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Abstract

Globally, migrant workers often cluster with hometown peers in the same sectors and locations.

This paper quantifies two countervailing effects of migrant networks: learning benefits and

congestion costs, using data on millions of migrant workers from a food delivery platform

in China. First, I provide direct evidence of knowledge spillovers. New workers learn from

their peers’ delivery experiences to save search time by 10%. Using quasi-random variation

in workers’ location choices induced by entry bonuses, I show that having one hometown

peer nearby increases new workers’ productivity by 2%. Second, I quantify the congestion

cost of clustering due to correlated shocks. Since migrant workers tend to work longer during

adverse hometown shocks, clustering results in hometown workers competing for deliveries

when their labor supply surges simultaneously, decreasing real wages by 10%. Third, I build

an equilibrium location choice model to quantify the trade-off between the learning benefits

and congestion costs. Counterfactuals show that providing insurance for hometown shocks

doubles clustering levels and increases productivity.
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1 Introduction

Throughout the world, migrant workers often cluster in the same sectors and locations
with peers from the same region. For example, 14% of taxi drivers in New York City
came from Pakistan (Schaller, 2006). Indian migrants operated over 60% of motels in
Los Angeles (Light et al., 1994), and 24% of hairdressers in Houston were Vietnamese
migrants (Patel and Vella, 2013). In China, around 30% of migrant workers from the same
county clustered in the same sector and province (Chen et al., 2010).

What are the benefits and costs of such clustering? On the one hand, clustering with
same-origin peers may provide new workers with better information, job opportunities,
and social support (see Munshi (2020) for a comprehensive review).1 On the other
hand, a large cluster can heighten competition within the network (e.g., Beaman, 2012).
While both agglomeration and dispersion forces of clustering are important for policy
implications, few studies have jointly examined them in the same context and analyzed
how they interact to impact worker welfare and location choices.

In this paper, I provide a unified theoretical and empirical analysis of two countervail-
ing effects of clustering through several quasi-experiments and a model. First, I show how
clustering facilitates knowledge spillovers, leading to higher productivity and average
wages. Second, I explore a new channel of cost: clustering results in hometown workers
competing with one another during adverse hometown shocks when their labor supply
surges simultaneously, leading to higher income risks. Third, I analyze how the two
forces interact to impact workers’ location choices through an equilibrium model.

I study the effects of migrant clustering by using data on millions of migrant workers
from a large food delivery platform in China.2 Delivery workers earn a piece rate by
delivering meals from restaurants to consumers, and 98% of delivery workers in large
cities are domestic seasonal migrants. There are several advantages of studying migrant
networks in this context. First, the gig economy has grown rapidly and emerged as
the NO.1 occupational choice among migrant workers (Pew, 2021; McKinsey, 2022),
yet we know little about their choices and trade-offs under this new economic form.
Furthermore, with exceptionally granular GPS data tracking workers’ movements, I am
able to construct very precise measurements of worker productivity and explore the
mechanism of knowledge spillovers, which are substantial challenges in prior research.

1For example, migrant networks can increase employment rates (e.g., Edin et al., 2003; Munshi, 2003),
wages (e.g., Damm, 2009; Egger et al., 2021), and provide social support (e.g., Biavaschi et al., 2021;
Blumenstock et al., 2021).

2The platform operates similarly to most food delivery companies, such as Uber Eats and DoorDash.
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Similar to other contexts, I find a high level of clustering among migrant workers.
First, the delivery platform divides each large city into approximately 150 districts, each
covering a 5km × 5km area. Delivery workers typically operate within a single district in
the destination city.3 I thus compute the clustering level based on the share of hometown
workers who choose to work in the same district.4 If workers were randomly allocated
across districts, fewer than 1% of same-origin workers would work in the same district.
Instead, the observed clustering level is 30%. As a result, the largest cluster formed by
same-origin workers within a district makes up 15% of the district’s total labor force on
the platform.

The main analysis consists of three steps. In Step 1, I analyze how clustering enables
knowledge spillovers among hometown peers and increases productivity. In Step 2, I
provide evidence for the labor market congestion costs of clustering using hometown
floods and pandemic lockdowns as exogenous variations. In Step 3, I build an equilib-
rium location choice model to quantify the trade-off between the learning benefits and
congestion costs, and how they interaction to affect workers’ location choices and welfare.

In Step 1, I conduct two main analyses: first, I open the black box of peer learning and
show what knowledge workers share with each other; second, I use quasi-experiments
based on entry bonuses to quantify the overall impacts of clustering on productivity.

In the first analysis, I examine whether workers can deliver faster (1) when they
themselves have visited a location before, which highlights learning by doing and (2)
when their peers have visited a location before, which indicates learning from peers. The
identification builds on the platform’s order allocation algorithm, which exogenously
assigns workers to visit different locations.I also exploit the fact that 60% of new workers
have a referrer upon entry.5 Referrers are incumbent delivery workers on the platform.
This referral information reveals social connections between workers and enables me to
directly estimate knowledge transmission within each new worker-referrer pair. Further-
more, using granular GPS data, I decompose each delivery into three parts: (a) time spent
on search for restaurants, (b) driving speed on the road, and (c) time spent on searching
for consumer locations. This decomposition provides rich insight into where learning

3The GPS data shows that workers complete 85% of their daily deliveries within a 3km × 3km area
on average. In addition, most workers select a single district as their primary work location, where they
complete 70% of their daily deliveries.

4Hometown is defined as a worker’s county of birth. There are 2,843 counties in China, of which 2,805
are represented by at least one active delivery worker in the analysis sample.

5For new workers in Shanghai in 2021, around 41% of new workers had referrers, and around 54% of
new workers came from the same county as their referrers. Restricting the sample to delivery workers who
finished at least 50 deliveries, around 60% of the new workers had referrers, and around 65% of the pairs
came from the same county.
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occurs across different steps of a delivery.

The results show that both learning by doing and peer learning play important roles.
A worker’s prior visit to a location reduces search time by 20% when they travel to the
same restaurant or consumer location the second time.6 Peers’ knowledge is around
half-effective. Conversely, travel speed on the main roads does not display the same
patterns. These results align with field insights that GPS tools can help workers travel
on the main roads, but knowledge accumulated from past delivery experiences can help
workers navigate local neighborhoods better. Additional analysis also show that order
and more crowded neighborhoods require more knowledge.

In the second analysis, I quantity the overall impact of clustering on worker pro-
ductivity. Estimating this has been challenging in prior studies: a simple regression of
productivity on clustering can be biased since workers’ location choices are endogenous.78

To deal with this, I construct an instrumental variable, which exploits the quasi-random
variation in new workers’ location choices induced by entry bonuses. These entry bonuses
are fixed monetary transfers awarded to new workers who complete a certain number
of deliveries in targeted districts.9 They thus function as natural experiments that ex-
ogenously nudge new workers to enter different districts. In summary, the endogenous
variable is the share of hometown workers in a worker’s work district. The instrument
variable is the hometown share in the bonus-target district.10 In addition, I only use
bonuses active the following week after new workers’ entries. This timeline helps avoid
bonuses abstracting different types of new workers joining the platform.

The IV regressions of new workers’ labor market performances on clustering levels
indicate that clustering significantly increases new workers’ productivity. On average,
one additional hometown peer increases productivity by 0.4% in the first three months.
Working in a district with an average clustering level increases new workers’ productivity

6A further heterogeneity analysis shows that the estimated search time decreases are most pronounced
in old, dense, and crowded neighborhoods, where it is hard to find exact locations. These findings highlight
the importance of learning in the city despite the availability of advanced GPS tools.

7For example, more competent workers can learn faster based on their own experiences and thus cluster
less.

8Another endogeneity issue I deal with is that new workers are more productive in districts with
more hometown peers, but for reasons unrelated to migrant networks. For example, Cantonese workers
work in districts with more restaurants speaking Cantonese, and their productivity is higher due to better
communication with restaurants instead of more Cantonese workers around.

9The platform occasionally imposes entry bonuses in different districts and weeks to balance labor
demand and supply. In Shanghai in 2021, 72% of entry bonuses were active for only one week, and 87% of
districts offered at least one week of entry bonuses each year.

10Specifically, I find that 90% of new workers choose to work in districts within 6km of their referrers’
districts. I thus define the set of districts adjacent to the referrer as a new worker’s choice set. The IV is the
hometown-worker share in a district that offers entry bonuses within this choice set.
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by 5%. While I do not find that clustering impacts working hours, workers’ total earnings
rise with higher clustering due to higher productivity.

More interestingly, I also estimate the entire shape of the clustering-productivity rela-
tionship by running the IV regression with indicators for different clustering levels. The
results indicate an increasing but concave curve, highlighting the diminishing marginal
productivity gains from clustering.

In Step 2, I examine the congestion cost of clustering. The intuition is that clustering
leads to many migrant workers increasing labor supply simultaneously during during
adverse hometown shocks. When labor demand is inelastic, clustering increases competi-
tion and decreases real wages, precisely when workers have the greatest desire to earn
more. To document the congestion cost empirically, I construct two sets of shocks: (1)
severe floods that occurred between June and August 2020, the biggest since 1998, and (2)
the pandemic lockdowns across counties in 202111.

Both shocks exhibit similar results. First, delivery workers from affected counties
increase their weekly labor supply by six hours on average during these hometown crises.
This increased labor supply allows them to earn an extra 200 RMB weekly, which can be
remitted to support affected family members back home.

Second, for each district, I construct aggregate shock indicators based on the predicted
share of workers facing hometown shocks in each district and week from June to August
2020.12 By regressing district-level outcomes on aggregate shock indicators, I find that
total labor supply surges when many workers in one district experience hometown
shocks simulanatesouly, For example, in districts with over 15% of workers experiencing
hometown shocks, total working hours increase by 10% that week. However, I find no
significant change in consumer demand, as measured by the total order volume.13

Finally, I regress workers performances on both the individual hometown-shock
indicator, aggregate hometown-shock indicator, and their interactions. The coefficient in
front the interaction terms capture the congestion costs. I find that for clustered workers,
even though they work longer during their hometown shocks, they finish significant

11I collect both the numbers of daily COVID cases from government websites and identify lockdowns in
each county and week by consumer orders below half of normal medians.

12I compute this predicted share using the hometown-district composition in May 2020 as the baseline. I
use the predicted shock share instead of the actual share of shock-affected workers in each district and week
to avoid the endogenous changes in hometown-district composition due to hometown shocks. Therefore,
the variation in the district-level aggregate shock share comes from the geographic and time differences in
hometown shocks.

13Though more active delivery workers potentially lead to faster delivery, I do not find consumers
respond, at least in the short run.
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fewer number of deliveries relative to non-cluster worker. On average, clustered workers
experience a 10% decrease in their real wages compared to non-clustered workers. This
congestion result is driven by clustered workers competing for deliveries and fewer
deliveries being assigned to each worker per unit of time.14

In Step 3, I build an equilibrium model to quantify the trade-off of these two impacts
of clustering: first-moment learning benefits and second-moment congestion costs.15 The
model proceeds in four stages. In stage 1, conditional on migrating to the destination
city and becoming a delivery worker, new migrant workers form expectations about
working in different districts and choose to work in a district with the highest expected
utility. In stage 2, the hometown shocks will be realized. In stage 3, workers decide on
working hours and remittances to maximize utility, where they care about their own
consumption,left-behind family’s consumption, and leisure time. Finally, the equilibrium
wage will be determined through the market clearing condition in each district. The
model also explicitly assumes that workers are aware of the learning and congestion
effects of clustering and consider both when choosing work districts.

I estimate the model using empirical results from Steps 1 and 2, as well as additional
variation from model predictions and quasi-experiments for key parameters. Specifically,
the productivity increase as a function of clustering comes directly from the IV regression
of delivery speed on clustering in Step 1. Hometown income levels during the regular
and shock periods are identified from workers’ labor supply responses to hometown
shocks in Step 2. I then leverage a quasi-experiment based on semi-annual platform
festivals to estimate workers’ labor supply elasticity to income. Specifically, the platform
randomly selects workers to receive 50-1000 RMB cash prizes during the festival. I thus
regress workers’ working hours on prize amounts to estimate the elasticity.

Two other key parameters are workers’ risk aversion coefficient and the scale of work-
ers’ idiosyncratic preferences across districts. First, I recover risk aversion by comparing
the clustering levels of workers from high (risky) versus low (safe) shock-probability
hometowns. The model predicts that workers from risky hometowns will cluster less due
to greater exposure to the congestion cost of clustering. Furthermore, the more risk-averse

14I also estimate the effect of clustering on workers’ relocation rate during adverse hometown shocks. I
find weakly significant but small effects. This suggests that some workers may relocate to another district
after the aggregate shock, but not all workers relocate. One explanation is the location-specific knowledge
as identified in Step 1. I show that workers’ delivery speed decreases and the timeout rate increases after
relocation.

15A model is essential here since trading off the two effects requires a credible estimation of workers’
risk aversion coefficient and other parameters governing the utility function. Moreover, the model en-
ables analyzing the whole shape of worker utility with clustering, estimating externalities, and running
counterfactuals for policy implications.
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workers are, the larger the gap is. I thus exploit the gaps in clustering levels between
risky and safe hometowns to estimate the risk aversion coefficient. Second, I run a gravity
regression of new workers’ entry choices on the entry bonuses to estimate the scale of
workers’ idiosyncratic preferences across work districts.

Using the estimated parameters, I show that workers’ utility displays an inverted-U
shape: utility first increases with clustering levels due to the learning benefit and then
fall when the congestion cost dominates. Moreover, the model predicts two sources of
externalities: (1) a positive learning externality as workers do not internalize their role
as teachers for same-origin workers, and (2) a negative congestion externality as the
congestion leads to longer idle waiting time during aggregate hometown shocks. I show
that the cumulative externality is negative since the congestion costs impact all workers
in the district, while the learning benefits decay quickly.

Finally, I run counterfactuals examining various policies by accounting for the two
clustering impacts. In the first counterfactual, I simulate the equilibrium where workers
are charged for the social externality of their entry decision. I find that when accounting
for externality, the equilibrium predicts significantly lower clustering levels and encour-
ages the formation of many small clusters. In the second counterfactual, I explore the
provision of insurance to mitigate adverse hometown shocks. By eliminating congestion
costs of clustering through insurance, the equilibrium clustering level nearly doubles, and
workers’ average productivity increases by 30%. Finally, I show that if the platform can
provide better learning tools to all workers, the clustering level decreases significantly,
and worker welfare increases by 4% due to less exposure to the congestion costs.

This paper joins a large body of literature analyzing the value of migrant networks.
Existing studies provide extensive evidence that migrant networks can impact migrant
workers’ performances in the destination’s labor market, such as by increasing employ-
ment rates and income (e.g., Borjas, 1995; Munshi, 2003; Antoninis, 2006; Woodruff and
Zenteno, 2007; Bayer et al., 2008; McKenzie and Rapoport, 2010; Beaman, 2012; Patel and
Vella, 2013; Munshi and Rosenzweig, 2016; Giulietti et al., 2018; Egger et al., 2021).

This project contributes to this body of work in several ways. First, the granular GPS
data enables me to provide direct evidence of knowledge spillovers among hometown
workers. These results establish a vital micro-foundation for understanding the positive
network effects on migrant workers’ labor-market performance. Second, I highlight a new
cost of clustering: clustering results in labor market congestion during hometown shocks
and leads to higher income risks. Third, I propose a new framework to estimate workers’
utility as a function of clustering and measure its externality to other non-clustered
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workers.

The findings on migrant workers’ responses to hometown shocks also relate to exten-
sive studies analyzing the role of migration as insurance for rural shocks.16 These studies
analyze the impacts of adverse shocks on migrants’ labor supply and remittances (e.g.,
Lucas, 2004; Yang, 2006; Yang, 2011; McKenzie et al., 2014; Gröger and Zylberberg, 2016;
Joseph et al., 2018), general equilibrium effects of agricultural shocks (e.g. Jayachandran,
2006; Akram et al., 2017), and how migrants function as insurance (e.g., Munshi and
Rosenzweig, 2016; Morten, 2019). A closely related study is Michuda (2021), which uses
Uber driver’s data from Uganda and finds that adverse agricultural shocks are associated
with longer working hours.

This project adds consistent results that migrant workers adapt their labor supply in
response to shocks in their hometowns.17 I also expand on existing studies by quanti-
fying this new general equilibrium channel through which clustered migrant workers
compete with one another during adverse hometown shocks. This GE effect reduces the
effectiveness of their role as rural insurance.

Third, examining how agglomeration enhances learning and its associated costs
aligns with a comprehensive urban literature that analyzes the determinants and impacts
of urban agglomeration.18 Learning emerges as a key mechanism to explain urban
agglomeration (e.g. Marshall, 1890; Jaffe et al., 1993; Glaeser, 1999; Graham and Marvin,
2002; Peri, 2002; Roca and Puga, 2017; Davis and Dingel, 2019; Atkin et al., 2022). This
study contributes by providing crucial empirical support for learning from peers in urban
settings. Furthermore, I show that workers share location-specific knowledge with each
other, which confines knowledge spillovers within specific areas. 19

Finally, my analysis of new workers learning from past delivery experiences adds

16Rural-urban migration has significantly shaped China’s economy over the past three decades, with 300
million rural migrant workers employed in urban areas by 2022. This study contributes to the examination
of this phenomenon by focusing on the unique migration patterns in the emerging era of the platform
economy alongside existing research (e.g., Kinnan et al., 2018; Chen et al., 2010; Dai et al., 2019).

17Given the rapid growth of gig economy, an expanding body of literature is investigating the flexibility
it offers (e.g., Mas and Pallais, 2017; Chen et al., 2019; Angrist et al., 2021; Michuda, 2021). This study
highlights that the flexibility inherent in gig economy jobs enables workers to adjust their labor supply
during hometown shocks, thereby contributing to mitigating geographical aggregate shocks.

18Urban economics literature has documented various factors leading to the agglomeration of workers,
firms, and industries in urban contexts (e.g., Rosenthal and Strange, 2001; Duranton and Puga, 2004;
Giuliano et al., 2007; Glaeser, 2010; Glaeser et al., 2010; Kukalis, 2010; Krugman, 2011; Moretti, 2012;
Giulietti et al., 2018; Duranton and Puga, 2020; Fajgelbaum and Gaubert, 2020).

