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Abstract

Instrumental variable models with repeated endogenous treatments are popular

in empirical research using pooled cross-sectional or short panel datasets. This paper

proposes a novel semi-parametric approach that explicitly considers treatment effect

dynamics by allowing for 1) path-dependency in the contemporaneous treatment

effect and 2) a direct carryover effect from last period’s treatment. We show that if

either of these new features is present, the textbook two-stage least-squares estimator

is generally invalid. We apply the proposed semi-parametric estimation and inference

approach to revisit the work of Acemoglu et al. (2016). Using industry-level data,

we find that the magnitude of contemporaneous impact of increased Chinese import

competition on US manufacturing employment depends on an industry’s past import

exposure. In particular, industries with larger trade shocks in the 1990’s tend to

experience stronger impacts from contemporaneous trade shocks in the 2000’s.

∗The authors are very thankful for all the helpful comments from seminar participants at Syracuse

University, the University of Toronto, the University of Queensland, the 2023 International Association

of Applied Econometrics Annual Conference, the 2023 All California Econometrics Conference, the 2023

Australia New Zealand Econometric Study Group Meeting, the 18th International Symposium on Econo-

metric Theory and Applications, the 2024 Kansas Econometrics workshop and the 2024 Econometrics in

Rio Conference. An earlier version of this paper was circulated under the title “Panel Instrumental Vari-

able Regression Models with Varying-intensity Repeated Treatments: Theory and the China Syndrome

Application.”
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1 Introduction

Models with repeated varying-intensity endogenous treatments and external instrumen-

tal variables (IV) are popular in applied economics. For example, Autor et al. (2013) and

Acemoglu et al. (2016), seminal papers on the nexus between international trade and la-

bor economics, assess the repeated endogenous treatments of exposure to rising Chinese

import competition across US local labor markets and industries. Card (2009), an influ-

ential paper in immigration studying the elasticity of substitution between immigrants

and natives in local labor markets, uses a three-period panel model (1980, 1990, and 2000)

to investigate the repeated endogenous treatments of local immigration shocks. Angrist

(2002) studies the effect of having a high male-to-female sex ratio on second-generation

immigrants’ demographic and economic outcomes using data from the 1910, 1920, and

1940 Censuses. Boustan (2010) investigates white departures in northern cities in re-

sponse to large Black migration from the rural South to northern cities between 1940

and 1970. Recently, Acemoglu and Restrepo (2022) use a stacked panel to investigate

the impact of immigration on innovation in US counties.

Empirical analyses for such model setups are typically carried out using textbook

two-stage least squares (2SLS) estimation. In this paper, we show that this popular esti-

mator is generally invalid if the underlying data generating process (DGP) has nontriv-

ial dynamic treatment effect features. Specifically, we find that, if the external treatment

is correlated with past treatment take-ups, as observed in many empirical applications,

the textbook 2SLS estimator does not converge in probability to an interpretable causal

parameter.

Motivated by the invalidity result, we propose a new semi-parametric varying-coefficient

model for the repeated endogenous treatment setting. Our model allows 1) the contem-

poraneous treatment effect to vary with last period’s treatment and 2) last period’s treat-

ment to directly affect the contemporaneous outcome even when there is no contempora-

neous treatment. The proposed dynamic treatment effect features are relevant to many

empirical applications. In the China syndrome application in Autor et al. (2013), for ex-

ample, path-dependency allows the contemporaneous effect of increased import exposure

in the 2000s to vary with the import exposure in the 1990s. In the immigration and in-
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novation application (e.g., Acemoglu and Restrepo, 2022), path-dependency allows the

contemporaneous impact of immigration on innovation to depend on previous immigra-

tion flows.

