inverse exists, has positive entries, and
eigenvalues in [0,1]. This means that ripple effects play an equalizing role and dampen the direct effects
of automation. The entries of the propagation matrix also summarize how substitutable groups of workers
are in the aggregate. Recall that different demographic groups are perfect substitutes at the task level, but
imperfect substitutes in the aggregate.
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given by the solution to the system of equations

d lnwg = Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) for g ∈ G(4)

∑
g

sg ⋅ d lnwg = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg,(5)

where sg is the share of g’s earnings in output. Moreover, the change in group rents is

(6) d lnµg =Mg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) − (

µAg

µg
− 1) ⋅ d lnΓdg.

and the change in aggregate consumption is d ln c = (1/sL) ⋅ d ln tfp, where sL is the labor

share in output and d ln tfp is change in TFP due to new automation technologies:

(7) d ln tfp = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg +∑

g

sg ⋅ d lnµg

Proof. We provide a sketch of the proof. Equation (4) was derived above. It follows

from differentiating the labor-market clearing condition in (1). Equation (5) follows from

differentiating the ideal-price index condition in (2), and with (4) pins the change in output.

Define d ln tfp = d ln y − sK ⋅ d lnk. With constant returns to scale, we obtain the dual

version of Solow’s residual: d ln tfp = ∑g sg ⋅ (d lnwg + d lnµg). Substituting ∑g sg ⋅ d lnwg

from (5) yields (7). The fact that d ln c = (1/sL) ⋅ d ln tfp follows from c = y − k.

Using the formulas in the proposition, we obtain the impact of automation on average

group wages w̄g = wg ⋅ µg as

(8) d ln w̄g = (Θg +Mg) ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) − (

µAg

µg
− 1) ⋅ d lnΓdg.

To gain intuition for this formula, consider an economy where groups can produce disjoint

task sets and capital produces all tasks with qx > 0, so that there are no ripples, the

propagation matrix is the identity, and the rent-impact matrix zero.13 Equation (8) becomes

(9) d ln w̄g =
1

λ
⋅ d ln y

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
productivity effect

−
1

λ
⋅ d lnΓdg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
displacement effect

−(
µAg

µg
− 1) ⋅ d lnΓdg.

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
rent dissipation

13This holds when (i) for all x, ψgx > 0 implies ψg′x = 0 for all g′ ≠ g; and (ii) for all x, ψkx > 0 implies
ψkx > ψk

for some threshold ψ
k
> 0.
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The change in average group wages depends on three effects. The first two operate

in models with competitive labor markets, such as Acemoglu and Restrepo (2022), and

capture the effects of automation working via labor demand and base wages. These include

a positive productivity effect, as demand for all workers increase thanks for the expansion of

output, and a negative displacement effect—automation directly reduces the share of tasks

employing workers from group g by d lnΓdg and thus their labor demand.

The third term captures the new rent dissipation effect, which amplifies wage losses

for exposed groups when µAg > µg, so that automation displaces workers from higher-rent

tasks and pushes them into lower-wage jobs. The strength of rent dissipation depends on

µAg/µg—how high average rents were in newly-automated tasks relative to the average.

In the general case with ripples in (8), group g’s average wages also depend on whether

other groups competing with it are displaced by automation. When this competition chan-

nel is active, the direct task displacement experienced by other groups also impacts group g

via the propagation and rent-impact matrices—the former capturing average competition

for tasks and the latter adjusting for whether this competition takes place at higher-rent

tasks (in which case there is additional loss of rents for the group in question).

One important difference between the displacement effect and rent dissipation is in

their propagation. When automation displaces a group of workers from their tasks, its

(relative) base wage declines. This induces firms to reassign marginal tasks to this group,

propagating the incidence of the shock to other groups. In contrast, affected groups bear

the full incidence of rent dissipation. This is because rent dissipation does not work by

reducing base wages via labor demand and thus does not induce further reassignment of

tasks. Rather, rent dissipation works by shifting the composition of jobs left to workers.

Because it depresses their rents in excess of their base wage, rent dissipation can have

sizable impacts on exposed groups that are not dampened by ripple effects.

We next discuss the implications for productivity. In our economy, changes in TFP

are proportional to the aggregate change in consumption and the average change in wages

paid to workers: d ln tfp = sL ⋅ d ln c = ∑g sg ⋅ d ln w̄g. We therefore focus on the effects of

automation on TFP, which summarize its impact on consumption and average wage levels.

In the absence of ripples, the productivity gains in equation (7) simplify to

(10) d ln tfp = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
direct technological gains a-la Hulten

− ∑
g

sg ⋅ (
µAg

µg
− 1) ⋅ d lnΓdg

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
changes in allocative efficiency

.
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This formula is related to Baqaee and Farhi (2020), who decompose the total effect

of new technology in inefficient economies into a direct effect and changes in allocative

efficiency. The first term in (10) represents the direct benefits from reducing the cost of

producing automated tasks. This term is positive and has the same envelope logic as

Hulten’s theorem: it is the product of (i) the cost share of automated tasks in output (i.e.,

their Domar weights), which is sg ⋅d lnΓdg ⋅
µAg

µg
, and (ii) cost savings from automation, πg > 0.

The second term, in turn, reflects changes in allocative efficiency due to automation. It

captures how changes in the allocation of labor across tasks affect output. In a competitive

labor market, this term is zero thanks to the envelope theorem—the initial allocation of

labor across tasks already maximized output. This is no longer true in the presence of labor

market distortions. In this case, the automation of jobs that pay above-average rents, in

the sense that µAg > µg, worsens efficiency because it reallocates workers from tasks where

they had a high VMPL towards tasks where, on average, their VMPL is lower.

A complementary interpretation for the TFP formula identifies the first term in (10)

with the value of automation perceived by producers (and passed to consumers, since

product markets are competitive). This value is positive and is equal to the surplus of

switching from producing tasks in Ag with labor (at the cost
wg ⋅µgx
ψgx

) to producing with

capital (at the lower cost 1
q′x⋅ψkx

). This private value is not the same as the social value of

new automation technologies because of the mismatch between wages paid by firms and

the opportunity cost of labor. The second term adjusts for this mismatch: it corrects for

the fact that the benefits of automation perceived by producers overstate the social gains

when newly-automated tasks used to pay above-average rents.14

One important implication of the TFP formula in (10) is that new automation tech-

nologies can have a net negative effect on productivity, average real wages, and welfare

(measured by aggregate consumption). This occurs when new automation technologies are

adopted in tasks where workers earn high rents despite the fact that these technologies

generate small cost savings. By contrast, with competitive labor markets, new automation

technologies always increase TFP, consumption, and mean wages (even if they can cause

the real wages of displaced groups to decline).

Turning to the general case with ripples, the expression for TFP changes in equation (7)

illustrates that allocative efficiency can deteriorate due to rent dissipation or because ripple

14In our model, rents are unrelated to product market distortions (which are not present in this econ-
omy). For this reason, consumers’ and firms’ valuation of new automation technologies coincide. If labor
market rents were related to producer markups, there would be an additional positive welfare effect from
automation, because automation would, in this case, increase production in distorted sectors.

15



effects reallocate workers away from higher-rent tasks, as summarized by ∑g sg ⋅ d lnµg.

Overall, Proposition 3 highlights the importance of the new rent dissipation mechanism

for wages and productivity. The next section provides conditions under which automation

endogenously targets higher-rent tasks, generating rent dissipation. Our empirical exercise

then estimates the rate of rent dissipation, given by µAg/µg − 1.

2.4 When Does Automation Target High-Rent Tasks?

We now provide sufficient conditions for equilibrium adoption to target higher-rent tasks.

A key economic force in our model is that, all else equal, higher rents for workers in-

crease labor costs and encourage automation. This force by itself does not guarantee that

newly-automated tasks pay above average rents, because higher-rent tasks may be under-

represented among newly-automatable tasks in A T
g , or the productivity of capital in these

tasks may be low. The next assumption imposes that there is no such “low-rent bias.”

Assumption 2 (No Low-Rent Bias) Let F̄g(µ∣S) denote the share of group g employ-

ment in tasks in S that pay rents above µ (i.e., one minus the rent cdf). New automation

technologies represented by {A T
g }g∈G and {q′x}x∈{A T

g }g∈G
feature no low-rent bias if:

(i) for all µ ≥ 1, F̄g(µ∣A T
g ) ≥ F̄g(µ∣Tg);

(ii) for all µ ≥ 1 and a,{bg}g > 0, F̄g(µ∣{x ∈ A T
g ∶ q

′
x ⋅ ψkx = a,{ψgx = bg}g}) = F̄g(µ∣A

T
g ).

Part (i) imposes that opportunities for automation are not biased towards low-rent tasks.

Part (ii) requires that for tasks that can be automated, workers’ comparative advantage

relative to capital is unrelated to rent levels. The next proposition shows that (i) and (ii)

are sufficient (though not necessary) for the adoption of new automation technologies to

target tasks that pay above average rents, generating rent dissipation.15

Proposition 4 (Endogenous Targeting of High-Rent Tasks)

Consider new automation technologies represented by {A T
g }g∈G and {q′x}x∈{A T

g }g∈G
, and sup-

pose these technologies satisfy Assumption 2 . Then

F̄g(µ∣Ag) ≥ F̄g(µ∣A
T
g ) ≥ F̄g(µ∣Tg) for all µ > 1.

15Automation can still affect some groups of workers more than others, as these conditions only need
to hold within groups. Note also that Assumption 2 provides sufficient conditions. Rent dissipation can
occur more generally, for example, if new automation technologies are biased towards high-rent tasks (and
there are natural economic forces for this to be the case) or have only minor bias towards low-rent tasks.
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Moreover, when not all tasks in A T
g are automated (the set A T

g ∖Ag has positive measure),

the first inequality is strict, and the distribution of rents for group g in newly-automated

tasks first-order stochastically dominates the distribution of group g’s rents in the economy.

First-order stochastic dominance implies µAg > µg, and so Proposition 4 provides suffi-

cient conditions for automation to generate rent dissipation. Condition (i) in Assumption

2 ensures that F̄g(µ∣A T
g ) ≥ F̄g(µ∣Tg). The key economic force identified above, where high

rents encourage automation holding all else equal, coupled with condition (ii) in Assump-

tion 2 ensure that F̄g(µ∣Ag) > F̄g(µ∣A T
g ). This inequality is strict whenever there is a

meaningful adoption margin—meaning that not all tasks in A T
g are automated.

The targeting of high-rent tasks also has novel implications for wage dispersion within

groups exposed to automation. To show these, assume that each worker performs a single

task, so that the within-group distribution of wages is the same as that of rents.

Proposition 5 (Automation and U-Shaped Within-Group Wage Changes)

Suppose that the set of newly-automated tasks Ag satisfies F̄g(µ∣Ag) > F̄g(µ∣Tg) for all µ > 1

(Assumption 2 is sufficient for this). Denote by lnwpg the p-th quantile of the distribution of

(log) wages in group g and by mg the initial mass of workers in jobs that pay no rents. The

automation of tasks in Ag shifts the distribution of within-group wages lnwpg as follows:

� d lnwpg = 0 for p ∈ [0,mg];

� d lnwpg < 0 for p ∈ (mg,1);

� d lnwpg ≤ 0 for p→ 1. Moreover, if for all µ > 1, there exists δ > 0 such that a positive

share of at least δ tasks with rent µgx = µ are in Tg ∖A T
g , then d lnwpg = 0 as p→ 1.

Figure 2 illustrates the U-shaped pattern of within-group wage changes outlined in

Proposition 5. The lowest wage workers in g are those employed in tasks that pay no rents

and thus earn no rents before or after tasks in Ag are automated. Consequently, their

wages change only because the base wage for group g is impacted in equilibrium. Workers

in quantiles above mg are more likely to be employed at automated tasks, generating a

further decline in wages d lnwpg < 0 for p ∈ (mg,1) due to rent dissipation. At the top we

expect one of two scenarios. Either d lnwpg < 0 as p→ 1, or d lnwpg = 0. The second scenario

results when there are high-rent jobs assigned to g that cannot be automated.

The results in Proposition 5 contrast with the view that technological progress increased

inequality in a fractal way—across all dimensions, including within narrow groups. Our
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Figure 2: Predicted changes in within-group wage quantiles due to automation.

theory predicts that automation can generate lower within-group inequality for groups

exposed to automation, and identifies this outcome as a telltale sign of rent dissipation.

The next section turns to our empirical evidence, focusing in particular on whether

the adoption of new automation technologies in the US from 1980 to 2016 targeted above

average-rent jobs and generated rent dissipation.

3 Reduced-Form Evidence

This section presents reduced-form evidence on the impact of automation on group-level

wages, within-group wage dispersion, and worker rents in the US between 1980 and 2016.

We focus on 500 detailed demographic groups, defined by five education levels, gender,

five age groups, five race and ethnicity groups and native/immigrant status. We estimate

group-level specifications of the form

(11) Change in group g outcome 1980–2016 = β ⋅ task displacementdg +Xg ⋅ γ + ug,

where task displacementdg is the empirical analogue of d lnΓdg and measures the (direct)

task displacement due to automation experienced by group g between 1980 and 2016, and

Xg includes other covariates, and ug denotes the residual. In all specifications, we weight

groups by their share of US employment in 1980 and report standard errors robust against

heteroscedasticity.

Our main outcomes are the change in group average real hourly wages and the changes

in the p-th percentile of the within-group wage distribution, d lnwpg for p = 5,10, . . . ,95,99.

These are computed from the 1980 Census and by pooling 2015-2017 American Community
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Survey (ACS) data. We also use the Basic Monthly and Displaced Worker Supplement from

the Current Population Survey (CPS) to create proxies for worker rents, as described below.

3.1 Measuring Task Displacement

Our main explanatory variable is the task displacement from new automation technologies

between 1980 and 2016. Our strategy for measuring task displacement follows Acemoglu

and Restrepo (2022), and makes adjustments to account for rents. It is based on the

following assumption.

Assumption 3 (Measurement Assumption) During 1980–2016, only routine tasks were

automated, and within an industry all groups of workers were displaced by automation from

routine tasks at a common rate.

Supplement S1 considers a multi-sector version of our model and shows that, under

Assumption 3, the task displacement experienced by a group can be estimated as

(12) task displacementdg = ∑
i

ℓgi
ℓg
⋅RCAroutine

gi ⋅
−d ln sdℓi

(1 + sℓi ⋅ (λ − 1) ⋅ πi) ⋅ µAi
/µi

.

This measure is the the product of three terms:

� ℓgi/ℓg represents group g’s exposure to industry i. This term accounts for groups’

specialization in sectors that introduced new automation technologies.

� RCAroutine
gi is a measure of the revealed comparative advantage of group g in routine

jobs in industry i. This term apportions the incidence of automation in the industry

based on who performs routine tasks.

� −d ln sdℓi is the percent reduction of the labor share in industry i due to new automation

technologies over 1980–2016. In our framework, the rate at which tasks are automated

in an industry can be recovered from its labor share decline. The decline is divided

by 1+sℓi ⋅ (λ−1) ⋅πi to adjust for the effects of automation on the labor share working

via substitution across tasks, and by µAi
/µi—the average rent in tasks automated in

industry i—to adjust for the effects of automation operating through worker rents.