19Moreover, the labor market congestion cost of clustering also relates to studies highlighting labor
pooling in urban contexts (Rauch, 1993; Overman and Puga, 2010; Kerr and Robert-Nicoud, 2020). While
labor pooling can mitigate sector-specific volatility by creating a larger labor market, this project shows that
when workers face friction of moving across locations, they may still face correlated shocks.
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to studies estimating the impacts of on-the-job learning on worker productivity (e.g.,
Thompson, 2010; Levitt et al., 2013; Haggag et al., 2017; Mao et al., 2019; Papay et al.,
2020; Cook et al., 2021). Moreover, the finding that new workers learn from referrers’
experiences highlights additional values of referrers in the labor market: they can transmit
productive knowledge and increase new worker productivity (e.g., Antoninis, 2006;
Beaman and Magruder, 2012; Burks et al., 2015; Dustmann et al., 2016; Friebel et al., 2023).

The paper proceeds as follows. Section II describes the context. Section III builds a
district choice model indicating how learning benefits and congestion costs of cluster-
ing interact to impact location choices. Section IV shows clustering enables knowledge
spillovers and increases new worker productivity. Section V presents the general equi-
librium effects of clustering during adverse hometown shocks. In Sections VI and VII, I
estimate the model, measure worker utility with clustering, and discuss counterfactuals.
Section VII presents conclusions.

2 Context

2.1 Migrant Workers in the Gig Economy

This project focuses on rural-urban migrant workers in the gig economy in urban China.
This is a particularly good setting to study the impacts of migrant clustering. First, the gig
economy has grown rapidly and is estimated to have 435 million workers worldwide in
2023 (Datta et al., 2023). Furthermore, the gig economy has become the NO.1 occupational
choice among migrant workers due to lower entry barriers (Pew, 2021; McKinsey, 2022).
Since this is a new economic form, where we may expect technology to have replaced
lots of human interactions, we know much less about how workers make choices and the
value of migrant networks in the gig economy.

Specifically, I use data from a large food delivery platform in China with over 1
million delivery workers and operating in more than 100 cities nationwide. The platform
operates similarly to other platforms, such as UberEats and DoorDash in the United
States.20 Workers earn a per-delivery commission fee ranging from $0.5 to $1.5. Their
monthly earnings typically fall between $300 and $1,000, depending on the number of

20Once consumers place orders on the platform, an algorithm matches each order with nearby delivery
workers. To complete a delivery, workers first travel to the restaurant to pick up the food. They then drive
to the consumer’s address to drop it off, as illustrated in Figure B.1. A major difference is that delivery
workers drive motorcycles to deliver food instead of driving cars, which is also very common in many
other developing countries.
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deliveries completed.

Most delivery workers in large cities are domestic seasonal migrant workers. For
example, in major cities like Beijing and Shanghai, around 98% of delivery workers are
domestic migrant workers. As shown in Figure B.2 and Table B.2, most workers come
from central and western parts of China (with lower GDP) and work in several large cities
(with higher GDP). Table B.1 provides details on workers’ demographic characteristics.21

For the primary analysis, I focus on delivery workers in the five largest cities in China.
More details on data construction and sample selection are provided in Appendix C.

2.2 Clustering of Migrant Workers

Similar to other contexts, I find a high level of clustering when migrant workers choose
where to work. First, the food delivery platform divides each large city into around
100∼200 comparable districts.22 Each district spans roughly 5km × 5km and hosts about
100∼200 workers. GPS data show that most workers operate within a single district and
complete around 70% of their daily deliveries there.23

I thus compute the clustering level based on the share of workers from the same
hometown who work in the same district.24 If workers were allocated to these districts
randomly, fewer than 1% of people from the same hometown would work in the same
district. However, the observed clustering level is 30%. Figure B.3 provides examples
of clusters formed by workers from different hometowns. I plot the histogram of the
clustering levels in Figure 1. In turn, the largest cluster of same-origin workers in each
district comprises 15% of the labor force in each district on the platform (figure 2).25

21The entry barriers to becoming a delivery worker are low. Workers first download the platform’s app
and register by verifying their identity cards. They rent or purchase a motorcycle for around $400, and a
helmet and work clothes for around $100.

22data show that 85% of deliveries are within 3 km.
23The platform typically defines districts by drawing circles around shopping malls with many restaurants

to minimize the number of cross-district deliveries.
24Hometown is defined at the county level. There are 2,844 counties in China. I use GPS data to define

each worker’s work district in a given week. Specifically, I identify the district where each worker has the
most GPS coordinates that week as their primary work district.

25I have also calculated clustering levels based on the share of deliveries completed by workers from
each hometown across districts, as shown in Figure B.4. These delivery-based clustering levels are very
similar to the worker share-based levels described here.
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Separate Work and Living Locations

The GPS data also allows me to distinguish between individuals’ work and living locations.
Taking workers in Shanghai as an example (figure B.5), I find most migrant workers live
on the outskirts or cluster in lower-rent compounds.26 Typically, same-origin migrants
cluster residentially to share rents. However, living together shall not prohibit these
migrant workers from working in different districts.27 By separating workers’ choices of
work locations from living locations, I avoid making strong assumptions to shut down
other reasons for clustering. Instead, migrant workers can enjoy various benefits of
clustering by living together, such as sharing rent and food. However, the two forces
studied in this project, the learning benefits and congestion costs, directly affect workers’
labor income and are salient in influencing their work location choices.

3 The Impact of Clustering on Learning and Productivity

In this section, I analyze how clustering enables knowledge spillovers through the
migrant networks, leading to higher productivity and average earnings. I conduct two
main analyses: first, I open the black box to show what knowledge workers share with
each other; second, I use quasi-experiments based on entry bonuses to quantify the overall
productivity return of clustering.

3.1 Descriptive Findings

In the food delivery sector, faster delivery speed means workers can finish more deliveries
and earn more per hour, leading to higher real wages, making it a good measure of
worker productivity.28 I first show that new workers’ productivity increases over time.
In Figure 3(a), the x-axis displays the number of weeks since new workers joined the
platform, and the y-axis is the new workers’ average speed. The concave shape indicates
that workers’ productivity increases fast first and stabilizes after the first three months.

Furthermore, new workers who cluster with hometown peers appear to improve faster.

26I infer residential locations from GPS coordinates before 7 am or after 11 pm daily. Work locations are
based on average latitudes/longitudes of daily deliveries.

27These migrant workers rarely own property in their work cities. Based on a platform-wide survey
in 2021, around 0% of migrant workers owned an apartment in their destination city, and less than 3%
planned a future purchase. Thus, their residential locations are not tied to owned properties.

28Delivery speed is computed as the delivery distance (meter) to be divided by the delivery duration
(minute).
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In Figure 3(b), I classify new workers into two groups: those working in a district with
same-origin workers and those without. The average delivery speed of new workers with
hometown peers (red line) increases faster than those without (blue line).29 This pattern
suggests that new workers may learn faster by working alongside hometown peers in the
same district. However, directly comparing clustered and non-clustered workers can be
biased due to the potential inherent differences between the two groups. Next, I will use
quasi-experiments to quantify the magnitude of knowledge spillovers and explore the
mechanisms.

3.2 Direct Evidence of Learning

3.2.1 What Do Workers Learn from Peers?

In the first analysis, I aim to open the box and explore what knowledge delivery workers
learn from their own and hometown peers’ experiences. Specifically, I analyze whether
workers can travel and deliver faster when (1) workers themselves have visited a location
before, which represents learning by doing, and (2) workers’ close peers have visited a
location before, which indicates learning from peers. To define each worker’s close peer,
I exploit the fact that 60% of new workers have a referrer upon entry.30 Referrers are
also existing delivery workers on the platform. This new worker-referrer information
highlights the social connections between the two individuals. Thus, I can identify new
workers’ peers as their referrers from whom new workers learn and estimate knowledge
transmission within these pairs.

Furthermore, using granular GPS data, I decompose each delivery process into three
parts: (1) time spent searching for restaurants, (2) time spent driving on the road, and (3)
time spent searching for consumers.31 This decomposition enables me to analyze further
where learning occurs across different delivery steps.

I thus regress workers’ productivity on indicators of whether workers themselves or

29I also plot the trend of new workers’ hourly wage, as shown in Figure B.7. It exhibits a similar trend
that new workers can earn higher wages per hour, mainly driven by finishing a higher number of deliveries
per hour. Furthermore, I plot the productivity trends for migrant workers versus local residents, as shown
in Figure B.8. Local residents present a flatter trend, whose initial productivity is significantly higher than
migrant workers.

30Among new workers in Shanghai in 2021, 41% had referrers, and 54% of new worker-referrer pairs
were from the same county of birth. Restricting the sample to workers who finished more than 50 deliveries,
60% had referrers, and 65% of those pairs came from the same counties.

31I calculate search times by counting GPS coordinates within 150-meter radii of restaurants and
consumers. Road travel time is the rest of the delivery time divided by distances.
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their referrers have ever visited the same location before. The identification builds on
the platform’s order allocation algorithm, which exogenously assigns workers to visit
different locations and results in workers possessing varying prior knowledge across
locations and time. The corresponding regression function is as follows.

Yitab = α1 OwnVisitita + α2 RefVisitita + β1 OwnVisititb + β2 RefVisititb+

δa + δb + γit + AveVisitOwn
ita + AveVisitOwn

itb + AveVisitRef
ita + AveVisitRef

itb + ϵitab (1)

The regressions are at the delivery level. For each delivery from restaurant a to consumer
location b, I construct three dependent variables on worker productivity as outlined above.
I also have the four independent variables: (1) whether a worker i has ever visited the
same restaurant in the past month before time t, OwnVisitita, (2) whether worker i has ever
visited the same consumer building, OwnVisititb, (3) whether i’s referrer has ever visited
either the restaurant, RefVisitita, and (4) the consumer building, and RefVisititb. I also
include the location fixed effect, δa and δb, to control for inherent location characteristics.
The worker × date × hour fixed effect, γit, takes care of worker and time heterogeneity,
and enables me to compare the productivity across deliveries that a worker completes in
the same hour but with differing prior knowledge.

Another concern that we may have is that the order allocation is not random. Discus-
sions with the algorithm team revealed that the most important input for the algorithm
is workers’ real-time GPS so that the platform can match orders with workers nearby.
Thus, the endogeneity concern is that workers may locate somewhere and wait for certain
types of orders strategically. To deal with this, I follow the intuition from Borusyak and
Hull (2023) and construct an average delivery probability for each worker and refer-
rer. Specifically, I randomly shuffle order allocation within each hour, each 2km × 2km
grid, and each tenure group. I repeat this exercise 100 times and calculate the average
likelihood of a worker and a referrer visiting a location based on these counterfactual
order assignments.32 By controlling for the delivery probability, the actual identification
assumption is that workers who are at the same location at the same time are very close
substitutes in the algorithm’s eyes. When the algorithm assigns orders among them, who
gets which order is almost random.

I also conduct balance checks, where I compare the characteristics of deliveries: (1)

32As a robustness check, I try another method to calculate the probability of visiting a location given
workers’ characteristics. Specifically, I run a logit regression of visiting a location on a worker’s tenure, age,
gender, historical performances, whether they have a referrer, and the referrers’ characteristics. The results
are similar.
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allocated to workers who visit a location for the first time versus those on repeat visits, (2)
allocated to workers with varying tenures, and (3) accepted versus rejected by workers.
I find no significant differences for these comparisons in Figure B.9 and Figure B.10,
suggesting that inherent worker attributes do not seem to influence order allocation
significantly.

Table 1 presents the regression findings, showing that both learning by doing and
learning from peers play essential roles. A worker’s own prior visit to a location reduces
search time by approximately 20% when they visit the same restaurant or consumer
building again. A referrer’s prior visit decreases a new worker’s search time by around
10%, indicating knowledge transmission within this pair of workers. Conversely, travel
speed on the road does not display the same patterns. These results are consistent with
field insights: GPS tools help workers navigate main roads, but learning is crucial when
workers navigate in narrow neighborhoods and search for specific addresses.

3.2.2 In which part of the city do workers learn the most?

The coefficients from this delivery-level regression also reveal valuable information: the
amount of learning needed in each location. I thus divide Shanghai into approximately
200 grids that are a 2km × 2km each. I run the delivery-level regressions for each grid
separately and compute a grid learning index based on the coefficients in front of the
OwnVisitita and RefVisitita variables.

In Figure 4 and Table 2, I examine the correlation between these learning indexes
and grid-level attributes, including average building age and housing density. I find that
the estimated learning magnitudes are most pronounced in old, dense, and crowded
neighborhoods. This highlights the importance of learning in areas where exact locations
are difficult to find.

3.3 IV Estimates of Clustering on Productivity

The preceding analysis provides direct evidence of what knowledge workers learn from
peers. Quantifying the overall impact of clustering on new workers’ productivity is
also important. However, estimating it has been challenging in the literature as a simple
regression of productivity on clustering is subject to a major endogeneity concern: workers’
location choices are endogenous. For example, more competent workers may learn faster
based on their own experiences and thus cluster less. In this section, I construct an
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instrumental variable based on entry bonuses to address it.

3.3.1 IV: bonus-predicted clustering level

Consider a new worker i, who comes from hometown h, enters the platform in week Te.
The endogenous variable is the share of hometown workers in a worker’s actual work
district, Sharehdt.

Sharehdt =
Nhdt
Ndt

where Nhdt is the number of workers from hometown h in district d in week t, and Ndt is
the total number of workers in district d in week t.

To construct the instrumental variable for Sharehdt, I explore the quasi-random varia-
tion in new workers’ district choices induced by entry bonuses. These entry bonuses are
fixed monetary incentives awarded to new workers who complete a certain number of
deliveries in bonus-targeted districts.33 They thus function as natural experiments that
exogenously nudge new workers to enter different districts.34 In addition, I only use
bonuses active in the subsequent week following a new worker’s entry. This timeline (as
shown in figure B.13) avoids the situation that bonuses attract different types of workers
to join the platform.

To formalize the IV, as mentioned in the previous section, 60% of new workers have
a referrer j who works in district dj. I find that 90% of new workers choose to work in
districts within a 6-km radius of their referrers’ districts (Table B.3). Therefore, I define
districts adjacent to a new worker’s referrer’s district as their potential choice set, dP.
New workers are exogenously nudged to join one of the districts within dP based on
which districts offer entry bonuses in week Te + 1.

In summary, the instrument variable is the share of hometown workers in a district that
provides entry bonuses within each new workers’ choice set, denoted as PredictShareihdPt.
The main variation of the IV comes from the quasi-random assignment of entry bonuses
across time and districts.

PredictShareihdPt = max
d∈dP

{NhdTe

NdTe
× 1{bonusd,Te+1}}

33The platform introduces entry bonuses targeted at various districts in different weeks. These bonuses
serve to balance the labor supply and demand across districts. In Shanghai in 2021, 72% of entry bonuses
are active for only one week. 87% of districts experience at least one week of entry bonuses each year.

34The specific terms can vary across different bonuses. In most cases, new workers are required to
operate within the targeted districts for approximately a month or complete around 200 deliveries within
the district.
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3.3.2 Results: Average Effect of Clustering on Productivity

I run the IV regression at the worker-week level as below.

Yihdt = α Sharehdt + γdt + γht + γTe + AveShareihdpt + ϵihdt (2)

As explained above, the independent variable is the share of hometown workers in
each new worker’s actual work district, Sharehdt, and the instrumental variable is the
bonus-predicted share, PredictShareihdpt. I also include (1) the district-week fixed effect
to control for any district-level labor market fluctuations, including the heterogeneity due
to the allocation of entry bonuses, (2) the hometown-week fixed effect to adjust for any
hometown shocks that might influence workers’ labor supply, and (3) entry cohort fixed
effects to only compare the productivity of workers who enter around the same time.

Furthermore, while the allocations of entry bonuses are exogeneous, Sharehdt and
PredictShareihdpt also depend on the sizes of existing hometown networks, Nhdt. This
means that new workers with more hometown peers nearby (higher Nhdt) are likely to
have a larger clustering level (higher PredictShareihdpt) regardless of which district offers
entry bonuses. To address the endogeneity of existing hometown networks, I follow
the intuition from Borusyak and Hull (2023) and construct an average predicted share
based on bonus counterfactuals. Specifically, I shuffle the allocation of entry bonuses
within three months before and after each worker’s entry week. Each bonus allocation
counterfactual generates a bonus-predicted clustering level. I then calculate an average
clustering level, AveShareihdpt, across all bonus allocation counterfactuals. By controlling
for this average clustering level, I compare new workers with similar hometown networks
in the destination city. Still, their realized clustering levels can differ since which district
offers entry bonuses in which week is exogenous. I am thus able to extract the exogenous
variation from entry bonus allocation across districts and time for identification.

The IV results are presented in Table 3. Column 5 reports the first-stage results, where
the predicted clustering level strongly correlates with the actual clustering level. Columns
6-9 present the IV results. They indicate that new workers operating in districts with
a higher share of hometown peers tend to deliver food more rapidly, complete more
deliveries per hour, and have higher weekly earnings. Conversely, the clustering level
does not significantly affect new workers’ hours. In terms of magnitude, compared to
the average delivery speed, the presence of one additional same-origin peer in the same
district corresponds to a 0.4% increase in new workers’ productivity. Working in a district
with an average clustering level results in a 5% productivity increase for new workers.
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I also present a set of robustness checks. Table B.5 reports additional measurements
of workers’ labor market performances. Workers are less likely to be late for deliveries
and slightly less likely to relocate to other districts when they work in districts with
more hometown peers. Table B.6 reports the effects of clustering on delivery speed under
different IV specifications. Column (1) uses entry bonuses with a take-up time window
of less than one week; column (2) uses all entry bonuses in the destination city without
restricting the entry bonuses near the referrer’s district; column (3) focuses on workers
with only one bonus-predicted district; column (4) constructs the instrument based on
time-varying clustering levels across districts, and column (5) construct the predicted
clustering level to be weighed by the size of the entry bonuses. All columns report similar
results: a higher clustering leads to higher productivity.