We study both parametric and semi-parametric identification and estimation strate-

gies for the proposed model. As we will illustrate, different parametric identification

strategies rely on different exclusion restrictions, including contemporaneous/sequential

exogeneity of the external instrument and/or sequential exogeneity of the endogenous

treatment. The validity of the parametric approach is subject to functional form as-

sumptions. For semi-parametric identification and estimation, we require a conditional

contemporaneous exogeneity assumption and propose to use local general method of mo-

ments (GMM) estimation. Our benchmark estimator is an augmented local GMM estima-

tor inspired by previous studies in the conditional GMM literature, including Cai and Li

(2008), Su et al. (2013), and Bravo (2023), that uses local linear or polynomial expansion

of varying coefficient functions to improve estimation efficiency. The proposed estimator

is different from the literature for only partially augmenting the parameter function of

interest, due to the practical consideration of first-stage rank condition. We also consider

two alternative non-augmented local GMM estimators as means of robustness checks.

When applied to the China syndrome application, our new model, together with the

proposed semi-parametric identification and estimation strategy, uncover rich dynamics

that have not been described previously in the literature (see, e.g., Autor et al., 2013,

2014; Acemoglu et al., 2016; Autor et al., 2020a,b; Bloom et al., 2019; Feenstra et al.,

2019, among many others). We find strong evidence, using the industry-level dataset in

Acemoglu et al. (2016), that the contemporaneous impact of increased Chinese imports

on employment in 1999-2011 depends on the import exposure in 1991-1999. The path-

dependency is monotonic, with the previous import exposure magnifying the negative

impact of the current trade shock. More interestingly, we find that the magnifying effect

is mild for most industries, but becomes much larger when the increase in import exposure

between 1991 and 1999 exceeds around 0.2 percentage points per year. Specifically, the

China shock effect in the 2000s is stable and averages -0.25 percentage points when the

import exposure change in the 1990s lies between 0 and 0.2, whereas the average effect

increases to over -1 percentage points when the change lies between 0.2 and 0.3. The
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empirical finding underscores the importance of allowing for path-dependency with a

flexible functional form when analyzing trade effects.

Our proposed model is related to the dynamic treatment effect literature in bio-

statistics, micro-econometrics, and causal inference. The biostatistics literature (e.g.,

Robins, 1986, 1987; Murphy et al., 2001; Murphy, 2003) has a long history of studying

dynamic causal effects. The literature often assumes sequential randomization or uncon-

foundedness for identification. See Section III of Hernán and Robins (2023) for a recent

survey on identification strategies and Bojinov et al. (2021) for some recent develop-

ments in inference. Our paper uses external instruments. In econometrics, Heckman and

Navarro (2007) and Heckman et al. (2016) are seminal papers that consider identification

in sequential discrete treatment models. They establish important dynamic treatment

effect concepts including the direct effect, continuation values, and total longer-term ef-

fect of treatment interventions. In the panel difference-in-difference literature, Sun and

Abraham (2021), Callaway and Sant’Anna (2021), and Athey and Imbens (2022), among

many others, propose robust identification methods for dynamic treatment effects using

parallel trend type identifying assumptions. The literature often considers repeated irre-

versible binary treatments. Han (2021) extends the dynamic treatment effect literature

by considering general treatment settings that are binary but not necessarily irreversible.

Han (2021) uses strictly exogenous excluded instruments for the purpose of nonparamet-

ric identification. Recently, Chen and Zhang (2023) study optimal dynamic treatment

regimes with time-varying instruments that are randomly generated. Our paper stud-

ies varying-intensity treatments and does not require external instruments to be strictly

or sequentially exogenous. On the other hand, our semi-parametric approach involves

functional-form assumptions that are more restrictive than previous papers that pursue

nonparametric model identification.

Using external instruments for identification, our paper is distinguished from the

vast literature that uses internal instruments for short-panel IV identification, including

Anderson and Hsiao (1982), Arellano and Bond (1991), Ahn and Schmidt (1995), and

many others. Our model and method are also different from those proposed in the

local projection instrumental variable (LP-IV) literature (see, for example, Stock and

Watson, 2018 for an excellent review), which also studies dynamic treatment effects. This
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is because our model is particularly designed for pooled cross-sectional or short panel

datasets and focuses on identifying path-dependent contemporaneous effects as well as

direct carryover effects from past treatments. The LP-IV approach, on the other hand,

is designed for the time series (c.f., Stock and Watson, 2018) setting and seeks to identify

the long-term total effect of treatments. Within the local projection literature, our paper

is more closely related to a recent work by Dube et al. (2023), who utilize cross-sectional

variations in data and parallel trend type assumptions to identify dynamic heterogeneous

treatment effects in the difference-in-differences setting. Again, Dube et al. (2023) focuses

on repeated binary treatments and long-term total effects while our paper focuses on

varying-intensity treatments, path-dependent contemporaneous effects, and long-term

direct carryover effects.

