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Abstract

The maxmin approach to distributional robustness evaluates each
mechanism according to its payoff guarantee over all priors in an ambigu-
ity set. We propose a refinement: the guarantee must be approximately
satisfied at priors near the ambiguity set (in the weak topology). We
call such a guarantee robust. The payoff guarantees from some maxmin-
optimal mechanisms in the literature are not robust. We show, however,
that over certain standard ambiguity sets (such as continuous moment
sets), every mechanism’s payoff guarantee is robust. We give a behav-
ioral characterization of our refined robustness notion by imposing a
new continuity axiom on maxmin preferences.
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1 Introduction

The standard Bayesian approach to mechanism design assumes that the de-
signer has a prior over the relevant set of states. In practice, the designer may
not have enough information to formulate an exact prior. This raises the con-
cern that a Bayesian-optimal mechanism may perform poorly under a slightly
different state distribution. To address this concern, the maxmin approach
models the designer’s uncertainty as a set of priors called the ambiguity set.
In the maxmin model, the designer evaluates each mechanism according to its
payoff guarantee, i.e., its worst-case expected payoff over the ambiguity set.

In this paper, we propose a refinement of the maxmin approach. The
ambiguity set, like the prior in the Bayesian model, is an exogenous input to
the design problem that is subject to error. Our refinement demands that
a mechanism’s payoff guarantee is itself robust in the following sense: the
expected payoff from a mechanism does not drop far below its guarantee at
priors just outside the ambiguity set. The validity of a mechanism’s payoff
guarantee rests on the state distribution being inside the ambiguity set. Under
our refinement, this guarantee extends continuously to nearby priors.

To illustrate how our refined notion of robustness can be violated, consider
the standard monopoly pricing problem. The designer (seller) has a single
good, and she is uncertain of the buyer’s valuation. Suppose that the seller
does not have enough information to formulate an exact prior over the buyer’s
valuation. She knows only that the median valuation is λ, where λ > 0. She
evaluates each implementable social choice function according to its revenue
guarantee over all valuation distributions with median λ. It can be verified
that the best possible revenue guarantee is λ/2. This guarantee is uniquely
achieved by posting a price of λ. But the guarantee from this posted price
is not robust: For any positive ε there exists a valuation distribution with
median λ−ε under which this posted price yields revenue 0 (because the good
is never purchased).1

We operationalize and axiomatize our refined notion of robustness. To show
1For example, consider the distribution that puts all mass on the point λ− ε.
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that our refinement has bite, we give examples from the literature of proposed
maxmin-optimal mechanisms whose payoff guarantees are not robust. On the
other hand, we show that if the designer’s ambiguity set comes from certain
widely used classes, then every mechanism’s payoff guarantee is necessarily
robust. Finally, we give a behavioral characterization of robustness in terms
of a new continuity property of the maxmin preference relation.

Formally, we consider an Anscombe–Aumann setting, enriched with a Pol-
ish topology on the state space. The state represents any aspects of the en-
vironment that are unknown to the designer, such as agents’ preferences or
technology. The topology on the state space reflects which states the designer
finds difficult to distinguish. Therefore, the associated weak topology on the
space of state distributions captures which perturbations of a state distribu-
tion are difficult for the designer to rule out. For example, in the monopoly
pricing problem, the designer’s partial information may not allow her to confi-
dently distinguish between the valuations θ and θ + ε, for ε sufficiently small.
If the designer considers the distribution that puts probability 1/2 each on
valuations 0 and θ, then it is difficult to rule out the distribution that puts
probability 1/2 each on valuations 0 and θ + ε.

The designer’s uncertainty about the state is represented by a set of priors
called the ambiguity set. The designer has a state-dependent utility function
over decisions. A social choice function is an Anscombe–Aumann act, i.e., a
map from states to decision lotteries. The designer evaluates each social choice
function according to its payoff guarantee over all priors in the ambiguity set.
The payoff guarantee from a social choice function depends only on the induced
value function, which specifies the designer’s utility in each state. Therefore,
the designer’s problem can be reduced to directly choosing a value function
from a feasible set. For example, in a standard adverse selection problem, this
feasible set contains every value function that is induced by some incentive-
compatible social choice function.

The payoff guarantee from a value function v over an ambiguity set Π

is robust if the expected payoff from v approximately satisfies the guarantee
at priors sufficiently close to Π in the weak topology. An ambiguity set Π is
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globally robust if for every bounded value function v, the payoff guarantee from
v over Π is robust. If the designer uses a globally robust ambiguity set, then
she is assured that whichever decision environment she faces and whichever
social choice function she implements, the associated payoff guarantee will be
robust.

Theorem 1 shows that the following widely used ambiguity sets are globally
robust: continuous moment sets (which restrict the expectation of continuous
functions of the state) and balls defined with respect to the Wasserstein or
Prokhorov metrics. We show that any ambiguity set taking one of these forms
has the following richness property. Any prior close to the ambiguity set (in the
weak topology) can be modified with small probability to obtain a prior inside
the ambiguity set. Such a modification has a small effect on the expectation
of any bounded value function.

Conversely, the following commonly used ambiguity sets do not have this
richness property: relative entropy and total variation balls, singletons, and
sets defined by restrictions on a distribution’s support, quantiles, or marginals.
These restrictions do not recognize the topology on the state space. Theorem 2
shows that these ambiguity sets are not globally robust.

We next characterize the behavioral content of our refinement by giving
an axiomatization within the framework of decision-making under uncertainty.
For the axiomatization, we explicitly model the designer’s primitive preferences
over Anscombe–Aumann acts (rather than her induced preferences over value
functions).2 The designer’s utility function and ambiguity set together induce
a maxmin preference relation over acts. Theorem 3 shows that the payoff
guarantee from an act over a closed ambiguity set Π is robust if and only if
the associated preference relation satisfies an upper semicontinuity property
at that act. This characterization relates our notion of robustness, which
concerns nearby priors in a particular utility representation, with a continuity
axiom, which concerns preferences over nearby acts.

Theorem 4 axiomatizes the global robustness of an ambiguity set. We in-
2In this part, we use the decision theory terminology of “acts” rather than the mechanism

design terminology of “social choice functions.”
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troduce continuity axioms with respect to a new mode of convergence for acts.
This mode of convergence is inspired by Γ-convergence of real-valued functions,
which is the standard notion of convergence in the analysis of minimization
problems. Assuming state-independent utility, we show that an ambiguity set
is globally robust and tight (a topological property) if and only if the associated
preference relation satisfies Γ-continuity and tightness axioms.

The rest of the paper is organized as follows. Section 2 introduces the
setting and defines our refined notion of robustness. Section 3 gives examples
from the literature of maxmin-optimal mechanisms whose payoff guarantees
are not robust. Section 4 classifies which commonly used ambiguity sets are
globally robust and which are not. Section 5 provides axiomatizations of ro-
bustness. Section 6 discusses related literature. Section 7 is the conclusion.
Proofs omitted from the main text are in Appendix A. Additional results and
proofs are in Appendix B.

2 Model

We introduce the setting and then we present our refined notion of robustness.

2.1 Maxmin mechanism design setting

Consider a designer in the following environment. There is a state space Θ,
which is a Polish topological space endowed with its Borel σ-algebra B(Θ).3

The state represents any aspects of the environment that are unknown to
the designer, such as agents’ preferences or technology. There is a decision
space X, which is endowed with a σ-algebra. Denote by ∆(Θ) (respectively,
∆(X)) the space of probability measures on Θ (respectively, X). A social
choice function is a measurable function f : Θ → ∆(X). The designer has
a bounded, measurable utility function u : X × Θ → R, which we extend
linearly to ∆(X) × Θ. The designer’s state-dependent utility function can

3That is, Θ is homeomorphic to a complete metric space that has a countable dense
subset.
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capture many different objectives, even regret-minimization. For example,
in an auction setting, u can equal negative regret, i.e., the maximal realized
valuation minus revenue.

What distinguishes our setting from the classical Anscombe–Aumann frame-
work is the topology on the state space.4 This topology reflects which states
the designer finds difficult to distinguish. The topology will be important for
our refined notion of robustness below.

The designer evaluates each social choice function f according to the ob-
jective

inf
π∈Π

∫
Θ

u(f(θ), θ) dπ(θ), (1)

where Π is a nonempty subset of ∆(Θ) called the ambiguity set. We take an
infimum rather than a minimum because we have not made assumptions on Π

to guarantee the existence of a minimizer.5 In a maxmin design problem, the
designer maximizes the objective in (1) over a feasible set F of social choice
functions. For example, in a standard adverse selection problem, the state θ is
the type profile of the agents and the set F contains all social choice functions
satisfying incentive compatibility and participation constraints. Our abstract
formulation takes F as a primitive; we do not explicitly model any agents
other than the designer. In summary, a maxmin design problem is represented
by a tuple (Θ, X, u,Π,F).

The designer’s objective in (1) depends on the social choice function f only
through the induced value function vf , defined by vf (θ) = u(f(θ), θ) for each θ

in Θ. The function vf specifies the designer’s utility in each state. Therefore,
the designer’s problem can be reduced to directly choosing among induced
value functions.6

4Here we adopt the terminology of mechanism design. In the language of decision theory,
the designer is the decision-maker; decisions are consequences; and social choice functions
are Anscombe–Aumann acts.

5To be sure, if u is state-independent, then this objective also has a Gilboa and Schmeidler
(1989) representation as a minimum over a set of finitely additive probability measures. Let
Π′ denote the closed convex hull of Π in the space of finitely additive probability measures,
endowed with the topology of setwise convergence. For any simple social choice function f ,
the infimum over Π′ is achieved and the minimum value agrees with the infimum in (1).

6For the axiomatizations in Section 5, we consider the designer’s primitive preferences
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Formally, we reduce a maxmin design problem to a triple (Θ,Π,V), where V
is a nonempty subset of B(Θ), the space of bounded, measurable real-valued
functions on Θ. Given a value function v in B(Θ) and a prior π in ∆(Θ),
let ⟨v, π⟩ denote the integral of v with respect to π. The designer therefore
maximizes over V the objective

WΠ(v) = inf
π∈Π

⟨v, π⟩. (2)

We call WΠ(v) the designer’s payoff guarantee from v over Π. This guar-
antee is the worst-case expected payoff from value function v over all priors
in the ambiguity set Π. The solution set of the maxmin design problem is
argmaxv∈V WΠ(v). A social choice function (or mechanism) that induces a
value function in this solution set is maxmin optimal with respect to the am-
biguity set Π.

2.2 Robustness

Now we state our refined notion of robustness. In the space ∆(Θ), a sequence
(πn) weakly converges to π if ⟨h, πn⟩ → ⟨h, π⟩ for each bounded, continuous
function h : Θ → R. Crucially, weak convergence in ∆(Θ) reflects the topology
on the state space Θ. For example, a sequence (δθn) of unit masses weakly
converges to the unit mass δθ if and only if the sequence (θn) converges to θ

in the space Θ.7 Unless otherwise indicated, the topology on ∆(Θ) is assumed
to be the topology of weak convergence. In ∆(Θ), convergence refers to weak
convergence.

Definition 1 (Robustness). Let Π be a nonempty subset of ∆(Θ).

1. Given v in B(Θ), the payoff guarantee from v over Π is robust if for every
sequence (πn) in ∆(Θ) that converges to a prior in the closure of Π,

lim inf
n

⟨v, πn⟩ ≥ WΠ(v). (3)

over Anscombe–Aumann acts rather than her induced preferences over value functions.
7Given θ in Θ, the unit mass δθ in ∆(Θ) is defined by δθ(A) = 1 if θ is in A and δθ(A) = 0

otherwise.
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2. The set Π is globally robust if for each v in B(Θ), the payoff guarantee
from v over Π is robust.

In words, the payoff guarantee from a value function over an ambiguity set
is robust if the expected payoff from the value function approximately satisfies
the guarantee at priors near the ambiguity set (in the weak topology). The
inequality in (3) can be violated only if infinitely many of the priors in the
sequence (πn) are outside Π. In particular, if Π = ∆(Θ), then there are no
priors outside Π, so the ambiguity set ∆(Θ) is globally robust.

The weak topology on ∆(Θ) determines which priors are “near” the ambi-
guity set. For example, the discrete probability measures π = p1δθ1+· · ·+pnδθn

and π′ = p′1δθ′1 + · · · + p′nδθ′n are close in the weak topology if for each i, the
difference |pi − p′i| is small, and the states θi and θ′i are close according to the
topology on Θ. The topology on Θ reflects which states the designer finds diffi-
cult to distinguish. If there are certain states that the designer can confidently
distinguish from all other states, this can be represented by a topology under
which these states are isolated points. In the applications that we consider
below, the state space Θ has a natural topology without isolated points.

Remark 1 (Robustness in discrete models). Even in discrete models, our
notion of robustness has bite. For example, consider a binary model in which
a buyer’s valuation is assumed to be either θL = 1 or θH = 2. Unless the
designer can confidently distinguish between the valuations 2 and 2.001, say,
then it is natural to view θL and θH as points in a continuous subset Θ of
the real line, with the usual topology. In this case, robustness will take into
consideration small perturbations of θL and θH , even if the ambiguity set
contains only priors that concentrate on {θL, θH}.

If a designer is seeking assurance against distributional misspecification, an
alternative approach is to enlarge the ambiguity set. But unless the ambiguity
set is enlarged to the full space ∆(Θ) (in which case payoff guarantees are
often trivial), there will generally still be priors just outside the ambiguity set.
The designer may be concerned if the expected payoff from a mechanism drops
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far below its payoff guarantee at those nearby priors.8 If the payoff guarantee
is robust, then the designer can be assured that the guarantee will not drop
dramatically if the ambiguity set is enlarged slightly further. We will show
below that our notion of robustness generally depends on the “richness” of the
ambiguity set, not its size.

3 Robustness in applications

In this section, we give examples from the literature of maxmin-optimal mech-
anisms that perform very poorly if some prior in the ambiguity set is slightly
perturbed. Motivated by these examples, we then establish preliminary results
about our robustness notion.

3.1 Non-robustness of maxmin-optimal mechanisms

We consider monopoly pricing, Bayesian persuasion, and delegated project
choice. In each case, there is a simple maxmin-optimal mechanism with respect
to a particular ambiguity set, but this mechanism’s payoff guarantee is not
robust.