Table B.7 reports results based on different independent variable specifications. Col-
umn (1) uses the number of hometown workers instead of the hometown-worker share
in the baseline specification; column (2) reports the effect on productivity of locating in
the same district as one’s referrer; column (3) constructs the clustering level adjusted by
tenure; column (4) explore the share of deliveries completed by hometown peers as the
proxy for clustering levels; and column (5) expands hometown peers to workers from the
same birth city. These different measurement of clustering levels report patterns similar
to those of the baseline specification.

3.3.3 Diminishing Marginal Gain from Clustering

More interestingly, I am able to recover the full shape of productivity improvements
across clustering levels by running the IV regression with a set of indicators, 1{Shareihdt =

c}c=1,..,20 and corresponding instrumental variables, 1{PredictShareihdt = c}c=1,..,20, each
representing a distinct clustering level.

Yihdt = ∑
c=1,..,20

αc1{Shareihdt = c}+ γdt + γht + γTe + AveShareihdpt + ϵihdt (3)

I visualize these coefficients αcc=1,..,20 in Figure 5. It shows that new workers achieve
higher productivity as the clustering level rises, but the marginal gain decreases. Specifi-
cally, when the clustering level reaches around 10%, adding one more same-origin peer
does not lead to a further increase in productivity.
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3.4 Additional Validity Test: Restaurant Clusters and Worker Clusters

The IV regression establishes that higher clustering increases new workers’ productivity.
We may also wonder while new workers are more productive in high-clustering districts,
it may be due to factors unrelated to migrant networks. For example, suppose Cantonese
restaurants are all located in one district. Cantonese delivery workers may also work
in that district, and they are more productive than other workers. However, it might be
because they communicate more efficiently with Cantonese restaurant owners, but not
because they have a larger migrant cluster. While this endogeneity issue does not directly
bias the magnitude of estimates, it could influence the interpretation of the results.

To address this concern, I directly compare the geographic distributions of restaurants
and workers from the same origins. Specifically, I infer the origins of restaurants based
on their brands and cuisines, such as "Cantonese food" or "Sichuan food." As shown
in Figure 6, I find no significant correlations between restaurant clusters and workers
clusters from the same origins. This test provides additional support for results that the
migrant network increases productivity through the knowledge spillover channel.

3.5 Other Channels of Learning

The analysis above has quantified the overall impacts of clustering on productivity
and highlighted one crucial mechanism: new workers can learn from peers’ delivery
experiences, which saves time searching for restaurants and consumer locations. In reality,
delivery workers can learn more from each other. Here, I provide suggestive evidence on
some additional mechanisms of peer learning.

First, I explore a quasi-experiment based on unexpected entrance closure and analyze
how information spreads through the social network. In Figure B.12(a), I provide one
example of workers deviating from the fastest delivery routes. The black line represents a
worker who initially went to a closed gate of a residential compound and then took a
detour to another open gate, resulting in a four-minute delay. Following this, I identified
20 compounds in Shanghai that unexpectedly closed one of their entrances in 2021. As
Figure B.12(b) shows, the following day, nearly 40% of workers still tried the locked
entrance. Interestingly, workers with referrers who previously visited the locked entrance
were much less likely to make this error (figure B.12). This suggests that workers share
their daily experiences about the ever-changing urban landscape with each other.

Second, Figure B.16 shows that new workers tend to turn out for work around the
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same time as their referrers. Specifically, I find that hourly wages usually peak at lunch
(11:30 a.m.-1 p.m.) and dinner (5:30-6:30 p.m.). Locating in the same district with
one’s referrer significantly increases new workers’ probability of working during these
high-earning hours versus afternoons.

These findings highlight two main mechanisms of peer learning: (1) learning from
peers’ location-specific experiences and (2) emulating peers’ behaviors. Thus, having more
peers nearby expands new workers’ accessible knowledge pool and increases average
productivity.

4 The Impact of Clustering on Income Risks

In this section, I analyze the labor market congestion costs of, which increase migrant
workers’ income volatility.

4.1 Individual Labor Supply Responses to Shocks

Existing studies have extensively documented that migrant workers tend to work longer
and function as insurance against adverse shocks in rural areas (Yang, 2011). The reason is
that migrant workers care about left-behind family members and aim to send remittances
when adverse shocks occur in their hometowns. In this context, delivery workers are
usually the primary income source for their household. Furthermore, the flexibility of the
gig economy allows delivery workers to quickly adapt their labor supply in response to
hometown shocks (Michuda, 2021). To estimate how delivery workers respond to adverse
hometown shocks, I construct two types of shocks: floods and pandemic lockdowns.

First, I use floods that occurred between June and August 2020, the worst since
1998 (Wall Street Journal, 2020).35 I identify floods based on daily precipitation data.
Specifically, I create a proxy for floods by identifying instances where accumulated rainfall
over two days exceeds 160mm in each county and week, doubling the threshold for heavy
rain.36 Of 2,423 counties with precipitation data, 8% experienced flood shocks at least
once during the period. Among counties with at least one active delivery worker in the

35According to the Ministry of Emergency Management, the floods have affected 63.46 million people and
caused a direct economic loss of 178.96 billion RMB, which are 12.7% and 15.5% higher than the 2015-2019
average (Post, 2020).

36In most countries, the threshold for heavy rain and above is experiencing 80 millimeters per 24 hours. I
also run robustness checks using different rainfall thresholds.
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sample, 11% experienced flood shocks at least once. Figure B.17 presents the geographic
distribution of flood shocks.

Second, between 2020 and 2022, many places in China experienced occasional strict
pandemic lockdowns. Lockdowns in workers’ hometowns meant their left-behind family
members could not work outside, which might also incentivize migrant workers to work
longer and send remittances to support their families. I compile two data sources: (1)
daily records of confirmed COVID-19 cases by city and (2) lockdowns in each county and
week, indicated by the number of consumer orders on the platform falling below the half
of normal medians.

I run a regression at the worker-week level to compare workers’ labor supply before
and after they experience adverse hometown shocks. The specification is as follows.

Yihdt = β Shockht + γi + γpt + γd + ϵihdt (4)

where Shockht indicates if worker i’s hometown h experienced any adverse shock in
the past month.37 I include workers’ origin province-week fixed effect, γpt, to absorb
origin region-related time fluctuations, individual fixed effect, γi, to control for worker
heterogeneity and district fixed effect γd, to control for district heterogeneity.38

Table 4 presents the hometown flood results. Migrant delivery workers increase weekly
labor supply by around six hours. By working longer, workers complete 16 additional
deliveries, raising weekly income by around 150 RMB. The extensive margin also shifts,
where the share of workers completing at least one delivery increases slightly among
workers from affected counties.39 Regressions examining the impacts of hometown
pandemic lockdowns show similar patterns. As Table B.9 shows, both COVID cases and
pandemic lockdowns in workers’ hometowns increase migrant workers’ labor supply.
Magnitudes are slightly smaller but more precise since I have more accurate identification
of the lockdown shocks.

I also plot the event study analysis of workers’ labor supply dynamics around home-
town shocks in Figure 7. The x-axis displays the number of weeks before and after the
hometown shock, and the y-axis shows the changes in weekly working hours. Labor

37Changes over time can be found in the event study analysis in Figure 7. It shows that workers still
work longer, around four weeks after the shock, compared to the normal period.

38Specifically, I add origin province-week fixed effects to capture different work habits for workers from
different regions across the year. For example, workers from northern China may prefer to work longer
during summer.

39Based on conversations with workers, this is partly due to the widely available digital cash transfer
system in China. Workers can send money back without traveling back in person.
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supply increases substantially in the first week after the shock and diminishes over time.40

Additional robustness checks in which I vary the flood threshold can be found in Table
B.8, suggesting similar results.

4.2 District Responses to Aggregate Shocks

I next estimate the aggregate impacts of migrant workers’ hometown shocks in the
destination labor market. The intuition is that consider a district with a large share of
delivery workers coming from the same county of birth, hc. If an adverse shock occurs in
hometown hc, these migrant workers may increase working hours around the same time,
resulting in the total labor supply surging in the destination market.

I first construct a set of district shocks: the predicted share of workers experiencing
adverse hometown shocks in each district and week, as below.

ShockSharedt = ∑
h

Nhdt0

Ndt0
Shockht

where
Nhdt0
Ndt0

is the hometown composition in each district in May 2020. I set it as fixed
when computing the shock share in order to control for the endogenous changes in
hometown compositions due to hometown shocks. The variation of ShockSharedt thus
comes from two sources: (1) different hometown compositions across districts and (2)
hometown shocks that occur during different weeks. Figure B.19(a) shows the histogram
of district shocks, and figure B.19(b) plots the correlation between hometown clustering
levels and sizes of district shocks: a higher clustering level is correlated with a larger
district shock.41

I next construct the indicator for aggregate district shocks as follows.

AggShockdt = 1{ShockSharedt > 15%}

where I identify an aggregate shock when the predicted share of workers facing adverse
hometown shocks exceeds 15% in a district. I choose this threshold for two reasons:
(1) 15% is the average clustering level across districts. As discussed above, with i.i.d.
hometown shocks, the shock share is highly correlated with the highest clustering level in

40This extended impact is likely due to the sector’s relatively low wages, requiring long-term efforts to
accumulate savings.

41By assuming that shocks are i.i.d. across hometowns, the upper bound of Shockdt depends on the

highest level of clustering level in the district: maxt Shockdt ≃ maxh
Nhdt0

dt0 .
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each district; (2) the model predicts concave impacts of aggregate shocks on labor supply.
Adopting a binary shock indicator facilitates interpretation and make it easier to compare
with previous estimates of individual hometown shock impacts.

I run the regression at the district-week level to estimate the impacts of aggregate
shocks on district outcomes.

Ydt = δ AggShockdt + γd + γt + ϵdt (5)

where I add district fixed effect, γd, and week fixed effect, γt, to control for district
heterogeneity and labor supply fluctuations across time. For the dependent variables, I
calculate the total number of orders placed by consumers each week, the total number of
active workers, and the total number of working hours.42

Table 5 presents the results. On the labor supply side, the total working hours rise
substantially during aggregate district shocks, though the number of active workers
remains stable. This implies that adverse hometown shocks cause existing migrant
workers to work longer instead of attracting more workers to come and work in the short
run. On the demand side, I do not find the total number of consumer orders responds
significantly.43 The results indicate large aggregate shocks result in labor supply surging
without the increases of corresponding consumer demand. As a result, each worker is
assigned fewer deliveries per unit of time.

As a robustness check, I present the results using continuous shock shares in Table
B.10, which displays the same pattern. Furthermore, column (4) in Table 5 shows the
per-delivery commission fee does not change significantly during aggregate shocks. This
is because the platform does not frequently adjust commission fees for stability reasons.44

With invariant per-delivery fees, the congestion effect on workers’ real wages and income
stems from fewer deliveries being assigned to each worker per hour during an aggregate
shock, not lower per-delivery fees.

42Working hours add up all hours workers engage with the platform’s application by opening it and
taking some actions without necessarily delivering orders at that moment.

43This outcome is partly due to the low delivery fee in the context. Though the increases in labor supply
potentially lead to faster delivery, I do not find consumers respond, at least in the short run.

44Based on conversations with the wage setting team, they only adjust per-delivery commission fee,
especially lowering the commission fee, at most twice a year to avoid angering workers and damaging
reputation.
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4.3 Effect of Clustering on Income during Hometown Shocks

Finally, I analyze how clustering affect workers’ income during adverse hometown shocks.
As noted, during aggregate hometown shocks, labor supply rises, but consumer demand
remains constant. This results in workers being assigned fewer deliveries per hour. In
equilibrium, though the per-delivery commission fee paid to workers stays constant (as
shown in Table 5), workers’ real wage decreases due to the labor market congestion.

This effect can be more pronounced for clustered workers who face individual and
aggregate shocks simultaneously. Labor supply surges precisely when they desire to
work longer. I use the following specification to analyze this general equilibrium effect of
clustering.

Yihdt = β Shockht + δ AggShockdt + α Shockht × AggShockdt + γi + γpt + γd + ϵihdt (6)

where the interaction terms, Shockht × AggShockdt, captures the general equilibrium
impacts of experiencing the individual and aggregate shocks at the same time. Similar to
the previous two regressions, I include workers’ origin province-week fixed effect, γpt, to
absorb origin region-related time fluctuations, individual fixed effect, γi, to control for
worker heterogeneity, and district fixed effect γd, to control for district heterogeneity.

Table 6 presents the findings. In column (3), workers increase weekly hours by
around six hours on average after adverse hometown shocks, regardless of whether they
experience any aggregate district shocks. The positive coefficient on Shockht in column
(2) shows that affected workers complete more deliveries by working longer. However,
the interaction term in column (2) reveals that when experiencing individual hometown
shocks and aggregate shocks simultaneously, clustered workers complete much fewer
deliveries despite working similar additional hours as non-clustered workers.

In terms of magnitudes, during adverse hometown shocks, non-clustered workers
complete 20 additional deliveries by working longer, earning 200 RMB extra. On the
contrary, clustered workers only complete around ten more deliveries, earning 100 RMB
extra, even though they work similar hours as non-clustered workers. A back-of-the-
envelope calculation shows that during adverse hometown shocks, clustered workers’
real wages are 10% lower than the normal period.
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4.4 Negative Externality of Clustering: Peak v.s. Off-peak hour

The congestion cost of clustering is relevant for both clustered workers and non-clustered
workers in the district, albeit to varying degrees. Evaluating the negative externality of
clustering requires examining delivery patterns.

Specifically, due to the food delivery sector’s characteristics, 80% of workers are active
during lunch and dinner hours, as shown in Figure B.20. As a result, there is limited
room to expand their labor supply further during these periods. Instead, workers facing
hometown shocks are more likely to work in the afternoon and late evening (Figure
B.21). With fewer consumer orders during these non-peak hours, the labor supply surge
intensifies competition further.

In Table B.11, I separate worker performance into peak (11 am-2 pm, 6 pm-8 pm)
versus non-peak hours. Aligning with illustrated work patterns, the congestion effects
occur mainly during non-peak times. On the one hand, workers facing hometown shocks
receive lower wages precisely when they have the greatest desire to earn more. On the
other hand, workers who do not experience hometown shocks themselves but operate in
districts with aggregate shocks receive lower real wages during these periods. As a result,
they work for fewer hours, complete fewer deliveries, and earn less income weekly.

In summary, I analyze the congestion cost of clustering in this section. Adverse
hometown shocks increase migrant worker’s weekly labor supply by six hours on average.
For clustered workers, individual shocks translate into aggregate shocks. This intensifies
competition for consumer orders and lowers real wages in the equilibrium. The congestion
cost becomes more pronounced with higher clustering. Since each hometown has some
probability of experiencing adverse shocks, clustering raises income volatility and risks.

5 Theoretical Framework

Drawing on empirical results from sections 3 and 4, I establish a model to quantify the
trade-off between the two countervailing effects of migrant networks: learning benefits
and congestion costs. A model is essential here because the learning benefits increase
workers’ average productivity and income, while the congestion costs increase workers’
income volatility. Thus, trading off the two forces requires a credible estimation of
workers’ risk aversion coefficient and additional parameters governing the utility function.
The model also guides discussions on the market externality of clustering and allows
counterfactual policy analysis.
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The model has four stages. In stage 1, conditional on migrating to the destination city
and becoming a delivery worker, new migrant workers form expectations about working
in different districts and choose to work in a district with the highest expected utility. In
stage 2, the hometown shocks are realized. In stage 3, workers decide on working hours
and remittances to maximize utility, where they care about their own consumption,left-
behind family consumption, and own leisure time. Finally, the equilibrium wage is
determined through the market clearing condition in each district. The model also
explicitly assumes that workers are aware of the learning and congestion effects of
clustering and consider both when choosing work districts.45

5.1 Choices of Work Districts

Consider a new worker i from hometown h. The utility of worker i working in district d,
as denoted by Vihd, is expressed as

Vihd = EUhd + εihd (7)

where EUhd is the expected utility of working in district d for any worker from home-
town h, and εihd is the idiosyncratic preference shock, following a type-1 extreme value
distribution with scale, 1/σ. The probability of workers from hometown h working in
district d, πhd|h, is as follows.

πhd|h =
exp(σEUhd)

∑d′ exp(σEUhd′)
(8)

5.2 Labor Supply Decision

After worker i chooses to work in a district d, the worker decides on labor supply, Li, and
the amount of remittances sent back to their families, T, to maximize utility as follows.

45In Section 6, I provide empirical evidence that workers consider congestion costs by exploring hometown
heterogeneity. Other studies have also shown the existence of dispersion forces in migrant workers’ location
choices(e.g., Card and Lewis, 2007; Monras, 2020)
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max
L,T

(Cown
i )α(Cfamily

i )β(L̄ − Li)
1−α−β

s.t. Cown
i + Ti = w̃iLi

Cfamily
i = Sh + Ti

where Cown is the worker’s own consumption, Cfamily is the left-behind family’s con-
sumption, L̄ − Li is the worker’s leisure time.

The two budget constraints are (1) workers allocate their total earnings, w̃iL, between
their own consumption and remittances sent back to families, as denoted by T; and (2) the
left-behind family’s consumption depends on the remittance received and the agricultural
income, S, which is assumed to be stochastic with the following distribution:

S =

Slow with probability Pshock

Shigh with probability 1 − Pshock

where Shigh > Slow. Workers from the same origin face the same level of hometown shock
Sh. Shocks for workers from different origins are independent.

Market Clearing Condition

Assume that each delivery worker completes Bi deliveries per unit of time. In the
equilibrium, the number of deliveries workers complete shall equal the number of orders
put by consuemrs. The market clearing condition is expressed as:

∑
i

BiLi = Dd

where Dd is the total consumer demand.

Learning from Peers

New workers can learn how to navigate local neighborhoods from hometown workers in
the same district. This enables new workers to deliver faster and complete more deliveries
per hour. I thus denote each worker’s delivery speed as a function of the number of
same-origin peers in the district, δ(Nhd).

Specifically, I assume that a worker without peers (Nhd = 0) can finish Bd number of
deliveries per unit of time. Bd can also be treated as the average productivity. Second, a
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worker i with Nhd peers nearby can finishes Bi = δ(Nhd)Bd number of deliveries per unit
of time. I further assume that δ(Nhd) has the following properties.