We measure task displacement using data for 49 industries from the BEA Integrated

Industry-Level Production Accounts. We compute employment shares by industry, ℓgi/ℓg,
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and revealed comparative advantages RCA routine
gi for the 500 demographic groups from the

1980 Census. We define routine jobs as the 33% occupations with the highest routine con-

tent according to O*NET. Following Acemoglu and Restrepo (2022), we estimate −d ln sdℓi

as the predicted labor share decline from a cross-industry regression of percent labor share

changes by industry (from the BEA, from 1987 to 2016 and re-scaled to a 36-year change)

against three proxies for automation: the adjusted penetration of industrial robots (from

Acemoglu and Restrepo, 2020), the increase in the share of specialized software services in

value added, and the increase in the share of dedicated machinery in value added (from

the BLS Total Multifactor Productivity Tables). For the adjustment term, we set λ = 0.5,

πi = 30% and µAi
/µi = 1.35 for all industries. These choices are motivated in Section 4.

Figure 3: Direct task displacement due to automation across industries and
groups. The left panel plots the labor share decline from 1987 to 2016 (in %) across US indus-
tries (positive values correspond to declines). The orange bars denote the component attributed
to three proxies of automation. The right panel plots our measure of direct task displacement
from equation (12) across 500 demographic groups between 1980–2016.

The left panel of Figure 3 summarizes the industry labor share trends. The blue bars

show the observed labor share declines (in percent). The orange bars depict the component

attributed to our proxies of automation, which jointly explain 50% of cross-industry changes

in labor shares since 1987.
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The right panel of Figure 3 depicts our measure of task displacement from automation

during 1980–2016 for 500 US demographic groups, plotted against their baseline hourly

wages in 1980 in the horizontal axis. Groups with post-college degrees lost few tasks due

to automation between 1980 and 2016, while workers in the middle and lower middle of

the wage distribution lost 15%–20% of their 1980 tasks to automation.16

3.2 Automation and Average Group Wages

As a benchmark, we first explore the reduced-form relationship between automation and

average group wages. This involves estimating (11) with the change in group log average

wages between 1980 and 2016 as dependent variable and is the analogue of the results in

Acemoglu and Restrepo (2022).

β̂ = −2.36
(s.e= 0.13)

β̂ = −1.90
(s.e= 0.29)

Figure 4: Reduced-form relationship between average group-level wage changes
and task displacement. The left panel plots the bivariate relationship between change in
group average real wages and task displacement. The right panel partials out the effects of gender
and education dummies and sectoral demand and rent shifts.

The left panel in Figure 4 plots the bivariate relationship between changes in average

group wages and their exposure to automation. The point estimate indicates that a 10

percentage point increase in task displacement is associated with a 24% reduction in group-

level (relative) wages. This single measure of exposure to automation explains 66% of the

16The measure in (12) is the same as in Acemoglu and Restrepo (2022), except for the term µAi/µi, since
our previous work did not consider the role of rents. There are also minor differences in weights explained
in Supplement S3. These adjustments account for the differences in point estimates in this paper.
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variation in wage changes between demographic groups in the US since 1980.

The right panel in Figure 4 depicts this relationship when we control for potential

determinants of the demand for the labor of a group, including: (i) gender and education

dummies, which allow for other forms of skill-biased technological change impacting groups

with a college or post-college degree and other technological or social changes impacting

the demand for women relative to men; and (ii) changes in sectoral composition affecting

labor demand, measured by the following three terms:

Sectoral demand shiftsg = ∑
i

ℓgi
ℓg
⋅∆lnvalue addedi,

which accounts for exposure to expanding sectors (in value added);

Sectoral rent shiftsg = ∑
i

ℓgi
ℓg
⋅ (
w̄gi
w̄g
− 1) ⋅∆lnvalue addedi,

which allows financial effects on groups earning above-average rents in expanding sectors (in

this expression, w̄gi/w̄g is the ratio between the average wage earned by a group in industry

i and the average group wage).17 Finally, the third term is the employment shares of groups

in manufacturing in 1980, which controls for shocks affecting all US manufacturing workers.

The point estimate for the right panel is now β̂ = −1.98, and implies that a 10 percentage

point increase in task displacement from automation is associated with a 20% reduction in

average group wages. Differences in exposure to automation continue to account for 53%

of the variation in wage changes between US demographic groups since 1980.

Our theory implies that the relationship shown in Figure 4 reflects both direct displace-

ment effects from automation (which reduce the relative base wage of exposed groups) and

rent dissipation (which shifts exposed groups towards lower-rent paying jobs). The next

section separates their roles and quantifies the importance of rent dissipation.

3.3 Evidence for Rent Dissipation

We first explore the within-group wage changes associated with automation, and document

that, in line with the presence of rent dissipation, a sizable share of the wage decline in

exposed groups takes place at top percentiles. We then use proxies for rents to show that

automation shifts exposed groups of workers away from high rent jobs.

17For these covariates, we measure ℓgi/ℓg and w̄gi/w̄g from the 1980 Census. We also measure the change
in value added from the BEA industry accounts for 1987–2016, converted to a 36-year equivalent change.
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Automation and within-group wage changes: We estimate a variant of equation

(11) with the dependent variable as the change in log wages at the p-th percentile of the

within-group wage distribution between 1980 and 2016, ∆ lnwpg , for p = 5,10, . . . ,95,99.

To facilitate the interpretation of our findings, Figure 5 plots the effects of automation at

these different percentiles relative to the wage change for the 30th percentile.18

Figure 5: Reduced-form relationship between wage changes across percentiles of
the within-group wage distribution and task displacement. The figure plots estimates
from a group-level quantile regression of changes in d lnwpg against task displacement for percentiles
p ranging from the 5th to the 99th relative to the 30th percentile. Different colors represent
estimates from different specifications.

The black line depicts estimates from a specification that controls just for sectoral shifts.

The remaining lines add sectoral rent shifts (orange line), gender and education dummies

(blue line), and exposure to manufacturing (pink line).

In all specifications, a clear U-shaped pattern is visible. Groups exposed to automation

saw a more pronounced decline in wages between the 70th and 95th percentiles of the within-

group distribution. There is no differential decline below or around the 30th percentile,

and no additional decline at the 99th percentile, consistent with Proposition 5.

18This specification is equivalent to an unconditional group-quantile regression, as in Chetverikov et al.
(2016), and reveals the impact of automation on within-group wage dispersion. Because the impact on the
30th percentile varies somewhat between specifications, benchmarking to the 30th percentile makes the
specifications easier to compare. We show the same figure in levels in Supplement S3.
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One concern in interpreting Figure 5 is that minimum wages or other factors preventing

low wages from falling further may account for the weaker effects at the bottom. Supple-

ment S3 shows that our results are not impacted by these factors. The U-shaped pattern

is robust to controlling for the incidence of the minimum wage or restricting the sample

to groups with average real wages above $13 in 1980. We also show that the results are

similar when we control for declining unionization rates.19

Measuring rent dissipation from within-group wage changes: The results in Fig-

ure 5 motivate our first strategy for estimating the contribution of rent dissipation. In our

theory, automation reduces wages at bottom percentiles of the within–group distribution by

d lnwg, since these workers earn no rents. All declines beyond this level are due to the loss

of rents, as workers are displaced from high-rent tasks. The pattern in Figure 5 suggests

that workers below the 30th percentile in exposed groups earn no rents and are impacted

only by changes in base wages, while above the 30th percentile there are worker rents.

We can then separate the average wage change in exposed groups d ln w̄g into a base wage

component, given by the decline at the 30th percentile ∆ lnw30th
g , and a rent dissipation

component, given by the additional decline above the 30th percentile ∆ ln w̄g −∆lnw30th
g .

The left panel in Figure 6 depicts estimates of the first component (estimates from

equation (11) with ∆ lnw30th
g as the dependent variable), and the right panel presents

estimates of the rent dissipation component, by running the same regression with ∆ ln w̄g −

∆lnw30th
g as the dependent variable. Both specifications partial out gender and education

dummies, sectoral demand shifts, rent shifts, and exposure to manufacturing.

The left panel shows that a 10 percentage point higher task displacement is associated

with a 15.3% decline in wages at the 30th percentile of exposed groups. The rest of the

average wage effect is due to rent dissipation, as depicted in the right panel. A demographic

group experiencing a 10 percentage point higher task displacement sees an additional 3.5%

decline in wages above the 30th percentile. These numbers imply that a fifth of the overall

impact on average wages in Figure 4 are due to rent dissipation, with the rest driven by

changes in base wages.

Supplement S3 shows that these results are not sensitive to the use of the 30th percentile

is our measure of base wages. The estimates are similar when we use the 20th and 40th.

It also presents similar results when the sample is restricted to high-wage groups, when it

19A separate concern is that, in low-wage groups, workers between the 70th and 95th percentiles may be
more exposed to routine jobs, for example, because these jobs are available to the most skilled workers in
these groups. The fact that the pattern applies among higher-wage groups weighs against this concern.
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β̂ = −1.53
(s.e= 0.33)

β̂ = −0.37
(s.e= 0.11)

Figure 6: Reduced-form relationship between rents and task displacement.
The left panel plots estimates of equation (11) using the change in wages at the 30th percentile of
a exposed group as a measure of base wage changes, ∆ lnw30th

g . The right panel plots estimates
of equation (11) using the change in wages beyond the 30th percentile of a exposed group as a
measure of rent dissipation, namely ∆ ln w̄g −∆lnw30th

g . Both specifications partial out gender
and education dummies, sectoral demand and rent shifts, and exposure to manufacturing.

is limited to non-college groups, and when limited to workers with college education.

Measuring rent dissipation using proxies for rents: Our second strategy for esti-

mating the effects of automation via rent dissipation uses time-invariant proxies for rents

and traces the change in task composition for groups across jobs with different rents.

A key prediction of our theory is that automation dissipates rents by shifting workers

away from high-rent jobs. We measure these shifts in job composition as

∆ lnµcomposition
g = ∑

n

worker rent proxygn ⋅∆ℓgn,

where worker rent proxygn is one of our time-invariant proxies for rents in job n (defined by

industry or industry×occupation) relative to the average job, and ∆ℓgn is the change in the

share of hours worked across jobs by workers from group g between 1980 and 2016. We then

estimate equation (11) using ∆ lnµcomposition
g as the dependent variable. The coefficient on

task displacement gives the extent to which automation shifted exposed groups of workers

away from high-rent jobs, and provides direct estimates of its rent dissipation effects.
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Our first proxy for rents uses inter-industry and occupation wage differentials in 1980.

This approach builds on the wage differentials literature, which documents that such dif-

ferences are persistent and largely unrelated to observable worker characteristics and job

attributes (see Krueger and Summers, 1988; Katz and Summers, 1989). We measure the

relative rent paid in an industry and occupation to a worker from group g as w̄gio/w̄g, where

w̄gio is the average wage earned by group g in industry i and occupation o in 1980.20

The top-left panel in Figure 7 depicts results using this proxy for rents, controlling for

our baseline covariates. We find that a 10 percentage point increase in task displacement

reduces group rents by 3.9% by reallocating workers away from higher-wage industries and

occupations. The similarity of the magnitudes of the estimates in this and the previous

strategy suggests that, consistent with our modeling of constant wedges, automation re-

duces group rents primarily by reallocating workers away from high-rent tasks, and not by

reducing rents within jobs.

The remaining panels present results using alternative proxies, aimed at building the

case that the relationship in the top-left panel is not due to the loss of compensating differ-

entials or a higher incidence of automation on workers of higher unobserved productivity.

First, we use estimates of wage losses due to displacement as an alternative proxy for

rents, based on the idea that displacement losses proxy for rents in previous jobs, while also

controlling for differences in worker skills (e.g., Krueger and Summers, 1988; Ruhm, 1991;

Jacobson et al., 1993). We compute wage losses using the Displaced Worker Supplement

from the CPS, and focus on workers who found a new job after displacement. Because the

sample of displaced workers is small, we estimate wage losses by industry and six broad

occupations, allow these to vary by gender and education (rather than at the more granular

level of 500 demographic groups), and averaged them over 1984–2022.21

The top-right panel in Figure 7 depicts our findings using this rent proxy, and controlling

for our baseline covariates. We find that a 10 pp increase in task displacement reduces

group-level rents by 2% by reallocating workers away from jobs where rents—as measured

by wage losses due to displacement—are higher.

20This is equivalent to measuring worker rents by a group-specific industry× occupation intercept in
a Mincer equation, while controlling for a full set of interactions between age, gender, education, race
and birthplace. Our baseline results use wage differentials for the 49 industries in our analysis and 300
detailed Census occupations. Supplement S3 provides robustness checks using wage differentials computed
for broader occupational groups or only across industries.

21We compute wage losses for workers with at least one year of tenure in their pre-displacement job.
A higher tenure threshold reduces the sample of displaced workers, but does not affect our estimates.
Supplement S3 also reports robustness checks using a common wage loss, instead of a gender and education-
specific wage loss as our proxy for rents.
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β̂ = −0.39
(s.e= 0.11)

β̂ = −0.20
(s.e= 0.04)

β̂ = −1.51pp
(s.e= 0.25)

β̂ = −0.30pp
(s.e= 0.05)

Figure 7: Reduced-form relationship between rents and task displacement.
The figures show the reduced-form association between automation and the reallocation of
groups across jobs paying different rents. The outcome is measured as ∆ lnµreallocationg =

∑nworker rent proxygn ⋅∆ℓgn, where worker rent proxygn measures rents paid in job j to group g.
The top-left panel presents results using inter-industry and occupation wage differentials in 1980
to proxy for rents. The top-right panel presents results using wage loss from job displacement
to proxy for rents (computed from the CPS Displaced Worker Supplement). The bottom-left
panel presents results using the employment-to-employment monthly transition rate as an inverse
proxy (computed from the Basic Monthly CPS). The bottom-right panel presents results using
the voluntary employment-to-unemployment monthly transition rate as an inverse proxy for rents
(computed from the Basic Monthly CPS).

Our final two proxies for rents are based on worker quit behavior. The idea is that

workers are less likely to quit jobs that pay higher rents (as opposed to jobs that pay
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higher wages as compensating wage differentials or in return for their greater unobserved

skills). We use the Basic Monthly CPS and compute employment-to-employment (EE) and

voluntary employment-to-unemployment (EU) monthly transition rates following Fujita

et al. (2024). In line with the interpretation above, industries where workers see a 10%

larger drop in wages following a job loss have 0.37 pp lower EE rates and 0.065 pp lower

voluntary EU rates per month. The EE and EU measures are computed for broader groups

defined by gender and education across industries and occupations. The EE measure is

averaged over 1994–2023 and the EU measure is average over 1976–2023.22

The bottom two panels of Figure 7 depict the estimates using the negative of EE and

voluntary EU rates as proxies for rents, controlling once again for baseline covariates. We

find that a 10 pp increase in task displacement pushes workers away from jobs with a 0.15

pp lower EE rate and a 0.03 pp lower voluntary EU rate per month. These results suggest

that automation displaced workers from jobs that they themselves were less likely to leave.

Using the association between wage losses and quit rates reported above, these estimates

imply that automation reduced worker wages via rent dissipation by 4%-4.6%, which is of

similar magnitude to those obtained from our other proxies.

All proxies for rents in Figure 7 show that there has been a pervasive shift away from

high-rent jobs for most groups of US workers since 1980, and identify the automation of

high-rent jobs as a plausible driver of this trend. Our regression results indicate that 33%

(in the top left panel) to 68% (in the bottom left panel) of these shifts across groups during

this period can be explained by differences in exposure to automation.