Monopoly pricing In the robust monopoly pricing problems studied in
Bergemann and Schlag (2008) and Carroll (2017), the payoff guarantee from
the maxmin-optimal mechanism sometimes fails to be robust, as we discuss in
Section 6 and Section 4, respectively. Here we formalize the simple monopoly
pricing problem from the introduction. The state θ ∈ Θ = R+ is the buyer’s
valuation for the good. The ambiguity set Π contains all priors with median λ.9

The maxmin solution is the posted price p∗ = λ. At this price, the good is sold
if and only if the buyer’s valuation is at least λ.10 The induced value function

8Recall that the maxmin representation does not express different levels of confidence in
different priors in the ambiguity set; see Remark 6 for a discussion of variational preferences,
which can express different confidence in different priors.

9Formally, a prior π is in Π if and only if Pπ(θ ≤ λ) ≥ 1/2 and Pπ(θ ≥ λ) ≥ 1/2.
10We assume that ties are broken in the designer’s favor, as is standard.
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Figure 1. Non-robust payoff guarantees: posted price (left) and KG experiment
(right)

v∗λ is shown in the left panel of Figure 1. The payoff guarantee WΠ(v
∗
λ) equals

λ/2. This worst-case payoff from v∗λ is achieved at the prior π = δ0/2+ δλ/2.11

These two point masses are indicated on the plot. The payoff guarantee from
v∗λ is not robust. If the prior π is perturbed to πε = δ0/2 + δλ−ε/2, for any
ε > 0, then the seller’s expected revenue drops to 0.

Persuasion Consider Hu and Weng’s (2021) maxmin version of the persua-
sion problem in Kamenica and Gentzkow (2011).12 The sender commits to
a Blackwell experiment about a binary fundamental ω ∈ Ω = {0, 1}. The
receiver observes the realization of the experiment and chooses a binary action
a ∈ {0, 1}. Payoffs for the sender and receiver are given by uS(a, ω) = a and
uR(a, ω) = −(a − ω)2. The sender is uncertain of the receiver’s belief over
Ω. Thus, the state θ ∈ Θ = [0, 1] is the receiver’s belief, i.e., the probability
assigned to ω = 1. The ambiguity set Π contains all priors with fixed mean
µ that are supported on the interval [α, β], where 0 < α < µ < β ≤ 1 and
α < 1/2. The interpretation is that the sender and receiver initially have
common belief µ, but the sender is uncertain of what additional information

11This worst-case payoff is achieved at any prior in Π that assigns probability 1/2 to the
set [λ,∞).

12We describe a special case of Hu and Weng’s (2021) analysis. Kosterina (2022) studies
a maxmin version of a continuous persuasion problem.
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the receiver gets. The sender knows that the receiver’s belief remains in the
interval [α, β].

Hu and Weng (2021) show that if µ is sufficiently close to α, then a maxmin
solution is the KG α-experiment, i.e., the binary experiment defined by the
property that belief α is split between 0 and 1/2.13 This experiment induces
the value function v∗α shown in the right panel of Figure 1. The probability of
the “high” realization of the experiment is affine in θ. This realization induces
the receiver to choose action a = 1 if and only if θ ≥ α. The expected payoff
from v∗α is constant over Π, but the payoff guarantee from v∗α over Π is not
robust. Consider the prior π = pδα + (1 − p)δβ, where pα + (1 − p)β = µ.
These two point masses are indicated on the plot. The prior π is in Π, but if
π is perturbed to πε = pδα−ε + (1− p)δβ, for any ε in (0, α), then the sender’s
expected utility drops by 2αp.

Project choice Consider Guo and Shmaya’s (2023) maxmin version of the
delegated project choice problem in Armstrong and Vickers (2010). There
are two players: a principal and an agent. The principal must select a feasible
project. Each project is represented by a pair u = (uA, uP ) ∈ R2 indicating the
agent’s and principal’s respective payoffs. Payoffs are normalized relative to
the status quo (0, 0). The agent privately knows the set A of available projects.
The principal’s loss from project u in “state” A is her regret maxu′∈A∪{(0,0)} u

′
P−

uP .
The agent can propose a project u from A ∪ {(0, 0)}.14 The principal

commits to a mechanism α : R2 → [0, 1]. Under mechanism α, the principal
adopts proposal u with probability α(u). With complementary probability, the
principal keeps the status quo (0, 0). The principal evaluates each mechanism
according to its worst-case regret over all finite sets A ⊂ [

¯
uA, 1]× [0, 1], where

¯
uA is a fixed parameter in [0, 1]. The optimal regret guarantee is R = (1 −

13See Proposition 3 (p. 928) and Proposition 4 (p. 930). Further, this is the unique
maxmin solution if α < β ≤ 1/2 or α < 1− β < 1/2 < β.

14It is assumed that it is infeasible for the agent to propose a project outside A∪{(0, 0)}.
The single-proposal protocol is the simplest case considered in Guo and Shmaya (2023).
They also solve the case of multiple proposals.
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¯
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1−R

1

uA

uP

Figure 2. Worst-case prior under project choice mechanism

¯
uA)/(2−

¯
uA). This guarantee is achieved by the following mechanism, which

is illustrated in Figure 2. A project u is top-tier if uP ≥ 1 − R. If the agent
proposes a top-tier project (in the dark shaded region), then the principal
adopts the proposal with certainty. Any other proposal u (in the light shaded
region) is adopted with probability

¯
uA/uA. If the agent proposes a project

that is not top-tier, then his expected utility is exactly
¯
uA. Thus, the agent

finds it optimal to propose some top-tier project if any are feasible.15

The regret guarantee from the proposed mechanism is not robust. Consider
the set A = {(

¯
uA, 1), (1, 0)} marked on the graph. In state A, it is optimal for

the agent to propose the top-tier project (
¯
uA, 1), so the principal’s regret is 0.

If the set A is perturbed to Aε = {(
¯
uA − ε, 1), (1, 0)}, for any ε > 0, then the

agent proposes project (1, 0), and the principal’s regret jumps up to 1, which
is strictly worse than the regret guarantee of R.

15It is assumed that the principal can select the agent’s best response to each mechanism.
To derive this payoff guarantee, observe that if some top-tier project is feasible, then the
principal’s regret is at most R (from adopting a suboptimal top-tier project). If no top-tier
project is feasible, then the principal’s regret is at most (1−

¯
uA)(1−R) (from adopting the

status quo). By the definition of R, these bounds agree.
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3.2 Disciplining ambiguity sets

In the above examples and in most of the distributionally robust mechanism
design literature, maxmin-optimal mechanisms are derived for ambiguity sets
in some special parametric family. Here we show that essentially any Bayesian
optimal mechanism is maxmin optimal with respect to some non-singleton
ambiguity set defined by a simple inequality. Call a prior nondegenerate if it
is not equal to a unit mass.

Proposition 1 (Bayesian solutions are maxmin optimal)
Fix V ⊂ B(Θ). Let v0 be a value function in V and let π0 be a nondegenerate
prior in ∆(Θ). If v0 is in argmaxv∈V ⟨v, π0⟩, then v0 is in argmaxv∈V WΠ0(v),
where Π0 is the non-singleton ambiguity set defined by

Π0 = {π ∈ ∆(Θ) : ⟨v0, π⟩ ≥ ⟨v0, π0⟩} .

Proof. For any v in V , we have

WΠ0(v) ≤ ⟨v, π0⟩ ≤ ⟨v0, π0⟩ = WΠ0(v0),

where the first inequality holds because π0 is in Π0; the second inequality holds
because v0 is in argmaxv∈V⟨v, π0⟩; and the equality holds by the definition
of Π0.16 We check that Π0 is not a singleton. Choose θ in Θ such that
v(θ) ≥ ⟨v0, π0⟩. Since ⟨v0, ·⟩ is linear, it follows that [π0, δθ] ⊂ Π0. The interval
[π0, δθ] is nondegenerate because π0 ̸= δθ.

Using the construction in Proposition 1, the ambiguity set can be tailored
to essentially any desired Bayesian-optimal mechanism. Moreover, it may not
be apparent that the ambiguity set has been constructed in this way. For
example, in the monopoly pricing problem, the Bayesian solution under the
prior δ0/2 + δλ/2 is a posted price of λ. The associated ambiguity set Π0

from Proposition 1 consists of all distributions with median at least λ. This
statistical constraint does not appear related to a posted price. Our takeaway

16The same argument goes through if Π0 is replaced with any subset Π′
0 of Π0 that

contains π0.
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is that the simplicity of a derived optimal mechanism cannot itself justify the
form of the ambiguity set. The motivation for the ambiguity set must be
external to the model.

3.3 Continuous value functions and robustness

The examples in Section 3.1 illustrate how discrete choices by an agent can
induce discontinuities in the value function, which can in turn lead to non-
robustness. Here, we relate the continuity of a value function to the robustness
of its payoff guarantee. For any function v : Θ → R, let lsc v denote the lower
semicontinuous envelope of v, i.e., the pointwise greatest lower semicontinuous
function that is pointwise smaller than v. Geometrically, the epigraph of lsc v
is the closure of the epigraph of v.

Proposition 2 (Robustness and continuity)
Let v be a value function in B(Θ).

1. The payoff guarantee from v over Π is robust for every ambiguity set Π
if and only if v is continuous.

2. The payoff guarantee from v over Π is robust for every closed ambiguity
set Π if and only if v is lower semicontinuous.

3. Given a prior π0 in ∆(Θ), the payoff guarantee from v over the singleton
{π0} is robust if and only if ⟨v, π0⟩ = ⟨lsc v, π0⟩.

The proof of Proposition 2 uses the portmanteau theorem. If a value func-
tion v is continuous (respectively, lower semicontinuous), then by the port-
manteau theorem, the map ⟨v, ·⟩ on ∆(Θ) is continuous (respectively, lower
semicontinuous). If ⟨v, ·⟩ is continuous, then perturbing any prior in the am-
biguity set has a small effect on the expectation of v, so the payoff guarantee
from v over any ambiguity set is robust. If ⟨v, ·⟩ is lower semicontinuous, then
the expectation of v can jump down, but not up, at the limit of a sequence
of priors. Therefore, the robustness inequality (3) cannot be violated by any
sequence (πn) converging to a prior in Π. This implies robustness if Π is closed.
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Simple maxmin-optimal mechanisms such as posted prices can induce value
functions that are discontinuous. If a value function is discontinuous, then
the robustness of its payoff guarantee over an ambiguity set depends on the
structure of the ambiguity set.

The last part of Proposition 2 considers subjective expected utility, which
corresponds to maxmin expected utility with a singleton ambiguity set. The
expected payoff from v under prior π0 is robust if and only if π0 puts zero
probability on the set of states at which lsc v lies strictly below v. (If those
states are slightly perturbed, the payoff from v can jump down.) We conclude
that if a value function has at most countably many discontinuities, then its
expected payoff under any continuous prior is robust.

4 Classification of ambiguity sets

In this section, we identify which commonly used ambiguity sets are globally
robust and which are not.

4.1 Ambiguity sets that are globally robust

We formally define standard ambiguity sets that will prove to be globally
robust.

Moment sets When the state is a real number, it is common to seek a
payoff guarantee over all distributions with specified mean and variance; see
Scarf (1958) for a classical application to an inventory problem and Azar and
Micali (2012), Auster (2018), Bachrach et al. (2022) and Carrasco et al. (2018,
2019) for applications to auctions.

We define moment restrictions for priors on the arbitrary Polish space Θ.
For any measurable function g : Θ → Rm and any subset Y of Rm, let

M(g, Y ) = {π ∈ ∆(Θ) : Eθ∼π[g(θ)] ∈ Y } .

Whenever we constrain the expectation Eθ∼π[g(θ)], we are implicitly requiring
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integrability: Eθ∼π [|gj(θ)|] < ∞ for each j = 1, . . . ,m. For any prior π, the
expectation Eθ∼π[g(θ)] lies in conv g(Θ), the convex hull of the image of g.
Thus, M(g, Y ) = M(g, Y ∩ conv g(Θ)) for any g and Y .

We are interested in restrictions on continuous moment functions. Even
if g is continuous, a moment set M(g, Y ) can encode a restriction on a dis-
continuous moment function. For example, with Θ = R, let g(θ) = (θ − θ0)

2

and Y = (−∞, 0]. Then M(g, Y ) equals {δθ0}, which should not count as a
continuous moment set. The problem here is that Y does not contain any
points in the relative interior of conv g(Θ). We impose conditions on Y and g

to rule out pathological examples of this form.
A subset Y of conv g(Θ) is uniformly g-interior if there exists δ > 0 such

that Y δ ∩ aff g(Θ) ⊂ conv g(Θ), where Y δ = {y′ ∈ Rm : infy∈Y ∥y − y′∥ ≤ δ}.
In Appendix A.3, we show that our results go through with a weaker interiority
condition.17 An ambiguity set Π is a continuous moment set if Π = M(g, Y )

for some dimension m ≥ 1, some continuous function g : Θ → Rm, and some
subset Y of Rm such that Y ∩ conv g(Θ) is uniformly g-interior.

Metric balls It is natural to seek a payoff guarantee over all distributions
in a ball around some reference prior; Pinar and Kizilkale (2017) take this
approach in a monopoly screening problem. Given a function D : ∆(Θ) ×
∆(Θ) → [0,∞], radius r > 0, and prior π0, let

BD(π0, r) = {π ∈ ∆(Θ) : D(π0, π) ≤ r}.

We consider two standard metrics D on ∆(Θ). To define these metrics, we
assume that a compatible metric d on Θ has been chosen.18

The Wasserstein metric W is defined by19

W (µ, ν) = inf
γ
E(θ,θ′)∼γ [d(θ, θ

′)] ,

17The weaker condition is satisfied by every moment set we have come across in applica-
tions; see Appendix B.3 for some examples.

18That is, the metric d is complete and induces the topology on Θ.
19If d is not bounded, then W can take the value ∞, so technically it is not a metric.
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where the infimum is over all probability measures γ in ∆(Θ×Θ) with marg1 γ =

µ and marg2 γ = ν. Thus, W (µ, ν) is the infimal expected moving distance
when transporting mass from µ to ν.

The Prokhorov metric P is defined by

P (µ, ν) = inf{ε : µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε, ∀A ∈ B(Θ)},

where Aε = {θ′ ∈ Θ : infθ∈A d(θ, θ′) ≤ ε} and B(Θ) is the Borel σ-algebra on
Θ. The Prokhorov metric induces the weak topology on ∆(Θ).