The paper is organized as the following. Section 2 motivates our proposed model

with direct carryover effect and path-dependent contemporaneous effect. The section also

presents the parametric identification of the proposed model and shows its limitations.

Section 3 studies semi-parametric identification of the proposed model and discusses var-

ious extensions of the benchmark model. Section 4 proposes relevant semi-parametric

estimation and inference methods. Section 5 carries out Monte Carlo simulations. Sec-

tion 6 applies the proposed method to the industry-level dataset from Acemoglu et al.

(2016). The appendices include robustness checks for the empirical analysis as well as all

mathematical proofs of the theoretical results.

2 Model Set-up and Parametric Identification

2.1 Model Set-up

We are interested in studying the effect of a series of repeated treatments that are of vari-

able intensity. Treatments are potentially endogenous. The identification of treatment

effects relies on the presence of external instruments. We propose to model treatment

effect dynamics in the outcome equation by explicitly allowing for 1) a direct carryover

effect from the past treatment even when there is no contemporaneous treatment and

2) a path-dependent contemporaneous treatment effect. Data observed for the repeated

treatments could either be panel or pooled cross-sectional. We use the panel setting as

the benchmark.
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Let Xit be the scalar continuous treatment of individual i in period t and Hit be a

(dht − 1)-dimensional vector of additional controls. Model the outcome Yit by

Benchmark: Yit = αt(Xi(t−1)) + βt
(
Xi(t−1)

)
·Xit+H ′

itγt+ εit, t = 1, · · · , T, (2.1)

where εit is the unobserved error term, which can include both the unobserved individual

fixed effect and the idiosyncratic contemporaneous shock. The treatment series {Xit}Tt=1

is potentially endogenous; T is fixed. The varying coefficient α(.) in model (2.1) is

the direct carryover effect of last period’s treatment1, while βt(.) is the path-dependent

contemporaneous treatment effect function. The two varying coefficients, αt(.) and βt(.),

are allowed to have unknown functional forms.

Model (2.1) nests the existing empirical strategy (e.g., Autor et al., 2013; Acemoglu

et al., 2016; Boustan, 2010) where the outcome equation is given by

Existing : Yit = αt + βtXit +H ′
itγt + εit, t = 1, · · · , T. (2.2)

In the China syndrome application, for example, Yit is the change in labor market out-

comes over two decades, the 1990s and the 2000s, while Xit is the China import shock,

defined as the change in local labor market (or industry) import exposure. Before the

1990s, the US exposure to Chinese imports is negligible, implying that Xit = 0 for any

t ≤ 0. The empirical literature also uses a pooled version of equation (2.2) where the

slope coefficients do not vary over time.

Allowing for a direct carryover effect, as in the proposed model (2.1), suggests the

possibility of a delayed trade impact arising from long-term adjustments in US manufac-

turing industries, even after the import growth of Chinese products flattens out. Path-

dependency in the contemporaneous treatment effect, on the other hand, allows the

“China trade shock” impact in the 2000s to vary with the trade shock intensity in the

1990s. This path-dependency could arise from several factors. For example, innovation

1The term “direct” effect is used following Heckman et al. (2016) to emphasize that αt(.) is the

carryover effect of Xi(t−1) on Yit when there is no contemporaneous treatment at time t. The parameter

is important for counterfactual policy analysis as discussed in previous literature, including Heckman

et al. (2016) in a multi-stage sequential treatment decision setting, Cellini et al. (2010) and Hsu and

Shen (2023) in a dynamic regression discontinuity design, and Gallen et al. (2023) in a repeated binary

endogenous treatment setting.
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activities might respond negatively (Autor et al., 2020c) to an adverse China trade shock

and dampen industries’ ability to cope with pressure from China in the future. Mean-

while, innovation activities may also respond positively (Bloom et al., 2016) to adverse

China trade shocks, if past trade shocks have led to industry-level structural changes

that help with managing future trade shocks.