Taking stock: The results in Figures 5, 6, and 7 support the key implication of our

theory—that automation reallocates workers away from higher-rent jobs, generating rent

dissipation and compressing within-group wage differences. All our strategies and proxies

for rents provide broadly similar estimates for rent dissipation ranging from 0.2 and 0.46,

with a central estimate of 0.35. The estimates imply that workers used to earn an average

rent of 35% (µAg/µg = 1.35 in the theory) in jobs automated between 1980 and 2016.

22We compute average quit rates for the 49 industries in our analysis and 300 detailed occupations. We
also partial out time trends in the CPS from these industry×occupation averages. Supplement S3 reports
robustness checks where we use average quit rates at different levels of aggregation.
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4 Equilibrium Effects of Automation

This section estimates the equilibrium effects of automation in the US between 1980 and

2016, focusing on the role of rent dissipation and its implications. We first extend our

model to a multi-sector economy to account for differences in automation and rents across

industries. We then derive formulas for the effects of automation and describe how we

measure and estimate the objects needed to quantify the effects of automation.

4.1 Multi-Sector Model

Supplement S1 provides the details of the multi-sector economy. The main difference is

that it introduces multiple sectors i ∈ I, each with its own set of tasks Ti. Sectoral outputs

are combined into a final good via an aggregator with elasticity of substitution η > 0.

We model new automation technologies as an exogenous increase in qx from zero to

q′x taking place at tasks {A T
gi }i∈I,g∈G assigned to workers across industries. As before, Agi

denotes the subset of tasks that are actually automated. Additionally, d lnΓdgi denotes the

direct task displacement for group g in industry i (with d lnΓdg the total task displacement

across all industries), πgi denotes the cost savings from automating tasks in Agi, and µAgi

is the average rent in these tasks (with µAg its average across all industries).

Our main result extends Proposition 3 to the multi-sector economy. This extension is

the basis for our quantitative exercise.

Proposition 6 (Effects of Automation in Multi-Sector Economy)

Consider new automation technologies in small interior sets {A T
gi }i∈I,g∈G with direct effects

⟨{d lnΓgi}i∈I,g∈G,{πgi}i∈I,g∈G,{{µAgi
}i∈I,g∈G}⟩. The first-order impact on base wages wg, sec-

toral prices pi, and output y are given by the solution to the system of equations:

d lnwg = Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓij
ℓj
⋅ (λ − η) ⋅ d lnpi) for g ∈ G(13)

d lnpi = ∑
g

sgi ⋅ d lnwg −∑
g

sgi ⋅
µA gi

µgi
⋅ d lnΓdgi ⋅ πgi for i ∈ I(14)

∑
g

sg ⋅ d lnwg = ∑
i

syi ⋅ ∑
g

sgi ⋅
µA gi

µgi
⋅ d lnΓdgi ⋅ πgi,(15)

where sgi is the share of group g’s earnings in industry i’s output and syi is the output share
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of industry i in GDP. Moreover, the change in group rents is given by

d lnµg =Mg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓij
ℓj
⋅ (λ − η) ⋅ d lnpi)(16)

− (
µAg

µg
− 1) ⋅ d lnΓdg +∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi for g ∈ G

and the change in aggregate consumption is d ln c = (1/sL)⋅d ln tfp, where sL is the economy-

wide labor share and d ln tfp is the contribution of new automation technologies to TFP:

(17) d ln tfp = ∑
i

syi ⋅ ∑
g

sgi ⋅
µA gi

µgi
⋅ d lnΓdgi ⋅ πgi +∑

g

sg ⋅ d lnµg.

From the proposition, we obtain the effect of automation on average group wages as

d ln w̄g = (Θg +Mg) ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓij
ℓj
⋅ (λ − η) ⋅ d lnpi)(18)

− (
µAg

µg
− 1) ⋅ d lnΓdg +∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi.

Relative to Proposition 3, these formulas account for the changes in sectoral prices

and the induced shifts in sectoral composition due to automation (for example, because

automation in one industry reallocates expenditure towards or away from that industry due

to price changes). Equation (14) shows that sectoral prices change due to base wage changes

(from Shephard’s lemma) and decrease in proportion to cost savings from automation. The

induced changes in sectoral composition affect base wages by shifting demand across groups

(the term ∑i
ℓij
ℓj
⋅ (λ− η) ⋅d lnpi in 13 and 18) and rents by shifting workers to or away from

sectors where they earn above-average rents (the term ∑i (
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi in

(16) and (18)).

4.2 Measurement and Estimation

The formulas in Proposition 6 allow us to compute the first-order effects of automation on

group wages, rents, output, TFP, and welfare in terms of the following objects (all of which

can be directly measured or estimated):

(i) the direct task displacement from automation for all demographic groups across in-

dustries d lnΓdgi and in the aggregate d lnΓdg;
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(ii) rent dissipation due to automation, µAgi
/µg and µAg/µg;

(iii) cost savings from automation, πgi;

(iv) the propagation matrix, Θ, and the rent-impact matrix,M;

(v) the elasticities of substitution between tasks, λ, and between sectors, η;

(vi) factor and labor shares by industry at the initial equilibrium.

Because we lack disaggregate data for different types of automation, we assume that

the cost savings from the adoption of industrial robots in manufacturing—about 30% in

Acemoglu and Restrepo (2020)—applies across the board and set πgi = 30% for all industries

and groups. We also assume a common rate of rent dissipation across industries and groups,

i.e., µAgi
/µgi = 1 + ρ. Finally, we obtain initial factor and labor shares from BEA industry

accounts, and set λ = 0.5 from Humlum (2020) and η = 0.2 from Buera et al. (2015).

We next explain how we measure task displacement across sectors, and estimate the

rate of rent dissipation ρ and the propagation and rent-impact matrices, Θ, andM.

Measuring task displacement: We use the 500 demographic groups from our reduced-

form analysis. We measure task displacement based on industries’ labor share decline due

to automation, as in the previous section. We then apportion this across groups based on

revealed comparative advantage in routine tasks. Specifically, using Assumption 3, the task

displacement from automation for group g in industry i can be computed as

d lnΓdgi = RCA
routine
gi ⋅

−d ln sdℓi
1 + sℓi ⋅ (λ − 1) ⋅ π

⋅
1

1 + ρ
,

while the total task displacement across all industries is computed as

d lnΓdg = ∑
i

ℓgi
ℓg
⋅ d lnΓdg.

This equation is a special case of (12) above, under the assumption that there is a common

rent dissipation ρ. We treat ρ as an unknown to be estimated.
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Estimating the propagation and rent-impact matrices: The changes in base wages

and rents in response to shocks in the multi-sector model are

∆ lnwg =β0 −
1

λ
⋅ d lnΓdg + β ⋅Zg +

1

λ
⋅ JΓ,g ⋅ stack(∆lnwj) + ug(19)

∆ lnµg =β
µ
0 − ρ ⋅ d lnΓ

d
g + β

µ ⋅Zµ
g + Jµ,g ⋅ stack(∆lnwj) + eg.(20)

The constant term β0 captures common shifts that benefit all workers equally, such as the

expansion of GDP, ∆ ln y. Additionally, Zj denotes observable shocks affecting the demand

for workers of group j directly (such as sectoral demand shifts), while Zµ
j corresponds to

these shocks’ effects on rents (such as sectoral rent shifts). The terms JΓ,g ⋅ stack(∆lnwj)

and Jµ,g ⋅ stack(∆lnwj) account for ripple effects and the endogenous reallocation of tasks.

The error term ug represents unobserved labor demand shocks for demographic group g,

while eg corresponds to any unobserved influences on group g’s rents.

We estimate ρ, Θ andM from the system of equations (19) and (20) via GMM. Follow-

ing our reduced-form analysis, we measure the change in base wages d lnwg by the change

at the 30th percentile of the within-group distribution, and take the decline in wages above

the 30th percentile of exposed groups as a measure for the change in rents, d lnµg. This

procedure requires parameterizing the Jacobians JΓ and Jµ, and estimating ρ and the

parameters of the Jacobians from the orthogonality conditions

d lnΓdg, Zg, Z
µ
g ⊥ uj, ej for all g, j.

and then computing the propagation and rent-impact matrices as Θ = (1 − 1
λ ⋅ JΓ)

−1
and

M= Jµ ⋅ (1 −
1
λJΓ)

−1
at the estimated parameters.

We parameterize the entries of the Jacobian matrices in terms of job and demographic

group-level similarities. For the diagonal terms, we take:

JΓ,g,g = (sg−1)⋅φ−∑
n
∑
g′≠g

ℓgn
ℓg
⋅sg′n ⋅ [θ + θjob ⋅ job similaritygg′ + θedu-age ⋅ edu-age similaritygg′]

and the off-diagonal terms, for g′ ≠ g, are parameterized as:

JΓ,g,g′ = sg′ ⋅ φ +∑
n

ℓgn
ℓg
⋅ sg′n ⋅ [θ + θjob ⋅ job similaritygg′ + θedu-age ⋅ edu-age similaritygg′] .

Our parameterization assumes that competition between groups for marginal tasks takes

place within job categories, denoted by n, and defined in the data at the level of 16 industries
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and six occupations. The impact of competition from demographic group g′ on group g in

job category n depends on the importance of this job category for group g, ℓgn/ℓg, and sg′n,

which captures the share of earnings in job category n accruing to group g′, both measured

from the 1980 Census. Intuitively, groups with greater which shares should generate more

competitive pressure on other groups in the same job category.

The parameters θ, θjob, θedu-age ≥ 0 represent the extent of competition for marginal

tasks across groups. In particular, θ summarizes the competition for tasks common to all

workers in a job category,23 while θjob parameterizes the extent to which competition is

more intense for workers performing similar jobs to group g′ in the economy as a whole.

This is measured by the cosine similarity in job categories performed by groups g′ and g in

the 1980 Census. Finally, θedu-age parameterizes the extent to which competition for tasks

is stronger for workers of similar education and experience, as in Card and Lemieux (2001).

This is measured by one minus the difference in experience and education (converted to

wages using a Mincer equation) between groups g and g′.

The parameter φ ≥ 0 controls the extent of competition between capital and workers

for marginal tasks. Recall that the row sums of the task Jacobian are equal to −sk ⋅φ, and

thus summarize the extent to which marginal tasks are reallocated towards capital when

all base wages increase by a common amount. We calibrate φ externally, exploiting the fact

that, with this parameterization, the aggregate elasticity of substitution between capital

and labor is σ = λ + φ (capturing the sum of substitution between tasks and substitution

between demographic groups in marginal tasks), and set φ = 0.1 to match estimates of

σ = 0.6 from Oberfield and Raval (2021).

For the rent Jacobian, we follow a similar strategy and parameterize it as

Jµ,g,g = −∑
n
∑
g′≠g

(
w̄gn
w̄g
− 1)⋅

ℓgn
ℓg
⋅sng′ ⋅[θ + θjob ⋅ job similaritygg′ + θedu-age ⋅ edu-age similaritygg′] ,

and the off-diagonal terms, for g′ ≠ g, as

Jµ,g,g′ = ∑
n

(
w̄gn
w̄g
− 1) ⋅

ℓgn
ℓg
⋅ sng′ ⋅ [θ + θjob ⋅ job similaritygg′ + θedu-age ⋅ edu-age similaritygg′] .

The term (
w̄gn

w̄g
− 1) proxies for rents earned by group g in job category n, and accounts for

whether competition from demographic group g′ takes place at jobs where g workers earned

23This form of common competition can be micro-founded by assuming that worker productivity for all
tasks in job category n are drawn from independent Frechet distributions, with a common shape parameter
α and different scale parameters across groups. This specification implies θ = α + 1 − λ.
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above average rents. We compute this from observed wages in the 1980 Census as well.

The rows of the rent Jacobian sum to zero, which imposes the restriction that substitution

of capital for labor at marginal tasks does not affect group rents on average.

Table S5 in Supplement S3 reports our GMM estimates for ρ and the θ’s. Here we

summarize the main findings:

� The common rent dissipation coefficient is estimated as ρ̂ = 0.35 (s.e.=0.12). This

estimate aligns with the reduced-form evidence in Section 3.

� The estimated propagation matrix has an average diagonal of 0.34, and the row

sum of the off-diagonal terms is about 0.6. This implies that workers from exposed

demographic groups bear 36.5% of the incidence of automation, with the rest shifted

to other groups via competition for marginal tasks.

� The entries of the estimated rent-impact matrix are small. This implies that indirect

effects on group rents via endogenous task reassignment are limited.

4.3 Equilibrium Effects of Automation

This section reports our estimates for the effects of new automation technologies on wages,

rents, and TFP in the US between 1980 and 2016 using the formulas from Proposition 6.

Table 1 summarizes the estimates in column 2 alongside the data in column 1.

Effects on wages and group rents: Panel A in Table 1 reports our estimates for wages,

and Figure 8 depicts the same information by plotting the change in average wages for the

500 demographic groups, computed using equation (18). The vertical axis is for the change

in wages during 1980–2016 due to new automation technologies. The horizontal axes in all

panels sort groups according to their average hourly wages in 1980.

The panels of Figure 8 show the (cumulative) implications of different economic forces,

starting from the productivity effect (1/λ) ⋅ d ln y in Panel A. We estimate an expansion in

output of 14.4% over 1980–2016 in response to automation, which raises wages by 28.8%.

Panel B adds sectoral shifts induced by automation, and plots (1/λ)⋅d ln y+(1/λ)⋅∑i(ℓij/ℓj)⋅

(λ − η) ⋅ d lnpi, and shows that automation generates modest sectoral shifts with limited

wage effects.

Panel C adds the direct displacement effects from new automation technologies working

through base wages by plotting (1/λ) ⋅d ln y+(1/λ) ⋅∑i(ℓij/ℓj) ⋅(λ−η) ⋅d lnpi−(1/λ) ⋅d lnΓ
d
g.
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Figure 8: Wage effects from automation. The figure plots estimates of the esti-
mated effects of automation on between-group wage changes. In all panels, the horizontal
axis gives each group’s hourly wage in 1980.

Consistent with the reduced-form evidence, task displacement has sizable effects on the

wage structure and generates a decline in the real wage of highly exposed groups, while

groups not exposed to automation enjoy real wage gains.

Panel D illustrates the equalizing implications of ripple effects. This panel plots Θg ⋅

stack ((1/λ) ⋅ d ln y − (1/λ) ⋅ d lnΓd + (1/λ) ⋅ ∑i(ℓi⋅/ℓj) ⋅ (λ − η) ⋅ d lnpi), and shows a less

pronounced response in wage changes across groups than in Panel C. This is because

workers directly impacted by automation suffer wage declines and this makes them more

effective in competing for marginal tasks previously allocated to other factors. These ripple

effects spread two thirds of the incidence of automation across demographic groups.

Panel E adds the change in group rents, d lnµg. It confirms that new automation tech-

nologies generated sizable rent dissipation effects during 1980–2016. Most of the decline

in rents across groups comes from direct rent dissipation—automation targeting jobs with

higher than average rents—rather than the indirect effects working through the rent-impact

matrix. As explained in the theory, exposed groups bear the full incidence of rent dissipa-

tion. This is why rent dissipation intensifies income losses for these groups, exacerbating

the inequality implications of automation.

To further illustrate the contribution of rent dissipation, Figure 9 plots observed group-

level wage changes in the vertical axis against the estimated wage changes due to new

automation technologies between 1980 and 2016 in the horizontal axis. The left panel plots

the effects of new automation technologies via base wages, omitting the contribution of rent
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dissipation. The right panel plots the full effects including rent dissipation. The change in

base wages explains 42% of the observed wage changes, while the estimates on the right,

incorporating rent dissipation, explain 52% of observed wage changes. New automation

technologies, in total, explain 52% of the rise in between-group wage inequality in the US

between 1980 and 2016, with a fifth of this effect being due to rent dissipation.24

Figure 9: Wage effects from automation: model vs data. The left panel plots
the predicted wage changes, without the effects of changes in rents, against observed wage
changes from 1980–2016. The right panel plots the predicted wage changes in our model,
incorporating the change in rents, against observed wage changes from 1980–2016.