Theorem 1 (Globally robust)
Continuous moment sets, Wasserstein balls, and Prokhorov balls are globally
robust.

If the designer uses an ambiguity set taking one of these forms, then she
is assured that whichever decision environment she faces and whichever social
choice function she implements, the associated payoff guarantee will be robust.

Remark 2 (Other metrics). In the proof, we show that any D-ball is robust,
provided that D is a metric that induces the weak topology on ∆(Θ) and is
convex in each of its arguments (which holds if D is induced by a norm).

Remark 3 (Continuous value functions). Consider a continuous value func-
tion v0 that is Bayesian optimal with respect to a nondegenerate prior π0.
Proposition 1 constructs an ambiguity set Π0 such that v0 is maxmin optimal
with respect to Π0. This set Π0 is actually the moment set M(v0, Y ) with
Y = [⟨v0, π0⟩,∞). Provided that π0 does not concentrate on argmaxθ∈Θ v0(θ),
this set is a continuous moment set, and hence is robust by Theorem 1.

To prove Theorem 1, we show that any ambiguity set Π taking one of the
specified forms has the following richness property. Consider a sequence (πn)

of priors outside Π that converges to a prior in the closure of Π. We show that
for some sequence (εn) converging to 0, each prior πn can be modified with
probability εn to get a prior inside Π. These modifications have a vanishing
effect on the expectation of any bounded, measurable value function v, so the
robustness inequality (3) must hold.
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We illustrate these modifications through the monopoly pricing example
in Section 3.1. Here, let Π contain all priors over R+ with mean λ/2. Let
π = δ0/2 + δλ/2. Note that π is in Π. Let (θn) be a strictly increasing
sequence that converges to λ. For each n, let πn = δ0/2+ δθn/2. The sequence
(πn) converges to π, but each πn is outside Π. For each n, the prior πn can be
modified with probability εn = (1/2)(λ − θn)/(λ + 1 − θn) to form the prior
π′
n = δ0/2 + (1/2− εn)δθn + εnδλ+1. This prior π′

n has mean λ/2 and hence is
in Π. Note that εn ↓ 0. On the other hand, let Π′ contain all priors over R+

with median λ. The prior π is also in Π, but πn cannot be modified with small
probability to get a prior in Π′. If πn is modified with probability strictly less
than 1/2, then the median of the resulting distribution will still be strictly
below λ.

4.2 Ambiguity sets that are not globally robust

Here, we formally define standard ambiguity sets that will prove not to be
globally robust.

• A probability set is defined by

P (A,α, β) = {π ∈ ∆(Θ) : α ≤ π(A) ≤ β},

for some measurable proper subset A of Θ and some α, β ∈ [0, 1] with
α ≤ β. In particular P (A, 1, 1) is the support set that contains all priors
π with π(A) = 1. A support set is used in the project choice problem
of Guo and Shmaya (2023) and in the monopoly pricing problem of
Bergemann and Schlag (2008).

• A support–moment set is defined by

M(S; g, Y ) = {π ∈ ∆(Θ) : π(S) = 1 and Eθ∼π[g(θ)] ∈ Y } ,

for some measurable proper subset S of Θ, some continuous function
g : Θ → Rm, and some subset Y of Rm that intersects the relative interior
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of conv g(S). Support–moment ambiguity sets have been used in robust
versions of the multi-good monopoly problem (Che and Zhong, 2021)
and auction design (Bachrach et al., 2022).

• Given priors µ, ν ∈ ∆(Θ), write µ ≪ ν if µ is absolutely continuous
with respect to ν. The relative entropy (Kullback–Leibler divergence) is
defined by

R(µ ∥ ν) =

⟨µ, log(dµ
dν
)⟩ if µ ≪ ν,

∞ otherwise,

where dµ
dν

denotes the Radon–Nikodym derivative of µ with respect to
ν. The relative entropy ball of radius r > 0 about the reference prior ν

contains all priors µ satisfying R(µ ∥ ν) ≤ r. Relative entropy balls are
used in a variant of multiplier preferences called constraint preferences
(Hansen and Sargent, 2001).

• Suppose that Θ =
∏k

j=1Θj, for some Polish spaces Θ1, . . . ,Θk. A
marginal set is defined by

Γ((πj)j∈J) = {π ∈ ∆(Θ) : margj π = πj for all j ∈ J},

for some nonempty subset J of {1, . . . , k} and some probability measures
πj ∈ ∆(Θj) for each j in J . Carroll (2017) studies a robust version of the
multi-good monopoly problem in which the ambiguity set is the marginal
set that fixes the valuation distribution for each good.20

• Suppose that Θ is a convex subset of R. For any π in ∆(Θ) and α ∈ [0, 1],
let Qα(π) denote the set of α-quantiles of π.21 A quantile set is defined
by

Q((xj, αj)
m
j=1) = {π ∈ ∆(Θ) : xj ∈ Qαj

(π) for all j = 1, . . . ,m},
20Carroll (2017) shows that it is optimal to screen the agent independently along each di-

mension. Thus, posting separate prices for each good is maxmin optimal. This mechanism’s
payoff guarantee is not robust if the marginal valuation distribution for any good has an
atom at the price posted for that good; see Proposition 2.3.

21That is, Qα(π) contains all x for which π(−∞, x] ≥ α and π[x,∞) ≥ 1− α.
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for some positive integer m and some x1, . . . , xm ∈ R and α1, . . . , αm ∈
[0, 1] satisfying inf Θ < x1 < · · · < xm < supΘ and α1 < · · · < αm.22

The monopoly pricing example in Section 3.1 uses an ambiguity set of
this form.

Some topological assumptions on the state space Θ are needed to show
that these ambiguity sets are not globally robust. Indeed, if Θ has the discrete
topology, then all ambiguity sets are globally robust.23 The space Θ is perfect
if it has no isolated points. The space Θ is connected if it cannot be expressed
as a disjoint union of two nonempty open sets. If Θ is connected, then it is
perfect.

Theorem 2 (Not globally robust)
Nonempty, proper subsets of ∆(Θ) taking the following forms are not globally
robust:

1. probability sets and support–moment sets, provided that Θ is connected;

2. singletons, relative entropy balls, and total variation balls, provided that
Θ is perfect;

3. marginal sets, provided that Θ is a product of perfect sets;

4. quantile sets, provided that Θ is a convex subset of R.

Suppose that the designer uses an ambiguity set taking one of these forms.
Unless she can confidently rule out arbitrarily small state perturbations, she
must independently check that the payoff guarantee from her proposed mech-
anism is robust.

The ambiguity sets in Theorem 2 do not reflect the topology on the state
space. Consider an ambiguity set Π taking one of these forms. In the proof,
we construct a set C that is assigned low probability under every prior in Π.
We then construct a sequence (πn) of priors concentrating on C that converges
to a prior in Π.

22Here, inf Θ ∈ [−∞,∞) and supΘ ∈ (−∞,∞].
23This does not mean that robustness has no bite in models with discrete types; see

Remark 1.
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5 Behavioral foundation for robustness

In this section, we axiomatize our notions of robustness and global robustness.

5.1 Maxmin preferences over acts

First, we formally define acts in a way that is suitable for the axiomatizations.
(Here, we use the decision theory terminology of “acts” rather than “social
choice functions.”) Let ∆0(X) denote the set of simple lotteries on the decision
space X. An act is a measurable simple function f : Θ → ∆0(X). Let F0

denote the set of acts. We identify each lottery in ∆0(X) with the associated
constant act.

A utility function u : X × Θ → R is state-measurable (state-continuous,
state-bounded) if, for each fixed x in X, the function u(x, ·) is measurable
(continuous, bounded) on Θ. We extend u linearly to the domain ∆0(X) ×
Θ. Given a state-measurable utility function u, each act f in F0 induces a
measurable value function vf : Θ → R defined by vf (θ) = u(f(θ), θ). Let
F0(u) denote the set of acts f for which vf is bounded. If u is state-bounded
(in particular, if u is state-independent), then F0(u) = F0.

Given a state-measurable utility function u and a nonempty subset Π of
∆(Θ), define the maxmin preference relation ≿(u,Π) on F0(u) by

f ≿(u,Π) g ⇐⇒ WΠ(vf ) ≥ WΠ(vg),

where WΠ is defined in (2). Note that the value functions vf and vg depend
on u.

5.2 Robustness of payoff guarantees

We axiomatize the robustness of a payoff guarantee. For this axiomatization,
we allow for state-dependent utility. We first define a notion of limit for acts.

Definition 2. Given acts f, g ∈ F0, act g is a graphical limit of f if for each
state θ in Θ, there exists a sequence (θn) converging to θ such that f(θn) = g(θ)
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for all n.

Each act f can be expressed as
∑m

j=1 xjAj, for some x1, . . . , xm ∈ ∆0(X)

and some measurable partition (A1, . . . , Am) of Θ; this means that f(θ) = xj if
θ is in Aj. The graphical limits of f are precisely the acts of the form

∑m
j=1 xjA

′
j

for some measurable partition (A′
1, . . . , A

′
m) of Θ satisfying A′

j ⊂ Āj for each
j in J .24 If Θ is connected, then each nonconstant act f has a graphical limit
g with g ̸= f .

Theorem 3 (Robustness)
Let ≿ = ≿(u,Π) for some state-continuous utility function u and some nonempty
closed subset Π of ∆(Θ). For each act f in F0(u), the following are equivalent:

1. the payoff guarantee from vf over Π is robust;

2. for every g in F0, if g is a graphical limit of f , then g ≿ f .

In this equivalence, condition 1 concerns the payoff from f at priors near
Π; condition 2 concerns the preference between f and nearby acts. To build
intuition, recall the robust monopoly pricing problem illustrated in the left
panel of Figure 1. There, the ambiguity set Π contains all distributions with
median λ. Let f (respectively, g) denote the act under which the good is sold
at price λ if θ ≥ λ (respectively, θ > λ) and otherwise the good is not sold. Act
f induces the value function vf = v∗λ and is maxmin optimal, but the payoff
guarantee from vf over Π is not robust, as we showed in Section 3.1. Act g

is a graphical limit of f and it induces the value function vg, which agrees
with v∗λ in all states except θ = λ, where vg(λ) = 0. Thus, WΠ(vf ) = λ/2

and WΠ(vg) = 0, so f is strictly preferred to g, contrary to condition 2 of
Theorem 3.

It can be shown in general that for each graphical limit g of an act f ,
we have vg ≥ lsc vf , with equality for some graphical limit of f . Therefore,
to prove Theorem 3, it suffices to show that for any act f and any closed
ambiguity set Π, the payoff guarantee from vf over Π is robust if and only if

24Here, Āj denotes the closure of Aj . In this definition, we allow elements of the partition
(A′

1, . . . , A
′
m) to be empty.
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WΠ(vf ) = WΠ(lsc vf ). Intuitively, in each state θ, the value lsc vf (θ) reflects
the lowest payoffs from f in states arbitrarily close to θ. The payoff guarantee
from vf is robust if and only if these low payoffs in nearby states are already
taken into consideration when evaluating f .

Remark 4 (Continuity with respect to graphical limits). Condition 2 of The-
orem 3 is an upper semicontinuity axiom. One might expect a full continuity
axiom requiring indifference between an act and any of its graphical limits.
But this property is too restrictive. If Θ is perfect, then Θ can be parti-
tioned into two dense sets. For any decisions x, y ∈ X, consider the act that
equals x on one such dense set and y on the other. The constant acts x and y

are each graphical limits of this act. Therefore, full continuity would require
indifference between x and y, and hence over all of X.

5.3 Global robustness of ambiguity sets

We now axiomatize global robustness of an ambiguity set, under the assump-
tion that the utility function is state-independent.25 We introduce continuity
axioms inspired by Γ-convergence. In the analysis of minimization problems,
Γ-convergence has proven to be the most useful mode of convergence of real-
valued functions (Braides, 2002, pp. 1–2). Here we define an analogous notion
of Γ-convergence for acts.

We define Γ-convergence with respect to a relation ≿ on F0 that is mono-
tone in the following sense: for all f, g ∈ F0, if f(θ) ≿ g(θ) for all θ in
Θ, then f ≿ g. The maxmin preference relation ≿(u,Π) is monotone for any
state-independent utility function u and any ambiguity set Π.

Definition 3. Let ≿ be a monotone relation on F0. Given acts g, f1, f2, . . . ∈
F0, act g is a Γ-limit of the sequence (fn) if for each state θ, the following
hold:

25With maxmin preferences, state-dependent utility creates difficulties because the class
of value functions induced by acts may not be well-behaved. Hill (2019) avoids this difficulty
by working with a finite state space.
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1. for some sequence (θn) converging to θ, there exists m such that fn(θn) =
g(θ) for all n ≥ m.

2. for any sequence (θn) converging to θ and any h in F0 with g(θ) ≻ h,
there exists m such that fn(θn) ≻ h for all n ≥ m.

We say that an act g is a Γ-limit of an act f if g is a Γ-limit of the constant
sequence (fn) with fn = f for each n. A Γ-limit is defined relative to a relation
≿ on F0. The relation ≿ should always be clear from context. Intuitively,
part 2 of Definition 3 requires that g(θ) is the worst decision that is taken in
states arbitrarily close to state θ arbitrarily far along the sequence (fn). The
worst decision is selected because this definition is tailored to minimization
problems. A sequence (fn) can have more than one Γ-limit, but all Γ-limits
must be in the same indifference class.

Given a relation ≿ on F0, a sequence (fn) in F0 is bounded if there exist
constant acts x, y ∈ ∆0(X) such that x ≿ fn ≿ y for all n. Boundedness
is defined with respect to a relation ≿. The relation ≿ should be clear from
context. We next state two continuity axioms for a monotone relation ≿ on
F0.

Axiom 1 (Weak upper Γ-semicontinuity). For any f, g ∈ F0, if g is a Γ-limit
of f , then g ≿ f .

Axiom 2 (Lower Γ-semicontinuity). For any bounded sequence (fn) in F0

and any g, h ∈ F0, if h ≿ fn, for all n, and g is a Γ-limit of (fn), then h ≿ g.

Weak upper Γ-semicontinuity requires that each upper contour set of ≿ is
closed under Γ-limits of each act (i.e., each constant sequence of acts). Lower
Γ-semicontinuity requires that each lower contour set of ≿ is closed under
Γ-limits of each bounded sequence of acts. It can be shown that a monotone
relation ≿ is weakly upper Γ-semicontinuous if and only if ≿ satisfies condition
2 in Theorem 3 for each act f in F0.