In the context of Burchardi et al. (2020), allowing for a path-dependent contempora-

neous effect function βt(.) opens the possibility that the contemporaneous impact of the

“immigration shock” on innovation varies with the intensity of the “immigration shock”

in the previous five-year period, possibly through positive externalities from immigrants

settled down earlier. For instance, the first arrival of immigrants helps later immigrants

integrate into local society (Battisti et al., 2022), thereby enabling new immigrants to fo-

cus on economic activities, including innovation. Previous immigrant inventors also pos-

itively influence the innovation production of their collaborators from the same ethnic

origin, as documented in Bernstein et al. (2022).

If only pooled cross-sectional data is observed for the repeated treatments, the model

in (2.1) with both direct carryover effect and path-dependent contemporaneous effect

could be adapted to the following:

Yigt = αt(Xg(t−1)) + βt
(
Xg(t−1)

)
·Xgt +H ′

igtγt + εigt, t = 1, · · · , T. (2.3)

The outcome, regressors, and error term are labeled by individual i, group g, and period

t, while the endogenous repeated treatment decision only varies with g and t. Since the

dataset is pooled cross-sectional, the outcome error εigt does not include individual fixed

effects while the vector Higt can potentially include group-specific fixed effects.

In the rest of the paper, without loss of generality, we focus on the benchmark panel

data setting. Recall that in the China syndrome application, endogenous treatments and

outcomes are defined using first-differenced variables and T = 2. Before moving to the

next section, we link the benchmark varying-coefficient model, when defined with first-

differenced variables and time-invariant parameter functions, to a corresponding model

defined with level variables. Suppress the vector of additional controls for simplicity. Let

the model of empirical interest be

Y ◦
it = ρ

(
X◦
i(t−1)

)
+ β

(
X◦
i(t−1)

)
·X◦

it + κi + ϵ◦it, t = 0, 1, 2, (2.4)
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where Y ◦
it , X

◦
it, and ϵ

◦
it are defined such that Yit = Y ◦

it − Y ◦
i(t−1), Xit = X◦

it −X◦
i(t−1), and

εit = ϵ◦it− ϵ◦i(t−1), κi is the fixed effect, and X◦
it = 0 for any t ≤ 0. The model is a varying

coefficient extension of the classic fixed effect panel model Y ◦
it = ρ+ βX◦

it + κi + ϵ◦it.

Let α(Xit) = ρ(Xit)− ρ(Xi(t−1)) +
(
β(Xit)− β(Xi(t−1))

)
·Xit. It is clear that

Yi1 ≡ Y ◦
i1 − Y ◦

i0 =β(0) ·X◦
i1 + (ϵ◦i1 − ϵ◦i0) = α(Xi0) + β(Xi0) ·Xi1 + εi1,

Yi2 ≡ Y ◦
i2 − Y ◦

i1 =α(X
◦
i1) + β (X◦

i1) · (X◦
i2 −X◦

i1) + (ϵ◦i2 − ϵ◦i1)

=α(Xi1) + β (Xi1) ·Xi2 + εi2,

implying that the path-dependent contemporaneous effect function β(.) is preserved

through first-differencing.

2.2 Caveats of Ignoring Treatment Effect Dynamics

In this section, we discuss the danger of ignoring treatment effect dynamics. For illus-

tration purposes, we temporarily suppress the role of Hit and assume that the external

instrument Zit is single-dimensional. Let β̂t denote the standard 2SLS estimator for βt

in the textbook linear regression model considered in (2.2), using Zit to instrument Xit.

The lemma below shows that this vanilla estimator is rarely directly interpretable when

the true outcome equation features treatment effect dynamics.

Lemma 2.1 Suppose the contemporaneous exogeneity and standard rank condition hold

for the external instrument Zit such that E[Zitεit] = 0 and COV(Zit, Xit) ̸= 0 for all

t = 1, . . . , T . Suppose the outcome follows the benchmark model in (2.1).