Rent dissipation is particularly relevant for explaining the lack of real wage growth

among low-education groups. The left panel shows several groups below the 45○ line,

indicating that without rent dissipation, new automation technologies cannot account for

the real wage decline seen for various groups from 1980 to 2016. In contrast, in the right

panel, where we incorporate the rent dissipation effects, automation accounts for most of

the observed real wage declines and stagnation.

As a further illustration, Table 1 reports our estimates of the change in wages and rents

for non-college men and women. Without rent dissipation, automation would have led to a

2.4% decline in the real wage of non-college men during 1980–2016 (compared to 6.5% in the

data) and a 2.4% increase in the real wage of women. Once rent dissipation is factored in,

we estimate an 8% decline for non-college men and a 2.2% decline for non-college women.

24The 42% number is lower than the 50% estimate in Acemoglu and Restrepo (2022) from a model with
competitive labor markets. This is because our current framework separates out the role of rent dissipation.
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Rent dissipation also implies that automation brought essentially no aggregate wage

gains in this period. Without rent dissipation, automation would have led to approxi-

mately 4.5% average increase in the real wage of US workers during 1980–2016. Once rent

dissipation is factored in, we estimate a small 0.5% increase.

Effects on TFP and consumption: Panel B in Table 1 reports our estimates for aggre-

gate quantities and TFP. Our benchmark value for cost savings of π = 30%, combined with

the extent of automation observed in the data, implies that new automation technologies

contributed a 3% increase in TFP to the US economy via cost savings from 1980 to 2016.

However, our estimate for µAg/µg of 35% means that new automation technologies also

created inefficient rent dissipation. Our estimates imply that new automation technologies

worsened allocative efficiency by about 2.7% during this period. This inefficiency offset

90% of the positive cost savings and led to a net contribution of automation to TFP of

0.3% in total over the time period 1980–2016.25

Turning to consumption, and using the formula d ln c = (1/sL) ⋅ d ln tfp, we estimate

that new automation technologies increased aggregate consumption by about 0.46% during

1980–2016. This is smaller than the estimated increase in GDP of 14.4% because the

GDP increase reflects greater investment to produce capital equipment. According to our

estimates, new automation technologies raised the capital-output ratio—a measure of the

share of resources invested—by 27.9%. The increase in investment is in line with BLS data,

which indicate a 30% increase in the aggregate capital stock relative to GDP.

4.3.1 Robustness

Table 1 also reports a number of robustness checks. Column 3 reports estimates obtained

by assuming a rate of rent dissipation of 25%, as opposed to our baseline estimate of 35%.

The impact of rent dissipation on wages and TFP is less pronounced, but it still offsets

70% of the cost savings and average wage gains from new automation technologies.

Column 4 reports estimates obtained by assuming a rate of rent dissipation of 50%. At

this rate of rent dissipation, we estimate that automation between 1980 and 2016 would

reduce average wages by 0.7%, the wages of non-college men by 9%, and the wages of

25US TFP increased by 30% over this time period. Our estimates imply that almost all of this increase
was due to other technologies—not due to automation. These other technologies include those that create
new tasks for workers or new products, those that provide better information or tools to workers, raising
their productivity in tasks already assigned to them, or improvements in capital productivity in tasks that
were already automated.
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non-college women by 3.3%. We also estimate that the worsening allocative efficiency

due to rent dissipation would overwhelm the cost saving gains from automation, reducing

aggregate TFP by 0.47% during 1980–2016.

Column 5 reports estimates from a simple specification of the Jacobians where we

set θ = 1.6 − λ, θjob = θedu-age = 0 and the rate of rent dissipation equal to 35%. This

specification imposes a common elasticity of substitution of 1.6 between groups, as in

Katz and Murphy (1992), and leads to very similar similar estimates of the effects of new

automation technologies on wages and productivity.

5 Conclusion

This paper developed a framework for studying the effects of automation in labor markets

with worker rents—meaning that workers earn above their opportunity cost in some tasks.

Our main finding is that the presence of worker rents alter the consequences of automation.

We show that automation has targeted higher-rent tasks, which are more expensive

for firms to perform using labor and hence more attractive to automate. This has novel

implications for within-group inequality, wages, and efficiency:

1. Within-group wage effects of automation: Because higher-rent tasks are automated

first, automation reduces within-group wage dispersion in exposed groups.

2. Wage effects of automation: The impact of automation on group-level wages is am-

plified, precisely because it targets higher-rent tasks and thus reduces worker rents.

3. Allocative efficiency: Automation worsens allocative efficiency because it tends to

target higher-rent jobs, which are the ones that were undersupplied before automation

(in the sense that these are the tasks where the value marginal product of labor is

typically greater). As labor is eliminated from higher-rent tasks, productivity suffers.

Consequently, automation may reduce TFP and (utilitarian) welfare, or at the very

least, it increases these quantities less than its direct cost saving effects.

The paper also explored the empirical implications of automation in labor markets with

worker rents, using both reduced-form and more structural approaches. Our reduced-form

econometric work provides support for the rent dissipation mechanism. Most importantly,

we find evidence for the distinctive U-shaped pattern of wage changes within groups exposed
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to automation predicted by our theory. We also find evidence of a shift away from high

rent jobs for exposed groups exposed to automation using several distinct proxies for rents.

We complemented the reduced-form evidence with a quantitative exercise that estimates

the impact of automation accounting for rent dissipation on aggregates. This exercise

suggests that the baseline (“competitive”) effects of automation account for 42% of the

increase in between-group inequality in the United States since 1980, while rent dissipation

adds another 10 percentage points to automation’s explanatory power for between-group

inequality and is responsible for pushing several demographic groups from stagnant into

negative real wage changes. We also estimate that because of worsening allocative efficiency,

automation brought small gains in TFP, average wages, and consumption since 1980.

Appendix: Proofs of Propositions 1–5

This appendix proves Propositions 1–5. We first derive the equilibrium conditions in the

text and provide a lemma for the Jacobian of task shares that will be used in our proofs.

Preliminaries: This section derives the equilibrium conditions E3 and E4. The produc-

tion of the final good is perfectly competitive, so px =M
− 1

λ ⋅ (y/yx)
1
λ , and

(21) yx =
1

M
⋅ y ⋅ p−λx .

For tasks in Tg(w), equation (21) implies

ℓgx ⋅ ψgx =
1

M
⋅ y ⋅ (wg ⋅

µgx
ψgx
)

−λ

,

which can be rearranged into E3. For tasks in Tk(w), equation (21) implies

kx ⋅ ψkx =
1

M
⋅ y ⋅ (

1

qx ⋅ ψkx
)
−λ

,

which can be rearranged into the capital demand equation in E3. Multiplying equation

(21) by px and integrating yields

y = ∫
T
px ⋅ yx ⋅ dx =

1

M
⋅ y ⋅ ∫

T
p1−λx ⋅ dx.

Canceling y on both sides yields the ideal-price index equation E4.
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Jacobian lemma: The following lemma will be used in our proofs.

Lemma 1 Let Σ = 1 − 1
λ
∂ lnΓ(w)
∂ lnw . For all wage vectors w, the matrix Σ is non-singular.

Moreover, Σ is a P−matrix of the Leontief type (i.e., with non-positive off-diagonal entries)

whose inverse Θ has all entries non-negative.

Proof. Assumption 1 ensures that task shares are a continuous and differentiable function

of wages. We now establish the properties of Σ.

First, because ∂Γg/∂wg′ ≥ 0 for g′ ≠ g, Σ is a Z−matrix (it has negative off diagonals).

Second, Σ has a positive dominant diagonal. This follows from the fact that Σgg =

1 − 1
λ
∂ lnΓg

∂ lnwg
> 0, and Σgg − ∑g′≠g ∣Σgg′ ∣ = 1 − ∑g′

1
λ
∂ lnΓg

∂ lnwg′
> 1. This last inequality follows

because ∑g′
∂ lnΓg

∂ lnwg′
≤ 0: when all wages rise by the same amount, workers lose tasks to

capital but do not experience task reallocation among them.

Third, all eigenvalues of Σ have real parts that exceed 1. This follows from Gershgorin’s

circle theorem: for each eigenvalue e of Σ, we can find a dimension g such that ∣∣e −Σgg ∣∣ <

∑g′≠g ∣Σgg′ ∣. This inequality implies R(e) ∈ [Σgg −∑g′≠g ∣Σgg′ ∣,Σgg +∑g′≠g ∣Σgg′ ∣]. Because

Σgg −∑g′≠g ∣Σgg′ ∣ > 1 for all g, all eigenvalues of Σ have real parts greater than 1.

Fourth, since Σ is a Z−matrix whose eigenvalues have positive real part, it is also an

M−matrix and a P−matrix of the Leontief type. The inverse of such matrices exists and

has non-negative real entries, θgg′ ≥ 0.

Proof of Proposition 1. We first show that equilibrium wages and output solve (1)

and (2). Aggregating the labor demand equation in E3 over tasks in Tg(w), we obtain

ℓg = y ⋅Γg(w) ⋅w−λg . This can be rewritten as the market-clearing condition in (1). Likewise,

using the definitions of Γg(w), Γk(w), and µg(w), we can re-write E5 as (2).

To show (1) and (2) admit a unique solution, we first show that, given a level for output

y, there is a unique set of wages {wg(y)}g that satisfies the market clearing conditions in (1).

We then show there is a unique level of output that satisfies (2) (evaluated at {wg(y)}g).

For the first step, Assumption 1 implies that Γg(w) lies in a compact set [Γ, Γ̄]. The

mapping T ∶ w → (Tw1, . . . ,TwG)′ defined by Twg = ( yℓg )
1
λ
⋅ Γg(w)

1
λ for g = 1,2, . . . ,G is a

continuous mapping from the compact convex set X = ∏G
g=1[(y/ℓg)

1
λ ⋅Γ

1
λ , (y/ℓg)

1
λ ⋅ Γ̄

1
λ ] onto

itself. The existence of a positive wage vector {wg(y)}g solving this fixed-point problem

follows from Brouwer’s fixed point theorem.

We now turn to uniqueness of {wg(y)}g. We can rewrite the system of equations

{wg(y)}g defining {wg(y)}g in logs as F (x) = 1
λ ⋅stack(ln y−ln ℓj), where x = (lnw1, . . . , lnwG)
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and F (x) = (f1(x), . . . , fG(x)) with fg(x) = xg −
1
λ ⋅ lnΓg(x).

The Jacobian of F is given by the M−matrix Σ. Theorem 5 from Gale and Nikaido

(1965) shows that the solution to the system F (x) = a is unique if the Jacobian of F is a

P -matrix of the Leontief type. The theorem also shows that the unique solution x(a) is

increasing in a. As a result, the unique solution to the system of equations in (1) is{wg(y)}g

with wg(y) strictly increasing in y. We also note that (y/ℓg)1/λ⋅Γ
1/λ
≤ wg(y) ≤ (y/ℓg)1/λ⋅Γ̄1/λ,

so that wg(y) → ∞ as y →∞, and wg(y) → 0 as y → 0.

To conclude, we show that there is a unique y that satisfies the ideal-price index equation

(2). This condition can be written as I(y) = 1, where

I(y) =
⎛

⎝

1

M ∫T
[min{min

g
{wg(y) ⋅

µgx
ψgx
} ,

1

qx ⋅ ψkx
}]

1−λ

⋅ dx
⎞

⎠

1/(1−λ)

.

Because wages are strictly increasing in y, I(y) increases in y. Assumption 1 also en-

sures that a positive mass of tasks must be allocated to labor at any wage level, which

implies that I(y) is strictly increasing in y. The function I(y) can be written as I(y) =

(Γk(w(y)) +∑g Γg(w) ⋅ µg(w) ⋅wg(y)
1−λ)

1/(1−λ)
. As y → ∞, Γg(w) ⋅ µg(w) ⋅ wg(y)1−λ → ∞

(since Γg(w) is bounded from below, µg(w) ≥ 1, and λ < 1) and Γk(w(y)) ≥ 0. This implies

I(y) → ∞. Moreover, as y → 0, Γg(w) ⋅ µg(w) ⋅ wg(y)1−λ → 0 (since Γg(w) and µg(w) are

bounded from above and λ < 1) and Γk(w(y)) = 0 (since, by Assumption 1, all tasks can

be produced by at least one type of worker). This implies I(y) → 0.

Because I(y) is strictly increasing in y, there is a unique y ∈ (0,∞) for which I(y) = 1

and, therefore, a unique equilibrium with wages wg = wg(y). The equilibrium wages and the

tie-breaking rule for tasks where there is indifference uniquely determine the task allocation.

Our argument for uniqueness also shows that, under Assumption 1, the unique equi-

librium features finite output, positive wages, and positive task shares for all workers.

Moreover, from I(y) = 1, we obtain that, in equilibrium, 1 − Γk > 0.

Proof of Proposition 2. Starting at the equilibrium allocation, reallocate a mass ϵ of g

workers from task x to task x′ with x and x′ in Tg and µgx′ > µgx. This perturbation raises

aggregate output and consumption per reallocated unit of labor by px′ ⋅ ψgx′ − px ⋅ ψgx =

wg ⋅ [µgx′ − µgx] > 0. Hence, there is underemployment and high-rents tasks.

We now show that tasks x that satisfy (3) are inefficiently automated. The right-hand

side of the inequality implies these tasks are automated in equilibrium. Starting at the

equilibrium allocation, reallocate a mass ϵ of g workers drawn proportionally from tasks in
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Tg to task x. This perturbation raises aggregate output and consumption per reallocated

unit of labor by px ⋅ ψgx − ∫Tg px ⋅ ψgx ⋅
ℓgx
ℓg
⋅ dx =

ψgx

qx⋅ψkx
−wg ⋅ µg > 0.

We now define the notion of small interior automation shocks.

Definition 1 Suppose that the task space is a subset of Rd with d ≥ 2. An automation

shock is small and of order ϵ if:

� The d—dimensional sets A T
g are measurable and have measure O(ϵ).

� The d−1—dimensional hyper-surfaces Bg(wg) = {x ∈ A T
g ∶

wg ⋅µgx
ψgx

= 1
q′x⋅ψkx

} are smooth,

measurable, and have surface area O(ϵ1−1/d) for all g.

� The rate of change in Bg(wg) is bounded from above by D̄. That is: Dg(x) =

limh→0
1
h minx′∈Bg(wg+h) ∣∣x − x

′∣∣ < D̄ for all x ∈ Bg(wg).

We also say that an automation shock is interior if A T
g is in the interior of Tg.

Our derivations assume we have small interior automation shocks. The requirements

that shocks are interior and that the newly-introduced boundary tasks in Bg(wg) have

surface O(ϵ1−1/d) and their rate of change is bounded are needed to ensure that advances

in automation do not have first-order effects on the task and rent Jacobians.26

Proof of Proposition 3. Consider a small interior automation shock in A T of order ϵ.

For functions over the task space, F (w), we denote by FA (w) the new function obtained

after qx increases from zero to q′x in A T .