A subset Π of ∆(Θ) is tight if for every positive ε there exists a compact
subset K of Θ such that for every π in Π, we have π(K) ≥ 1 − ε. If Θ is
compact, then every subset of ∆(Θ) is trivially tight. Given acts f, g ∈ F0
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Figure 3. Failure of lower Γ-semicontinuity

and a subset A of Θ, let fAg denote the act that agrees with f on A and
with g on Θ \A. Now we give an axiom for a relation ≿ that will characterize
tightness.

Axiom 3 (Tightness). For any f, g ∈ F0 and any x ∈ ∆0(X), if f ≻ g, then
there exists a compact subset K of Θ such that fKx ≻ g and f ≻ gKx.

In words, for any strict preference relation between acts, there exists a
sufficiently large compact set K such that the strict preference is preserved if
one of the acts is replaced with a fixed decision in all states outside K.

Now we state our axiomatization of global robustness. Recall that if u is
state-independent, then F0 = F0(u), so the maxmin relation ≿(u,Π) is defined
on F0.

Theorem 4 (Global robustness)
Let ≿ = ≿(u,Π) for some nonconstant state-independent utility function u and
some nonempty subset Π of ∆(Θ). The following are equivalent:

1. Π is globally robust and tight;

2. ≿ is weakly upper Γ-semicontinuous, lower Γ-semicontinuous, and tight.

Figure 3 illustrates a failure of lower Γ-semicontinuity. Let Θ = R+. Let Π
be the set of priors that assign probability 1 to the open interval (

¯
θ, θ̄), where
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0 <
¯
θ < θ̄. This set Π is tight, as can be seen by taking the compact set

K = [
¯
θ, θ̄]. Let (θn) be a sequence converging downward to

¯
θ. Fix a price p.

Let fn (respectively, g) specify that the good is sold at price p if and only if
θ ≥ θn (respectively, θ >

¯
θ). Thus, g is a Γ-limit of the sequence (fn). The

corresponding value functions vfn and vg are plotted in Figure 3. Note that vg
is lower semicontinuous even though each vfn is not. The payoff guarantee over
Π jumps up at this Γ-limit because the undesirable consequence—no sale—
escapes the set Π, which is not closed.

Remark 5 (Γ-continuity). Theorem 4 requires weak upper Γ-semicontinuity
but full lower Γ-semicontinuity. This asymmetry arises because Γ-limits are
asymmetric and favor downward jumps. Appendix B.2 gives an alternative ax-
iomatization in which weak upper Γ-semicontinuity is strengthened to upper
Γ-semicontinuity, and global robustness is strengthened to uniform robustness.
Uniform robustness requires the inequality (3) to hold uniformly over bounded
sets of value functions. Moreover, the ambiguity sets in Theorem 1 are uni-
formly robust, as we show in the proof.

Remark 6 (Monotone continuity and variational preferences). In Appendix B.1,
we show that weak upper Γ-continuity is incompatible with Arrow’s (1970)
monotone continuity axiom. This provides a direct way to check that cer-
tain classes of preferences violate weak upper Γ-semicontinuity. For example,
Maccheroni et al. (2006, Theorem 13, pp. 1460–1461) axiomatize the subclass
of variational preferences satisfying monotone continuity. Preferences in this
subclass violate weak upper Γ-semicontinuity. This subclass includes the mul-
tiplier preferences of Hansen and Sargent (2001), which are axiomatized in
Strzalecki (2011).

Stanca (2023) is the only other paper we are aware of that provides a
behavioral foundation for a notion of robustness in a setting with a topological
state space.26 In his model, the decision space is Euclidean and the decision-
maker (DM) maximizes subjective expected utility over a menu of continuous

26Prasad (2003) gives examples of Bayesian decision problems in which the maximal payoff
is discontinuous in the prior, with respect to the weak topology.
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acts. Stanca (2023) defines such a menu to be robust if for any sequence of
priors converging to the reference prior, the DM’s maximal expected utility
converges to the DM’s maximal expected utility under the reference prior.
Crucially, the DM’s choice from the menu can vary with the prior. By contrast,
we are interested in the the designer’s payoff guarantee from a fixed mechanism
when the priors in the ambiguity set are perturbed.

6 Related literature

Our paper refines the maxmin approach to distributional robustness in eco-
nomic design.27 Carroll (2019) provides a taxonomy of different robustness
concepts.28 Some of the related literature is discussed in the main text. In
particular, Section 3.1 gives examples from the literature of mechanisms whose
payoff guarantees are not robust, and Section 4 references ambiguity sets from
the literature that are globally robust. Here, we discuss examples of maxmin
design problems in which the ambiguity set is not globally robust but the pay-
off guarantee from the maxmin-optimal mechanism is robust in at least some
cases.

In Bergemann and Schlag’s (2008) seminal paper on robust monopoly pric-
ing, the ambiguity set is a support set, which is not globally robust (by
Theorem 2). If the left endpoint of the support is high enough, then the
regret-minimizing price distribution has an atom on this left endpoint. In this
case, the policy’s payoff guarantee is not robust.29 Brooks and Du (2021a)

27There is also an extensive literature on distributional robustness in statistics and oper-
ations research; see Rahimian and Mehrotra (2022) for a survey.

28In particular, there is large literature on robustness to uncertainty about beliefs; see
Bergemann et al. (2013) for a survey. Our focus on small perturbations of the prior is
related to work on small perturbations of beliefs. Jehiel et al. (2012) and Chen et al. (2023)
require robustness only for beliefs that are close to some benchmark belief. Meyer-ter Vehn
and Morris (2011), Oury and Tercieux (2012), Oury (2015), and Chen et al. (2022) also
allow for payoff-type uncertainty.

29If the left endpoint of the support is low enough, then the regret-minimizing pricing
policy is atomless, so its payoff guarantee is robust. In Bergemann and Schlag (2011), the
payoff guarantee from the maxmin-optimal policy is robust. More recent work has explored
dynamic extensions of Bergemann and Schlag’s (2008) static framework. In the two period
model of Handel and Misra (2015), the seller updates her ambiguity set in the second period
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and Brooks and Du (2021b) study robust multi-agent auction settings with
uncertainty over the information structure,30 the value distribution, and the
equilibrium selection. In Brooks and Du (2021a), the ambiguity set restricts
the support of the common value. In Brooks and Du (2021b), the ambiguity
set restricts the mean of each agent’s private valuation distribution. In each
paper, the maxmin-optimal mechanism takes the form of a “proportional auc-
tion.” The designer’s induced value function is continuous, so the resulting
payoff guarantee is robust, by Proposition 2. In a similar set-up, Brooks and
Du (2023) derive a proportional cost-sharing mechanism as the robust solution
of a public goods problem. Their ambiguity set restricts the support of the
sum of the agents’ valuations.

Carroll (2015) studies a robust moral hazard problem. The principal knows
that certain actions are feasible, but she is uncertain about which additional
actions are feasible. Thus, the “state” is the realized set of feasible actions, and
the ambiguity set is a support set, where the support contains all supersets of
the known-action set. By Theorem 2, this ambiguity set is not globally robust.
Carroll (2015) restricts attention to contracts that specify a single mapping
from output to wages. It can be shown that the payoff guarantee from such
a contract is robust. Suppose instead that the principal could offer a menu of
wage contracts to screen the agent’s privately known feasible set. The payoff
guarantee from such a menu can be non-robust because the agent’s choice from
the menu can change when his feasible action set is perturbed.

Next, we discuss alternative notions of robustness against misspecification
of the environment.

In a nonlinear pricing setting, Madarász and Prat (2017) study the effect of
local perturbations of the type distribution. They formulate and parameterize
a notion of closeness between the true model and the designer’s misspecified

based on the buyer’s behavior in the first period. In Ilut et al. (2020), the ambiguity set is
not updated, but nature selects a new worst-case prior each period after new information is
observed. A similar updating rule is analyzed in Auster et al. (2024).

30In Hinnosaar and Kawai (2020) and Libgober and Mu (2021), the designer is also un-
certain about the agent’s information structure, but the ambiguity set comprises the whole
space.
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model. They show how a mechanism that is optimal with respect to a mis-
specified model can perform poorly under the true model, no matter how small
the misspecification. They propose an alternative mechanism that performs
well under the perturbations they consider. By contrast, we study a general
decision problem, and we seek a principled foundation for maxmin preferences
that are robust to small perturbations.

Pei and Strulovici (2024) propose a mechanism that implements social
choice functions in a way that is robust to a small risk of large preference
perturbations. They focus on uncertainty about agents’ higher order beliefs.

Finally, Cerreia-Vioglio et al. (2024) axiomatize a class of variational pref-
erences in which the cost function measures proximity to a fixed set of priors.31

They interpret such a cost function as providing a “protective belt” against mis-
specification.32 Unlike our paper, Cerreia-Vioglio et al. (2024) do not consider
a topology on the state space. Their cost functions infinitely penalize priors
that are not absolutely continuous with respect to one of the fixed priors.
As a result, the protective belt does not generally cover perturbations of the
prior that result from perturbations of the states in the support of the prior.
Analyzing the implications of our axioms within the framework of variational
preferences is an interesting direction for future work.

7 Conclusion

This paper refines the maxmin approach to distributionally robust mechanism
design. We argue for payoff guarantees that are approximately preserved if
the ambiguity set is slightly misspecified. Our main innovation is to take
into account the topology on the state space. As an illustration of our results,
consider a monopolist who engages a consultant to develop a new pricing mech-
anism to robustly maximize revenue. The consultant must gather some partial

31Lanzani (2024) also uses variational preferences to model misspecification. In his model,
the agent dynamically adjusts his concern for misspecification in response to observed data.

32The most tractable examples of such cost functions are Hausdorff distances to the fixed
set of priors, where the distance between priors is given by a divergence. In Hansen and
Sargent (2022), the cost function is the KL-distance to a single fixed prior.
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information about the distribution of consumer valuations. Our results offer
a justification for seeking a payoff guarantee over all distributions consistent
with the consultant’s estimates of certain moments of the consumer valua-
tion distribution, rather than over all distributions consistent with estimated
quantiles or bounds on the support.

A Main proofs

A.1 Mathematical preliminaries

Signed measures All signed measures on Θ are defined on the Borel σ-
algebra B(Θ). For any signed measure µ on Θ, define the total variation norm
∥µ∥TV by

∥µ∥TV =
1

2
sup
E∈P

∑
E∈P

|µ(E)|,

where the supremum is over all finite measurable partitions P of Θ. It can be
shown that

∥µ∥TV ≤ sup
A

|µ(A)|, (4)

where the supremum is over all sets A in B(Θ). If µ(Θ) = 0, then (4) holds
with equality (and the equality still holds if |µ(A)| is replaced with µ(A) or
−µ(A)).

By the Jordan decomposition theorem, each signed measure µ can be
uniquely expressed as µ = µ+−µ− for some nonnegative measures µ+ and µ−

that are mutually singular.33 Here, we extend the notation ⟨·, ·⟩ to integration
against signed measures. Given a measurable function v : Θ → R and a signed
measure µ on Θ, define the integral of v against µ by ⟨v, µ⟩ = ⟨v, µ+⟩−⟨v, µ−⟩,
provided that v is absolutely integrable with respect to both µ+ and µ−. The
support of µ, denoted suppµ, is defined to be the support of the associated
nonnegative measure µ+ + µ−.34

33That is, there exists Borel subset A of Θ such that µ+(A) = 0 and µ−(Θ \A) = 0.
34Recall that the support of a nonnegative measure on a Polish space is the complement

of the largest open set with measure 0 (which can be shown to exist).

29



A signed measure µ on Θ is bounded if ∥µ∥TV < ∞. A function v : Θ → R

is bounded if ∥v∥∞ := supθ∈Θ |v(θ)| < ∞. For any bounded, measurable
function v : Θ → R and any bounded signed measure µ, the integral ⟨v, µ⟩ is
well-defined and satisfies ⟨v, µ⟩ ≤ 2∥v∥∞∥µ∥TV.

Probability kernels A probability kernel on Θ is a map κ : Θ×B(Θ) → [0, 1]

such that (i) for each θ in Θ, the map A 7→ κ(θ, A) is a probability measure;
and (ii) for each A in B(Θ), the map θ 7→ κ(θ, A) is measurable. Given
a probability measure π in ∆(Θ) and probability kernel κ on Θ, define the
push-forward measure πκ in ∆(Θ) by

(πκ)(A) =

∫
Θ

κ(θ, A) dπ(θ), A ∈ B(Θ).

Given a measurable function v : Θ → R, define the function κv : Θ → R by

(κv)(θ) =

∫
Θ

v(θ′) dκθ(θ
′), θ ∈ Θ,

where κθ denotes the measure κ(θ, ·). If Θ is a finite set with n elements, then
we can represent measures as row n-vectors, functions as column n-vectors,
and kernels as n × n matrices. In this case, our notation is consistent with
matrix multiplication.

Weak convergence and transportation Let d be a compatible metric on
Θ. Let Bε(θ) = {θ′ ∈ Θ : d(θ, θ′) ≤ ε}. For any probability kernel κ, let

∥κ∥d = inf{ε : κ(θ, Bε(θ)) = 1 for all θ ∈ Θ}.

Lemma 1 (Transport kernels)
Let d be a bounded, compatible metric on Θ. Let (πn) be a sequence in ∆(Θ)

and let π be in ∆(Θ). If (πn) weakly converges to π, then the following hold:

1. there exists a sequence (κn) of probability kernels such that ∥κn∥d → 0

and ∥πn − πκn∥TV → 0;
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2. there exists a sequence (κ′
n) of probability kernels such that ∥κ′

n∥d → 0

and ∥πnκ
′
n − π∥TV → 0.

The proofs of all lemmas appear in Appendix B.

Γ-convergence of functions When analyzing minimization problems, the
most convenient mode of convergence for objective functions is Γ-convergence;
see Braides (2002) for a textbook treatment.

Definition 4 (Γ-convergence). Let X be an arbitrary metric space. Let
c, c1, c2, . . . be real-valued functions on X. The sequence (cn) Γ-converges to
c, and we write Γ-lim cn = c, if for each x in X, the following hold:

1. for every sequence (xn) converging to x, we have lim infn cn(xn) ≥ c(x);

2. for some sequence (xn) converging to x, we have lim supn cn(xn) ≤ c(x).