δ(Nhd = 0) = 1 ; δ′(Nhd) ≥ 0 ; δ
′′
(Nhd) ≤ 0

which ensure that workers’ productivity increases with the clustering level, but the
marginal gain from clustering decreases.

Real Wage

With Bi = δ(Nhd)Bd, the market clearing condition becomes as follows.

∑
h

δ(Nhd)BdLhdNhd = Dd

A delivery worker’s real wage equals the number of deliveries completed per hour times
the per-delivery commission fee, A.46 I can solve the real wage as follows.

w̃i = w̃hd = A × δ(Nhd)Bd = A × δ(Nhd)
Dd

∑h′ δ(Nh′ j)Lih′ jNh′ j

5.3 Model Predictions

From the utility maximization problem and market clearing conditions, I obtain the real
wage and optimal labor supply as below.


w̃∗

hd = 1
α+β

δ(Nhd)
∑h′ δ(Nh′ j)Nh′ j

ADd+(1−α−β)∑h′ Sh′ j Nh′ j
L̄

L∗
i

L̄ = (α + β)

(
1 − ∑h′ δ(Nh′ j)Nh′ j

δ(Nhd)
(1−α−β)Sihd

ADd+(1−α−β)∑h′ Sh′ j Nh′ j

) (9)

The indirect utility for worker i from hometown h to work in the district d, as
denoted by uhd, depends on the hometown composition in the district and realizations of
hometown shocks, ({Nhd}, {Shd}).

46The platform does not adjust this fixed fee frequently for stability reasons. I assume this commission
fee as fixed.

27



uhd = Constant ×
((

δ(Nhd)w∗
d
)α+β

+ Shd
L̄

(
δ(Nhd)w∗

d
)α+β−1

)
where w∗

d =
ADd+(1−α−β)∑h′ Sh′ j Nh′ j
(α+β)L̄ ∑h′ δ(Nh′ j)Nh′ j

(10)

From the solutions above, I derive the following comparative statistics.

1. ∂w̃∗
hd(Sh = Shigh)/∂Nhd > 0: when there is no hometown shock, a higher clustering

level leads to higher real wage due to the learning effect.

2. ∂L∗
i /∂Sihd < 0: workers who face hometown shocks, Slow, increase labor supply.

3. ∂w̃∗
hd/∂(∑h′ Sh′ jNh′ j) > 0: When more workers experience adverse hometown

shocks, the real wage in the district decreases due to the congestion effect.

4. ∂uihd/∂Sihd > 0: workers’ utility decreases during adverse hometown shocks.

5. ∂uihd/∂(∑h′ Sh′ jNh′ j) > 0: workers’ utility decreases as more workers experience
adverse hometown shocks in their work districts.

Clustering Effect

Clustering can significantly impact workers’ utility for two main reasons: (1) a worker’s
productivity, δ(Nhd), directly depends on the number of same-origin workers in their
district; (2) due to i.i.d. hometown shocks, the aggregate shock in a district, S̃d, is a
function of the clustering level, Nhd, as follows.

S̃d =∑
h′

Sh′ jNh′ j = NhdSh + ∑
h′ ̸=h

Sh′ jNh′ j ≃ NhdSh + (Nd − Nhd)S̄

where S̄ = PshockSlow + (1 − Pshock)Shigh

The covariance between individual and aggregate shocks, Cov(Shd, S̃d) = NhdVar(Sh),
increases as the clustering level, Nhd, increases.

Proposition 1. When δ(Nd) < η1 and δ′(Nd) < η2
47, uhd(Shd = Shigh) increases with Nhd.

uhd(Shd = Slow) first increases but then decreases with Nhd.
The proof and the choice of the threshold, η1 and η2, can be found in the appendix.48

47Nd is the total number of workers in the district
48In a later empirical analysis, I estimate δ(Nd) ≃ 5% and δ′(Nd) ≃ 0. Along with other estimated

parameters, such as estimated Shigh and Slow, I find these two thresholds are satisfied.
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This proposition highlights the main trade-off of clustering. On the one hand, clus-
tering with same-origin workers enables new workers to learn from peers and achieve
higher productivity: dδ(Nhd)/dNhd > 0. However, during bad times, a high clustering
level (1) leads to larger aggregate shocks, S̃d; (2) drives down the real wage, w̃∗

d; and (3)
offsets the learning benefits of clustering.

Finally, since workers choose work districts before their hometown shocks are realized,
new workers form expectations based on the probability of hometown shocks. I also
assume that workers are risk averse, with a relative risk-aversion ratio γ. I derive the
expected utility of working in district d, as denoted by EUshock

ihd (ch), as follows:

EUhd = 1
1−γ

(
(1 − Pshock)(unoshock

hd )1−γ + Pshock(ushock
hd )1−γ

)
(11)

Proposition 2. When δ′(Nd) < η3, the expected utility, EUhd, first increases with Nhd, and then
decreases. There exists an optimal clustering level, N∗

hd(γ) = max EUhd

The proof and the choice of the threshold, η3, can be found in the appendix.49

This proposition shows that for a risk-averse worker, the productivity effect of cluster-
ing dominates the congestion effect under a low level of clustering. However, under the
high level of clustering, the congestion effect dominates. In addition, the risk aversion
coefficient governs the exact magnitude of this trade-off between the higher average utility
and higher utility variance.

Equilibrium

I define the equilibrium as the fixed point where each worker’s choice of work district
is optimal given their randomly drawn preference and other workers’ choices. In other
words, the probability of new workers entering different districts will be consistent with
the distribution of existing workers across districts, which new workers use to form
expectations. This is formulated as a fixed point of the best response mapping.50

E[
Nhd
Nh

] =
exp(σEU({Nh′d}h′)

∑d′ exp(σEU({Nh′d′}h′)
(12)

49In a later empirical analysis, I estimate δ′(Nd) ≃ 0. Along with other estimated parameters, I find this
threshold is satisfied.

50{Nh′d}h′) represents the entire hometown composition in the district d since worker i’s utility not only
depends on one’s hometown peers but is also affected by other hometown clusters.
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5.4 Market Externality

Workers’ choices of work location change clustering levels across districts and can in-
herently impact the utilities of other workers. For a worker i from hometown h, the
entry into district d increases the clustering level by △Nhd > 0. I decompose externalities
associated with this entry decision into two types.

1. Learning externality: worker i can share knowledge with other workers from
hometown h, leading to higher productivity.

Φlearn(Nhd) = △EUlearn(Nhd)× Nhd

where EUlearn(Nhd), which is the expected utility with only the learning benefits.

2. Congestion externality: worker i increases every worker’s income variance because
of the possibility of a bigger aggregate shock.

Φcost(Nhd) = △EUcost(Nhd)× Nhd +△EUcost-other(Nhd)× (Nd − Nhd)

where EUcost(Nhd) is the expected utility with only the congestion costs for workers
from hometown h, and EUcost(Nhd) is the one for the rest of workers in district d.

Proposition 3. When δ′(Nhd = 0) < η4, the overall externality, Φ(Nhd) = Φlearn(Nhd) +

Φcost(Nhd) is negative for any clustering level Nhd.
The proof and the choice of the threshold, η4, can be found in the appendix.51

Proposition 3 highlights that when workers choose work districts to maximize individ-
ual utilities, the equilibrium clustering may not be optimal if the central planner accounts
for the two types of externalities as above. I discuss these magnitudes in more detail in
section 7 after estimating key parameters.

6 Estimation

I structurally estimate the model using empirical results in sections 3 and 4, as well as
additional variation from model predictions and quasi-experiments for key parameters.

51In a later empirical analysis, I estimate δ′(Nhd = 0) ≃ 2. Along with other estimated parameters, I find
this threshold is satisfied.
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6.1 Estimation

The main parameters are as follows.

1. δ(N): productivity as a function of the clustering level

2. Pshock: probability of hometown shocks

3. α + β: Cobb-Douglas utility function parameter

4. (Shigh, Slow): household agricultural income with and without adverse shocks

5. γ: workers’ risk aversion coefficient

6. σ: the scale of idiosyncratic preference for working in different districts

I discuss the estimation approach in three steps. First, I outline the identification strategy
for parameters (δ(N), Pshock, α + β, Shigh, Slow), which bring learning benefits and conges-
tion costs of clustering into the utility function and quantifies worker’s utility under both
scenarios. Second, I turn to γ, which governs the concavity of workers’ utility function
and the relative importance of learning benefits versus congestion costs. Third, I discuss
σ, affecting workers’ location choices.

Part 1: Utility Function

α + β. This Cobb-Douglas parameter represents worker’s labor supply elasticity to
income. I estimate it through a quasi-experiment: semi-annual worker festivals organized
by the food delivery platform. During the festival, the platform randomly selects workers
to receive cash prizes ranging from 50 to 1000 RMB.52 Following the comparative statistics
from the mode, I regress workers’ working hours on prize amounts won in these lotteries
to estimate α + β. Sepcficially, I divide each worker’s prize amount by the average hourly
wage in their work district as the independent variable. The coefficient of this adjusted
prize amount then maps directly to the parameter (1 − α − β). able 7 reports the results.

(Shigh, Slow). As the model predicts, hometown income levels affect migrant work-
ers’ labor supply. Specifically, during adverse hometown shocks (Slow), workers tend
to work longer to send more remittances. Therefore, I can identify the two hometown

52All delivery workers can participate by submitting their phone numbers associated with their accounts
on the platform. The number of workers winning any prize is usually around 500-1000 people. The process
of drawing the lottery prize is completely random.
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income levels by regressing workers’ labor supply on shock indicators, as shown in Table
4 in section 5. The identification intuition is that once (α, β) are estimated, I can recover
these two hometown income levels by comparing workers’ labor supply during normal
periods versus adverse hometown shocks and using workers’ labor supply responses to
lottery prizes as the benchmark.

(δ(c), Pshock). The productivity function, δ(c), is directly identified from the IV re-
gression in section 3 (figure 5). I calibrate Pshock based on the annual flood probability for
each county based on 2000-2020 precipitation data.

Part 2: Risk Aversion Coefficient

I identify γ following the model prediction that workers with a higher probability of
adverse hometown shocks will cluster less since they are more exposed to the congestion
cost of clustering. Table B.13 confirms this pattern, where I regress the average clustering
level on the flood probability for each hometown. It shows that workers from hometowns
with a higher shock probability cluster less than workers from safe hometowns.53 Fur-
thermore, the more risk-averse workers there are, the bigger the difference is. In other
words, the extent to which risky-hometown workers cluster less relative to safe-hometown
workers reveals workers’ degree of risk aversion.

I thus divide workers into two groups based on whether their hometowns’ shock
probabilities are above (risky) or below (safe) the median. I compute clustering levels
separately for workers from risky versus safe hometowns. With log-normalization and
triple differences, I construct a moment to recover the concavity of workers’ expected
utility function as below.

△log(π(N1))−△log(π(N2))

△log(π(N3))−△log(π(N2))
=

△u(N1)−△u(N2)

△u(N3)−△u(N2)
(13)

where π(N) is the new worker’s entry probability at each clustering level, N, and △u(N)

is the utility difference between periods with and without hometown shocks at clustering
level N, △u(N) = u(N, Shigh)1−γ − u(N, Slow)1−γ.

It can be proven that this moment only depends on the risk aversion coefficient and

53This result also provides evidence that workers are aware of this labor market congestion cost of
clustering when choosing work locations, as the model assumes. I conduct robustness checks on whether
the shock probability affects workers’ behaviors in other dimensions, such as delivery speed. Table B.14
shows no significant differences, except for weakly positive effects on the number of active workers.

32



utility-related parameters in part 1, where I cancel out the idiosyncratic preference scale,
σ, in the process. The intuition is that while the difference of entry probability between
two clustering levels, △log(π(N1)) −△log(π(N2)), depends on the joint product of
utility difference (△u) and σ, adding a third clustering level and comparing the relative
difference across all three levels cancel out σ and recover the concavity of the utility
function. Calculation details are in the appendix A.5. I thus compute the entry probability
across clustering levels from 0% to 15% for both risky and safe hometowns as the empirical
moments.

Part 3: Scale of Idiosyncratic Preferences

Following the model in section 3 (equation 7), for a new worker i who comes from
hometown h joining the platform at time t − 1, the utility of worker i working in district
d, Vihdt, consists of (1) the estimated expected utility, EU(Nhdt), which depends on
the clustering level of hometown h in district d, Nhdt, and (2) workers’ idiosyncratic
preferences εihdt. Building on this baseline model, I add a third utility component, entry
bonuses in the district, Bdt, if any. With εihdt following a type-1 extreme value distribution
with scale, 1/σ, I derive the gravity equation as follows:

E[
Nnew

hdt−1
Nnew

ht−1
] =

exp(σEU(Nhdt , Bdt))

∑d′ exp(σEU(Nhd′t , Bdt))
(14)

Furthermore, I split the utility into two parts, quantify the increases in the utility driven
by entry bonuses, and rewrite the gravity equation.54

EU(Nhdt, Bdt) = EU(Nhdt) +△EU(Bdt) (15)

E[
Nnew

hdt−1
Nnew

ht−1
] =

exp(σEU(Nhdt) + σ△EU(Bdt))

∑d′ exp(σEU(Nhd′t) + σ△EU(Bd′t))
(16)

Since entry bonuses are exogenous, I run the gravity regression with the entry bonuses
as the independent variables.55 As in Table 8, the coefficient in front of △EU(Bdt), is the
estimate for the scale of the idiosyncratic preferences, σ.

Implementation. I estimate parameters, {Shigh, Slow, γ} together using two-step GMM.
The values α + β and σ are estimated by separate regressions, as discussed above.

54Simulates confirm that △EU(Nhdt, Bdt) at any level of Nhdt is very similar to △EU(Bdt) where I set
Nhdt = 0.

55I run the gravity regression using Poisson Pseudo MLE (Sotelo, 2019; Dingel and Tintelnot, 2020).
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6.2 Estimates and Model Fit

Table 9 presents the estimation results. The estimated parameters are in the expected
range. The Cobb-Douglas parameter falls between 0 and 1 as restricted. The risk aversion
coefficient aligns with estimates from most literature with a range between 1 and 10 (e.g.,
Swanson, 2012). The hometown income during adverse shocks is significantly lower than
in normal periods, consistent with the empirical findings.

I validate the model estimates by plotting the percentage of new workers who choose
districts at different clustering levels from the data and the estimated model in Figure
8. Overall, the two distributions follow the same pattern, where the entry probability
first increases with the clustering level and then decreases. This is consistent with the
learning-congestion trade-off predicted by the model. The two curves also peak around
the same clustering level.

The exact magnitude of entry probability differs slightly between the two distributions
for several potential reasons. For example, some new workers may face information
friction and do not know where their hometown peers work. Following this intuition,
I assume that some new workers do not know anyone in the city and choose districts
solely based on their idiosyncratic preferences. I infer this number by the share of new
workers who do not have a referrer. After adding this information friction to the model, I
find that the existing estimation does not need to be changed much. Figure 8(c) shows
that model predictions align even closer to the data distribution after adding this fix.

7 Utility, Externality, and Counterfactuals

In this section, I quantify a migrant worker’s utility under different clustering levels, given
the estimated parameters. I also discuss the market externality of clustering and simulate
equilibria with and without accounting for externality. Lastly, I evaluate counterfactuals
where workers receive insurance or better learning tools and analyze how workers’
location choice change.

7.1 Inverted-U-shaped Utility

I first quantify workers’ expected utility with clustering following the specification 11.
To illustrate different forces clearly, I consider a simple case where only one same-origin
cluster at level Nc exists in a district. The rest of the workers in the district come from
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different hometowns. I plot the utility of workers from this clustered hometown, EU(Nc),
in Figure 9. It indicates a clear inverted-U shape where the expected utility first increases
with the clustering level, reaches its peak around 10% clustering level, and decreases
afterward.

This inverted U shape arises because worker utility first increases due to the learning
benefits and falls due to the congestion costs as the clustering level increases. To quantify
the two effects separately, I decompose EU(Nc) ∼ EUlearn(Nc) +EUcost(Nc).

EUlearn(Nc) is defined as the utility function with only the learning effect, without
congestion effect during hometown shocks.

EUlearn(Nc) =
1

1 − γ

(
(1 − Pshock)(u(Nc, Shigh))1−γ + Pshock(u(0, Slow))1−γ

)
(17)

EUcost(Nc) is the utility function with only the congestion effect, without learning
effect during normal periods.

EUcost(Nc) =
1

1 − γ

(
(1 − Pshock)(u(0, Shigh))1−γ + Pshock(u(Nc, Slow))1−γ

)
(18)

I plot both functions in Figure 9. EUlearn(Nc) is an increasing and concave curve,
following the same pattern as the productivity function, δ(N). The intuition is that the
additional productivity gain from higher clustering fades away quickly after the clustering
level reaches 10%. EUcost(N) strictly decreases as the clustering level increases since a
bigger cluster results in stronger congestion effects during hometown shocks.

I also quantify the utility curve for the rest of the non-clustered workers in the district.

EUother(Nc) =
1

1 − γ

(
(1 − Pshock)

2(u(0, Shigh))1−γ + (1 − Pshock)Pshock(u(Nc, Shigh))1−γ

(19)

+Pshock(1 − Pshock)(u(0, Slow))1−γ + P2
shock(u(Nc, Slow))1−γ

)
(20)

I plot the curve in Figure 9, which also strictly decreases. These non-clustered
workers do not enjoy any knowledge spillovers but only experience the congestion
effect. Furthermore, with i.i.d. hometown shocks, non-clustered workers usually do not
experience their hometown shocks and the aggregate district shocks around the same
time. As a result, their utility decreases less due to the congestion costs |EUother(Nc)| <
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|EUcost(Nc)|

7.2 Externality of Clustering

Both the learning and congestion effects of clustering generate market externalities.
On the one hand, knowledge spillovers have a positive externality as workers do not
internalize teaching value. On the other hand, congestion effects result in workers waiting
and wasting time during shocks, producing a negative externality. A central planner may
improve the total welfare by realizing the full potential of knowledge spillovers and more
efficiently allocating labor supply to avoid wasted time.