Derivation of equation (4): Lemma S1 in the Supplementary Materials shows that

(22) d lnwg =
1

λ
⋅d ln y +

1

λ
⋅ (lnΓA

g (w) − lnΓg(w))+
1

λ
⋅
∂ lnΓg(w)

∂ lnw
⋅ stack(d lnw)+O(ϵ2−1/d)

This expansion decomposes the effects of wages into the productivity effect, the direct effect

of automation on task shares, and the reallocation of tasks in response to wages.

We now approximate lnΓA
g (w) − lnΓg(w). Let dℓg(x) = ψ

λ−1
gx ⋅ µ

−λ
gx ⋅ dx:

lnΓA
g (w) − lnΓg(w) =

ΓA
g (w) − Γg(w)

Γg(w)
+ O(ϵ2) = −

∫Ag
dℓg(x)

∫Tg dℓg(x)
+ O(ϵ2) = −d lnΓdg +O(ϵ

2).

26We need the dimension of the task space to be at least two, since otherwise, any nonzero automation
shock has a first-order effect on substitution patterns. In Acemoglu and Restrepo (2022), this requirement
was not needed because we assumed all tasks for which advances in automation occurred where automated,
and so Bg(wg) was an empty set. The requirement that advances in automation are interior can be relaxed
by imposing bounds on the hyper-surfaces at the intersection of A T

g and the initial set of boundary tasks,
but this requires additional notation and complicates the proofs.
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The first equality follows from an approximation of log changes. The second and third use

the definitions of ΓA
g (w) and d lnΓ

d
g. Plugging in (22), we obtain

d lnwg =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg +

1

λ
⋅
∂ lnΓg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2−1/d).

Lemma 1 implies that this system has the unique solution (to a first-order approximation)

d lnwg = Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) +O(ϵ

2−1/d).

Derivation of equation (5): We turn to the ideal-price index condition, written as

I(w) = 1, where we now define I(w) = Γk(w) + ∑g Γg(w) ⋅ µg(w) ⋅ w
1−λ
g . From Lemma S1,

the change in I(w) following a small interior automation shock is

(23) dI = IA (w) − I(w) + I(w) ⋅
∂ ln I(w)

∂ lnw
⋅ d lnw +O(ϵ2−1/d).

Note that ∂ ln I(w)
∂ lnw ⋅ d lnw captures the effect of a change in wages on the cost of producing

the final good. Because tasks are allocated in a cost-minimizing way (given wedges), the

envelope theorem implies ∂ ln I(w)
∂ lnw ⋅ d lnw = (1 − λ) ⋅ ∑g sg ⋅ d lnwg +O(ϵ

2).

The term IA (w) − I(w) in (23) captures cost savings from automating tasks in Ag

holding wages constant. We have

IA (w) − I(w) =ΓA
k (w) − Γk(w) +∑

g

ΓA
g (w) ⋅ µ

A
g (w) ⋅wg

1−λ −∑
g

Γg(w) ⋅ µg(w) ⋅wg
1−λ

=∑
g

1

M ∫Ag

[(q′x ⋅ ψkx)
λ−1 − (ψgx/µgx)

λ−1 ⋅wg
1−λ] ⋅ dx

=∑
g

1

M ∫Ag

(ψgx/µgx)
λ−1 ⋅wg

1−λ ⋅ [(
q′x ⋅ ψkx ⋅wg ⋅ µgx

ψgx
)λ−1 − 1] ⋅ dx

=∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅

1
M ∫Ag

(ψgx/µgx)λ−1 ⋅ [(
q′x⋅ψkx⋅wg ⋅µgx

ψgx
)λ−1 − 1] ⋅ dx

1
M ∫Ag

(ψgx/µgx)λ−1 ⋅ dx

=(λ − 1) ⋅∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg.

In the last step, we used ℓgx ⋅ µgx ∝ (ψgx/µgx)λ−1 (from E3).

Because in equilibrium I(w) = 1, we have dI = 0. Equation (23) then implies

∑
g

sg ⋅ d lnwg = ∑
g

sg ⋅ d lnΓ
d
g ⋅
µAg

µg
⋅ πg +O(ϵ

2−1/d).
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Derivation of equation (6): Lemma S1 implies that

d lnµg = lnµ
A
g (w) − lnµg(w) +

∂ lnµg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2−1/d).

We can rewrite the direct effect of automation on rents, lnµA
g (w) − lnµg(w), as

lnµA
g (w) − lnµg(w) =

µA
g (w) − µg(w)

µg(w)
+ O(ϵ2)

=

µg ⋅ ∫Tg dℓg(x) − µAg ⋅ ∫Ag
dℓg(x)

∫Tg dℓg(x) − ∫Ag
dℓg(x)

− µg

µg
+O(ϵ2)

= −(
µAg

µg
− 1) ⋅

d lnΓdg
1 − d lnΓdg

+O(ϵ2)

= −(
µAg

µg
− 1) ⋅ d lnΓdg +O(ϵ

2).

The first line approximates the change in logs. The second line uses the definition of µA
g (w)

and the fact that µg(w) = µg. The third line divides by µg, cancels terms, and uses the

definition of d lnΓdg. The last line uses the fact that
d lnΓd

g

1−d lnΓd
g
= d lnΓdg +O(ϵ

2).

These derivations show that the equilibrium change in rents satisfies

d lnµg = −(
µAg

µg
− 1) ⋅ d lnΓdg +

∂ lnµg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2−1/d).

Plugging the expression for the change in base wages in (4), this can be expressed as

d lnµg = −(
µAg

µg
− 1) ⋅ d lnΓdg +Mg ⋅ stack(

1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj) +O(ϵ

2−1/d).

Derivation of equation (7): We first prove the dual of the Solow residual. Because all

income accrues to capital or labor, we have y = ∑g w̄g ⋅ ℓg + k. Differentiating yields

d ln y = sk ⋅ d lnk +∑
g

sg ⋅ d ln w̄g ⇒ d ln y − sk ⋅ d lnk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡d ln tfp

= ∑
g

sg ⋅ d ln w̄g.

The dual of Solow implies d ln tfp = ∑g sg ⋅ d lnwg +∑g sg ⋅ d lnµg. Plugging the formula for

∑g sg ⋅ d lnwg in equation (5) yields equation (7) in the proposition.

Turning to consumption, we have c = y − k. Differentiating, d ln c = (1/c) ⋅ (dy − dk) =

(1/sL) ⋅ (d ln y − (k/y)d lnk) = (1/sL) ⋅ d ln tfp. The last step uses the fact that sL = c/y.
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Proof of Proposition 4. Let Ψ = ⟨q,ψk,{ψg}g⟩ be the vector of technological attributes

of tasks. For any set S ⊆ T , define the CDF of Ψ in S by

H(Ψ∣S) = Pr(x ∶ q′x ≤ q,ψkx ≤ ψk,{ψgx ≤ ψg}g ∣x ∈ S) =
∫S∩{x∶q′x≤q,ψkx≤ψk,{ψgx≤ψg}g}

dx

∫S dx
,

and denote its pdf by h(Ψ∣S).

From condition (i), it suffices to show F̄g(µ∣Ag) > F̄g(µ∣A T
g ). For all µ ≥ 1, we have

F̄g(µ∣A
T
g ) =

∫
Ψ
∫

∞

µ
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

∫
Ψ
∫

∞

1
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

=
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

,

where the last equality follows from condition (ii). Turning to F̄g(µ∣Ag), we have

F̄g(µ∣Ag) =

∫
Ψ
∫

∞

max{µ,ϱ(Ψ)}}
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

∫
Ψ
∫

∞

max{1,ϱ(Ψ)}
f̄g(u∣Ψ,A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

.

Here, ϱ(Ψ) = 1
wg
⋅
ψg

q′⋅ψk
gives a threshold value for µgx above which tasks with technological

attributes Ψ will be automated. Using condition (ii) we can write this as

F̄g(µ∣Ag) =

∫
Ψ
∫

∞

max{µ,ϱ(Ψ)}}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

∫
Ψ
∫

∞

max{1,ϱ(Ψ)}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

.

We now show that, for all ϱ and µ ≥ 1, we have

(24)
∫

∞

max{µ,ϱ}}
f̄g(u∣A

T
g ) ⋅ du

∫

∞

max{1,ϱ}
f̄g(u∣A

T
g ) ⋅ du

≥
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

= F̄g(µ∣A
T
g ),

with strict inequality if ϱ,µ > 1. When ϱ ≤ 1 both sides in (24) are equal to 1. When

ϱ ∈ (1, µ], (24) becomes

∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

ϱ
f̄g(u∣A

T
g ) ⋅ du

>
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

⇔∫

∞

1
f̄g(u∣A

T
g ) ⋅ du > ∫

∞

ϱ
f̄g(u∣A

T
g ) ⋅ du,
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which holds as a strict inequality for ϱ > 1. Finally, when ϱ > µ, (24) becomes

1 >
∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du

∫

∞

1
f̄g(u∣A

T
g ) ⋅ du

⇔∫

∞

1
f̄g(u∣A

T
g ) ⋅ du > ∫

∞

µ
f̄g(u∣A

T
g ) ⋅ du,

which holds as a strict inequality for µ > 1. To conclude the proof of the proposition, re-

write (24) as ∫
∞

max{µ,ϱ} f̄g(u∣A
T
g ) ⋅ du ≥ F̄g(µ∣A

T
g ) ⋅ ∫

∞

max{1,ϱ} f̄g(u∣A
T
g ) ⋅ du. Letting ϱ = ϱ(Ψ)

and integrating over A T
g , we get

∫
Ψ
∫

∞

max{µ,ϱ(Ψ)}}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ

> F̄g(µ∣A
T
g ) ⋅ ∫

Ψ
∫

∞

max{1,ϱ(Ψ)}
f̄g(u∣A

T
g ) ⋅ h(Ψ∣A

T
g ) ⋅ du ⋅ dΨ.

The inequality is strict because not all tasks in A T
g are automated, which means that

ϱ(Ψ) > 1 for a positive mass of tasks in A T
g for which (24) holds with strict inequality.

This inequality can be rearranged as F̄g(µ∣Ag) > F̄g(µ∣A T
g ).

Proof of Proposition 5. The automation of tasks in Ag shifts the distribution of rents

for workers in group g from F̄g(µ∣Tg) to F̄g(µ∣Tg ∖Ag). Consider the old quantile functions

for wages (inclusive of rents) in Tg, denoted by lnwpg and the new quantile function for

wages (inclusive of rents) in Tg∖Ag, denoted by lnwpg,new. Because F̄g(µ∣Ag) > F̄g(µ∣Tg), we

have F̄g(µ∣Tg) > F̄g(µ∣Tg ∖Ag), and the distribution of wages (plus rents) for workers in Tg

dominates, in the first order stochastic sense, their new distribution of wages (plus rents)

in Tg ∖Ag (holding wg constant, as in the proposition).

Below mg, both quantile functions equal wg, since the share of workers earning no rents

in Tg ∖Ag is greater than or equal to the share of workers earning no rents in Tg. This

shows that d lnwpg = lnw
p
g,new − lnw

p
g = 0 for p ∈ [0,mg].

First-order stochastic dominance also implies that the quantile function for wages in

Tg ∖Ag is strictly below the quantile function for wages in Tg for all µ > 1. This shows that

d lnwpg = lnw
p
g,new − lnw

p
g < 0 for all p ∈ (mg,1).

To conclude, suppose that for all µ > 1, there is a positive measure δ of tasks with

rent µgx = µ in Tg that cannot be automated. For p = 1, lnwpg = d lnw
p
g,new = lnwg + ln µ̄g,

where µ̄g is the maximum rent earned by group g workers. This is because, by assumption,

not all jobs paying a rent µ̄g can be automated. This implies lnwpg = 0 for p = 1. For

p = 1 − ϵ, we have a mass ϵ of workers earning a wage above lnw1−ϵ
g initially. Of these,

a fraction δ workers is still earning a wage above lnwpg after the automation of tasks in

46



Ag. This implies lnw1−ϵ
g ≤ lnw1−ϵ⋅δ

g,new ≤ lnw1−ϵ⋅δ
g . Taking limits as ϵ → 0 and we obtain

limp→1 lnw
p
g = limp→1 lnw

p
g,new, as wanted.
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Supplementary Materials for “Automation and Rent
Dissipation”

Daron Acemoglu and Pascual Restrepo

S1 Proofs and details for the multi-sector model.

S1.1 Description of multi-sector model and preliminaries

Description: There are multiple sectors indexed by i ∈ I (where I denotes the set of

sectors). Sectoral production functions are given by

yi = (
1

Mi
∫
Ti

(Mi ⋅ yx)
λ−1
λ ⋅ dx)

λ/(λ−1)

.

The sets of tasks across sectors {Ti}i∈I are sector-specific, which is without loss of generality

since tasks can be relabeled.

Sectoral outputs are combined into a final good that can be used for consumption or

to build productive capital. The transformation of sectoral output into the final good y is

described by a CES production function with an elasticity of substitution η > 0:

y = (∑
i

α
1
η

i ⋅ y
η−1
η

i ⋅ dx)

η/(η−1)

.

We denote sectoral prices by {pi}i∈I and normalize the price of the final good to 1.

The total quantity produced of task x is

yx = ψkx ⋅ kx +∑
g

ψgx ⋅ ℓgx.

Here, ℓgx is the amount of labor of type g allocated to task x, while kx is the amount of

task-specific capital used for this task.

A fixed supply ℓg of workers of type g is allocated across tasks and industries, so that

∑
i
∫
Ti

ℓgx ⋅ dx ≤ ℓg.

We treat task-specific capital, {kx}x∈T , as intermediate goods. They are produced within

the same period using the final good at a constant unit cost 1/qx. If qx = 0, task x cannot

S1



be performed by capital. This implies that total consumption equals net output:

c = y −∑
i
∫
Ti

(kx/qx) ⋅ dx.

As in the single-sector model, we assume there are task specific rents µgx.

Amarket equilibrium is given by a vector of base wages {wg}, output y, sectoral prices pi,

an allocation of tasks {Tgi}i,g,{Tki}i, task prices px, hiring plans ℓgx, and capital production

plans kx such that:

E1’ Tasks prices equal the minimum unit cost of producing the task

px =min

⎧⎪⎪
⎨
⎪⎪⎩

1

qx ⋅ ψkx
,

⎧⎪⎪
⎨
⎪⎪⎩

wg ⋅
µgx
ψgx

⎫⎪⎪
⎬
⎪⎪⎭g

⎫⎪⎪
⎬
⎪⎪⎭

.

E2’ Tasks are allocated in a cost-minimizing way. The set of tasks

Tgi = {x ∈ Ti ∶ px = wg ⋅
µgx
ψgx
}

will be produced by workers of type g, and the set of tasks

Tik = {x ∈ Ti ∶ px =
1

qx ⋅ ψkx
}

will be produced by capital.

E3’ Task-level demands for labor and capital are given by

ℓgx = y ⋅ syi ⋅ p
λ−1
i ⋅

1

Mi

⋅ ψλ−1gx ⋅ (µgx ⋅wg)
−λ for x ∈ Tgi,

kx = y ⋅ syi ⋅ p
λ−1
i ⋅

1

Mi

⋅ ψλ−1kx ⋅ q
λ
x for x ∈ Tki.

Here syi = αi ⋅ p
1−η
i is the share of industry i in output.

E4’ Sectoral prices are given by

pi = (
1

Mi
∫
Ti

p1−λx ⋅ dx)
1/(1−λ)

S2



E5’ The ideal-price index condition holds

1 = (∑
i

αi ⋅ p
1−η
i )

1/(1−η)

.