(a) If the direct carryover effect in model (2.1) is nontrivial, i.e., ∄ a constant C such

that αt(.) = C, the vanilla 2SLS estimator β̂t does not converge in probability to a

weighted average of the path-dependent contemporaneous effect function βt(.).

(b) If the direct carryover effect in model (2.1) is trivial, i.e., ∃ a constant C such that

αt(.) = C, or if Zit is mean independent of Xi(t−1), the vanilla 2SLS estimator

β̂ is consistent for some weighted average of the contemporaneous effect function.

However, the weights are not necessarily non-negative.
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The first part of the lemma is clear since under model (2.1),

β̂t
p→
COV

(
Zit, αt(Xi(t−1)) + βt(Xi(t−1))Xit + εit

)
COV (Zit, Xit)

=COV
(
Zit, αt(Xi(t−1))

)
/COV (Zit, Xit) + E[wt

(
Xi(t−1)

)
· βt
(
Xi(t−1)

)
].

wt
(
Xi(t−1)

)
=
(
E[ZitXit|Xi(t−1)]− E[Zit]E[Xit|Xi(t−1)]

)
/COV (Zit, Xit). In general, β̂t

does not converge in probability to a weighted average of βt(.) since COV(Zit, αt(Xi(t−1)))

is nonzero.

For intuition, we can consider the following special case of (2.1):

Yit = α0 + α1Xi(t−1) + βXit + εit.

Consistency of β̂t in the special case requires the exclusion restriction that E[Zit(α1(Xi(t−1)−

E[Xi(t−1)]) + εit)] = α1COV(Zit, Xi(t−1)) = 0. When COV(Zit, Xi(t−1)) ̸= 0, the exclu-

sion restriction fails immediately with a nontrivial direct carryover effect (i.e., α1 ̸= 0).

In empirical studies, external instruments are often expected to be correlated with past

treatment take-ups. For example, in the China syndrome literature, the external instru-

ment is constructed using imports from China to eight other high-income countries, ex-

cluding the US. The sample correlation coefficient between Zi2 and Xi1 is around 0.4

in the industry-level data. Such kind of high correlation is not surprising, since China’s

comparative advantage in manufacturing had mostly been in labor-intensive industries

throughout both the 1990s and the 2000s.

The second part of the lemma holds because if there is no direct carryover effect or

if E
[
Zit|Xi(t−1)

]
= E [Zit], the estimator β̂t

p→ E
[
wt
(
Xi(t−1)

)
· βt
(
Xi(t−1)

)]
directly. It

is easy to see that the weighting function wt is not necessarily non-negative. Moreover,

even under special DGPs where the weighting function is strictly positive, the weighted

average that β̂t converges to may not be empirically relevant. We provide an example in

the Monte Carlo simulations in Section 5.

2.3 Parametric Identification

If the functional form of varying coefficients in (2.1) is known, parametric identifica-

tion could be achieved. Depending on the exact functional form, different exclusion re-

strictions, including contemporaneous/sequential exogeneity of the external instrument
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and/or sequential exogeneity of the endogenous treatment, are needed. In this section,

we discuss two special cases of model (2.1) to provide intuitions. Formal assumptions for

parametric identification are provided in Appendix B.

First, consider the special case where αt(x) = α0 + α1x and βt(.) = β for all t. The

benchmark model in (2.2) reduces to

Yit = α0 + α1Xi(t−1) + βXit + εit.

The model could be identified by a 2SLS regression of Yit on Xi(t−1) and Xit instrumented

by Xi(t−1) and Zit, assuming contemporaneous exogeneity of the external instrument and

additionally sequential exogeneity of the endogenous treatment. Alternatively, the model

could be identified by a 2SLS regression of Yit on Xi(t−1) and Xit instrumented by Zi(t−1)

and Zit, assuming sequential exogeneity of the external instrument. The two exclusion

restrictions are non-nested, but the second 2SLS strategy clearly requires a stronger rank

condition.

If αt(x) = α0 + α1x and βt(x) = β0 + β1x, the benchmark model reduces to

Yit = α0 + α1Xit−1 +
(
β0 + β1Xi(t−1)

)
Xit + εit.