Following the definition in section 3, I first quantify the positive learning and negative
congestion externality across clustering levels.

1. Learning externality: Φlearn(Nc) = △EUlearn(Nc)× Nc

2. Congestion externality: Φcost(Nc) = △EUcost(Nc)× Nc +△EUother(Nc)× (N − Nc)

I plot these curves in Figure 10. The learning externality is positive but decreases
rapidly as the clustering level increases, consistent with the concavity of the productivity
function δ(N) where marginal teaching values diminish quickly. The congestion external-
ity is negative and decreases since a larger cluster leads to more severe congestion during
hometown shocks.

I also plot the total externality, Φ(Nc) = Φlearn(Nc) + Φcost(Nc), in Figure 10. It is
negative and strictly decreases, differing from the inverted U-shape of individual expected
utility, EU(N). These results suggest that accounting for the externalities may lead to an
equilibrium with lower clustering levels than observed.56

7.3 Counterfactual: Equilibrium with Externality

In the first counterfactual, I simulate the equilibrium to incorporate externalities into
workers’ district choice. I compute the total externality associated with each entry decision
follow the definition of externality in section 7.3 and without allowing other workers
to adjust. I solve for the equilibrium where workers receive the Pigouvian tax equal to
the externality of their choices when they deice where to work. I compare it with the

56If multiple clusters exist in one district, interactions exist across different clusters. The externality
analysis follows the same logic but is more complicated to derive an analytical solution.
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decentralized equilibrium, where workers choose where to work to maximize individual
expected utility, EU(Nhdt).

Implementation. I first simulate the number of hometowns and their size distributions
based on the data. I start with a random allocation of workers across districts for each
simulation. At each step, a small share of new workers arrives (as proportional to
the distribution), and they choose districts following specification 7. I use an iterative
procedure to solve for the fixed point, where the distributions of existing workers and
new entries converge. Given the estimated parameters, the procedure is robust to varying
starting conditions and identifies the same equilibrium. Notice that the equilibrium
is defined as the distribution of clustering levels instead of specific hometown-district
mappings, which are contingent on starting conditions. This equilibrium can also be
interpreted as a stable distribution in the long run.

The first two bars in figure 11 compare the baseline decentralized equilibrium with
the equilibrium with externliaty. Accounting for externalities significantly reduces the
maximum clustering level compared to the decentralized equilibrium. Workers also
create many more small clusters in the equilibrium with externalities. Though the highest
clustering level decreases, I find workers’ average productivity increases by around 1%
instead of decreasing. This is mainly due to the diminishing marginal productivity return
of clustering. Creating small clusters instead of a large cluster allows more workers to
benefit from the knowledge spillovers without big losses of productivities due to the
geographic dispersion of workers.

7.4 Counterfactual: Provide Insurance for Hometown Shocks

In the second counterfactual, I consider providing migrant workers with insurance to
mitigate hometown shocks. Providing insurance eliminates the correlated shocks and
labor supply responses among same-origin workers, which turns off the labor market
congestion impacts of clustering. The third bar in figure 11 exhibites the counterfactual.
The average clustering level almost doubles relative to the decentralized equilibrium. As
a result, the average productivity of new workers increases by around 30% due to the
higher clustering level.
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7.5 Counterfactual: Replace Network-based Learning with Technology

In the last two counterfactuals, I simulate equilibrium where the platform can provide
workers with better technologies to substitute network-based learning. For example,
the platform can collect local knowledge from experienced workers and distribute the
information to all workers through a centralized system. I consider two scenarios where
technology can substitute 50% of the current network-based learning or 100% of peer
learning in Figure 11. As expected, workers cluster much less in both scenarios, and the
average productivity increases substantially since non-clustered workers can also benefit
from the technology-based learning. By clustering less, migrant workers also experience
smaller congestion costs, which increases workers’ utility by 3-4% on average.

8 Discussion

Through several quasi-experiments and a model, I provide novel evidence of two counter-
vailing effects of clustering: learning benefits and labor market congestion costs. I further
examine how the two forces interact to affect workers’ location choices and utility. I show
that a worker’s utility displays an inverted U shape with clustering, where utility first
increases (due to learning) and then falls (due to congestion).

First, these results establish a crucial micro-foundation for understanding knowledge
spillovers through social networks. Second, the congestion cost highlights a new general
equilibrium channel in which clustered migrants compete with each other during adverse
hometown shocks, reducing the effectiveness of their role as rural insurance. Third, quan-
tifying the trade-off between the learning benefits and congestion costs offers valuable
insights into the i mpacts of migrant networks.
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9 Figures

Figure 1: Average Clustering Level by Sending Hometowns

Note: This Figure shows the distribution of clustering levels by workers’ hometowns. I include all
active workers between 2020 and 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.1. For each hometown h, I calculate the share of workers in each district
d: Phd = Nhd

Nh
= Nhd

∑d∈D Nhd
. I rank districts for each hometown based on this worker share, Phd. I

plot the average Ph,d by the rank of districts for each hometown. The first bar shows that 30% of
workers from the same hometown cluster in one district. The red line is the simulated average
share of workers in each district if workers were randomly allocated across districts.

Figure 2: Average Clustering Level by Receiving District

Note: This Figure plots the distribution of clustering levels by receiving districts. I include all
active workers between 2020 and 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.1. For each district d, I calculate the share of workers from each hometown
d: Shd = Nhd

Nd
= Nhd

∑h∈H Nhd
. I rank hometowns for each district based on this share, Sh,d. I plot the

average Sh,d by the rank of hometowns for each district. The first bar shows that 15% of workers
in one district come from the same hometown. The red line is the simulated average percentage
of workers from each hometown if workers are randomly allocated across districts.
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Figure 3: Productivity Trend of New Workers

(a) All New Workers (b) With Hometown Workers v.s. No Hometown

Note: This Figure plots the productivity curve of new workers. I include all new active workers
in 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.3.
Productivity is measured by delivery speed, where I divide traveling distances (meters) by the
duration (minutes). In Figure (a), I plot the productivity curve for all new workers. In Figure
(b), I classify these new workers into two groups based on whether they work in a district with
same-origin workers: the red line represents those with at least one same-origin worker in the
same work district, and the blue line represents those without. The x-axis is the number of weeks
since new workers joined the platform, and the y-axis is the average delivery speed.
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Figure 4: Heterogeneous Analysis: Learning Magnitudes across Grids in Shanghai

(a) Learning Magnitude (b) Average Year of Construction (c) Number of Apartments

Note: This Figure plots the estimated learning magnitude in each grid and additional grid characteristics to understand where learning
occurs in Shanghai. I first divide Shanghai into around 200 grids, where a grid represents a 2km × 2km area. I include all new active
workers between March and June 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.2. Figure (a) plots
the coefficient from regressing new workers’ search time for a location on an indicator of whether they have visited the exact location
before or not, following the specification in section 4.2. I run these regressions for each grid separately and plot the coefficient in front of
the indicator in Figure (a). I also obtain additional data from Lianjia.com on the average year of construction (figure (b)) and the number
of available apartments (figure (c)) in each grid in Shanghai.
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Figure 5: The Productivity Gain as a Function of Clustering

Note: This Figure plots new workers’ productivity increases as a function of clustering. I include
all new active workers in 2021 in five large cities. Details of the sample selection can be found
in Appendix C.2.3. I run an IV regression following the specification in section 4.3, where the
dependent variable is new workers’ average delivery speed, and the independent variables are a
set of indicators for each different clustering level in the work districts. IVs are indicators for each
different clustering level in the bonus-predicted districts. I plot the coefficients of these indicators
in this Figure. The y-axis is the delivery speed (meter/minute). The x-axis represents clustering
levels from 0% to 20%, which means the share of hometown workers in a district.

47



Figure 6: Correlation between Clustering of Restaurant and Workers from Same Origins

(a) Number of Restaurant and Workers (b) Market Share of Restaurant and Workers

Note: This Figure plots the correlation between the share of restaurants and workers
from the same origins in each district. I include all active workers between 2020 and
2021 in five large cities. Details of the sample selection can be found in Appendix C.2.1.
I first infer the hometown origins of restaurants based on their brands and flavors, such
as Shanghai food, Sichuan food, and so on. In Figure (a), the x-axis is the share of
hometown workers in each district. The y-axis is the share of restaurants from that same
hometown in each district. In Figure (b), I plot the same correlation but construct the
share of hometown workers and restaurants based on their sales or number of deliveries
completed instead of absolute numbers in Figure (a).

Figure 7: The Impact of Hometown Floods

(a) Labor Supply (b) Earnings (Number of Orders)

Note: This Figure plots the impact of hometown floods on workers’ labor market performances. I
include all active workers between May and August 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.4. I conduct an event study analysis. The x-axis is the
number of weeks before and after hometown shocks. In Figure (a), the y-axis is the workers’
weekly working hours. In Figure (b), the y-axis is the number of deliveries workers completed
weekly.
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Figure 8: Model Fit

(a) Data
(b) Model Estimates (c) Model Estimates with Information Friction

Note: This Figure plots the model fit. I plot new workers’ entry probabilities across clustering levels. The x-axis is the clustering level
from 0% to 20%, which is measured by the share of hometown workers in each district. The y-axis is the percentage of new workers
entering districts at different clustering levels. In Figure (a), I compute entry probabilities from the data, which uses the same sample as
Figure 1. In Figure (b), I simulate the entry probabilities from the estimated model. Figure (c) plots the simulated probabilities after
adding information frictions to the model. Specifically, I assume 40% of new workers who do not have a referrer do not have any
information on existing clustering levels in the city. They thus choose districts based on their idiosyncratic preferences.
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Figure 9: Utility as a Function of Clustering

Note: This Figure plots the estimated utility with respect to clustering. The x-axis is the clustering
level from 0% to 50%, meaning the share of hometown workers in each district. The y-axis is the
change in utility relative to the benchmark where there is no migrant clustering. The red line
represents a clustered worker’s overall utility. I also decompose it into two parts: (1) the blue
dashed line represents utility with only the learning benefits from clustering; (2) the black dotted
line represents utility with only the congestion cost of clustering. The gray line represents the
utility of non-clustered workers, who are exposed to the congestion cost of clustering.

Figure 10: Externality of Clustering
(a) Decompose Externality (b) Total Externality

Note: This Figure plots the externality with respect to clustering. The x-axis is the clustering
level from 0% to 50%, meaning the share of hometown workers in each district. The y-axis is the
externality, measured by the sum of other workers’ utility changes induced by a worker entry
at each clustering level. In Figure (a), the red line represents the learning externality since a
worker can share knowledge with other same-origin workers; (2) the dark blue line represents
the congestion externality that a worker imposes on other same-origin workers; (3) the light blue
line represents the congestion externality that a worker imposes on the rest of workers from other
origins. I add all three externalities together, as shown by the black line in Figure (b). The gray
represents the total externality of an entry for same-origin workers.
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Figure 11: Counterfactuals

(a) Maximum Clustering Level (b) HHI of Clustering Level

(c) Average Productivity (d) Average Exepcted Utility

Note: I consider five scenarios: (1) "baseline" where workers choose work districts to maximize
individual utility, (2) "social" where workers receive the Pigouvian tax equal to the externality
of their choices when they deice where to work, (3) "insurance" where workers are provided
insurance to mitigate hometown shocks, (4) "half learning" where the platform provides better
technology to substitute half of network-based learning, and (5) "full learning" where the platform
provides better technology to substitute the entire network-based learning. Figure (a) presents
the highest clustering level across the five scenarios, figure (b) plots the HHI of clustering levels,
figure (c) exhibits the average worker productivity, and figure (d) highlights the changes of worker
expected utility.
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10 Tables

Table 1: Effects of Own and Peers’ Experiences on Productivity

Restaurant Road Consumer

Search Time (min) Driving Speed (min/km) Search Time (min)

(1) (2) (3)

Own Visit to Restaurant -1.43∗∗∗ -0.08 -0.12

(0.09) (0.16) (0.10)

Referrer’s Visit to Restaurant -0.51∗∗∗ -0.06 -0.10

(0.14) (0.15) (0.09)

Own Visit to Consumer -0.21 -0.15 -1.25∗∗∗

(0.15) (0.10) (0.05)

Referrer’s Visit to Consumer -0.10 0.03 -0.58∗∗∗

(0.16) (0.12) (0.09)

Date X Hour X Worker FE Y Y Y

Location FE Y Y Y

BH Control Y Y Y

Ave. Dep. Var. 6.22 10.86 5.93

Observations 5,837,304 5,837,304 5,837,304

R2 0.43 0.39 0.44

Notes: This Table shows regressions of productivity on four indicators: (1) whether the new worker
has visited the restaurant or consumer building before; (2) whether the new worker’s referrer has
visited the restaurant or consumer building in the last month, following the specification in section
4.2. I include all new active workers between March and June 2021 in five large cities. Details of the
sample selection can be found in Appendix C.2.2. Dependent variables in columns (1) and (3) are
searching time (minutes) for the restaurant or the consumer building. I measure them by counting
the number of GPS coordinates within a location’s 150-meter radius. The dependent variable in
column (2) is the average driving speed (minute/min) between the restaurant and the consumer
building. These are proxies for workers’ productivity for different parts of a delivery. Expected
for fixed effects illustrated in the Table, I control for the expected probability of a worker visiting a
location by randomly re-allocating orders that are put in within the same hour, grid (2km × 2km),
and worker tenure group (every six months), following the intuition of Borusyak and Hull (2023).
Standard errors are clustered two-way at the district level and the date level.
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Table 2: Learning Magnitudes across Grids in Shanghai

Dependent Variable: Learning Index αd

(1) (2) (3)

Average Construction Year -0.010∗∗ -0.008∗∗

(0.004) (0.004)

Average Apartment Density 0.081∗∗∗ 0.076∗∗∗

(0.023) (0.027)

Ave. Dep. Var. 0.82 0.82 0.82

Observations 204 204 204

R2 0.117 0.136 0.156

Notes: This Table shows regressions of the estimated learning magnitude on grid
characteristics to understand where learning occurs in Shanghai. I include all
new active workers between March and June 2021 in five large cities. Details of
the sample selection can be found in Appendix C.2.2. I first divide Shanghai into
around 200 grids, where a grid represents a 2km × 2km area. I then regress new
workers’ search time for a location on indicators of whether they or their referrers
have visited the exact location in each grid separately, following the specification
in section 4.2. The dependent variables are coefficients from these regressions.
Specifically, I calculate the learning magnitudes, αd = (αOwnvisit + αRefvisit)/2. The
independent variables are scraped from Lianjia.com, including the average year of
construction across all buildings in each grid and the total number of available
apartments in each grid in Shanghai. Standard errors are clustered at the district
level.
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Table 4: Delivery Workers’ Labor Supply Responses to Hometown Shocks

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

1{Hometown Shock } 0.057∗∗∗ 16.381∗∗∗ 5.931∗∗∗

(0.010) (2.582) (1.069)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 638,810 638,810 638,810

R2 0.521 0.530 0.557

Notes: This Table shows regressions of workers’ weekly labor supply
on hometown shocks. I include all active workers between May and
August 2021 in five large cities. Details of the sample selection can
be found in Appendix C.2.4. The dependent variables are workers’
weekly performances on the platform: (1) being active (# of deliveries
> 0),(2) number of deliveries completed, and (3) number of work-
ing hours. The independent variable indicates whether a worker’s
hometown has had flood shock in the last month. I include origin
province × week fixed effect, district fixed effect, and worker fixed
effects. Standard errors are clustered two-way at the district level
and the week level.
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Table 5: District-level Response to Aggregate Shocks

Dep. Var.: Weekly Outcomes at District Level

Number of Number of Total Per-delivery

Workers Orders Working Hours Commission Fee

1{Predicted Shock Share > 15%} 4.925 95.720 148.502∗∗∗ -0.226

(3.259) (104.525) (33.291) (0.309)

Week FE Y Y Y Y

District FE Y Y Y Y

Ave. Dep. Var 132.59 7,233.97 2,408.26 6.41

Observations 14,391 14,391 14,391 14,391

R2 0.884 0.886 0.886 0.903

Notes: This Table shows regressions of district-level market performances on aggregate hometown
shocks. I include all active workers between May and August 2021 in five large cities. Details of the
sample selection can be found in Appendix C.2.4. Dependent variables are (1) the total number
of active workers in the district each week,(2) the total number of deliveries completed, (3) the
total number of working hours, and (4) the average per-delivery commission fee. The independent
variable indicates whether the predicted shock share is higher than 15%. The shock share is the
share of workers experiencing floods, given the hometown composition in the district in May 2020.
I include week and district fixed effects. Standard errors are clustered at the week level.
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Table 6: Congestion: Impacts of Clustering on Delivery Workers’ Real Wages during Shocks

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

1{ Hometown Shock} 0.072∗∗∗ 19.939∗∗∗ 6.112∗∗∗

(0.014) (3.912) (1.108)

1{District Shock Share > 15%} -0.003 -4.870 -0.648

(0.022) (2.997) (0.455)

Interaction Term -0.009 -8.997∗∗∗ -0.302

(0.010) (2.080) (0.378)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 638,810 638,810 638,810

R2 0.542 0.573 0.582

Notes: This Table shows regressions of workers’ weekly labor supply on
hometown shocks and district shocks. I include all active workers between
May and August 2021 in five large cities. Details of the sample selection
can be found in Appendix C.2.4. Dependent variables are workers’ weekly
performances on the platform: (1) being active (# of deliveries > 0),(2) number
of deliveries completed, and (3) number of working hours. Independent
variables are (1) the indicator of whether a worker’s hometown has any flood
shock in the last month, (2) an indicator of district shock based on whether
the predicted shock share in the district is higher than 15%, and (3) their
interaction term. I include origin province × week fixed effects, worker fixed
effects, and district fixed effects. Standard errors are clustered two-way at the
district level and the week level.
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Table 7: Estimate α + β: Labor Supply to Lottery Prizes

Dep. Var.: Weekly Working Hours

(1) (2) (3)

Lottery/Average Hour Wage -0.57∗∗∗ -0.63∗∗∗ -0.61∗∗∗

(0.01) (0.05) (0.07)

Week FE Y Y

Worker FE Y Y

Week X District FE Y

Week X Hometown FE Y

Observations 48,126 48,126 48,126

R2 0.18 0.41 0.54

Notes: This Table shows regressions of workers’ labor supply on the amount of prizes they
won from the lotteries. The sample includes three lotteries offered by the platform between
2020 and 2021. I include delivery workers who completed at least 50 deliveries within seven
days before the lottery, and worked in a district with at least one worker winning the lottery.
Dependent variables are workers’ weekly working hours. The Independent variable is the prize
amount each worker received. Columns (1)-(3) include different fixed effects. Standard errors
are clustered two-way at the district level and the week level.