Preliminaries: We first derive the equilibrium conditions E3’ and E4’. The production

of the final good is perfectly competitive, and so tasks are priced at their marginal product.

This implies px = pi ⋅M
− 1

λ
i ⋅ (yi/yx)

1
λ , which can be rearranged as

yx =
1

Mi

⋅ y ⋅ syi ⋅ p
λ−1
i ⋅ p−λx .(S1)

For tasks in Tg, equation (S1) implies

ℓgx ⋅ ψgx =
1

M
⋅ y ⋅ syi ⋅ p

λ−1
i (wg ⋅

µgx
ψgx
)

−λ

,

which can be rearranged into the labor demand equation in E3’.

For tasks in Tk, equation (S1) implies

kx ⋅ ψkx =
1

M
⋅ y ⋅ syi ⋅ p

λ−1
i (

1

qx ⋅ ψkx
)
−λ

,

which can be rearranged into the capital demand equation in E3’.

Finally, multiplying equation (S1) by px and integrating over Ti yields

syi ⋅ y = ∫
Ti

px ⋅ yx ⋅ dx =
1

Mi

⋅ syi ⋅ y ⋅ p
λ−1
i ⋅ ∫

Ti

p1−λx ⋅ dx.

Canceling syi ⋅y on both sides of this equation yields the sectoral-price index condition E4’.

Equilibrium representation: Before deriving the effects of new automation technology,

we extend the representation result in Proposition 1 to the multi-sector economy. As in

the single-sector economy, define

Γgi(w) =
1

Mi
∫
Tgi(w)

ψλ−1gx ⋅ µ
−λ
gx ⋅ dx for each g ∈ G and i ∈ I,

Γki(w) =
1

Mi
∫
Tki(w)

(ψkx ⋅ qx)
λ−1 ⋅ dx for each i ∈ I.
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The integrals are computed over the set of tasks in industry i allocated to different groups

and capital when base wages are w, denoted by Tgi(w) and Tki(w). In addition, define

µgi(w) =
1

Γgi(w)
⋅ ∫
Tgi(w)

ψλ−1gx ⋅ µ
1−λ
gx ⋅ dx for each g ∈ G and i ∈ I.

Proposition S1 The equilibrium base wages {wg}, industry prices {pi}, and output y

solve the system of equations

wg =(
y

ℓg
)

1
λ

⋅ [∑
i

αi ⋅ p
λ−η
i ⋅ Γgi(w)]

1
λ

,(S2)

pi =(Γki(w) +∑
g

Γgi(w) ⋅ µg(w) ⋅w
1−λ
g )

1/(1−λ)

,(S3)

1 =(∑
i

αip
1−η
i )

1/(1−η)

.(S4)

Proof of Proposition S1. Aggregating the labor demand equation in E3’ over tasks in

Tgi for all industries, we obtain

ℓg = y ⋅ [∑
i

αi ⋅ p
λ−η
i ⋅ Γgi(w)] ⋅w

−λ
g .

This can be rewritten as (S2).

Equation E4’ implies that sectoral prices satisfy

pi = (
1

Mi
∫
Ti

p1−λx ⋅ dx)

1
1−λ

= (Γki(w) +∑
g

Γgi(w) ⋅ µgi(w) ⋅w
1−λ
g )

1
1−λ

.

Finally, equation E5’ is the same as (S4).

S1.2 Effects of new automation technologies

Before proving Proposition 6, we generalize the definition of a small and interior automation

shock to the multisector economy.

Definition 2 An automation shock is small and of order ϵ if:

1. The d—dimensional sets A T
gi are measurable and have volume O(ϵ).
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2. The d − 1—dimensional hyper-surfaces

Bgi(wg) ={x ∈ A
T
gi ∶

wg ⋅ µgx
ψgx

=
1

q′x ⋅ ψkx
}

are smooth, measurable, and have surface area O(ϵ1−1/d) for all g.

3. The rate of change in Bgi(wg) is bounded from above by D̄. That is:

Dgi(x) = lim
h→0

1

h
min

x′∈Bgi(wg+h)
∣∣x − x′∣∣ < D̄ for all x ∈ Bgi(wg).

We also say that an automation shock is interior if A T
gi is in the interior of Tgi.

Proof of Proposition 6. Define aggregate task shares at wages w and prices p as

Γg(w,p) =∑
i

syi ⋅ p
λ−1
i ⋅ Γgi(w) for all g,

Γk(w,p) =∑
i

syi ⋅ p
λ−1
i ⋅ Γki(w).

Note that syi = αi ⋅ p
1−η
i is a function of sectoral prices.

Consider a small and interior automation shock in A T
g of order ϵ. For functions over

the task space, F (w,p), denote by FA (w,p) the new function obtained after qx increases

from zero to q′x in A T
g .

Derivation of equation (13): effects on base wages d lnwg. Lemma S1 shows that we

can do a “Taylor expansion” of equation (S2) (in logs) to express the change in equilibrium

wages as

d lnwg =
1

λ
⋅ d ln y+

1

λ
⋅ (lnΓA

g (w) − lnΓg(w))(S5)

+
1

λ
⋅
∂ lnΓg(w,p)

∂ lnw
⋅ stack(d lnw)

+
1

λ
⋅
∂ lnΓg(w,p)

∂ lnp
⋅ stack(d lnp) + O(ϵ2−1/d)

This expansion decomposes the effects of wages into the productivity effect, the direct effect

of automation on task shares, the reallocation of tasks in response to wages, and the effect

of changes in sectoral prices on task shares.
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We now approximate lnΓA
g (w,p) − lnΓg(w,p). Letting dℓg(x) = ψ

λ−1
gx ⋅ µ

−λ
gx ⋅ dx, we have

lnΓA
g (w,p) − lnΓg(w,p) =

ΓA
g (w,p) − Γg(w,p)

Γg(w,p)
+ O(ϵ2)

= −
∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x)

+ O(ϵ2)

= −∑
i

syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x)

∑i′ syi′ ⋅ p
λ−1
i′ ⋅ ∫Tgi′

dℓg(x)
⋅
∫Agi

dℓg(x)

∫Tgi dℓg(x)
+ O(ϵ2)

= −∑
i

ℓgi
ℓg
⋅ d lnΓdgi +O(ϵ

2).

The first-line follows from an approximation of log changes. The second line uses the

definition of task shares and of ΓA
g (w,p). The last line is the definition of d lnΓdg.

Turning to the effects of sectoral prices on task shares,
∂ lnΓg(w,p)

∂ lnp ⋅ stack(d lnp), we have

∂ lnΓg(w,p)

∂ lnp
⋅ d lnp = ∑

i

syi ⋅ p
λ−1
i ⋅ Γgi

∑i′ syi′ ⋅ p
λ−1
i′ ⋅ Γgi′

⋅ (λ − η) ⋅ d lnpi = ∑
i

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi.

Plugging our approximation for lnΓA
g (w,p)− lnΓg(w,p) and our formula for

∂ lnΓg(w,p)
∂ lnp ⋅

stack(d lnp) into equation (S5), we obtain

d lnwg =
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdg+

1

λ
⋅ ∑
i

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi(S6)

+
1

λ
⋅
∂ lnΓg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2−1/d).

Lemma 1 implies that this system has the unique solution (to a first-order approximation)

d lnwg = Θg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +

1

λ
⋅ ∑
i

ℓji
ℓj
⋅ (λ − η) ⋅ d lnpi) +O(ϵ

2−1/d).(S7)

Derivation of equation (14): effects on sectoral prices d lnpi. Equation (S3) can be

written as p1−λi = Ii(w), where

Ii(w) = Γki(w) +∑
g

Γgi(w) ⋅ µgi(w) ⋅w
1−λ
g .
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Lemma S1 shows that we can expand Ii(w) as

dIi =I
A
i (w) − Ii(w) + Ii(w) ⋅

∂ ln Ii(w)

∂ lnw
⋅ d lnw +O(ϵ2−1/d).(S8)

Note that ∂ ln Ii(w)
∂ lnw ⋅d lnw captures the effect of a change in wages on the cost of producing

the final good at the initial equilibrium allocation. Because tasks are allocated in a cost-

minimizing way (given wedges), the envelope theorem implies

∂ ln Ii(w)

∂ lnw
⋅ d lnw = (1 − λ) ⋅∑

g

sgi ⋅ d lnwg +O(ϵ
2)

The term IA (w) − I(w) captures the cost saving gains from automating tasks in Agi

holding wages constant. We have

IA
i (w) − Ii(w) =Γ

A
ki(w) − Γki(w) +∑

g

ΓA
gi(w) ⋅ µ

A
gi(w) ⋅wg

1−λ −∑
g

Γgi(w) ⋅ µgi(w) ⋅wg
1−λ

=∑
g

[
1

Mi

⋅ ∫
Agi

(q′x ⋅ ψkx)
λ−1 ⋅ dx −

1

Mi

⋅ ∫
Agi

(ψgx/µgx)
λ−1 ⋅wg

1−λdx⋅]

=∑
g

1

Mi
∫

Agi

[(q′x ⋅ ψkx)
λ−1 − (ψgx/µgx)

λ−1 ⋅wg
1−λ] ⋅ dx

=∑
g

1

Mi
∫

Agi

(ψgx/µgx)
λ−1 ⋅wg

1−λ ⋅ [(
q′x ⋅ ψkx ⋅wg ⋅ µgx

ψgx
)λ−1 − 1] ⋅ dx

=Ii(w) ⋅∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅

1
Mi ∫Agi

(ψgx/µgx)λ−1 ⋅ [(
q′x⋅ψkx⋅wg ⋅µgx

ψgx
)λ−1 − 1] ⋅ dx

1
Mi ∫Agi

(ψgx/µgx)λ−1 ⋅ dx

=Ii(w) ⋅ (λ − 1) ⋅∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi.

In the last step, we used the fact that ℓgx ⋅ µgx ∝ (ψgx/µgx)λ−1 (from equilibrium condition

E3’), which gives the expression for πgi in the main text. We also used the fact that

sgi ⋅ Ii(w) = Γgi ⋅w1−λ
g (also from E3’).

Plugging our formulas for ∂ ln Ii(w)
∂ lnw ⋅ d lnw and IA (w) − I(w) in (S8), we obtain

d ln Ii =(λ − 1) ⋅∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi + (1 − λ) ⋅∑

g

sgi ⋅ d lnwg +O(ϵ
2−1/d).

Using the fact that (1 − λ) ⋅ d ln Ii = d lnpi, we can rewrite this as

d lnpi = ∑
g

sgi ⋅ d lnwg −∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi +O(ϵ

2−1/d).(S9)
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Derivation of equation (15): effect on base wage levels. This can be obtained from

the ideal-price index condition in equation (S4). The envelope theorem applied to the

production of the final good implies

0 = ∑
i

syi ⋅ d lnpi.

Substituting the expression for d lnpi in (S9) and rearranging yields

∑
g

sg ⋅ d lnwg = ∑
i

syi ⋅ ∑
g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi +O(ϵ

2−1/d).

Derivation of equation (16): effects on group rents d lnµg. Lemma S1 implies that we

can approximate the equilibrium change in group rents as

d lnµg = lnµ
A
g (w,p) − lnµg(w,p) +

∂ lnµg(w,p)

∂ lnw
⋅ stack(d lnw)

+
∂ lnµg(w,p)

∂ lnp
⋅ stack(d lnp) + O(ϵ2−1/d).

We can rewrite the direct effect of automation on rents, lnµA
g (w,p) − lnµg(w,p), as

lnµA
g (w,p) − lnµg(w,p)

=
µA
g (w,p) − µg(w,p)

µg(w,p)
+ O(ϵ2)

=

∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi µgx ⋅ dℓg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

µgx ⋅ dℓg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x)
− µg

µg
+O(ϵ2)

=

µg ⋅ ∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x) − µAg ⋅ ∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x)
− µg

µg
+O(ϵ2)

=
∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x) −
µAg

µg
⋅ ∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x) −∑i syi ⋅ p

λ−1
i ⋅ ∫Agi

dℓg(x)
+ O(ϵ2)

= −(
µAg

µg
− 1) ⋅

d lnΓdg
1 − d lnΓdg

+O(ϵ2)

= −(
µAg

µg
− 1) ⋅ d lnΓdg +O(ϵ

2)

The first line approximates the change in logs. The second line uses the definition of

µA
g (w,p) and the fact that µg(w,p) = µg. The third line uses the definition of average
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group rents and average group rents at automated jobs, µAg . The fourth line divides by µg

and cancels terms. The fifth line uses the definition of d lnΓdg. The last equality uses the

fact that
d lnΓd

g

1−d lnΓd
g
= d lnΓdg +O(ϵ

2).

We now turn to the effects of sectoral prices on group rents, which can be written as

µg(w,p) =
∑i syi ⋅ p

λ−1
i ⋅ µgi ⋅ ∫Tgi dℓg(x)

∑i syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x)

.

The effect of sectoral prices on rents is then given by

∂ lnµg(w,p)

∂ lnp
⋅ d lnp =∑

i

syi ⋅ p
λ−1
i ⋅ µgi ⋅ ∫Tgi dℓg(x)

∑i′ syi′ ⋅ p
λ−1
i′ ⋅ µgi′ ⋅ ∫Tgi′ dℓg(x)

⋅ (λ − η) ⋅ d lnpi

−∑
i

syi ⋅ p
λ−1
i ⋅ ∫Tgi dℓg(x)

∑i′ syi′ ⋅ p
λ−1
i′ ⋅ ∫Tgi′

dℓg(x)
⋅ (λ − η) ⋅ d lnpi,

which can be rewritten in terms of average group wages and employment as

∂ lnµg(w,p)

∂ lnp
⋅ d lnp = ∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi.

These derivations show that

d lnµg = −(
µAg

µg
− 1) ⋅ d lnΓdg+∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi

+
∂ lnµg(w)

∂ lnw
⋅ stack(d lnw) + O(ϵ2−1/d).

Using the expression for the change in base wages in (13), we obtain

d lnµg = − (
µAg

µg
− 1) ⋅ d lnΓdg +∑

i

(
µgi
µg
− 1) ⋅

ℓgi
ℓg
⋅ (λ − η) ⋅ d lnpi(S10)

+Mg ⋅ stack(
1

λ
⋅ d ln y −

1

λ
⋅ d lnΓdj +∑

i

ℓji
ℓj
⋅ (λ − η) ⋅ d lnpi) +O(ϵ

2−1/d).

Derivation of equation (17): effects on TFP, consumption, and mean wages. As in

the single-sector economy, the dual version of Solow implies d ln tfp = ∑g sg ⋅ d ln w̄g =

∑g sg ⋅ d lnwg +∑g sg ⋅ d lnµg. Plugging the formula for ∑g sg ⋅ d lnwg in equation (15) yields

equation (17) in the proposition.

Turning to consumption, we have c = y − k. Differentiating, we get d ln c = (1/c) ⋅ (dy −
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dk) = (1/sL) ⋅ (d ln y−(k/y)d lnk) = (1/sL) ⋅d ln tfp. Note that sL = c/y since there is no net

capital income in our model, as capital is produced linearly from the final good.

S1.3 Approximation Lemma

A key technical step in the proofs of Proposition 3 and 6 involves the approximation of

the effects of automation in three parts: the effects of the automation shock holding prices

constant, the effect of prices governed by the Jacobians of task shares with respect to

prices, and a small approximation error. This is similar to a first-order Taylor expansion,

but instead of considering a change in real arguments, we approximate the effects of a direct

change in task allocations generated by automation. The following lemma shows that this

expansion provides a valid approximation for “small” automation shocks of order ϵ.