Recall that the map θ 7→ δθ embeds the space Θ in ∆(Θ). Under this
embedding, any bounded, measurable function v : Θ → R can be extended to
the domain ∆(Θ) via the map ⟨v, ·⟩. The portmanteau theorem says that the
topological properties of a function v on Θ transfer to its extension ⟨v, ·⟩ on
∆(Θ). Our next result says that the Γ-convergence of functions on Θ similarly
transfers to their extensions on ∆(Θ).

A sequence (vn) of real-valued functions on Θ is bounded if supn ∥vn∥∞ <

∞.

Lemma 2 (Γ-portmanteau)
Let (vn) be a bounded sequence in B(Θ). If Γ-lim vn = v, then Γ-lim ⟨vn, ·⟩ =
⟨v, ·⟩.

Recall that lsc v denotes the lower semicontinuous envelope of v. It can be
checked that Γ-limn v = lsc v. By Lemma 2, Γ-limn⟨v, ·⟩ = ⟨lsc v, ·⟩.

Convergence of acts We relate the convergence of acts to the Γ-convergence
of their induced value functions.
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Lemma 3 (Graphical limits)
Let u be state-continuous. For any act f in F0(u), there exists an act g in
F0(u) such that g is a graphical limit of f and vg = lsc vf .

Given a relation ≿ on ∆0(X), a subset F of ∆0(X) is indifference-free if
for all x, y in F , we have x ̸∼ y.

Lemma 4 (Γ-limits of acts)
Let ≿ = ≿(u,Π) for some nonconstant, state-independent utility function u and
some nonempty subset Π of ∆(Θ). Let (fn) be a sequence in F0.

(i) Suppose that ∪n{fn(θ) : θ ∈ Θ} is finite and indifference-free. If (u ◦ fn)
is Γ-convergent, then (fn) has a Γ-limit in F0.

(ii) If g in F0 is a Γ-limit of (fn), then Γ-limn u ◦ fn = u ◦ g.

A.2 Proof of Proposition 2

Let v be a value function in B(Θ).
1. First, suppose that v is continuous. Fix an ambiguity set Π. Let (πn) be

a sequence in ∆(Θ) that converges to some prior π in the closure of Π. By the
definition of the closure, we can choose a sequence (π′

n) in Π that converges to
π. By the portmanteau theorem,

lim
n

⟨v, πn⟩ = ⟨v, π⟩ = lim
n

⟨v, π′
n⟩ ≥ WΠ(v).

Thus, the payoff guarantee from v over Π is robust.
Conversely, suppose that v is discontinuous. Then for some ε > 0, there

exists a point θ in Θ and a sequence (θn) converging to θ such that either (i)
v(θn) ≥ v(θ) + ε for all n, or (ii) v(θn) ≤ v(θ) − ε for all n. If (i) holds, let
Π1 = {δθn : n ≥ 1}. In this case, the payoff guarantee from v over Π1 is not
robust because δθ is in the closure of Π1. If (ii) holds, let Π2 = {δθ}. In this
case, the payoff guarantee from v over Π2 is not robust because the sequence
(δθn) converges to δθ.
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2. First, suppose that v is lower semicontinuous. Fix a closed ambiguity
set Π. Let (πn) be a sequence in ∆(Θ) that converges to some prior π in the
closure of Π. Since Π is closed, π is in Π. By the portmanteau theorem,

lim inf
n

⟨v, πn⟩ ≥ ⟨v, π⟩ ≥ WΠ(v).

Thus, the payoff guarantee from v over Π is robust.
Conversely, suppose that v is not lower semicontinuous. Then for some

ε > 0, there exists a point θ in Θ and a sequence (θn) converging to θ such
that v(θn) ≤ v(θ)− ε for all n. The payoff guarantee from v over the singleton
{δθ} is not robust at v because the sequence (δθn) converges to δθ.

3. Fix π0 in ∆(Θ). First suppose that ⟨v, π0⟩ = ⟨lsc v, π0⟩. By Lemma 2,
Γ-limn⟨v, ·⟩ = ⟨lsc v, ·⟩, so for any sequence (πn) in ∆(Θ) that converges to π0,
we have

lim inf
n

⟨v, πn⟩ ≥ ⟨lsc v, π0⟩ = ⟨v, π0⟩.

Thus, the payoff guarantee from v over {π0} is robust.
Conversely, suppose that ⟨v, π0⟩ > ⟨lsc v, π0⟩. By Lemma 2, Γ-limn⟨v, ·⟩ =

⟨lsc v, ·⟩, so there exists a sequence (πn) in ∆(Θ) converging to π0 such that

lim sup
n

⟨v, πn⟩ ≤ ⟨lsc v, π0⟩ < ⟨v, π0⟩.

Thus, the payoff guarantee from v over {π0} is not robust.

A.3 Proof of Theorem 1

An ambiguity set Π has the total variation approximation property if for each
sequence (πn) in ∆(Θ) converging to a prior in the closure of Π and for each
ε > 0, there exists a sequence (ρ′n) in Π such that

lim sup
n

∥ρ′n − πn∥TV ≤ ε. (5)

We check that if Π has the total variation approximation property, then Π

is uniformly robust (see Appendix B.2). Let (πn) be a sequence in ∆(Θ) that
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converges to a prior in the closure of Π. Fix ε > 0. By the total variation
approximation property, we can choose a sequence (ρ′n) in Π satisfying (5).
For each v in B(Θ), we have

⟨v, πn⟩ = ⟨v, ρ′n⟩ − ⟨v, ρ′n − πn⟩

≥ WΠ(v)− 2∥v∥∞∥ρ′n − πn∥TV.

Rearranging and then taking the infimum over all v in B(Θ) with ∥v∥∞ ≤ 1,
we have

inf
v
[⟨v, πn⟩ −WΠ(v)] ≥ −2∥ρ′n − π′

n∥TV.

Take the limit infimum in n and apply (5) to get

lim inf
n

(
inf
v
[⟨v, πn⟩ −WΠ(v)]

)
≥ −2ε.

Since ε was arbitrary, we conclude that Π is uniformly robust.
We now prove that any ambiguity set taking one of the forms in the theorem

statement has the total variation approximation property. We use the following
result to deal with unbounded functions.

Lemma 5 (Unbounded moment approximation)
Let (πn) and (π′

n) be sequences in ∆(Θ) that weakly converge to the same prior
π in ∆(Θ). Let H : Θ → R+ be continuous. For each ε > 0, there exists a
sequence (ρn) in ∆(Θ) weakly converging to π such that

(i) lim supn ∥ρn − πn∥TV ≤ ε;

(ii) H is bounded on ∪n supp(ρn − π′
n);

(iii) for any continuous function h : Θ → R satisfying |h| ≤ H, we have
⟨h, ρn − π′

n⟩ → 0.

Roughly, we choose each ρn to agree with π′
n when H is very large and

with πn otherwise.
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Continuous moment sets Let Π = M(g, Y ) for some continuous function
g : Θ → Rm and some subset Y of Rm. Without loss, we may assume that
Y ⊂ conv g(Θ). Assume first that Y is uniformly g-interior, i.e., for some
δ > 0, we have Y δ ∩ aff g(Θ) ⊂ conv g(Θ). Let (πn) be a sequence in ∆(Θ)

that weakly converges to a prior π in the closure of Π. Choose a sequence (π′
n)

in Π that weakly converges to π.
Let H(θ) = ∥g(θ)∥, where ∥ · ∥ denotes the Euclidean norm on Rm. Fix

ε > 0. It follows from Lemma 5 that there exists a sequence (ρn) in ∆(Θ)

converging to π such that (i) lim supn ∥ρn − πn∥TV ≤ ε; (ii) H is bounded on
supp(ρn − π′

n) for each n; and (iii) limn⟨gj, ρn − π′
n⟩ = 0 for each j = 1, . . .m.

Each prior π′
n is in Π, so each function gj is absolutely integrable with respect

to π′
n and hence, by (ii), also with respect to ρn. We conclude from (iii) that

limn |⟨gj, ρn⟩ − ⟨gj, π′
n⟩| = 0, for each j = 1, . . . ,m.

We construct a sequence (ρ′n) in Π by modifying the sequence (ρn). For
each n, let xn = ⟨g, ρn⟩ and yn = ⟨g, π′

n⟩, and let35

zn = yn + δ
yn − xn

∥yn − xn∥
∈ B(yn, δ) ∩ aff g(Θ) ⊂ conv g(Θ). (6)

By Carathéodory’s theorem, there exists a probability measure ζn in ∆(Θ)

supported on at most m+ 1 points of Θ such that ⟨g, ζn⟩ = zn. Let

ρ′n = (1− αn)ρn + αnζn, where αn =
∥yn − xn∥

δ + ∥yn − xn∥
.

Since ∥xn − yn∥ → 0, we have αn → 0. For each n, some algebra shows that36

⟨g, ρ′n⟩ = (1− αn)xn + αnzn = yn ∈ Y, (7)

so ρ′n is in Π. For each n, the triangle inequality gives

∥ρ′n − πn∥TV ≤ αn + ∥ρn − πn∥TV,

35Here, we use the convention that 0/∥0∥ = 0. Thus, zn = yn if xn = yn.
36Here, we are extending the notation ⟨·, ·⟩ to integration of Rm-valued functions.
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so lim supn ∥ρ′n − πn∥TV ≤ ε, as desired.
Next, we prove the same conclusion under a different interiority assumption

on Y . A set Y is star g-interior if there exists a relative interior point y0 of
conv g(Θ) such that [y0, y] ⊂ Y for all y in Y . If we assume that Y is star g-
interior (rather than uniformly g-interior), then the proof above goes through
if we make a few modifications: (6) becomes

zn = y0 + δ
yn − xn

∥yn − xn∥
∈ B(y0, δ) ∩ aff g(Θ) ⊂ conv g(Θ),

and (7) becomes

⟨g, ρ′n⟩ = (1− αn)xn + αnzn = (1− αn)yn + αny0 ∈ [y0, yn] ⊂ Y.

Since the finite union of robust ambiguity sets is robust, we conclude
that M(g, Y ) is robust if g is continuous and the relevant constraint set
Y ∩ conv g(Θ) can be expressed as a finite union of sets, each of which is
uniformly g-interior or star g-interior.

Metric balls Given a compatible metric d on Θ, let Π = BW (π0, r), for
some prior π0 in ∆(Θ) and some radius r > 0. Let (πn) be a sequence in ∆(Θ)

that weakly converges to a prior π in the closure of Π. Choose a sequence (π′
n)

in Π that weakly converges to π.
Choose θ0 in Θ. Let H(θ) = d(θ0, θ). Fix ε > 0. By Lemma 5, there exists a

sequence (ρn) in ∆(Θ) converging to π such that (i) lim supn ∥ρn−πn∥TV ≤ ε,
and (ii) H is bounded on ∪n supp(ρn − π′

n). By (ii), it can be shown that
W (ρn, π

′
n) → 0.37

37Recall that a compatible metric d on Θ has been chosen. Following Bogachev (2018,
p. 109), define the Kantorovich–Rubinstein norm ∥ · ∥KR on the space of bounded signed
measures by ∥µ∥KR = supf ⟨f, µ⟩, where the supremum is over all 1-Lipschitz functions
f : Θ → R with ∥f∥∞ ≤ 1. By Bogachev (2018, 3.2.2 Theorem, p. 111), the norm ∥ ·
∥KR induces the weak topology on the space of probability measures. Using Bogachev
(2018, 3.2.7 Theorem, p. 114), it can be shown that for any priors µ, ν ∈ ∆(Θ) that both
concentrate on a subset S of Θ, we have ∥µ − ν∥KR ≤ max{diamS, 1}W (µ, ν), where
diamS = supθ,θ′∈S d(θ, θ′).

By (ii), the supremum of H over ∪n supp(ρn − π′
n) is finite. Denote this supremum by L.
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We construct a sequence (ρ′n) in Π by modifying the sequence (ρn). For
each n, let

ρ′n = (1− αn)ρn + αnπ0, where αn = min{r−1W (ρn, π
′
n), 1}.

Since W (ρn, π
′
n) → 0, it follows that αn → 0. We claim that ρ′n is in Π for each

n. If αn = 1, this is immediate, so suppose that αn < 1. It can be checked
that the Wasserstein metric W is convex in each of its arguments, so

W (ρ′n, π0) ≤ (1− αn)W (ρn, π0)

≤ (1− αn)[W (ρn, π
′
n) +W (π′

n, π0)]

≤ (1− αn)[W (ρn, π
′
n) + r]

≤ r +W (ρn, π
′
n)− αnr

≤ r.

Hence, ρ′n is in Π. For each n, the triangle inequality gives

∥ρ′n − πn∥TV ≤ αn + ∥ρn − πn∥TV,

so lim supn ∥ρ′n − πn∥TV ≤ ε, as desired.
Now, let Π = BP (π0, r) for some prior π0 in ∆(Θ) and some radius r > 0.

The Prokhorov metric induces the weak topology on ∆(Θ), so it is immediate
that P (πn, π

′
n) → 0. We can take ρn = πn for each n, and the rest of the proof

goes through as above, with P in place of W , since the Prokhorov metric is
convex in each of its arguments.

For each n, consider the Jordan decomposition ρn−π′
n = µn

+−µn
−. For each n, the measures

µn
+ and µn

− concentrate on the ball B(θ0, L), which has diameter at most 2L. Therefore,

W (ρn, π
′
n) = W (µn

+, µ
n
−)

≤ max{2L, 1}∥µn
+ − µn

−∥KR

≤ max{2L, 1}(∥ρn − π∥KR + ∥π′
n − π∥KR),

where the last line uses the triangle inequality. Since (ρn) and (π′
n) each weakly converge

to π, the right side tends to 0 as n → ∞. We conclude that W (ρn, π
′
n) → 0, as desired.
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A.4 Proof of Theorem 2

We separate the proof into parts. Some parts use the following approximation
result. For any subset S of Θ, we view ∆(S) as a subset of ∆(Θ).

Lemma 6 (Concentrated approximation)
Suppose that Θ is perfect. For any prior π in ∆(Θ) there exist a subset A of
Θ with π(A) = 1 and a sequence (πn) in ∆(Θ \A) that weakly converges to π.