Table 8: Gravity Regression

Dep. Var.: 1{ Worker i from Hometown h Choose District d }

(1) (2) (3) (4)

△U(Bdt) 2.95∗∗∗ 2.49∗∗∗ 2.53∗∗∗ 2.18∗∗∗

(%) (0.34) (0.43) (0.47) (0.38)

Month FE Y Y

Hometown FE Y

District FE Y Y

Month X Hometown FE Y

District X Hometown FE Y

Observations 241,190 241,190 241,190 241,190

Notes: This Table shows gravity regressions of new workers’ district choices on entry bonuses.
I include all new active workers in 2021 in five large cities. Details of the sample selection can
be found in Appendix C.2.3. The dependent variable is the share of new workers from each
hometown joining different districts across weeks. The Independent variable is the utility change
caused by the entry bonus in each district across weeks. Columns (1)-(4) include different fixed
effects.
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Table 9: Parameter Estimates

Parameter Estimate Conf. Interval

Labor Supply Elasticity α + β 0.39 [0.26,0.52]

High Hometown Incom Shigh 279.61 [256.21, 340.88]

Low Hometown Income Slow 55.24 [4.83, 99.35]

Risk Aversion Coefficient γ 2.31 [1.87, 3.30]

Scale of Idiosyncratic Preferences σ 2.18 [1.43, 2.93]

Notes: This Table reports the estimated parameters. Coefficients, α + β and
σ are estimated by regressions as specified in section 6. Coefficnets, Shigh,
Slow, and γ, are estimated by two-step GMM. The last column reports the
95% confidence interval estimated via either regression results or a 200-round
bootstrap.
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A Appendix: Proofs and Derivations

A.1 Worker Utility Maximization Problem

For worker i who come from hometown h and work in district d:

max
L,T

(Cown
i )α(Cfamily

i )β(L̄ − Li)
1−α−β

s.t. Cown
i + Ti = whdLi

Cfamily
i = Sh + Ti

Take F.O.C for L and T

Li =
αwL̄ + (1 − β)Ti

(1 − α − β)whd

Ti =
βwhdLi − αSh

α + β

Plug T in the first F.O.C to solve for L:

Li = (α + β)L̄ − (1 − α − β)
Sh

whd

From the delivery market clearing condition

whd =
ADdδ(Nhd)

∑i′ δ(Ni′hj)Li′

Labor supply and wage in the equilibrium are
w∗

hd = 1
α+β

δ(Nhd)
∑i′ δ(Ni′hj)

ADd+(1−α−β)(∑i′ δ(Ni′hj)Si′hj)/δ(Nihd)

L̄

L∗
i

L̄ = (α + β)

(
1 − ∑o∈j δ(Nohj)

δ(Nihd)
(1−α−β)Shd

ADd+(1−α−β)(∑i′ δ(Ni′hj)Si′hj)/δ(Nihd)

)
Take these solutions into the utility:

uihd = αα(1 − α)β(α + β)β

(
1 − α − β

w∗
hd

)1−α−β

(w∗
hd L̄ + Sh)
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Set αα(1 − α)β(α + β)β(1 − α − β)1 − α − βL̄ = Cons

uihd = Cons ×
(

w∗
hd

α+β +
Sh

L̄
(w∗

hd)
α+β−1

)

A.2 Proposition 1

Take the derivative of uihd with respect to w∗
hd

∂uihd
∂w∗

hd
= Const × (w∗

hd)
α+β−2

(
(α + β)w∗

hd − (1 − α − β)
Sh

L̄

)

Since Li = (α + β)L̄ − (1 − α − β) Sh
whd

> 0, ∂uihd
∂w∗

hd
> 0. The core is to derive ∂w∗

hd
∂Nhd

∂w∗
hd

∂Nhd
=

∂

∂Nhd

(
δ(Nhd)× (ADd + (1 − α − β)∑

i′
Si′hj)

)(
∑
i′

δ(Ni′hj)

)−1

Assume that there are Nd workers in district j in total. Consider the case where there
exists only one cluster of workers from the same hometown, h. Without loss of generality,

δ(Nhd) ∈ [δ(0), δ(Nd)]

∑
i′

δ(Ni′hj) = Nhdδ(Nhd) + (Nd − Nhd)

∑i′ Si′hj = NhdSh + (Nd − Nhd)S̄

where S̄ = PshockSlow + (1 − Pshock)Shigh

Given that Slow < S̄ < Shigh, When Sh = Shigh,

whigh
hd = δ(Nhd)×

ADd + (1 − α − β)(∑i′ Si′hj)

(α + β)L̄ ∑i′ δ(Ni′hj)

= δ(Nhd)×
ADd + (1 − α − β)(Nhd(Shigh − S̄) + NdS̄)

(α + β)L̄(Nhd(δ(Nhd)− 1) + Nd)
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It is clear that the numerator increases with Nhd, while the denominator also increases
with Nhd.

whigh
hd =

δ(Nhd)

(α + β)L̄
× ADd + (1 − α − β)(Shigh − S̄)Nhd + (1 − α − β)NdS̄

Nhd(δ(Nhd)− 1) + Nd

Set ADd = K1 , (1 − α − β)(Shigh − S̄) = K2 , (1 − α − β)NdS̄ = K3 and Nd = K4

∼ δ(Nhd)
K1 + K2Nhd + K3

Nhd(δ(Nhd − 1)) + K4

∂whigh
hd

∂Nhd
∼ K2K4δ(Nhd) + (K1 + K2N + K3)δ

′(Nhd)(K4 − N)− (K1 + K3)δ(Nhd)(δ(Nhd)− 1)

∂2whigh
hd

∂2Nhd
=

(
K2K4 + K2(K4 − Nhd)− K2N − 2(K1 + K3)δ(Nhd)

)
δ′(Nhd)

+ (K1 + K2N + K3)(K4 − Nhd)δ
′′(Nhd)

Since δ′′(Nhd) < 0 and K2K4 + K2(K4 − Nhd) < K2N + 2(K1 + K3)δ(Nhd), we have
∂2whigh

hd /∂2Nhd < 0. The sufficient condition to ensure∂whigh
hd /∂Nhd > 0 is

∂whigh
hd

∂Nhd
(Nhd = Nd) > 0

→K2K4δ(Nhd) + (K1 + K2N + K3)δ
′(Nhd)(K4 − N) > (K1 + K3)δ(Nhd)(δ(Nhd)− 1)

Since δ′(Nhd)>0, I further relax the condition to be

→K2K4δ(Nhd) > (K1 + K3)δ(Nhd)(δ(Nhd)− 1)

→δ(Nhd) <
K2K4

K1 + K3
+ 1

On the other hand, when Shd = Slow,

wlow
hd =

ADdδ(Nhd) + (1 − α − β)(−Nhd(S̄ − Slow) + NdS̄)
(α + β)L̄(Nhdδ(Nhd) + (Nd − Nhd))

Given the concavity of δ(Nhd), the numerator first increase and then decrease with Nhd,
while the denominator always increases with Nhd. I consider the upper bound of the
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function,

wlow−upperlimit
hd =

ADdδ(Nhd) + (1 − α − β)(−Nhd(S̄ − Slow) + NdS̄)
(α + β)L̄Nd

=
ADd

(α + β)L̄Nd
δ(Nhd)−

(1 − α − β)(S̄ − Slow)

(α + β)L̄Nd
Nhd +

(1 − α − β)NdS̄
(α + β)L̄Nd

∂wlow−upperlimit
hd

∂Nhd
=

ADd

(α + β)L̄Nd
δ′(Nhd)−

(1 − α − β)(S̄ − Slow)

(α + β)L̄Nd

Since∂2wlow−upperlimit
hd /∂2Nhd < 0, the sufficient condition for wlow

hd decrease with Nhd

when Nhd is large is

∂wlow−upperlimit
hd

∂Nhd
(Nhd = Nd) < 0

→δ′(Nd) <
1 − α − β

ADd
(S̄ − Slow)

Addition notes: Endogeneity of Nd.

For this proof, Nd is independent of Nhd. However, when workers have complete
information on the hometown composition {Nhd}, Nd may be a function of Nhd because
of the negative externality of clustering on other workers. In addition, the degree to
which Nhd influences Nd depends on the labor market clearing conditions. I discuss two
cases here.

Case 1: non-clustering workers enter the districts until the real wage without aggregate
shocks equalizes across districts.

wc =
ADd + (1 − α − β)(Nhd(Shigh − S̄) + NdS̄)

(α + β)L̄(Nhd(δ(Nhd)− 1) + Nd)

Nd =
ADd + (1 − α − β)(Shigh − S̄)Nhd − (α + β)L̄wcNhd(δ(Nhd)− 1)

(α + β)L̄wc − (1 − α − β)S̄

∂Nd
∂Nhd

∼ (1 − α − β)(Shigh − S̄)− (α + β)L̄wc(Nhdδ′(Nhd) + δ(Nhd)− 1)

When (α+ β)L̄wc(Ndδ′(Nd) + δ(Nd)− 1) < (1− α− β)(Shigh − S̄), Nd increases with Nhd,
which makes the competition effect stronger.
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Case 2: non-clustering workers enter the districts until the real wages with and
without aggregate shocks both equalize across districts. This condition assumes that the
non-clustering workers are fully flexible. Their entry and exit decisions are made after
the hometown shocks are realized. In this case, we have

wc =
ADd + (1 − α − β)(Nhd(Shigh − S̄) + Nnoshock

d S̄)
(α + β)L̄(Nhd(δ(Nhd)− 1) + Nnoshock

d )
and

wc =
ADd + (1 − α − β)(Nhd(Shigh − S̄) + Nwithshock

d S̄)
(α + β)L̄(Nhd(δ(Nhd)− 1) + Nwithshock

d )

This means there is no congestion effect since the changes in the labor supply of clus-
tered workers are balanced by the entry and exit of non-clustering workers. With only
productivity gain from clustering, workers’ utility increases with the clustering level.

Considering these two cases, the extent to which Nhd influences Nd becomes more
of an empirical question. From the empirical analysis, I do not find significant effects
of clustering level on the total number of active workers in the districts, both with and
without shocks.
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A.3 Proposition 2

EUihd =
1

1 − γ

(
(1 − Pshock)(unoshock

ihd )1−γ + Pshock(ushock
ihd )1−γ

)

∂EUihd
∂Nhd

= (1 − Pshock)(unoshock
ihd )−γ ∂unoshock

ihd

∂whigh
hd

∂whigh
hd

∂Nhd
+ Pshock(ushock

ihd )−γ ∂ushock
ihd

∂wlow
hd

∂wlow
hd

∂Nhd

= (1 − Pshock)(unoshock
ihd )−γConst(whigh

hd )α+β−2
(
(α + β)whigh

hd − (1 − α − β)
Sh

L̄

)
∂whigh

hd
∂Nhd

+ Pshock(ushock
ihd )−γConst(wlow

hd )α+β−2
(
(α + β)wlow

hd − (1 − α − β)
Sh

L̄

)
∂wlow

hd
∂Nhd

Set Ohigh = (unoshock
ihd )−γConst(whigh

hd )α+β−2
(
(α + β)whigh

hd − (1 − α − β)Sh
L̄

)
and Olow = (ushock

ihd )−γConst(wlow
hd )α+β−2

(
(α + β)wlow

hd − (1 − α − β)Sh
L̄

)
The sufficient condition is

∂EUihd
∂Nhd

(Nhd = Nd) < 0

→(1 − Pshock)Ohigh ∂whigh
hd

∂Nhd
< (1 − Pshock)Ohigh ∂whigh−upperlimit

hd
∂Nhd

< −PshockOlow ∂wlow−upperlimit
hd

∂Nhd
< −PshockOlow ∂wlow

hd
∂Nhd

→δ′(M) <
1 − α − β

ADd((1 − Pshock)Ohigh + PshockOlow)

×
(

S̄((1 − Pshock)Ohigh + PshockOlow)− (1 − Pshock)Ohighδ(Nd)Shigh + PshockOlowδ(Nd)Slow
)

A.4 Proposition 3

Following the definition of externality in section 3,

Φ(Nhd) = Φlearn(Nhd) + Φcost(Nhd)

= △EUlearn(Nhd)× Nhd +△EUcost(Nhd)× Nhd +△EUother(Nhd)× (Nd − Nhd)
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where the three utility functions are defined as below.

• EUlearn(Nhd) =
1

1−γ

(
(1 − Pshock)(u(Nhd, Shigh))1−γ + Pshock(u(0, Slow))1−γ

)

• EUcost(Nhd) =
1

1−γ

(
(1 − Pshock)(u(0, Shigh))1−γ + Pshock(u(Nhd, Slow))1−γ

)

• EUother(Nhd) =
1

1−γ

(
(1− Pshock)

2(u(0, Shigh))1−γ +(1− Pshock)Pshock(u(Nhd, Shigh))1−γ

+ Pshock(1 − Pshock)(u(0, Slow))1−γ + P2
shock(u(Nhd, Slow))1−γ

)
Following the calculation of the utility function as above, these three parts of externality
are as follows:

∂EUlearn(Nhd)

Nhd
Nhd ≃ C1 × (u(Nhd, Shigh))−γ ∂u

w
δ′(Nhd)Nhd > 0

∂EUcost(Nhd)

Nhd
Nhd ≃ C2 × (u(Nhd, Slow))−γ ∂u

w

(
δ(Nhd)Slow − Shigh

)
Nhd < 0

∂EUother(Nhd)

Nhd
(Nd − Nhd) ≃ C3×

(
Pshock(u(Nhd, Slow))−γ + (1 − Pshock)(u(Nhd, Shigh))−γ

)
∂u
w

×
(

δ(Nhd)Slow − Shigh
)
(Nd − Nhd) < 0

where C1, C2, and C3 are constant terms containing the constant terms from u =

Constant ×
(

w∗
hd

α+β + Sh
L̄ (w∗

hd)
α+β−1

)
. Rearrange these three equations; the total ex-

ternality is as follows.

Φ(Nhd) ≃ A1δ′(Nhd)Nhd + A2Nhd + A3(Nd − Nhd)

where A1 > 0, A2 < A3 < 0. Thus, Φ(Nhd = 0) = A3Nd < 0

∂Φ(Nhd)

Nhd
≃ A1δ′(Nhd) + A1δ′′(Nhd)Nhd + (A2 − A3)

With the condition max(δ′(Nhd) + δ′′(Nhd)Nhd) < δ′(Nhd = 0) < A3−A2
A1

, we have
Φ(Nhd) < 0 and Φ(Nhd) decreases with Nhd.
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A.5 Use hometown heterogeneity to identify risk aversion

For worker i from hometown h, the utility of working in district d at time t:

Ũ(c) = EU(c) + β(c)

wherec is the clustering level. EU(c) is the expected utility derived from the Cobb-

Douglas utility maximization, EU(c) = 1
1−γ

(
(1− Pshock)(ugood(c))1−γ + Pshock(ubad(c))1−γ

)
.

I further relax assumptions by allowing workers to hold unobserved utility with respect
to the clustering level, β(c). The restriction is that β(c) depends only on the clustering
level but not on workers’ risk aversion coefficients.

Consider workers from two types of hometowns. The probability of shocks is lower in
one hometown, Psa f e. Conversely, the shock probability is high in the other hometown,
Prisky.

At the clustering level, c, the difference in workers’ utility from the two hometowns is
below.

△Ũ(c) = Ũsa f e(c)− Ũrisky(c) = (EUsa f e(c) + β(c))− (EUrisky(c) + β(c))

=
(Prisky − Psa f e)

1 − γ
((ugood(c))1−γ − (ubad(c))1−γ)

=
(Prisky − Psa f e)

1 − γ
△u∗(c)

This difference in the utility, △u∗(c), depends on (1) ugood and ubad, which are
estimated from the Cobb-Douglas utility maximization, and (2) the worker’s risk aversion
coefficient, γ. I then estimate γ from new workers’ choices of work districts. πrisky(c) and
πsa f e(c) represent the fraction of new workers, either from a risky hometown or a safe
hometown, choosing to enter a district with a clustering level c. From the gravity model,
there is a mapping between the fraction and workers’ utility.

πrisky(c) =
Nrisky

c

∑c′ Nrisky
c′

=
exp(σŨrisky(c))

∑c′ exp(σŨrisky(c′))

πsa f e(c) =
Nsa f e

c

∑c′ Nsa f e
c′

=
exp(σŨsa f e(c))

∑c′ exp(σŨsa f e(c′))
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πrisky(c)
πsa f e(c)

=
exp(σŨrisky(c))
exp(σŨsa f e(c))

× ∑c′ exp(σŨrisky(c′))
∑c′ exp(σŨsa f e(c′))

= exp
(

σ(Ũrisky(c)− Ũsa f e(c))
)
× ∑c′ exp(σŨrisky(c′))

∑c′ exp(σŨsa f e(c′))

Set ∑c′ exp(σŨrisky(c′))
∑c′ exp(σŨsa f e(c′))

= A

△Ũ(c) = Ũrisky(c)− Ũsa f e(c) =
1
σ
(log(πrisky(c))− log(πpeack(c))− log(A))

=
1
σ
(△log(π)(c)− log(A))

Combining all equations, new workers’ entry decisions can reflect the utility difference
across the two types of hometowns.

△Ũ(c1)−△Ũ(c2)

△Ũ(c2)−△Ũ(c3)
=

△log(π)(c1)−△log(π)(c2)

△log(π)(c2)−△log(π)(c3)
=

△u∗(c1)−△u∗(c2)

△u∗(c2)−△u∗(c3)
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B Appendix: Figures and Tables

B.1 Figures

Figure B.1: Delivery Process

Note: This Figure plots an example of a delivery. It involves three steps: (1) workers first travel to
the restaurant to pick up the food, (2) workers drive on the road, and (3) workers deliver the meal
to consumers.