We give a general version of the Lemma that accommodates the multisector economy.

Its application to the single-sector economy follows as a corollary.

Lemma S1 (Taylor Expansions of Functions on Task Space) Consider a function

of the form

f(w, z) = h
⎛

⎝

⎧⎪⎪
⎨
⎪⎪⎩
∫
Tgi(w)

N(µgx, ψgx) ⋅ dx

⎫⎪⎪
⎬
⎪⎪⎭g,i

,

⎧⎪⎪
⎨
⎪⎪⎩
∫
Tki(w)

Nk(qx, ψkx) ⋅ dx

⎫⎪⎪
⎬
⎪⎪⎭i

, z
⎞

⎠
.

The sets Tgi(w) and Tki(w) are defined by E1 and E2, N and Nk are continuous functions

of task attributes to Rn that are bounded in their domains (Tgi(w) and Tki(w) for all w > 0),

z is a vector of s additional arguments, and h is a continuously differentiable function from

(G + 1) × I ×Rn +Rs to R.

Let T A
gi (w) and T

A
ki (w) denote the new task allocation after a small and interior au-

tomation shock of order ϵ at wage levels w. Define

fA (w, z) = h
⎛

⎝

⎧⎪⎪
⎨
⎪⎪⎩
∫
T A
gi (w)

N(µgx, ψgx) ⋅ dx

⎫⎪⎪
⎬
⎪⎪⎭g,i

,

⎧⎪⎪
⎨
⎪⎪⎩
∫
T A
ki
(w)

Nk(q
′
x, ψkx) ⋅ dx

⎫⎪⎪
⎬
⎪⎪⎭i

, z
⎞

⎠
,

where q′x = qx outside A T .

Suppose that the automation shock changes z and w by dz and dw, both of which are

O(ϵ). Then the total effect of this shock on f can be approximated as

df = fA (w, z) − f(w, z) +
∂f

∂w
⋅ dw +

∂f

∂z
⋅ dz +O(ϵ2−1/d)(S11)
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Proof. Let w and z be the initial equilibrium values of wages and z and w′ = w + dw

and z′ = z + dz the final equilibrium values. The total change in f due to new automation

technologies can be written as

df =fA (w′, z′) − f(w, z)

=fA (w, z) − f(w, z) + fA (w′, z′) − fA (w, z)

=fA (w, z) − f(w, z) +
∂fA (w, z)

∂w
⋅ dw +

∂fA (w, z)

∂z
⋅ dz +O(ϵ2),

where the last line does a first-order Taylor expansion of fA (w′, z′) around (w, z).

We now show that automation in small interior sets does not affect ∂f(w,z)
∂w . Specifically:

(S12)
∂fA (w, z)

∂w
=
∂f(w, z)

∂w
+O(ϵ1−1/d)

Let a′gi = ∫T A
gi (w)

N(µgx, ψgx) ⋅ dx and aji = ∫Tgi(w)Nj(µjx, ψjx) ⋅ dx. We have that a′gi =

agi +O(ϵ), since Agi(w) is of measure O(ϵ) and Ng is bounded in its domain.

Let a′ki = ∫T A
ki
(w)Nk(q′x, ψkx) ⋅ dx and aki = ∫Tki(w)Nk(qx, ψkx) ⋅ dx. We have a′ki =

∫Tki(w)
Nk(q′x, ψkx) ⋅dx+O(ϵ), since A T has measure O(ϵ) and Nk is bounded in its domain.

Moreover, because q′x = qx in Tki(w), we have a′ki = aki +O(ϵ).

We can express the derivatives of fA with respect to wages as

∂fA (w, z)

∂w
=∑
g,i

∂h({a′gi}g,i,{a
′
ki}i, z)

∂agi
⋅
∂

∂w ∫T A
gi (w)

Ng(µgx, ψgx) ⋅ dx

+∑
i

∂h({a′gi}g,i,{a
′
ki}i, z)

∂aki
⋅
∂

∂w ∫T A
ki
(w)

Nk(q
′
x, ψkx) ⋅ dx.

Using the fact that the derivatives of h are continuous, we can approximate this as

∂fA (w, z)

∂w
=∑
g,i

∂h({agi}g,i,{aki}i, z)

∂agi
⋅
∂

∂w ∫T A
gi (w)

Ng(µgx, ψgx) ⋅ dx(S13)

+∑
i

∂h({agi}g,i,{aki}i, z)

∂aki
⋅
∂

∂w ∫T A
ki
(w)

Nk(q
′
x, ψkx) ⋅ dx +O(ϵ)
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For workers, we approximate the own-wage derivative of integrals over tasks as

∂

∂wg
∫
T A
gi (w)

N(µgx, ψgx) ⋅ dx =
∂

∂wg
∫
Tgi(w)

N(µgx, ψgx) ⋅ dx −
∂

∂wg
∫

Agi(wg)
N(µgx, ψgx) ⋅ dx

=
∂

∂wg
∫
Tgi(w)

N(µgx, ψgx) ⋅ dx − ∫
Bgi(wg)

Dgi(σ) ⋅N(µgσ, ψgσ) ⋅ dσ

=
∂

∂wg
∫
Tgi(w)

N(µgx, ψgx) ⋅ dx +O(ϵ
1−1/d).

The first-line decomposes the integral over T A
gi (w) into an integral over Tgi(w) minus an

integral over Agi(wg) (defined as the set of tasks in A T
gi automated at a wage wg). The

second line uses the general version of Leibniz integral rule. It replaces a derivative of a

volume integral over Agi(wg) by an area integral over the boundary tasks Bgi(wg) (and

where dσ is the induced Lebesgue measure over the hyper-surface Bgi(wg)). This surface

integral is O(ϵ1−1/d) because D and N are bounded and the surface Bgi has area O(ϵ1−1/d).

For cross-wage derivatives, we use the fact that the automation shock is interior. This

implies that for all g′ ≠ g

∂

∂wg′
∫
T A
gi (w)

N(µgx, ψgx) ⋅ dx =
∂

∂wg′
∫
Tgi(w)

N(µgx, ψgx) ⋅ dx

This follows from the fact that changes in other group wages do not affect the task allocation

in the interior of Tgi(w).

For capital, we approximate the wage derivative of integrals over tasks as

∂

∂wg
∫
T A
ki
(w)

Nk(q
′
x, ψkx) ⋅ dx =

∂

∂wg
∫
Tki(w)

Nk(q
′
x, ψkx) ⋅ dx +

∂

∂wg
∫

Agi(wg)
Nk(q

′
x, ψkx) ⋅ dx

=
∂

∂wg
∫
Tki(w)

Nk(q
′
x, ψkx) ⋅ dx + ∫

Bgi(wg)
Dgi(σ) ⋅Nk(q

′
σ, ψgσ) ⋅ dσ

=
∂

∂wg
∫
Tki(w)

Nk(qx, ψkx) ⋅ dx +O(ϵ
1−1/d).

The first-line decomposes the integral over T A
ki (w) into an integral over Tgi(w) plus an

integral over Agi(wg) (defined as the set of tasks in A T
gi automated at a wage wg). The

second line uses the general version of Leibniz integral rule. It replaces a derivative of a

volume integral over Agi(wg) by an area integral over the boundary tasks Bgi(wg) (and

where dσ is the induced Lebesgue measure over the hyper-surface Bgi(wg)). This surface

integral is O(ϵ1−1/d) because D and Nk are bounded and the surface Bgi(wg) has area

O(ϵ1−1/d). This last line also replaces q′x for qx in the first integral since these interior
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changes in capital productivity do not affect substitution patterns across initial boundaries.

Plugging the approximations for these wage derivatives in (S13) yields (S12).

To conclude, we show that ∂fA (w,z)
∂z =

∂f(w,z)
∂z +O(ϵ). We have

∂fA (w, z)

∂z
=
∂h({a′gi}g,i,{a

′
ki}i, z)

∂z
=
∂h({agi}g,i,{aki}i, z)

∂z
+O(ϵ) =

∂f(w, z)

∂z
+O(ϵ).

Here we used the fact that the derivatives of h are continuous, and a′gi = agi + O(ϵ) for

workers and a′ki = aki +O(ϵ) for capital.

Remark: when applying Lemma S1 in our proofs, we use the fact that task produc-

tivities and rents are bounded from above, which ensures that the functions N and Nk are

also bounded in the relevant domains of integration.

S1.4 Measuring task displacement

This subsection derives the measure of direct task displacement in equation (12) for a

multi-sector economy under Assumption 3

Let Rgi denote the set of routine tasks in industry i assigned to group g. Define

Γroutine
gi =∫

Rgi

ψλ−1xg ⋅ µ
−λ
xg ⋅ dx,

as the task share of group g in routine jobs at industry i.

Assumption 3 implies that all routine jobs in industry i are automated at the same

rate, so that d lnΓroutine,d
gi = χroutine

i , where d lnΓroutine,d
gi is the share of group g employment

in routine jobs in Agi as a fraction of all routine jobs employing g workers in industry i. In

addition, the fact that non-routine jobs are not automated implies

d lnΓdgi = (ℓ
routine
gi /ℓgi) ⋅ χ

routine
i ,(S14)

where ℓroutinegi /ℓgi is the share of employment of group g in industry i earned in routine jobs

(out of all employment of group g in industry i).

Let’s now turn to the labor share in industry i. This is given by

sℓi =
∑g Γgi ⋅ µgi ⋅w

1−λ
g

p1−λi

.(S15)
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The direct effect of automation on the labor share sℓi holding wages constant is

d ln sdℓi = −∑
g

sgi
sℓi
⋅ d lnΓdgi ⋅

µAgi

µg
− (1 − λ) ⋅ d lnpi.

Using the formula for d lnpi in (S9), we obtain

d ln sdℓi = −∑
g

sgi
sℓi
⋅ d lnΓdgi ⋅

µAgi

µgi
+ (1 − λ) ⋅∑

g

sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi
⋅ πgi

= −∑
g

sgi
sℓi
⋅ d lnΓdgi ⋅

µAgi

µgi
⋅ (1 − sℓi ⋅ (1 − λ) ⋅ πgi) .

Define the average cost-saving gains and average rent dissipation in industry i as

πi =
∑g sgi ⋅ d lnΓ

d
gi ⋅

µAgi

µgi
⋅ πgi

∑g sgi ⋅ d lnΓ
d
gi ⋅

µAgi

µgi

, 1 + ρi =
∑g sgi ⋅ d lnΓ

d
gi ⋅

µAgi

µgi

∑g sgi ⋅ d lnΓ
d
gi

.

Using these definitions, we can write the change in labor shares as

d ln sdℓi = −(1 + ρi) ⋅ (1 − sℓi ⋅ (1 − λ) ⋅ πi) ⋅∑
g

sgi
sℓi
⋅ d lnΓdgi.

Using equation (S14), we can rewrite the change in the labor share as

d ln sdℓi = −(1 + ρi) ⋅ (1 − sℓi ⋅ (1 − λ) ⋅ πi) ⋅∑
g

sgi
sℓi
⋅ (ℓroutinegi /ℓgi) ⋅ χ

routine
i .(S16)

Using this equation, we can solve for the common rate of automation χroutine
i as

χroutine
i =

1

∑g
sgi
sℓi
⋅ (ℓroutinegi /ℓgi)

⋅
1

1 + ρi
⋅

−d ln sdℓi
1 − sℓi ⋅ (1 − λ) ⋅ πi

.

A second use of equation (S14) then implies

d lnΓdgi = RCA
routine
gi ⋅

1

1 + ρi
⋅

−d ln sdℓi
1 − sℓi ⋅ (1 − λ) ⋅ πi

,

where the revealed comparative advantage measure is constructed as

RCAroutine
gi =

ℓroutinegi /ℓgi

∑g′
sg′i
sℓi
⋅ (ℓroutineg′i /ℓg′i)

.(S17)
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S2 Microfoundations for wedges.

S2.1 Efficiency wage considerations

We consider a static version of an efficiency wage model (i.e. Shapiro and Stiglitz, 1984;

Bulow and Summers, 1986).

On the one hand, there is a positive mass of tasks where workers earn a wage wg and

do not have to be monitored or receive extra incentives to work. Workers can always take

these jobs freely.

On the other hand, there is a positive mass of tasks where workers need to be monitored

and are paid an efficiency wage wgx. In these tasks, workers have two options. They can

stick to their duties, produce, and obtain a wage wgx. Or they can shirk. In this case

they put no effort on their main job and collect some income e ⋅wg by moonlighting in the

no-rent sector. If not found, they obtain an income wgx + e ⋅ wg. However, workers who

shirk are detected with probability Pgx, fired, and forced to take a job that pays no rents.

The no shirking condition is then

wgx ≥ (1 − Pgx) ⋅ (wgx + e ⋅wg) + Pgx ⋅wg.

This can be rearranged as

wgx = (e ⋅
1 − Pgx
Pgx

+ 1) ⋅wg.

This model thus provides a micro-foundation for wedges µgx = e ⋅
1−Pgx

Pgx
+ 1 derived from

efficiency wage considerations. Our treatment assumes there are no other contracts that

can solve the monitoring problem.

S2.2 Bargaining models

Consider a one-shot model where firms must make an investment to create a position before

matching with a worker, as in Grout (1984).

A firm producing task x can create ℓgx positions for workers of type g. Creating each

position takes up κ ∈ (0,1) units of labor, which implies that the total amount of labor

available for production is ℓgx ⋅ (1 − κ). The firm must pay this cost in advance, which

implies that once workers are matched to their positions, there is a surplus to bargain over.
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The firm obtains a surplus of px ⋅ψgx −wgx if the negotiation succeeds and 0 otherwise.

The worker obtains a surplus of wgx if the negotiation succeeds and wg otherwise. As before,

we assume that there is a positive mass of jobs that pay no rents at which workers can

always access. The wage wgx is determined by Nash bargaining, with workers’ bargaining

power given by βgx ∈ (0,1 − κ).

Lemma S2 (Representation result) The equilibrium of the bargaining economy coin-

cides with that of our baseline model by taking ψ̃gx = ψgx ⋅ (1 − κ) and µgx =
(1−κ)⋅(1−βgx)

1−κ−βgx
≥ 1.

Proof. Free entry for firms implies

(1 − βgx) ⋅ (px ⋅ ψgx −wg) ≤ κ ⋅ px ⋅ ψgx.

This can be written as

px ≤ wg ⋅
µgx

ψgx ⋅ (1 − κ)
,

which coincides with E1 and E2 for ψ̃gx = ψgx ⋅ (1 − κ). Thus, the bargaining model gives

the same rule for allocating tasks across workers and capital than our baseline model with

exogenous wedges.

Moreover market clearing for task x ∈ Tg requires

ψgx ⋅ (1 − κ) ⋅ ℓgx = y ⋅
1

M
⋅ (ψgx ⋅ (1 − κ))

λ ⋅ (µgx ⋅wg)
−λ

which coincides with E3 for ψ̃gx = ψgx ⋅ (1 − κ). Thus, the bargaining model gives the same

allocation of labor by tasks as our baseline model with exogenous wedges.

Turning to wages paid to workers, we have

wgx = βgx ⋅ px ⋅ ψgx + (1 − βgx) ⋅wg = µgx ⋅wg.

This implies the bargaining model gives the same wage payments by task as our baseline

model with exogenous wedges.
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S3 Empirical Details.

S3.1 Data sources and details

Our main data sources are the same used in Acemoglu and Restrepo (2022), and we refer

readers to this paper for details. This paper brings in new proxies for rents, described in

detail below.