Probability sets Suppose that Θ is connected. Let Π = P (A,α, β) some
measurable subset A of Θ and some α, β ∈ [0, 1] with α ≤ β. Suppose that
Π is a nonempty proper subset of ∆(Θ). It follows that A is a nonempty
proper subset of Θ and (α, β) ̸= (0, 1). We may assume without loss that
α > 0; otherwise, we must have β < 1, and we can express P (A,α, β) as
P (Ac, 1− β, 1− α). Let v = 1A. Thus, WΠ(v) = α. We show that the payoff
guarantee from v over Π is not robust. Since Θ is connected, A cannot be
both open and closed. We consider two (overlapping) cases.

First, suppose that A is not open. Choose a sequence (θn) in Θ \ A that
converges to some point θ in A. Fix θ′ ∈ Θ \ A. For each n, let πn =

αδθn + (1 − α)δθ′ . The sequence (πn) converges to π = αδθ + (1 − α)δθ′ ∈ Π,
but for all n, we have ⟨v, πn⟩ = 0 < α.

Second, suppose that A is not closed. Choose a sequence (θn) in A that
converges to some point θ in Θ \A. For each n, let πn = αδθn +(1−α)δθ ∈ Π.
The sequence (πn) converges to δθ, but ⟨v, δθ⟩ = 0 < α.

Support–moment sets Suppose that Θ is connected. Let Π = M(S; g, Y )

for some measurable proper subset S of Θ, some continuous function g : Θ →
Rm, and some subset Y of Rm that intersects the relative interior of conv g(S).
Choose y0 ∈ Y ∩ relint(conv g(S)). It can be shown that there exists δ > 0

such that (a) D := B(y0, δ) ∩ aff g(S) ⊂ conv g(S), and (b) there exists a
continuous function g̃ : D → ∆(S) such that ⟨g, g̃(z)⟩ = z, for each z in D.38

38By the definition of the relative interior, we may choose δ′ > 0 such that B(y0, δ
′) ∩

aff g(S) ⊂ conv g(S). Choose a maximal collection z1, . . . , zk of affinely independent vectors
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Using g̃, we define a map π̃ : Θ → ∆(Θ) as follows. For each θ in Θ, let39

z(θ) = y0 + δ
y0 − g(θ)

∥y0 − g(θ)∥
∈ B(y0, δ) ∩ aff g(S) ⊂ conv g(S),

and let

π̃(θ) = (1− α(θ))δθ + α(θ)g̃(z(θ)), where α(θ) =
∥y0 − g(θ)∥

δ + ∥y0 − g(θ)∥
.

For each θ in Θ, some algebra shows that

⟨g, π⟩ = (1− α)g(θ) + αz(θ) = y0 ∈ Y.

Thus, π̃(θ) is in Π if θ is in S. The map π̃ is continuous because g and g̃ are
continuous and α(θn) → 0 for any sequence (θn) with g(θn) → y0.

We now complete the proof. Let v = 1S. We have WΠ(v) = 1. We show
that the payoff guarantee from v over Π is not robust. Since Θ is connected,
S cannot be both open and closed. We consider two (overlapping) cases.

First, suppose that S is not open. Choose a sequence (θn) in Θ \ S that
converges to some point θ in S. Let

π = (1− α(θ))δθ + α(θ)g̃(z(θ)),

πn = (1− α(θ))δθn + α(θ)g̃(z(θ)),

for each n. Note that π = π̃(θ). Since θ is in S, we know that π is in Π. The
sequence (πn) converges to π, but for all n, we have ⟨v, πn⟩ = α(θ) < 1.

in B(y0, δ
′) ∩ aff g(S). Thus, there exists δ in (0, δ′) such that

D := B(y0, δ) ∩ aff g(S) ⊂ conv(z1, . . . , zk) ⊂ B(y0, δ
′) ∩ aff g(S).

Each vector zj is in conv g(S), so by Carathéodory’s theorem, we may select a probability
measure ζj in ∆(S) concentrating on at most m + 1 points such that ⟨g, ζj⟩ = zj . There
exists a continuous coordinate mapping p̂ from conv(z1, . . . , zk) to the probability simplex
in Rk such that z =

∑k
j=1 p̂j(z)zj , for each z in conv(z1, . . . , zk). For each z in D, let g̃(z) =∑k

j=1 p̂j(z)ζj . By linearity, ⟨g, g̃(z)⟩ =
∑k

j=1 p̂j(z)zj = z. The function g̃ : D → ∆(S) is
continuous because the coordinate map p̂ is continuous.

39Here, we adopt the convention that 0/∥0∥ = 0. If g(θ) = y0, then z(θ) = y0.
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Second, suppose that S is not closed. Choose a sequence (θn) in S that
converges to some point θ in Θ\S. For each n, let πn = π̃(θn) and let π = π(θ).
Since (θn) is in S, the sequence (πn) is in Π. Since π̃ is continuous, the sequence
(πn) converges to π, but ⟨v, π⟩ ≤ α(θ) < 1.

Singletons and relative entropy and total variation balls Suppose
that Θ is perfect. Fix π0 in ∆(Θ). We consider ambiguity sets of the following
three forms: (a) Π = {π0}; (b) Π = BR(π0, β) for some β > 0; and (c)
Π = BTV(π0, γ) for some γ ∈ (0, 1). By Lemma 6, there exists a set A with
π0(A) = 1 and a sequence (πn) in ∆(Θ \A) that converges to π0. Let v = 1A.
For each n, we have ⟨v, πn⟩ = 0. On the other hand, WΠ(v) = 1 in cases (a)
and (b). In case (c), WΠ(v) ≥ 1− γ because for each π′ ∈ Π,

⟨v, π′⟩ = π′(A) ≥ π0(A)− ∥π′ − π0∥TV ≥ 1− γ.

Marginal sets Let Θ =
∏m

j=1Θj, where Θ1, . . . ,Θm are perfect. Let Π =

Γ((πj)j∈J) for some nonempty subset J of {1, . . . ,m} and some priors πj in
∆(Θj) for each j in J . Without loss, suppose 1 is in J . Apply Lemma 6 at
the prior π1 in ∆(Θ1) to obtain a subset A1 of Θ1 with π1(A1) = 1 and a
sequence (πn

1 ) in ∆(Θ \A1) that converges to π1. For j /∈ J , arbitrarily choose
πj ∈ ∆(Θj). For each n, let πn = πn

1 ⊗π−1, where π−1 = (πj)j ̸=1. The sequence
(πn) converges to π1 ⊗ π−1 ∈ Π. Let v = 1A1×Θ−1 . Thus, WΠ(v) = 1, but for
each n, we have ⟨v, πn⟩ = 0.

Quantile sets Let Θ be a convex subset of R. Let Π = Q((xj, αj)
m
j=1),

for some positive integer m and some x1, . . . , xm ∈ R and α1, . . . , αm ∈ [0, 1]

satisfying inf Θ < x1 < · · · < xm < supΘ and α1 < · · · < αm. If αm = 0,
then m = 1 and Π is a support set, which is a special case of a probability set.
Therefore, we may assume αm > 0. Set α0 = 0. Let

π = (1− αm−1)δxm +
k−1∑
j=1

(αj − αj−1)δxj
.
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By construction, π is in Π. Set v = 1(−∞,xm]. We have WΠ(v) = αm. Choose
a strictly decreasing sequence (θn) in Θ that converges to xm. For each n,
let πn = π + (1 − αm−1)(δθn − δxm). The sequence (πn) converges to π, but
⟨v, πn⟩ = αm−1 < αm for all n.

A.5 Proof of Theorem 3

Let u : X × Θ be state-continuous. Let Π be a nonempty closed subset of
∆(Θ). Let ≿ = ≿(u,Π). Fix f in F0(u).

First, suppose that the payoff guarantee from vf over Π is robust. Let g

in F0 be a graphical limit of f . We prove that WΠ(vg) ≥ WΠ(vf ). For each
θ in Θ, there exists a sequence (θn) converging to θ such that g(θ) = f(θn)

for all n. Since u is state-continuous, it follows that vg(θ) = limn vf (θn), so
vg is bounded and we have vg ≥ lsc vf . Therefore, it suffices to show that
WΠ(lsc vf ) ≥ WΠ(vf ). Fix π in Π. By Lemma 2, we have Γ-limn⟨v, ·⟩ =

⟨lsc v, ·⟩. Thus, there exists a sequence (πn) in ∆(Θ) converging to π such that

⟨lsc vf , π⟩ ≥ lim sup
n

⟨vf , πn⟩ ≥ lim inf
n

⟨vf , πn⟩ ≥ WΠ(vf ), (8)

where the last inequality holds because vf is robust over Π. Since π is an
arbitrary prior in Π, we conclude that WΠ(lsc vf ) ≥ WΠ(vf ), as desired.

For the converse, suppose that the payoff guarantee from vf over Π is not
robust. Thus, there exists a sequence (πn) in ∆(Θ) converging to a prior in Π

(which equals the closure of Π) such that

WΠ(vf ) > lim inf
n

⟨vf , πn⟩ ≥ ⟨lsc vf , π⟩ ≥ WΠ(lsc vf ), (9)

where the second inequality holds because Γ-limn⟨vf , ·⟩ = ⟨lsc vf , ·⟩ by Lemma 2.
To complete the proof, we apply Lemma 3 to construct an act g in F0(u) such
that g is a graphical limit of f and vg = lsc vf . Thus, f ≻ g.
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A.6 Proof of Theorem 4

Let u be state-independent and nonconstant. We write u(x) for u(x, θ). Thus,
the value function induced by a social choice function f is the composition
u ◦ f . Let Π be a nonempty subset of ∆(Θ). Let ≿ = ≿(u,Π). We separate the
proof into parts. First, we prove that Π is tight if and only if ≿ is tight.

Tightness Suppose that Π is tight. We show that ≿ is tight. Fix f, g ∈ F0

with WΠ(u ◦ f) > WΠ(u ◦ g). Fix x ∈ ∆0(X). Let

ε =
WΠ(u ◦ f)−WΠ(u ◦ g)

max{1, 2∥u ◦ f − u ◦ x∥∞, 2∥u ◦ g − u ◦ x∥∞}
.

Since Π is tight, we may select a compact subset K of Θ such that π(K) ≥ 1−ε

for every π in Π. Since u ◦ (fKx) = (u ◦ f)K + (u ◦ x)Kc, we have

WΠ(u ◦ (fKx)) ≥ WΠ(u ◦ f)− supπ∈Π π(Kc)∥u ◦ f − u ◦ x∥∞
≥ WΠ(u ◦ f)− ε∥u ◦ f − u ◦ x∥∞
> WΠ(u ◦ g).

A symmetric argument shows that WΠ(u ◦ f) > WΠ(u ◦ (gKx)).
Next, suppose that ≿ is tight. We show that Π is tight. Fix ε > 0. Since

u is nonconstant, we can choose x, y ∈ X such that y ≻ x. So u(y) > u(x).
Let g = εx + (1 − ε)y. By construction, y ≻ g. Since ≿ is tight, there
exists a compact subset K of Θ such that yKx ≻ g. Since u ◦ (yKx) =

(u ◦ y)K + (u ◦ x)Kc, we have

u(y) + (u(x)− u(y)) sup
π∈Π

π(Kc) = WΠ(u ◦ (yKx))

> WΠ(g)

= u(y) + ε(u(x)− u(y)).

Hence, supπ∈Π π(Kc) < ε. We conclude that Π is tight.
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Forward implication Suppose that Π is globally robust and tight. We may
assume, without loss, that Π is closed.40 It follows from Theorem 3 that ≿ is
weakly upper Γ-semicontinuous. We show that ≿ is lower Γ-semicontinuous.
Fix acts g, h ∈ F0 and a bounded sequence (fn) in F0. Suppose that h ≿ fn

for all n and that g is a Γ-limit of (fn). To check that h ≿ g, it suffices to
prove that WΠ(u ◦ g) ≤ lim infnWΠ(u ◦ fn).

Let vg = u◦g, and for each n, let vn = u◦fn. By Lemma 4.ii, vg = Γ-lim vn.
By Lemma 2, ⟨vg, ·⟩ = Γ-lim ⟨vn, ·⟩. Since Π is tight and closed, Π is compact
by Prokhorov’s theorem (Billingsley, 1999, Theorem 5.1, p. 59). By Braides
(2002, Proposition 1.18, p. 28), WΠ(vg) ≤ lim infnWΠ(vn), as desired.

Backward implication Suppose that ≿ is weakly upper Γ-semicontinuous
and lower Γ-semicontinuous. We prove that Π is globally robust. Let Z =

u(∆0(X)), which is a convex subset of R with nonempty interior (since u is
nonconstant). Let B0(Θ, Z) denote the space of measurable simple functions
from Θ to Z. The space B0(Θ, Z) is uniformly dense in the space B(Θ, Z)

of bounded, measurable functions from Θ to Z. Moreover, WΠ(αv + β) =

αWΠ(v) + β for any real α > 0 and any real β. Therefore, it suffices to prove
that for each value function v in B0(Θ, Z), the payoff guarantee from v over
Π is robust.

Fix v in B0(Θ, Z). Let (πn) be a sequence in ∆(Θ) that converges to a prior
π in the closure of Π. We prove that lim infn⟨v, πn⟩ ≥ WΠ(v). By Lemma 2,
Γ-limn⟨v, ·⟩ = ⟨lsc v, ·⟩, so lim infn⟨v, πn⟩ ≥ ⟨lsc v, π⟩. Choose f in F0 such
that u ◦ f = v. Using Lemma 3, it can be shown that f has a Γ-limit g in F0

with u ◦ g = lsc v. Since ≿ is upper Γ-semicontinuous, we have g ≿ f , hence
WΠ(lsc v) ≥ WΠ(v).