Figure B.2: Geographic Distribution of Food Delivery Workers

(a) Hometown (b) Destination

Note: This Figure shows the geographic distribution of delivery workers at the city level in China.
I include all active workers between 2020 and 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.1. Figure (a) classifies workers based on their county of
birth, and Figure (b) classifies workers based on their current active working cities. Color from
blue to yellow represents the increase in the number of workers.
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Figure B.3: Distribution of Workers from one Hometown in Shanghai: Examples

(a) Hometown 1 (b) Hometown 2 (c) Hometown 3

(d) Hometown 4 (e) Hometown 5 (f) Hometown 6

Note: This Figure provides examples of hometown clusters in Shanghai. I include all active workers between 2020 and 2021 in five large
cities. Details of the sample selection can be found in Appendix C.2.1. Figure (a)-(f) each represent a different hometown (defined as a
county in China). I first find the average work location for each worker using GPS data and calculate the number of same-origin workers
in each location. The color shift from light red to dark red represents the increase in the number of workers. Gray areas mean no workers
from the hometown work there.
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Figure B.4: Clustering Levels by % of Deliveries

(a) Clustering by Sending Hometowns (b) Clustering by Receiving Districts

Note: This Figure plots the distribution of clustering levels. I include all active workers between
2020 and 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.1.
I calculate the clustering levels across hometowns and districts following the same process as
Figure 1 and 2. Calculations of clustering levels in Figure 1 and 2 are based on the number of
workers. In this Figure, I compute the number of deliveries completed by workers from each
hometown across districts. Figure (a) plots the share of deliveries completed in the same district
by workers from each hometown. Figure (b) plots the share of deliveries completed by workers
from the same origin in each district.
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Figure B.5: Distribution of Workers’ Residential versus Work Location: Shanghai

Note: This figure compares the workers’ residential location versus work location for active
delivery workers in Shanghai in 2021. Residential locations are red dots, inferred based on
workers’ daily GPS coordinates observed before 7 a.m. or after 11 p.m. Work locations are black
dots calculated based on the average locations of daily deliveries. The red dots are further away
from the city center and are more concentrated.

Figure B.6: Geographic Distribution of Deliveries

(a) Standardization across Workers

(b) Overall Geographic Distribution

Note: This Figure shows the overall geographic distribution of deliveries for each worker. I
include all new active workers in 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.3. Figure (a) shows the calculation steps. I first calculate a central point
by their daily deliveries for each worker. I then calculate the distance of each delivery relative to
the central point. Figure (b) plots the overall distribution of the traveling distances. Colors from
gray to blue and to red represent the log of the number of deliveries. It shows most workers only
travel within a 4km × 4km area.
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Figure B.7: Wage Trend of New Workers

(a) All New Workers (b) With Hometown Workers v.s. Without

Note: This Figure plots the average wage of new workers. I include all new active workers in
2021 in five large cities. Details of the sample selection can be found in Appendix C.2.3. In Figure
(a), I plot the productivity curve for all new workers. In Figure (b), I classify these new workers
into two groups based on whether they work in a district with same-origin workers: the red line
represents those with at least one same-origin worker in the district, and the blue line represents
those without. The x-axis is the number of weeks since new workers joined the platform, and the
y-axis is the average hourly wage.

Figure B.8: Performances of New Workers: Locals versus Migrants

(a) Average Travel Speed (b) Average Hourly Wage

Note: This Figure plots the productivity and average wage of new workers. I include all new
active workers in 2021 in five large cities. Details of the sample selection can be found in Appendix
C.2.3. I classify new workers into two groups based on whether they are local residents: the blue
line represents workers born in the destination city, and the red line represents migrant workers.
In Figure (a), I plot the productivity curve, which is measured by delivery speed - traveling
distances (meters) to be divided by the duration (minutes). In Figure (b), I plot the average wage.
The x-axis is the number of weeks since new workers joined the platform.
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Figure B.9: Balance Check: Order Characteristics across Experience and Tenure

(a) Distance (b) Food Price (c) Delivery Fee

(d) Distance (e) Food Price (f) Delivery Fee

Note: These Figures plot characteristics of orders assigned to workers on first-time versus repeat visits to a location and workers with
varying tenure. I include all new active workers between March and June 2021 in five large cities. Details of the sample selection can
be found in Appendix C.2.2. In Figures (a)-(c), I classify orders based on whether the assigned worker has visited the location before.
The light bar represents the first visits, and the dark bar represents subsequent visits. In Figures (d)-(f), I examine how assigned order
characteristics change as workers gain experience. I plot three order characteristics: consumer-restaurant distance, food price, and
delivery fee.
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Figure B.10: Balance Check: Order Characteristics by Rejected versus Accepcted

(a) Distance: New Workers (b) Food Price: New Workers (c) Delivery Fee: New Workers

(d) Distance: Referrers (e) Food Price: Referrers (f) Delivery Fee: Referrers

Note: These Figures plot the characteristics of orders accepted versus rejected by workers. I include all new active workers between
March and June 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.2. In Figures (a)-(c), I plot orders
accepted or rejected by new workers. In Figures (d)-(f), I examine orders accepted or rejected by these new workers’ referrers. I plot three
order characteristics: consumer-restaurant distance, food price, and delivery fee.
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Figure B.11: Distribution of Deliveries by Own and Referrers’ Experience

(a) Own Experience: Consumer Address (b) Own Experience: Restaurant

(c) Referrer’s Experience: Consumer Address (d) Referrer’s Experience: Restaurant

Note: This Figure plots the share of deliveries that a new worker or his referrer has visited
the corresponding locations in the past month. I include all new active workers between
March and June 2021 in five large cities. Details of the sample selection can be found in
Appendix C.2.2. Figure (a) plots the share of deliveries that new workers have not been to
the corresponding locations before. Figure (b) represents the share of deliveries where new
workers’ referrers have visited the corresponding location in the past month.
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Figure B.12: Example of Deviating from Optimal Delivery Routes

(a) Examples of Going to the Wrong Entrance (b) % of Workers Going to Wrong Entrances

Note: This Figure provides one specific example of workers deviating from optimal delivery
routes. In Figure (a), the red line represents the delivery route of a worker who knew the correct
gate of the compound. The black line represents the route of a worker who first went to a locked
gate and took the detour. In Figure (b), I identify twenty compounds that suddenly closed one
of their gates in Shanghai in 2021. I calculate the percentage of delivery workers who still went
to that locked gate the following days. I classify all workers who are assigned to deliver food to
these compounds into two groups by whether their referrers have ever been to the locked gate
during the period. The red line represents those with referrers visiting the locked gate before, and
the blue line represents those without.

Figure B.13: Timeline of instrumental variable

(a) Timeline

(b) Time Difference between Referral being
Made and First Day of Work

Note: This Figure shows the timeline of the instrumental variable. In Figure (b), I plot the
distribution of the number of days between referrals being made and new workers’ first day of
work, using the same sample as 3.
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Figure B.14: Details of Entry Bonuses

(a) Number of Days with Active Bonuses (b) Number of Districts with Active Bonuses

(c) Bonus Amount versus Requirement

Note: This Figure plots the details of entry bonuses in Shanghai between 2020 and 2022. Figure
(a) plots the average time window of entry bonuses. Figure (b) plots the number of active entry
bonuses each week. Figure (c) plots the bonus requirement. The y-axis is the delivery target, and
the x-axis is the bonus size.
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Figure B.15: Event Study: Weekly District-level Outcomes Before and After Bonus Increases

(a) # of Deliveries (b) Earnings

(c) # of Active Workers

Note: This Figure plots changes in districts with entry bonuses. I include all new active workers
in 2021 in five large cities. Details of the sample selection can be found in Appendix C.2.3.
Independent variables indicate the number of weeks before or after the district offers entry
bonuses. Figure (a) plots the total number of deliveries completed at the district-week level. Figure
(b) plots the total delivery fee paid to workers. Figure (c) plots the total number of active workers.
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Figure B.16: New Workers Choices of Working Hours

Note: This Figure plots the distribution of workers’ attendance across hours. I include all new
active workers between March and June 2021 in five large cities. Details of the sample selection
can be found in Appendix C.2.2. New workers are classified into two groups based on whether
they work in the same district as their referral: those who cluster with referrers are represented by
the blue line, and the red line represents those who do not. I also plot the hourly attendance of
these new workers’ referrers, as shown by the dashed line.

Figure B.17: Geographic Distribution of Floods

(a) Geographic Distribution of Floods (b) Weeks with Floods

Note: This Figure plots the distribution of floods across cities and weeks. I use the daily rainfall
data from 2423 stations (counties) in China. I identify a flood by whether two-day accumulated
rainfall is over 160mm in each county and week. (The threshold for heavy rain and above is 80
millimeters per 24 hours.) Among counties with at least one active delivery worker in the sample
during the period, 11% counties experienced floods at least once. Figure (a) plots the geographic
distribution of counties with floods (plotted at the city level). Figure (b) plots the time variation of
floods at the week level. The color from dark to light represents the time from June to August.
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Figure B.18: Distribution of Pandemic Lockdowns

(a) Geographic Distribution of Covid Cases (b) Identification of Lockdowns

Note: This figure plots pandemic lockdown distributions across cities and weeks in 2021. Figure (a)
shows the distribution of cities with COVID-19 cases in 2021. Colors from blue to yellow represent
the first week each city had cases. Figure (b) plots consumer order responses to lockdowns in
each city and week. The x-axis displays weeks before and after lockdowns. The y-axis shows the
number of consumer orders.

Figure B.19: Histogram of District-level Shocks

(a) Histogram of District-level Shocks (b) Histogram of District-level Shocks

Note: This Figure plots the distribution of aggregate hometown shocks at the district level. I
include all active workers between May and August 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.4. Figure (a) plots the histogram of the predicted shock
share, which is the share of workers experiencing hometown floods based on the hometown
composition in each district in May 2020. Figure (b) plots the correlation between the shock share
and the clustering level across districts. The x-axis is the share of workers from the same origin in
each district, and the y-axis is the predicted shock share.
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Figure B.20: Attendance Rate across Hours

(a) Average Attendance Rate (b) Average Standardized # of Orders

(c) Average # of Orders per Worker

Note: This Figure plots labor market fluctuations across hours. I include all active workers
between May and August 2021 in five large cities. Details of the sample selection can be found in
Appendix C.2.4. The x-axis is the hour within a day. Figure (a) plots workers’ average attendance
rate across hours. Figure (b) plots the (standardized) number of orders put by consumers across
hours. Figure (c) plots the average number of deliveries assigned to each active worker across
hours.
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Figure B.21: Attendance Rate across Hours during District Shocks

(a) Average Attendance Rate (b) Relative Changes in Attendance Rates

Note: This Figure plots the attendance rate during normal periods and shocks. I include all active
workers between May and August 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.4. I classify districts into two groups by whether the district experiences
aggregate shock in the week (defined as shock share > 15%). The blue line represents those with
shocks, and the red line represents those without. Figure (a) plots the share of workers attending
to work among daily active workers in the district. Figure (b) plots the relative changes in the
number of active workers with and without shocks across hours.
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B.2 Tables

Table B.1: Workers Demographic Characteristics

Mean SD

Age 36.22 9.13

Gender (1=Male,0=Female) 0.972

Number of Delivery Finished per Week 98.43 100.59

Working Hours per Week 24.14 22.26

Income per Week (RMB) 968.17 1071.32

Migrant Worker (1=Local Resident,0=The Rest) 0.983

Notes: This Table reports delivery workers’ demographic characteristics. I include
all active workers between 2020 and 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.1.

Table B.2: Determinants of the Flows of Migrant Workers

Dep. Variable: ln(Number of Delivery Workers)
(1) (2) (3) (4)

Home: ln(Population) 0.042∗∗∗ 0.241∗∗∗

(0.003) (0.005)
Destination: ln(Population) 0.274∗∗∗ 0.744∗∗∗

(0.003) (0.005)
Home: ln(GDPP) -0.144∗∗∗ -0.370∗∗∗

(0.006) (0.007)
Destination: ln(GDPP) 1.051∗∗∗ 1.234∗∗∗

(0.006) (0.007)
ln(Distance) -0.452∗∗∗ -0.409∗∗∗

(0.004) (0.003)
Observations 115,811 115,811 115,811 115,811
R2 0.060 0.201 0.124 0.513

Notes: This Table shows regressions of the number of delivery workers from origin cities on
destination cities’ characteristics. I include all active workers between 2020 and 2021 in five large
cities. Details of the sample selection can be found in Appendix C.2.1. Population and GDP are
from the 2019 economic annual books at the city level. Distances are calculated based on latitude
and longitude in kilometers. Standard errors are clustered at the province level.
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Table B.3: Factors Affecting Workers’ Choices of Districts

Dep. Var.: 1 { New Worker Working in the District }

OLS Logit

1 { Referrer’s Distrct } 0.407∗∗∗ 2.431∗∗∗

(0.040) (0.038)

1 { Having Entry Bonus } 0.294∗∗∗ 1.895∗∗∗

(0.015) (0.103)

Distance to Referrer’s District -0.305∗∗∗

(0.004)

Clustering Level in the District 0.179∗∗∗

(0.005)

District FE Y Y

Hometown FE Y Y

Entry Cohort FE Y Y

Observations 8,589,336 8,589,336

R2 0.325

Notes: This Table shows regressions of new worker’s entry probabilities on district
characteristics. I include all new active workers in 2021 in five large cities. Details of the
sample selection can be found in Appendix C.2.3. The dependent variable is a dummy
indicating whether a new worker works in the district. Three independent variables are
(1) whether the new worker’s referrer works in the district; (2) whether there is an entry
bonus in the district in the subsequent week after the new worker joins the platform;
(3) the clustering level in the districts, which is measured as the share of same-origin
workers. I run a linear regression in column (1) and a logit regression in column (2).
Standard errors are clustered two-way at the hometown level and entry-week level.
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Table B.4: Decompose Local Knowldge

Robustness Check (1): E(Pia) and E(Pija) as controls

Restaurant Road Consumer

Search Time Driving Speed Search Time

(minute) (meter/minute) (minute)

(1) (2) (3)

Own Visit -1.45∗∗∗ -0.13 -1.28∗∗∗

(0.07) (0.10) (0.05)

Referrer Visit -0.64∗∗∗ -0.20 -0.70∗∗∗

(0.10) (0.17) (0.08)

Date X Hour X Worker FE Y Y Y

Location FE Y Y Y

Referrer’s Expected Probability Y Y Y

of Visiting a Location

Ave. Dep. Var. 6.22 10.86 5.93

Observations 5,837,304 5,837,304 5,837,304

R2 0.43 0.38 0.43

Notes: This Table shows regressions of productivity on four indicators: (1) whether
the new worker has visited the restaurant or consumer building before; (2) whether
the new worker’s referrer has visited the restaurant or consumer building in the
last month, following the specification in section 4.2. I include all new active
workers between March and June 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.2. Dependent variables in columns (1)
and (3) are searching time (minutes) for the restaurant or the consumer building.
I measure by counting GPS coordinates within a location’s 150-meter radius. The
dependent variable in column (2) is the average driving speed (minute/min)
between the restaurant and the consumer building. These are proxies for workers’
productivity. Difference from Table 1, I construct the expected probability of a
worker visiting a location by running a logit regression of the probability of visiting
a location on workers’ characteristics, including tenure, age, gender ratings, and
so on (Borusyak and Hull, 2023). Standard errors are clustered two-way at the
worker level and the date level.
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Table B.5: Effect of Clustering on Worker Performance

Robustness Check (1): additional dependent variables

Retention Rate (%) Relocation Rate (%) Timeout Rate (%)

(1) (2) (3)

Actual Clustering Level 0.261 -0.377∗∗ -0.038∗∗∗

(0.229) (0.186) (0.009)

District X Week FE Y Y Y

Hometown X Week FE Y Y Y

Entry Cohort FE Y Y Y

BH Control Y Y Y

Ave. Dep. Var. 76.29 9.51 8.45

Observations 417,684 417,684 417,684

Notes: This Table shows regressions of new workers’ productivity on clustering levels. I
include all new active workers in 2021 in five large cities. Details of the sample selection
can be found in Appendix C.2.3. I run IV regressions where the independent variable is
the share of hometown workers in each new worker’s work district, and the instrumental
variable is the predicted clustering level induced by entry bonuses. Dependent variables
are (1) whether a new worker is active on the platform the following week, (2) whether a
new worker relocates to a different district the following week, and (2) the share of late
deliveries. Standard errors are clustered two-way at the district level and the week level.
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Table B.8: Delivery workers’ Responses to Shocks

Robustness Check (1): varying the threshold for hometown floods

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

Using 200 millimeters as threshold for floods

1{Hometown Flood } 0.062∗∗ 19.038∗∗∗ 6.812∗∗

(0.029) (5.274) (3.092)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 638,810 638,810 638,810

R2 0.519 0.488 0.523

Notes: This Table shows regressions of workers’ weekly labor supply
on hometown shocks. I include all active workers between May and
August 2021 in five large cities. Details of the sample selection can be
found in Appendix C.2.4. Dependent variables are workers’ weekly
performances on the platform: (1) being active (# of deliveries > 0),(2)
number of deliveries completed, and (3) number of working hours.
The independent variable indicates whether a worker’s hometown
has had flood shock in the last month. Different from Table 4, which
uses 160mm as the threshold for floods, this Table uses 200mm as
the threshold for floods as the independent variable. I include origin
province × week fixed effect, district fixed effect, and worker fixed
effects. Standard errors are clustered two-way at the district level
and the week level.
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Table B.9: Delivery workers’ Responses to Shocks

Robustness Check (2): hometown pandemic lockdowns

Dep. Var.: Average Weekly Outcomes

1{ Active } Ave. Deliveries Ave. Hours

Panel A: Covid Cases

Number of weekly COVID cases 0.001∗∗∗ 0.173∗∗∗ 0.085∗∗∗

(0.000) (0.041) (0.018)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.73 77.54 21.40