Wage differentials: our first proxy for job-specific rents is the inter-industry and oc-

cupation wage differentials. As explained in the text, we compute this using 1980 Census

data as w̄gio/w̄g. In this expression, w̄gio is the average wage earned by group g in industry

i and occupation o in 1980. This is computed for the 49 industries in our analysis and 300

detailed Census occupations.

Wage losses from job displacement: our second proxy for job-specific rents is the

industry-specific wage loss from job displacement, computed separately for workers by

gender and education. As explained in the text, we compute this using the CPS Displaced

Worker Supplement as the average change in (log) wages before and after a displacement

event. We restrict the sample of displaced workers to those with at least a year of tenure

before the displacement episode who have since then found a new job. The resulting sample

contains 37,355 displaced workers, observed between 1984 and 2022. We winsorize previous

job and current job wages from below at 100 dollars per week and we also winsorize the

change in log wages at the 5th and 95th percentiles to avoid outliers.

We compute the average wage loss for these workers for the 49 industries in our analysis

and in sic broad occupations. We allow these to vary by worker education (grouping only

college vs non-college groups) and gender. We do not compute this measure by detailed

worker demographic characteristics because the resulting cells would be too small.

Quit rates: our last proxy for job-specific rents is the (inverse of the) monthly quit rate

from jobs in an industry and occupation. This is computed from the panel component of

the Basic Monthly CPS.

We consider two forms of quits. First, we compute the EE rate, following the cleaning

procedure in Fujita et al. (2024). EE transitions are identified using a new question added

to the CPS in 1994, and so this measure is only available for 1994–2023. As pointed out
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in Fujita et al. (2024), there is a growing share of workers reporting “not knowing” if they

still work for the same employer, which we treat as missing observations.

Second, we compute voluntary EU transitions per month. For this, we consider a

separation into unemployment as voluntary if workers report that the reason for being

unemployed is that they are “job leavers”. This measure is available for the 1976–2023

period. For our analysis, we average EE and voluntary EU rates over these years and by

industry, occupation, and group (only in terms of gender and for college vs non-college

workers). We use the 49 industries in our analysis and 300 detailed Census occupations,

which we match to the CPS.

S3.2 Main estimates reported in paper

Table S1 provides a summary of the reduced-form evidence in the paper. The panels

report estimates of the reduced form equation (11) for different outcome variables. The

specification in column 1 reports a bivariate regression. The specification in column 2 adds

sectoral demand shifts, gender and education dummies as covariates. The specification in

column 3 adds sectoral rent shifts as a covariate. The specification in column 4 adds the

share of employment in manufacturing from the 1980 Census as a covariate.
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Table S1: Summary of reduced-form evidence, 1980-2016.

(1) (2) (3) (4)

Panel A. Dependent variable: percent change in group average wage, ∆ ln w̄g

Direct task displacement
-2.36 -2.06 -2.06 -1.90
(0.13) (0.25) (0.27) (0.29)

R2 for task displacement 0.67 0.58 0.58 0.54
Observations 500 500 500 500

Panel B. Dependent variable: wage change above 30th percentile,
∆ ln w̄g −∆lnw30th

g

Direct task displacement
-0.35 -0.53 -0.50 -0.37
(0.06) (0.13) (0.11) (0.11)

R2 for task displacement 0.23 0.34 0.32 0.24
Observations 500 500 500 500

Panel C. Dependent variable: wage changes at 30th percentile, ∆ lnw30th
g

Direct task displacement
-2.01 -1.53 -1.55 -1.53
(0.14) (0.29) (0.30) (0.33)

R2 for task displacement 0.57 0.43 0.44 0.44
Observations 500 500 500 500

Panel D. Dependent variable: change in group rents due to reallocation—
wage differentials from Census

Direct task displacement
-0.46 -0.36 -0.35 -0.39
(0.06) (0.10) (0.11) (0.11)

R2 for task displacement 0.39 0.31 0.30 0.33
Observations 496 496 496 496

Panel E. Dependent variable: change in group rents due to reallocation—
wage loss due to displacement from CPS

Direct task displacement
-0.17 -0.19 -0.18 -0.20
(0.02) (0.03) (0.03) (0.04)

R2 for task displacement 0.47 0.53 0.51 0.56
Observations 500 500 500 500

Panel F. Dependent variable: change in group rents due to reallocation—
(minus) EE rates from CPS

Direct task displacement
-1.276 -1.273 -1.332 -1.506
(0.085) (0.278) (0.255) (0.253)

R2 for task displacement 0.58 0.57 0.60 0.68
Observations 500 500 500 500

Panel G. Dependent variable: change in group rents due to reallocation—
(minus) voluntary EU rates from CPS

Direct task displacement
-0.223 -0.292 -0.286 -0.300
(0.023) (0.043) (0.045) (0.050)

R2 for task displacement 0.43 0.56 0.55 0.58
Observations 500 500 500 500

Covariates:
Education and gender ✓ ✓ ✓

Sectoral demand shifters ✓ ✓ ✓

Sectoral rent shifters ✓ ✓

Manufacturing share ✓

Notes: This table presents estimates of the reduced-form relationship between the direct task displacement
due to new automation technology from 1980 to 2016 and various group-level outcomes. The sample
includes 500 demographic groups, defined by gender, education, age, race, and native/immigrant status.
The dependent variable is indicated in the panel headers. All regressions are weighted by total hours
worked by each group in 1980. Standard errors robust to heteroscedasticity are reported in parentheses.
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S3.3 Robustness checks

Acemoglu and Restrepo (2022) report several robustness checks for the reduced-form rela-

tionship between group average wages and the task displacement due to automation. Here,

we provide robustness checks for the relationship between automation and within-group

wage dispersion and rents, which is the novel empirical aspect in this paper.

Automation and within-group wage changes: We first asses the robustness of the

U-shape pattern in Figure 5. Figure S1 reports estimates by percentile in levels and not

relative to the 30th percentile as in the main text.

Figure S1: Reduced-form relationship between wage changes across per-
centiles of the within-group wage distribution and task displacement. the
left panel plots estimates from a group quantile regression of changes in d lnwpg against task
displacement for percentiles p ranging from the 5th to the 99th. The lines provide estimates
for different specifications. The right panel excludes worker groups with an average hourly
wage below $13 dollars in 1980. This panel reports estimates relative to the 30th percentile.

Figure S2 shows the U-shape pattern is robust to including additional controls or re-

stricting the sample to high-wage groups. The left panel reports estimates constraining the

estimation sample to groups with an average real wage in 1980 above $13 dollars. For these

groups, wage changes become flat below the 30th percentile. We continue to see a clear
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U-shape pattern of withing-group wage changes, with a more pronounced decline between

the 30th and 95th percentiles. The right panel shows that this pattern is also robust to

controlling for the incidence of the minimum wage and declining unionization rates across

industries. For the minimum wage, we control for the share of workers in each group earning

an hourly wage below 3.1 dollars in 1980 (the Federal minimum wage). For unionization,

we control for groups’ exposure to industries with declining unionization rates. These are

computed from the CPS as in Acemoglu and Restrepo (2022).

Figure S2: Reduced-form relationship between wage changes across per-
centiles of the within-group wage distribution and task displacement. The
figure plots estimates from a group-level quantile regression of changes in d lnwpg against
task displacement for percentiles p ranging from the 5th to the 99th relative to the 30th
percentile. Different colors represent estimates from different specifications.

Measuring rent dissipation from within-group wage changes: Table S2 provides

estimates of the decline in wages within exposed groups above their 20th and 40th per-

centiles. The table also reports these estimates for groups with an average wage above $13

in 1980, no college degree, or a college degree, respectively. These estimates point to a rent

dissipation of 19–40% in jobs automated during 1980–2016 by new automation technology.
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Table S2: Robustness checks: inferring rent dissipation from within-group
wage changes.

(1) (2) (3) (4)

Panel A. Dependent variable: wage change above 20th percentile,
∆ ln w̄g −∆lnw20th

g

Direct task displacement
-0.42 -0.45 -0.42 -0.19
(0.08) (0.20) (0.18) (0.16)

R2 for task displacement 0.20 0.21 0.20 0.09
Observations 500 500 500 500

Panel B. Dependent variable: wage change above 40th percentile,
∆ ln w̄g −∆lnw40th

g

Direct task displacement
-0.31 -0.56 -0.52 -0.41
(0.07) (0.15) (0.13) (0.11)

R2 for task displacement 0.21 0.38 0.35 0.28
Observations 500 500 500 500

Panel C. Dependent variable: wage change above 30th percentile,
∆ ln w̄g −∆lnw30th

g —only groups with average wage above $13 in 1980

Direct task displacement
-0.25 -0.30 -0.31 -0.27
(0.07) (0.14) (0.12) (0.14)

R2 for task displacement 0.16 0.19 0.20 0.18
Observations 364 364 364 364

Panel D. Dependent variable: wage change above 30th percentile,
∆ ln w̄g −∆lnw30th

g —includes only groups without a college degree

Direct task displacement
-0.19 -0.54 -0.47 -0.32
(0.10) (0.15) (0.13) (0.13)

R2 for task displacement 0.04 0.10 0.09 0.06
Observations 300 300 300 300

Panel E. Dependent variable: wage change above 30th percentile,
∆ ln w̄g −∆lnw30th

g —includes only groups with a college degree

Direct task displacement
-0.63 -0.35 -0.37 -0.38
(0.22) (0.28) (0.33) (0.34)

R2 for task displacement 0.12 0.07 0.07 0.07
Observations 200 200 200 200

Covariates:
Education and gender ✓ ✓ ✓

Sectoral demand shifters ✓ ✓ ✓

Sectoral rent shifters ✓ ✓

Manufacturing share ✓

Notes: This table presents estimates of the reduced-form relationship between the direct task displacement
due to new automation technology from 1980 to 2016 and various group-level outcomes. The sample
includes 500 demographic groups, defined by gender, education, age, race, and native/immigrant status.
The dependent variable is indicated in the panel headers. All regressions are weighted by total hours
worked by each group in 1980. Standard errors robust to heteroscedasticity are reported in parentheses.
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Measuring rent dissipation using proxies for rents: Table S3 and S4 provide ro-

bustness checks for our measures of reallocation away from high rent jobs. For these tests,

we focus on a specification that includes all our baseline covariates and change the way we

measure rents across specifications.

Panel A provides robustness checks for our measure of rent reallocation based on inter-

industry and occupation wage differentials. Column 1 reports our baseline estimates. Col-

umn 2 uses a measure of wage differentials that partials out differences in wages across

states. This accounts for the possibility that jobs are located in areas with different costs

of living, which would generate wage variation in the form of compensating differentials.

Column 3 uses a broader occupational grouping with 6 occupations in total (instead of the

300 in our baseline). Column 4 also uses this broader occupational grouping and partials

out regional wage differences. Column 5 computes a common inter-industry and occupation

wage differential averaging across all groups. Column 6 uses this common differential and

also partials out regional wage differences.

Panel B provides robustness checks for our measure of rent reallocation based on wage

losses from displacement. Column 1 reports our baseline estimates. Column 2 uses a

common wage-loss measure averaging across all workers, and not only across workers of the

same gender and education of a group. Column 3 also uses a common wage-loss measure

averaging across all workers, but controls for the observable characteristics of displaced

workers when computing these losses. For these columns, we compute wage losses for the

49 industries in our analysis and six broad occupational groups. Columns 4–6 report similar

specifications but now compute wage losses at the industry level.

Panels C and D provide robustness checks for our measure of rent reallocation based

on (the inverse of) monthly quit rates. Column 1 reports our baseline estimates. Column

2 uses a common quit rate averaging across all workers, and not only across workers of the

same gender and education of a group. Here we only control for differences in EE rates

and voluntary EU rates over time, to account for trends in EE and EUV rates. Column

3 also uses a common wage loss measure averaging across all workers, but controls for

the observable characteristics of displaced workers across industries and occupations when

computing monthly transition rates. Columns 4–6 report similar specifications but now

compute wage losses by industry and broad occupational group. For these we use the 49

industries in our analysis and 6 occupational groups.
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S3.4 Estimates of the propagation and rent impact matrices

The estimation assumes the parameterization of the task-share and rent Jacobians in Sec-

tion 4.2. Setting φ = σ − λ, we can rewrite (19) and (20) as

σ∆lnwg + d lnΓ
d
g =β̃0 + β̃ ⋅Zg + ∑

g′≠g

θgg′ ⋅ (∆lnwg′ − d lnwg) + ug

∆lnµg =β
µ
0 − ρ ⋅ d lnΓ

d
g + β

µ ⋅Zµ
g + ∑

g′≠g

θµgg′ ⋅ (∆lnwg′ − d lnwg) + eg.

Here, β̃0 = λβ0 + φ ⋅ ∑g′ sg′ ⋅∆lnwg, β̃ = λβ and the spillover terms are given by

θgg′ =∑
n

⋅
ℓgn
ℓg
⋅ sng′ ⋅ θ

+∑
n

ℓgn
ℓg
⋅ sng′ ⋅ θjob ⋅ job similaritygg′

+∑
n

ℓgn
ℓg
⋅ sng′ ⋅ θedu-age ⋅ edu-age similaritygg′

θµgg′ =∑
n

(
w̄gn
w̄g
− 1) ⋅

ℓgn
ℓg
⋅ sng′ ⋅ θ

+∑
n

(
w̄gn
w̄g
− 1) ⋅

ℓgn
ℓg
⋅ sng′ ⋅ θjob ⋅ job similaritygg′

+∑
n

(
w̄gn
w̄g
− 1) ⋅

ℓgn
ℓg
⋅ sng′ ⋅ θedu-age ⋅ edu-age similaritygg′

Table S5 reports estimates of ρ, θ, θsimj, and θedu-age obtained from estimating this

system of equations via GMM. Columns 1–3 allow for ripple effects separately along each

of the dimensions considered. Column 4 reports our baseline estimates. Column 5 report

estimates imposing the restriction θ, θsimj, θedu-age ≥ 0. In all specifications, the covariates

for the wage equation are: education and gender dummies, sectoral demand shifts, and

the share of employment in manufacturing in 1980. The covariates for the rent equation

are: education and gender dummies, sectoral rent shifts, and the share of employment in

manufacturing in 1980.

S26



Table S5: GMM estimates of the parametric task share and rent Jacobians.

(1) (2) (3) (4) (5)

Rent dissipation 0.409 0.422 0.394 0.355 0.405
(0.137) (0.140) (0.134) (0.119) (0.127)

Ripples, θ 1.536 -0.476
(0.647) (1.076)

Ripples, θjob 2.986 1.861 2.301
(1.390) (1.686) (1.677)

Ripples, θedu-age 1.967 0.714 0.684
(0.867) (1.039) (0.815)

Joint significance spillovers
(p-value)

0.28 0.07

Observations 500 500 500 500 500

Covariates in wage equation (19):
Education and gender, sectoral
demand shifters, manufacturing

✓ ✓ ✓ ✓ ✓

Covariates in rent equation (20):
Education and gender, sectoral
rent shifters, manufacturing

✓ ✓ ✓ ✓ ✓

Notes: This table presents GMM estimates of equations (19) and (20). The estimation assumes the pa-
rameterization of the task-share and rent Jacobians in Section 4.2. Columns 1–3 allow for ripple effects
separately along each of the dimensions considered. Column 4 reports our baseline estimates. Column 5
report estimates imposing the restriction θ, θsimj, θedu-age ≥ 0. Standard errors robust against heteroscedas-
ticity are given in parenthesis. The table also reports a test for the joint significance of ripples.
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