Therefore, it suffices to prove that ⟨lsc v, π⟩ ≥ WΠ(lsc v). To simplify
notation, let w = lsc v. Recall that w = u ◦ g for the act g defined above.
Write g =

∑m
j=1 xjAj for some x1, . . . , xm ∈ ∆0(X) and some measurable

partition (A1, . . . , Am) of Θ. Since π is in the closure of Π, there exists a
40Otherwise, replace Π with its closure Π̄, which is also robust. Since Π is robust, WΠ =

WΠ̄, hence ≿(u,Π) = ≿(u,Π̄).
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sequence (π′
n) in Π that converges to π. Choose a bounded, compatible metric

d on Θ. By Lemma 1, there exists a sequence (κn) of probability kernels such
that ∥κn∥d → 0 and ∥π − π′

nκn∥TV → 0.
Fix ε > 0. We claim (see proof below) that there exists a sequence (κ̄n) of

probability kernels such that for each state θ and each n, we have

∥(κn)θ − (κ̄n)θ∥TV ≤ ε, (10)

and the set K := ∪n{(κ̄n(θ, Aj))
m
j=1 : θ ∈ Θ} is finite. For each n, let gn =

κ̄ng ∈ F0. Thus, u ◦ gn = κ̄nw, so ⟨u ◦ gn, π′
n⟩ = ⟨w, π′

nκ̄n⟩. Therefore, for each
n,

⟨w, π⟩ = ⟨u ◦ gn, π′
n⟩+ ⟨w, π − π′

nκ̄n⟩

≥ WΠ(u ◦ gn)− 2∥w∥∞∥π − π′
nκ̄n∥TV.

Take the limit supremum as n → ∞. Since ∥π−π′
nκn∥TV → 0, it follows from

(10) that
⟨w, π⟩ ≥ lim sup

n
WΠ(u ◦ gn)− 2ε∥w∥∞. (11)

Since K is finite, the set ∪n{gn(θ) : θ ∈ Θ} is finite. We may assume
without loss that ∪n{gn(θ) : θ ∈ Θ} is indifference-free.41 By Braides (2002,
Proposition 1.42, p. 35), the sequence (u ◦ gn) has a Γ-convergent subsequence
(u ◦ gnk

). By Lemma 4.i, the sequence (gnk
) has a Γ-limit in F0, which we

denote by ḡ. By the properties of the limit supremum and by the lower Γ-
semicontinuity of ≿, we have

lim sup
n

WΠ(u ◦ gn) ≥ lim sup
k

WΠ(u ◦ gnk
) ≥ WΠ(u ◦ ḡ). (12)

By Lemma 4.ii, u ◦ ḡ = Γ-limk κ̄nk
w. For each θ in Θ, there exists a sequence

41Otherwise, select a representative of each indifference class of ∪n{gn(θ) : θ ∈ Θ}. For
each θ and n, replace gn(θ) with the representative of its indifference class. This procedure
does not change the induced value functions.
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(θk) converging to θ such that

(u ◦ ḡ)(θ) ≥ lim sup
k

(κ̄nk
w)(θk)

≥ lim sup
k

(κnk
w)(θk)− 2ε∥w∥TV

≥ w(θ)− 2ε∥w∥TV,

(13)

where the second inequality follows from (10) and the last inequality holds
because ∥κnk

∥d → 0 and w is lower semicontinuous.42 Since ε was arbitrary,
piecing together (11), (12), and (13) gives ⟨w, π⟩ ≥ WΠ(w), as desired.

Proof of claim Fix ε > 0. Let ∆ denote the probability simplex in Rm.
For each p0 in int∆, let

U(p0) = {p ∈ ∆ : p0 + ε−1(1− ε)(p0 − p) ∈ int∆}.

The sets U(p0), for p0 in int∆, form an open cover of ∆. Since ∆ is compact,
there exists a finite subset ∆0 of int∆ such that ∪p0∈∆0U(p0) = ∆. Therefore,
for each p in ∆, there exists some p0 in ∆0 such that p0+ε−1(1−ε)(p0−p) is in
int∆. Let q = p0+ε−1(1−ε)(p0−p). Some algebra shows that p0 = (1−ε)p+εq.
Therefore, we can choose a measurable map q̂ : ∆ → ∆ such that for every p

in ∆, we have (1− ε)p+ εq̂(p) ∈ ∆0.
We now define the sequence (κ̄n). For each j = 1, . . . ,m, choose θj ∈ Aj.

For each θ and n, let pθ,n = (κn(θ, Aj))
m
j=1 ∈ ∆, and let

(κ̄n)θ = (1− ε)(κn)θ + ε

m∑
j=1

q̂j(pθ,n)δθj .

42For each n, the measure κn(θn, ·) concentrates on B(θn, ∥κn∥d), so there exists θ̃n in
B(θn, ∥κn∥d) such that (κnw)(θn) ≥ w(θ̃n). Since θn → θ and ∥κn∥d → 0, we have θ̃n → θ.
Therefore, since w is lower semicontinuous,

lim sup
n

(κnk
w)(θnk

) ≥ lim sup
k

w(θ̃nk
) ≥ lim inf

k
w(θ̃nk

) ≥ w(θ).
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By construction, ∥(κn)θ − (κ̄n)θ∥TV ≤ ε. For each θ and n, we have

(κ̄n(θ, Aj))
m
j=1 = (1− ε)pθ,n + εq̂(pθ,n) ∈ ∆0.

Thus, K := ∪n{(κ̄n(θ, Aj))
m
j=1 : θ ∈ Θ} ⊂ ∆0, so K is finite.
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B Online Appendix

B.1 Incompatibility with Arrow’s monotone continuity

In this subsection, we show that weak upper Γ-continuity is incompatible with
Arrow’s (1970) monotone continuity axiom. Under subjective expected utility,
the prior is countably additive if and only if the induced preferences satisfy the
following monotone continuity axiom. Recall that B(Θ) denotes the collection
of Borel subsets of Θ.

Axiom 4 (Monotone continuity). For each f, g ∈ F0, each x ∈ ∆0(X), and
each sequence (En) in B(Θ) with En ↓ ∅,43 if f ≻ g, then there exists m such
that xEmf ≻ g and f ≻ xEmg.

Following the mechanism design literature, our framework considers only
countably additive priors. For maxmin preferences, however, the behavioral
foundation for countably additive priors is more subtle. Chateauneuf et al.
(2005) show that a preference relation satisfies Arrow’s (1970) monotone con-
tinuity axiom together with the axioms of Gilboa and Schmeidler (1989) if
and only if it has a maxmin representation in which the ambiguity set is a
collection of countably additive priors that satisfies a compactness property.

We next show that weak upper Γ-semicontinuity is generally inconsistent
with monotone continuity. A relation ≿ on F0 is nontrivial if there exist
f, g ∈ F0 such that f ≻ g.

Theorem 5 (Incompatible continuity)
Suppose that Θ is perfect. A nontrivial, monotone, complete, transitive re-
lation on F0 cannot be both weakly upper Γ-semicontinuous and monotone
continuous.

Proof. Suppose for a contradiction that such a relation ≿ exists. Then there
exist x, y ∈ ∆0(X) such that x ≻ y; otherwise, monotonicity implies that ≿

is trivial. Since Θ is separable, we can enumerate a countable dense subset
{θ1, θ2, . . .} of Θ. For each n, let En = {θj : j ≥ n}. By construction, En ↓ ∅.

43That is, E1 ⊃ E2 ⊃ · · · and ∩nEn = ∅.
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By monotone continuity, there exists m such that yEmx ≻ y. Since Θ is
perfect, Em is a dense subset of Θ, and hence y is a Γ-limit of yEmx. By weak
upper Γ-semicontinuity, y ≿ yEmx, giving the contradiction y ≻ y.

These two continuity axioms have different implications for an act that
yields a bad consequence on a countable, dense subset of the state space. Weak
upper Γ-semicontinuity, a topological robustness property, demands that such
an act be evaluated more negatively because an arbitrarily small perturba-
tion of any state yields a bad consequence. Monotone continuity, a measure-
theoretic continuity property, is less conservative because the set of states
yielding the bad consequences has small cardinality relative to the full state
space.44 Theorem 5 is a manifestation of the inconsistency between topological
and measure-theoretic notions of smallness.

B.2 Axiomatization of uniform robustness

According to Definition 1, an ambiguity set Π is globally robust if for every
sequence (πn) in ∆(Θ) that converges to a prior in the closure of Π, we have

lim inf
n

[⟨v, πn⟩ −WΠ(v)] ≥ 0, v ∈ B(Θ).

An ambiguity set Π is uniformly robust if for every sequence (πn) in ∆(Θ) that
converges to a prior in the closure of Π, we have

lim inf
n

(
inf
v
[⟨v, πn⟩ −WΠ(v)]

)
≥ 0,

where the infimum inside the parentheses is taken over all value functions v in
B(Θ) satisfying ∥v∥∞ ≤ 1.

We next define upper Γ-semicontinuity analogously to lower Γ-semicontinuity.

Axiom 5 (Upper Γ-semicontinuity). For any bounded sequence (fn) in F0

and any g, h ∈ F0, if fn ≿ h, for all n, and g is a Γ-limit of (fn), then g ≿ h.
44A perfect Polish space must be uncountable.
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A relation ≿ on F0 is Γ-continuous if ≿ is upper Γ-semicontinuous and
lower Γ-semicontinuous.

Theorem 6 (Uniform robustness)
Let ≿ = ≿(u,Π) for some nonconstant state-independent utility function u and
some nonempty subset Π of ∆(Θ). The following are equivalent:

1. Π is uniformly robust and tight;

2. ≿ is Γ-continuous and tight.

B.3 Continuous moment sets

Here, we give some simple examples of continuous moment sets. Let Θ = R.
Let Π1 be the set of all priors with mean in the interval [

¯
µ, µ̄] and variance

exactly σ2. Let Π2 be the set of all priors with mean in the interval [
¯
µ, µ̄]

and variance at most σ̄2. For each j = 1, 2, we have Πj = M(g, Yj), where
g(θ) = (θ, θ2), and

Y1 =
{
(y1, y2) :

¯
µ ≤ y1 ≤ µ̄ and y2 = y21 + σ2

}
,

Y2 =
{
(y1, y2) :

¯
µ ≤ y1 ≤ µ̄ and 0 ≤ y2 ≤ y21 + σ̄2

}
.

In an example with σ2 > σ̄2, Figure 4 plots the image g(Θ) (in blue), the set
Y1 (in purple), and the intersection Y2 ∩ conv g(Θ) (shaded orange). Both Π1

and Π2 are continuous moment sets: Y1 is uniformly g-interior, but not star
g-interior; Y2 is star g-interior (relative to the point y0), but not uniformly
g-interior.

B.4 Proof of Theorem 6

We build upon the proof of Theorem 4 (Appendix A.6). Let u be state-
independent and nonconstant. Let Π be a nonempty subset of ∆(Θ). Let
≿ = ≿(u,Π).
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Figure 4. Continuous moment sets

Forward implication Suppose that Π is uniformly robust and tight. We
may assume, without loss, that Π is closed.45 By Theorem 4, it suffices to prove
that ≿ is upper Γ-semicontinuous. Fix acts g, h ∈ F0 and a bounded sequence
(fn) in F0. Suppose that fn ≿ h for all n and that g is a Γ-limit of (fn). To
check that g ≿ h, it suffices to prove that WΠ(u ◦ g) ≥ lim infnWΠ(u ◦ fn).

Let vg = u ◦ g. For each n, let vn = u ◦ fn. Since (fn) is bounded, the
sequence (vn) is bounded. By Lemma 4.ii, vg = Γ-limn vn. By Lemma 2,
⟨vg, ·⟩ = Γ-limn⟨vn, ·⟩. Fix π in Π. There exists a sequence (πn) in ∆(Θ)

converging to π such that

⟨vg, π⟩ ≥ lim sup
n

⟨vn, πn⟩. (14)

For each n, we have

⟨vn, πn⟩ = WΠ(vn) + [⟨vn, πn⟩ −WΠ(vn)]

≥ WΠ(vn) + inf
m

[⟨vm, πn⟩ −WΠ(vm)] .

Since (vn) is bounded, the uniform robustness of Π implies that the limit infi-
45Otherwise, replace Π with its closure Π̄, which is also uniformly robust. Since Π is

robust, WΠ = WΠ̄, hence ≿(u,Π) = ≿(u,Π̄).
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mum of the second term is nonnegative. The limit infimum is supperadditive,
so we conclude that

lim inf
n

⟨vn, πn⟩ ≥ lim inf
n

WΠ(vn). (15)

Combining (14) and (15) shows that ⟨vg, π⟩ ≥ lim infnWΠ(vn). Take the
infimum over all π in Π to get WΠ(vg) ≥ lim infnWΠ(vn), as desired.

Backward implication Suppose that ≿ is Γ-continuous. From the proof
of the backward implication in Theorem 4 (Appendix A.6), we know that Π

is robust. Suppose for a contradiction that Π is not uniformly robust. Then
for some sequence (πn) converging to a prior π in the closure of Π, there exists
ε > 0 and a sequence (vn) in B(Θ) with supn ∥vn∥∞ ≤ 1 such that for every
n,

⟨vn, πn⟩ ≤ WΠ(vn)− ε.

After adjusting the sequence (vn) and the value of ε, we may assume that the
sequence (vn) is in B0(Θ, Z0) for some finite subset Z0 of Z = u(∆0(X)).46

By Braides (2002, Proposition 1.42, p. 35), the sequence (vn) has a Γ-
convergent subsequence. After passing to this subsequence, we may assume
that (vn) Γ-converges to some value function v, which must be in B0(Θ, Z0).
By Lemma 2, Γ-limn⟨vn, ·⟩ = ⟨v, ·⟩. Therefore,

lim inf
n

WΠ(vn)− ε ≥ lim inf
n

⟨vn, πn⟩

≥ ⟨v, π⟩

≥ WΠ(v),

(16)

where the last inequality follows from the robustness of Π.
Since Z0 is finite, we can choose a sequence (fn) in F0 such that u◦fn = vn

46Since u is nonconstant, the convex set Z = u(∆0(X)) has nonempty interior. After
translating and scaling the sequence (vn) and scaling ε, we may assume that the sequence
(vn) lies in B0(Θ, Z). Choose a finite subset Z0 of Z with mesh ε/4. For each n, replace vn
with the supnorm-closest approximation in B0(Θ, Z0). With this modification, the desired
inequality holds with ε/2 in place of ε (which was already scaled above).
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for each n and the union ∪n{fn(θ) : θ ∈ Θ} is finite and indifference-free.
By Lemma 4.i, the sequence (fn) has a Γ-limit g in F0. By Lemma 4.ii,
u ◦ g = Γ-limn vn = v. By (16), we can choose a constant act h such that
WΠ(v) < u(h) < lim infn WΠ(vn). Thus, fn ≻ h for all n sufficiently large, but
h ≻ g, contrary to upper Γ-semicontinuity.

B.5 Proof of Lemma 1

We first introduce notation. For any probability measure µ in ∆(Θ) and any
probability kernel κ, the product µ⊗ κ is the unique measure on the product
σ-algebra B(Θ)⊗ B(Θ) satisfying

(µ⊗ κ)(A×B) =

∫
A

κ(θ, B) dµ(θ), A,B ∈ B(Θ).