Observations 2,387,219 2,387,219 2,387,219

R2 0.489 0.498 0.512

Panel B: Identified Pandemic Lockdown

Experiencing Hometown Lockdown 0.076∗∗∗ 12.810∗∗∗ 4.184∗∗∗

(0.018) (2.319) (0.822)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Ave. Dep. Var. 0.76 78.10 22.08

Observations 2,387,219 2,387,219 2,387,219

R2 0.502 0.523 0.527

Notes: This Table shows regressions of workers’ weekly labor supply on hometown
shocks. I include all active workers in 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.5. Dependent variables are workers’ weekly
performances on the platform: (1) being active (# of deliveries > 0),(2) number of
deliveries completed, and (3) number of working hours. The independent variable
indicates whether a worker’s hometown has any pandemic lockdowns. Panel A uses
the number of weekly COVID cases at the city level, as scraped from government
websites. Panel B identifies hometown pandemic lockdown by whether the number
of consumer orders dropped below half of the median of normal periods in workers’
hometowns. I include origin province × week fixed effect, district fixed effect, and
worker fixed effects. Standard errors are clustered two-way at the district level and
the week level.
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Table B.10: delivery workers’ Responses to Shocks

Robustness Check (3): Continuous District-level Shocks

Dep. Var.: Average Weekly Outcomes

Number of Number of Total

Workers Orders Working Hours

Predicted Fraction with Shocks (%) 0.288 3.127 9.683∗∗∗

(0.177) (2.490) (3.018)

Week FE Y Y Y

District FE Y Y Y

Ave. Dep. Var 132.59 7,233.97 2,408.26

Observations 14,391 14,391 14,391

R2 0.781 0.781 0.802

Notes: This Table shows regressions of district-level market performances on
aggregate hometown shocks. I include all active workers between May and August
2021 in five large cities. Details of the sample selection can be found in Appendix
C.2.4. Dependent variables are (1) the total number of active workers in the district
each week,(2) the total number of deliveries completed, (3) the total number of
working hours, and (4) the average per-delivery commission fee. Different from
Table 5, where I use an indicator for the aggregate shock, the independent variable
in this Table is the predicted shock share in the district. The shock share is the share
of workers experiencing floods, given the hometown composition in the district in
May 2020. I include week and district fixed effects. Standard errors are clustered at
the week level.
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Table B.11: delivery workers’ Responses to Shocks

Robustness Check (4): Peak Hour versus Off-peak Hours

Dep. Var.: Average Weekly Outcomes

Attendance Rate Ave. Deliveries Ave. Hours

Panel A: Peak Hours

1{ Hometown Shock} 0.052∗∗∗ 2.559∗∗∗ 0.577∗∗∗

(0.010) (0.511) (0.103)

1{District Shock Share > 15%} 0.012 1.661 0.411

(0.009) (1.307) (0.381)

Interaction Term 0.009 0.418 0.134

(0.006) (0.388) (0.095)

Panel B: Off-peak Hours

1{ Hometown Shock} 0.272∗∗∗ 17.102∗∗∗ 5.898∗∗∗

(0.051) (3.190) (1.121)

1{District Shock Share > 15%} -0.044∗∗ -3.127∗∗ -1.093∗∗

(0.018) (1.546) (0.541)

Interaction Term -0.013 -7.037∗∗∗ -0.700

(0.010) (1.618) (0.567)

Province × Week FE Y Y Y

Worker FE Y Y Y

District FE Y Y Y

Observations 638,810 638,810 638,810

Notes: This Table shows regressions of workers’ weekly labor supply on hometown
shocks and district shocks. I include all active workers between May and August
2021 in five large cities. Details of the sample selection can be found in Appendix
C.2.4. Dependent variables are workers’ weekly performances on the platform:
(1) being active (# of deliveries > 0),(2) number of deliveries completed, and (3)
number of working hours. Independent variables are (1) the indicator of whether
a worker’s hometown has any flood shock in the last month, (2) an indicator of
district shock based on whether the predicted shock share in the district is higher
than 15%, and (3) their interaction term. Different from Table 6, which uses each
worker’s total working hours per week, I separate workers’ performance during
peak versus non-peak hours in this Table. Peak hours are defined as between 11
am and 2 pm or between 6 pm and 8 pm. I include week fixed effects, worker
fixed effects, and district fixed effects. Standard errors are clustered two-way at the
district level and the week level.
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Table B.12: Effect of Relocation on Productivity

Dep. Var.: Average Weekly Outcomes

Relocation Rate Effect of Relocation

Ave. Deliveries Timeout

Speed Per Hour Rate (%)

1{ Hometown Shock} -0.007

(0.012)

1{District Shock Share > 15%} 0.008

(0.016)

Interaction Term 0.033∗∗

(0.014)

Relocation: 1{jt−1 ̸= jt} -1.299∗∗ -0.158∗∗ 0.361∗∗∗

(0.635) (0.070) (0.048)

Province × Week FE Y Y Y Y

Worker FE Y Y Y Y

District FE Y Y Y Y

Ave. Dep. Var. 0.09 46.18 4.58 9.36

Observations 638,810 638,810 638,810 638,810

R2 0.498 0.348 0.339 0.342

Notes: This Table shows regressions of workers’ relocation probability on hometown
shocks. I include all active workers between May and August 2021 in five large cities.
Details of the sample selection can be found in Appendix C.2.4. The dependent
variable in column (1) is whether a worker relocates to a different district the
following week. Independent variables are (1) the indicator of whether a worker’s
hometown has any flood shock in the last month, (2) an indicator of district shock
based on whether the predicted shock share in the district is higher than 15%, and (3)
their interaction term. Columns (2)-(4) report regressions of workers’ labor market
performances on the relocation indicator. Dependent variables are (1) workers’
average delivery speed, (2) the number of deliveries completed per hour, and (3)
the share of late deliveries. The independent variable is whether a worker has just
relocated to the district this week. I include week fixed effects, worker fixed effects,
and district fixed effects. Standard errors are clustered two-way at the district level
and the week level.

94



Table B.13: Shock Probability and Clustering Levels

Dep/ Var.: Clustering Level for Each Hometown

(1) (2) (3)

Flood Prob. (0 ∼ 1) -6.59∗∗∗

(1.37)

{Prob. > 10%} -0.56∗∗∗

(0.15)

{Prob. > 15%} -0.76∗∗∗

(0.22)

Week FE Y Y Y

Origin Province FE Y Y Y

Destination City FE Y Y Y

Ave. Dep. Var. 11.36 11.36 11.36

Observations 78,776 78,776 78,776

R2 0.26 0.23 0.21

Notes: This Table shows regressions of clustering levels on flood probability for each hometown.
I include all active workers between 2020 and 2021 in five large cities. Details of the sample
selection can be found in Appendix C.2.1. The dependent variable is the average clustering
level for each hometown in each destination city. The clustering level is defined as the highest
share of hometown workers in each district within each city. The independent variable is the
probability of flood shock. I use the rainfall data between 2000 and 2020 to compute each
county’s probability of experiencing floods. In column (1), I use the continuous flood probability.
Columns (2) and (3) use indicators for probabilities over 10% or 15%. Standard errors are
clustered two-way at the origin province level and the destination city level.
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Table B.14: Hometown Heterogeneity by Shock Probability

Number of Distance to Tenure Delivery

Workers City Center
(km)

(month) Speed
(m/min)

(1) (2) (3) (4)

Flood Prob. (0 ∼ 1) 5.18∗ -1.49 0.59 0.81

(3.11) (2.50) (1.75) (0.66)

Week FE Y Y Y Y

Origin Province FE Y Y Y Y

Destination City FE Y Y Y Y

Ave. Dep. Var. 40.01 6.29 6.97 47.03

Observations 78,776 78,776 78,776 78,776

R2 0.23 0.29 0.27 0.36

Notes: This Table shows regressions of hometown characteristics on flood probability for each
hometown. I include all active workers between 2020 and 2021 in five large cities. Details of
the sample selection can be found in Appendix C.2.1. The variables are (1) the number of active
workers from each hometown, (2) workers’ average distance to city centers, (3) average tenure,
and (4) average delivery speed. The independent variable is the probability of flood shock. I
use the rainfall data between 2000 and 2020 to compute the probability of each county. Standard
errors are clustered two-way at the origin province level and the destination city level.
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C Appendix: Data Construction

C.1 Data Overview

C.1.1 Data Sources

I use data from four main sources: (1) worker performance metrics on the platform, (2)
information on the number of buildings and year of construction across Shanghai, as
scraped from Lianjia.com Website, (3) daily rainfall data from 2,423 stations (counties)
in China, and (4) daily records of confirmed COVID-19 cases by city, as scraped from
government websites.

I use the building characteristics in Shanghai to understand where learning occurs
and the latter two data sources (floods and COVID cases) to identify adverse shocks in
migrant workers’ hometowns. Next, I describe the platform data in detail.

C.1.2 Platform Data

GPS Data. Workers’ GPS coordinates are recorded every twenty seconds when workers
are active on the platform. Each GPS data coordinate includes the latitude, longitude,
and exact timestamp.

Order Information. For each order/delivery, the data set includes the restaurant location
(restaurant name and GPS coordinates), consumer location (building name and GPS
coordinates), the delivery worker ID, total price, delivery fee, and delivery distance. It
also contains six timestamps: (1) when the consumer places the order, (2) when the
delivery worker accepts the order, (3) when the worker arrives at the restaurant, (4) when
the food is ready as confirmed by the restaurant, (5) when the worker arrives at the
consumer drop-off location, and (6) when the consumer confirms receiving the food. All
consumer information and worker IDs are anonymized.

Network Data. The network data records each referral pair of a new worker and the
referrer. Referrers are existing delivery workers on the platform. The data set includes
the anonymized IDs of the two workers and the timestamp when the referral was made.

Platform Bonuses and Lotteries. This data covers all entry bonuses and platform lotteries
conducted through the platform. It includes the timestamp when each bonus was active,
the bonus amount, the requirements, and the geographic eligibility. For workers, the data
shows which anonymized worker ID received a bonus or lottery prize and when.
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Worker Characteristics. Worker characteristics data includes each worker’s county of
birth, gender, age, current work city, start date, and total number of deliveries completed.

C.1.3 Overall Sample Selections

The analysis uses data on all delivery workers on the food delivery platform across five
major Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) between
2020 and 2021. Approximately 1 million people completed at least one delivery in these
five cities during this period. However, as with most gig-economy sectors, this food
delivery industry experiences high turnover. Many workers stay on the platform for less
than a week and complete fewer than ten deliveries. Figure C.1 plots the distribution
of total deliveries completed per worker, the number of weeks worked, and average
weekly deliveries completed per worker. All histograms skew right with peaks near zero.
Specifically, 41% of workers completed fewer than 100 deliveries by the end of 2021, 42%
worked less than five weeks, and 72% completed fewer than 50 deliveries weekly on
average.

Figure C.1: Workers’ Performances on the Platform

(a) All Deliveries (b) Number of Weeks (c) Number of Weekly Deliveries

Note: This Figure plots the histogram of total deliveries completed per worker, the number of
weeks worked, and average weekly deliveries completed per worker. The figure builds on all
delivery workers on the food delivery platform across five major Chinese cities (Shanghai, Beijing,
Guangzhou, Shenzhen, and Hangzhou) between 2020 and 2021.

Using the entire sample of workers for analysis may introduce noise. For instance, the
42% of workers who stayed less than five weeks may not have had enough time to learn.
Also, the 72% who completed fewer than 50 deliveries per week likely did not rely on
this job as their primary income source. Their decisions and choices could differ from
typical migrant workers, who are the primary earners for families back home and rely on
this delivery work as their major income source.
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I thus classify workers into two types: active workers and temporary workers. Active
workers are defined as those who worked for at least four weeks on the platform and
completed at least 50 deliveries per week on average, by the end of 2021.

I choose these thresholds because the average monthly salary for domestic migrant
workers is 4,000 RMB (around $570 USD) in China in 2020 (Bureau, 2020). Completing 50
deliveries weekly over four weeks can generate approximately 2,000 RMB per month as a
delivery worker - about half of the average migrant worker’s salary.

Among all delivery workers across the five cities in 2020-2021, 37% met the criteria
to be classified as active workers. However, these active workers completed 95% of total
deliveries on the platform. Figure C.2 plots the percentage of workers and deliveries
completed by active versus temporary workers each week in 2021. On average, active
workers comprised 75% of the workforce but completed 95% of weekly deliveries.57

Focusing on this active worker sample still captures the majority of platform orders.

Figure C.2: Workers’ Performances on the Platform

(a) Weekly Worker Share (b) Weekly Delivery Share (c) New Worker Share

Note: This Figure shows the percentage of workers and the percentage of deliveries completed by
active vs. temporary workers each week in 2021.

Figure C.2(c) also plots the entry of active and temporary workers by week in 2021. It
shows that the largest entry of active workers occurred in March, the month following the
Chinese New Year. This aligns with typical seasonal migration patterns, where migrant
workers travel to work cities after the festival and remain there working for approximately
one year before returning home for the next New Year celebration.

For most analyses, I use the sample of active workers as defined above rather than the
full worker sample. However, when calculating metrics such as total deliveries or work
hours by district or computing clustering levels by delivery share, I use the full sample.

57The percentage of active workers is 75% weekly but only 37% over the full 2020-2021 sample. This
difference is due to the much higher turnover rate among temporary workers, resulting in a larger share of
the total sample.
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C.2 Sample Selection per Analysis

C.2.1 Distribution of Workers by Hometown and Work District

Sample Selection

The analysis covers active delivery workers on the food delivery platform across five
major Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) in 2020
and 2021. Active workers are defined as those who worked at least four weeks and
completed a minimum of 50 deliveries per week by the end of 2021, as discussed in
Section C.1.3. The final sample contains 402,394 active workers.

Variable Definition

Hometown. A worker’s hometown is defined as their county of birth. There are 2,843
counties in China, of which 2,805 are represented by at least one active delivery worker
in the five cities between 2020 and 2021.

Work District. A worker’s work district is defined weekly based on their GPS coordinates.
For each worker-week, I identify the district with the maximum number of GPS data
points for that worker.

C.2.2 Direct Evidence of Knowledge Spillovers

Sample Selection

The analysis covers all deliveries on the food delivery platform in the five major Chinese
cities from March to June 2021. I include deliveries that were completed by a new active
worker or their referrer. I define new active delivery workers as those who entered after
the Chinese New Year festival (February 12, 2021) and before June 2021, had a referrer
upon entry, and met the active worker criteria defined in Section C.1.3. This comprises
23,846 new workers and 5,837,304 analyzed deliveries.

Variable Definition

Search Time. A worker’s search time for a restaurant or consumer building is measured
based on GPS coordinates within a 150-meter radius of the location. I have the exact
timestamp for each GPS data point. The search time is calculated as the last timestamp
when the worker is within the 150-meter radius minus the first timestamp.

Driving Speed. A worker’s driving speed is measured as the total driving distance
divided by duration, excluding time within 150 meters of restaurants or buildings. When
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a worker picks up food from restaurant A and delivers it to consumer B, they may drive
to other restaurants or consumers along the route. In such cases, I also exclude search
time at those additional stops. Thus, the delivery speed aims to capture the actual driving
speed on main roads between the pickup and drop-off points.

C.2.3 IV Regression of Productivity on Clustering

Sample Selection

The analysis covers new active delivery workers on the food delivery platform across
the five major Chinese cities in 2021. New active workers are defined as those who
joined in 2021, had a referrer at entry, and met the active worker criteria in Section C.1.3.
This comprises 53,498 new workers. I create a panel data set tracking each worker from
platform join date to permanent exit, capped at the first twelve weeks if a worker stays
beyond twelve weeks. The final sample contains 417,684 observations at the worker-week
level.

Variable Definition

Delivery Speed. A worker’s delivery speed per order is measured as the total driving
distance divided by duration. The duration starts when the worker accepts the order and
starts moving. The duration ends at delivery to the consumer. The whole process includes
search time within 150 meters of restaurants and buildings, contrary to the previous
analysis. As mentioned previously, if additional stops are made between pickup at
restaurant A and drop-off at consumer B, I exclude search time at those stops. Therefore,
the delivery speed aims to capture average productivity per delivery.

Total Work Hours A worker’s total weekly work hours are measured by the total time
logged in and active on the platform. This does not require the worker to be actively
delivering food at all times.

Hourly Earning I measure a worker’s average hourly earnings per week by the total
earnings divided by the total work hours in each week.

C.2.4 Hometown Shock Analysis: Floods

Sample Selection

The analysis covers active delivery workers on the food delivery platform across five
major Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) between
May and August 2020. Active workers are defined as those who worked for four weeks

101



and completed at least 50 deliveries per week in May 2020, as discussed in Section C.1.3.
This comprises 80,677 active workers. I create a panel data set tracking each worker from
the first week of June to permanent exit, capped at the end of August if a worker stays
beyond that. The final sample contains 638,810 observations at the worker-week level.

Variable Definition

Floods I use daily rainfall data from 2,423 stations (counties) across China. Floods are
identified when the accumulated rainfall over two days exceeds 160mm in a each county
and week, doubling the threshold for heavy rain. In most countries, heavy rain is defined
as experiencing over 80 millimeters within 24 hours.

Total Work Hours A worker’s total weekly work hours are measured by the total time
logged in and active on the platform. This does not require the worker to be actively
delivering food at all times.

C.2.5 Hometown Shock Analysis: Pandemic Lockdowns

Sample Selection

The analysis covers active delivery workers on the food delivery platform across five major
Chinese cities (Shanghai, Beijing, Guangzhou, Shenzhen, and Hangzhou) in 2021. Active
workers are defined as those who worked for at least four weeks and completed at least
50 deliveries per week between January and March 2021, as discussed in Section C.1.3.
This comprises 139,508 active workers. I create a panel data set tracking each worker
from the first week of April to permanent exit, capped at the end of 2021 if a worker stays
beyond that. The final sample contains 2,387,219 observations at the worker-week level.

Variable Definition

Covid Cases I collect daily records of confirmed COVID-19 cases by city from the
government websites.

Pandemic Lockdowns Pandemic lockdowns are identified at the county-week level based
on whether the number of consumer orders dropped below half of the median order
volume during regular periods.

Total Work Hours A worker’s total weekly work hours are measured by the total time
logged in and active on the platform. This does not require the worker to be actively
delivering food at all times.
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