Now we turn to the proof. Let d be a bounded, compatible metric on Θ. Let
(πn) be a sequence in ∆(Θ) that weakly converges to some prior π in ∆(Θ). Let
W be the Wasserstein metric induced by d. Since d is bounded, W (πn, π) → 0,
by Villani (2009, Corollary 6.13, p. 97). For each n, let εn =

√
W (πn, π) + 1/n.

Thus, εn → 0.
By the definition of the Wasserstein metric, we can choose for each n a

probability kernel λn such that

πλn = πn and (π ⊗ λn)d ≤ W (πn, π) + 1/n. (17)

Let B(θ, r) denote the closed d-metric ball with center θ and radius r. Let κn

be the modification of λn that fixes any mass that is transported more than
distance εn. Formally, define the kernel κn : Θ× B(Θ) → [0, 1] by

κn(θ, A) = λn(θ, A ∩B(θ, εn)) + λn(θ,Θ \B(θ, εn))δθ(A).

The measurability of κn follows from Kallenberg (2021, Lemma 3.2.i, p. 56)
since for each ε > 0, the set D(ε) := {(θ, θ′) ∈ Θ2 : d(θ, θ′) ≤ ε} is closed and
hence measurable in B(Θ)× B(Θ) by Kallenberg (2021, Lemma 1.2, p. 11).
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By construction, ∥κn∥d ≤ εn. Using (17) and Markov’s inequality, we have

∥πn − πκn∥TV = ∥πλn − πκn∥TV

= (π ⊗ λn)(Θ \D(εn))

≤ ε−1
n (π ⊗ λn)d

≤ ε−1
n (W (πn, π) + 1/n)

= εn.

Therefore, ∥κn∥d → 0 and ∥πn − πκn∥TV → 0.
The desired sequence (κ′

n) can be constructed in the same way: replace λn

with a kernel λ′
n such that πnλ

′
n = π and (πn ⊗ λ′

n)d ≤ W (πn, π) + 1/n, and
complete the proof as before.

B.6 Proof of Lemma 2

For this proof, fix a compatible metric d on Θ that is bounded by 1. Let (vn)
be a bounded sequence in B(Θ) that Γ-converges to some v in B(Θ). To show
that Γ-limn⟨vn, ·⟩ = ⟨v, ·⟩, we separately prove the two required properties.

Liminf Fix π in ∆(Θ). Let (πn) be a sequence in ∆(Θ) that weakly converges
to π. By Lemma 1, there is a sequence (κn) of probability kernels such that
∥κn∥d → 0 and ∥πn − πκn∥TV → 0. Since the sequence (vn) is bounded, we
have

lim inf
n

⟨vn, πn⟩ = lim inf
n

⟨vn, πκn⟩

= lim inf
n

⟨κnvn, π⟩

≥ ⟨lim inf
n

κnvn, π⟩

≥ ⟨v, π⟩,

where the first inequality follows from Fatou’s Lemma (which applies because
the sequence (vn) is uniformly bounded below), and the second inequality
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follows from the pointwise inequality lim infn κnvn ≥ v.47

Limsup Fix π in ∆(Θ). We construct a sequence (πn) in ∆(Θ) that con-
verges to π and satisfies

lim sup
n

⟨vn, πn⟩ ≤ ⟨v, π⟩. (18)

Choose strictly positive sequences (δj) and (εj) that each converge to 0. Since
Θ is separable, for each j there exist δj-radius balls Bj,ℓ for ℓ = 1, . . . , Lj such
that π(∪Lj

ℓ=1Bj,ℓ) ≥ 1 − εj. To simplify notation below, let Bj,Lj+1 = Θ. For
each ℓ = 1, . . . , Lj + 1, choose θj,ℓ ∈ Bj,ℓ such that

v(θj,ℓ) ≤ inf
θ∈Bj,ℓ

v(θ) + εj.

Since Γ-lim vn = v, we know that for each ℓ = 1, . . . , Lj + 1, there exists a
sequence (θnj,ℓ) such that

lim
n

θnj,ℓ = θj,ℓ and lim sup
n

vn(θ
n
j,ℓ) ≤ v(θj,ℓ).

Therefore, there exists Nj,ℓ such that for all n ≥ Nj,ℓ, we have

d(θnj,ℓ, θj,ℓ) ≤ δj and vn(θ
n
j,ℓ) ≤ v(θj,ℓ) + εj.

For each j and n, let

πn
j =

Lj+1∑
ℓ=1

π
(
Bj,ℓ \ ∪ℓ−1

k=1Bj,k

)
δ(θnj,ℓ),

where δ(θ) denotes the unit mass on θ. Let Nj = maxℓ=1,...,Lj+1Nj,ℓ. If n ≥ Nj,

47To prove this pointwise inequality, fix θ in Θ. For each n, choose θn in suppκn(θ, ·) such
that vn(θn) ≤ (κnvn)(θ). Thus, d(θn, θ) ≤ ∥κn∥d → 0. Since Γ-lim vn = v, we conclude that

lim inf
n

κnvn(θ) ≥ lim inf
n

vn(θn) ≥ v(θ).
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it can be checked that

W (πn
j , π) ≤ 2δj + εj and ⟨vn, πn

j ⟩ ≤ ⟨v, π⟩+ 2εj.

For each n, let πn = πn
j(n), where j(n) is the largest index j such that n ≥ Nj.

Since δj → 0 and εj → 0, the sequence (πn) satisfies (18) and converges to π

in the Wasserstein metric, and hence weakly, by ?, Corollary 6.13, p. 97

B.7 Proof of Lemma 3

Let u be state-continuous. Fix f in F0(u). Thus, f =
∑m

j=1 xjAj for some
x1, . . . , xm ∈ ∆0(X), and some measurable partition (A1, . . . , Am) of Θ. For
each θ in Θ, let J(θ) = {j : θ ∈ Āj}. Let g(θ) = xj(θ), where j(θ) is the
smallest index in argminj∈J(θ) u(xj, θ). By construction, g =

∑m
j=1 xjA

′
j for

some measurable partition (A′
1, . . . , A

′
m) of Θ satisfying A′

j ⊂ Āj for each j.
Thus, g is in F0(u) and g is a graphical limit of f . We claim that vg = lsc vf .
Fix θ in Θ. There exists a sequence (θn) converging to θ such that f(θn) =

g(θ) for all n. Since u is state-continuous, it follows that vf (θn) → vg(θ).
Thus, vg ≥ lsc vf . For the reverse inequality, note that θ is in the open set
Θ \ ∪j ̸∈J(θ)Āj, so for any sequence (θn) converging to θ, we know that for all
n sufficiently large, θn is in ∪j∈J(θ)Aj, hence vf (θn) ≥ minj∈J(θ) u(xj, θn). The
right side converges to vg(θ) as n → ∞, so we have lim infn vf (θn) ≥ vg(θ), as
desired.

B.8 Proof of Lemma 4

Let ≿ = ≿(u,Π) for some nonconstant, state-independent utility function u and
some nonempty subset Π of ∆(Θ). Let (fn) be a sequence in F0.

i. Suppose that F := ∪n{fn(θ) : θ ∈ Θ} is finite and indifference-free.
Suppose that (u ◦ fn) is Γ-convergent. Let v = Γ-limn u ◦ fn. For each θ in Θ,
there exists a sequence (θn) converging to θ such that u(fn(θn)) → v(θ). Since
U := ∪n{u(fn(θ)) : θ ∈ Θ} is finite, it follows that v(θ) is in U . For each θ, let
g(θ) be the unique lottery in F that gives utility v(θ). By construction, g is
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in F0 and u ◦ g = v. We claim that g is a Γ-limit of (fn). We check the two
required properties.

Since Γ-limn u ◦ fn = u ◦ g, there exists a sequence (θn) converging to θ

such that u(fn(θn)) → u(g(θ)). Since U is finite, there exists m such that for
all n ≥ m, we have u(fn(θn)) = u(g(θ)) and hence fn(θn) = g(θ) (since F is
indifference-free).

Let (θn) be a sequence converging to θ. Fix h in F0 with g(θ) ≻ h. Since
Γ-limn u ◦ fn = u ◦ g, we have

lim inf
n

u(fn(θn)) ≥ u(g(θ)) > u(h).

Thus, there exists m such that for all n ≥ m, we have u(fn(θn)) > u(h), hence
fn(θn) ≻ h.

ii. Let g in F0 be a Γ-limit of (fn). We claim that Γ-limn u ◦ fn = u ◦ g.
Fix θ in Θ. For some sequence (θn) converging to θ, there exists m such that
fn(θn) = g(θ) for all m ≥ n. Thus, u(fn(θn)) → u(g(θ)). Suppose for a
contradiction that for some sequence (θn) converging to θ, we have

lim inf
n

u(fn(θn)) < u(g(θ)).

Then we may select a constant act h such that

lim inf
n

u(fn(θn)) < u(h) < u(g(θ)).

Therefore, there exists m such that h ≻ fn for all n ≥ m, but g ≻ h, contrary
to the fact that g is a Γ-limit of the tail sequence (fn)n≥m.

B.9 Proof of Lemma 5

For this proof, we introduce some notation. For any measure µ in ∆(Θ) and
any µ-integrable function f : Θ → R+, define the measure fµ by

(fµ)(A) =

∫
A

f(θ) dµ(θ), A ∈ B(Θ).
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Fix ε > 0. By Prokhorov’s theorem (Billingsley, 1999, Theorem 5.2, p. 60),
the sequences (πn) and (π′

n) are both tight. Thus, there exists a compact set
K such that for all n we have πn(K) ≥ 1 − ε and π′

n(K) ≥ 1 − ε.48 The
function H, being continuous, must achieve a maximum over the compact set
K. Let L = 1 + maxθ∈K H(θ). Let C = {θ ∈ Θ : H(θ) ≥ L}. The set C

is closed and it is disjoint from the compact set K. Therefore, there exists a
continuous function b : Θ → [0, 1] that equals 1 on K and equals 0 on C.49 For
each n, define the nonnegative measure ρn by

ρn =
⟨b, π′

n⟩
⟨b, πn⟩

bπn + (1− b)π′
n.

By construction, ρn(Θ) = 1.
First, we check that ρn weakly converges to π. For any bounded, continuous

function f : Θ → R, we have

⟨f, ρn⟩ =
⟨b, π′

n⟩
⟨b, πn⟩

⟨fb, πn⟩+ ⟨f(1− b), π′
n⟩,

so
⟨f, ρn⟩ →

⟨b, π⟩
⟨b, π⟩

⟨fb, π⟩+ ⟨f(1− b), π⟩ = ⟨f, π⟩.

It remains to check the three properties.
i. We check that ∥ρn − πn∥TV ≤ ε for each n. We have

ρn − πn =
⟨b, π′

n − πn⟩
⟨b, πn⟩

bπn + (1− b)(π′
n − πn).

We know that (ρn − πn)(Θ) = 0 and that bπn is a nonnegative measure.
48Since (πn) is tight, there exists a compact subset K1 such that πn(K1) ≥ 1 − ε for all

n. Similarly, since (π′
n) is tight, there exists a compact subset K2 such that π′

n(K2) ≥ 1− ε
for all n. Let K = K1 ∪K2. The set K is compact and satisfies the desired inequalities.

49Here is one construction. The function θ 7→ d(θ, C) is continuous so it achieves its
minimum on K. Let ε = minθ∈K d(θ, C). Since d(θ, C) > 0 for all θ in K, we have ε > 0.
Define the function b on Θ by b(θ) = (1− d(θ,K)/ε)+.
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Therefore,
∥ρn − πn∥TV ≤ sup

A∈B(Θ)

| ((1− b)(π′
n − πn)) (A)|

≤ max{π′
n(K

c), πn(K
c)}

≤ ε,

where the second inequality holds because 1− b equals 0 on K.
ii. We check that H is bounded on ∪n supp(ρn − π′

n). For each n and any
Borel subset A of C, we have ρn(A) = π′

n(A), so supp(ρn − π′
n) ⊂ Θ \ C. The

function H is bounded above by L on Θ \ C.
iii. Let h : Θ → R be a continuous function satisfying |h| ≤ H. By (ii), we

know that for each n, the integral ⟨h, ρn − π′
n⟩ is well-defined and finite. For

each n, we have

ρn − π′
n =

⟨b, π′
n⟩

⟨b, πn⟩
bπn − bπ′

n =
⟨b, π′

n − πn⟩
⟨b, πn⟩

bπn + bπn − bπ′
n.

Therefore,

|⟨h, ρn − π′
n⟩| ≤

|⟨b, π′
n − πn⟩|

⟨b, πn⟩
|⟨hb, πn⟩|+ |⟨hb, πn − π′

n⟩|

≤ |⟨b, π′
n − πn⟩|
1− ε

L+ |⟨hb, πn − π′
n⟩|,

(19)

where the second inequality follows from the inequalities |hb| ≤ |Hb| ≤ L and
⟨b, πn⟩ ≥ πn(K) ≥ 1 − ε. As n tends to ∞, the right side of (19) tends to 0

because (πn) and (π′
n) each converge weakly to π (and the functions b and hb

are bounded and continuous).

B.10 Proof of Lemma 6

Fix a prior π in ∆(Θ). We first construct a dense π-nullset N . Let Θ0 consist
of all points in Θ with positive π-measure. Since π(Θ) < ∞, the set Θ0 must
be countable. For each θ in Θ, the complement Θ\{θ} is open and dense (since
θ cannot be an isolated point because Θ is perfect). By the Baire category
theorem, the set Θ \Θ0 = ∩θ∈Θ0Θ \ {θ} is dense as well. Since Θ is separable,
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there exists a countable subset N of Θ\Θ0 that is dense in Θ. Thus, π(N) = 0.
Let (θj) be an enumeration of N . Select a bounded, compatible metric d.

For each n, let

πn =
∞∑
j=1

π
(
B(θj, 1/n) \ ∪j−1

k=1B(θk, 1/n)
)
δθj .

Using Tonelli’s theorem, it can be shown that πn is countably additive and
hence a probability measure. By construction, W (πn, π) ≤ 1/n, so the se-
quence (πn) weakly converges to π in the Wasserstein metric, and hence weakly,
by Villani (2009, Corollary 6.13, p. 97).
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