The model could be identified with the instrument set (Xi(t−1), Zit, Xi(t−1)Zit) assum-

ing sequential exogeneity of the endogenous treatment, or with (Zi(t−1), Zit, Zi(t−1)Zit)

assuming sequential exogeneity of the external instrument. The first strategy acknowl-

edges two endogenous regressors while the second acknowledges three.

The use of the parametric approach faces several obstacles in empirical applications.

First, the parametric approach requires functional-form knowledge of αt(.) and βt(.).

Second, the approach generates multiple endogenous regressors and can be demanding in

terms of the first-stage rank condition, especially when the sample size is small. Third,

the use of sequential exogeneity conditions rules out feedback effects from past random

variables to contemporary outcome errors.

3 Semi-parametric Identification

Now we consider semi-parametric identification of the benchmark model in (2.1), assum-

ing functional forms of the varying coefficients are unknown. Let ωt(.) be some known

function. We use ωt(Zit) instead of Zit as the instrument vector to allow for potential
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efficiency improvements. A similar approach was pursued in Cai and Li (2008) in which

some practical examples of ωt(.) are available. Let Ḧit = (1H ′
it)

′ and Z̈it = (ωt(Zit)
′ Ḧ ′

it)
′.

Suppose the dimension of ωt(Zit) is K, then Ḧit is (K + dht) × 1. Let Xt−1 denote the

support of Xi(t−1). In some applications, Xt−1 may be a particular subset of empiri-

cal interest. All identification strategies discussed in this section can be extended to the

pooled cross-sectional case described in model (2.3).

3.1 Identification with Exogenous Control Vector

First consider identification assuming that the control vector Hit is exogenous.

Assumption 3.1 (semi-parametric identification) For all t = 1, . . . , T , assume that

(a) (exclusion restriction I) E[εit] = 0 and E[εit|Xi(t−1), Zit, Hit] = E[εit|Xi(t−1)].

(b) (rank condition) E[Z̈it(X ′
it Ḧ

′
it)|Xi(t−1) = x] is full rank for all x ∈ Xt−1.

Assumption 3.1.(a) denotes the contemporaneous mean independence between exter-

nal instruments and error terms after conditioning on the last treatment. For t = 1, the

assumption reduces to E[εi1|Zi1, Hi1] = 0 when Xi0 = 0. For t ≥ 2, Assumption 3.1.(a) is

neither weaker nor stronger than E[εit|Zit, Hit] = 0, which is a typical exclusion restriction

used in parametric 2SLS regressions. In the China Syndrome example with industry-level

data, Assumption 3.1.(a) requires that, for all US industries that experienced the same

level of trade shocks in the last decade, the outcome shock is mean independent of the

trade exposure shock experienced in the same industry by other high-income countries.

Assumption 3.1.(a) holds trivially if sequential exogeneity holds for the endogenous

treatment, or that E[εit|Xi(t−1), Zit, Hit] = 0. However, Assumption 3.1.(a) can also hold

if Xi(t−1), or even Zi(t−1), is endogenous, due to, for example, a feedback effect from last

period’s treatment Xi(t−1) to the contemporaneous outcome shock εit. To see this, sup-

pose in the China syndrome example Xit = gx(eit,cn, sit,us) and Zit = gz(eit,cn, vit,eu),

where trade exposures in the US and European countries are functions of the unob-

served supply shock from China (eit,cn) and the unobserved demand shock from the

US/European countries (sit,us/vit,eu). Suppose the outcome equation follows model (2.1)

where εit = gε(Xi(t−1), ϵit,us) allows for a feedback effect from Xi(t−1). Nonetheless, the

required conditional mean independence assumption in Assumption 3.1.(a) can still hold
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if trade shocks from different countries are mutually independent and ϵit,us is indepen-

dent of sit′,us for all t
′ ≤ t− 1.2 Section 5 provides DGP examples that distinguishes be-

tween different exclusion restrictions.

Let gt(x) = αt(x)+E[εit|Xi(t−1) = x]. Assumption 3.1.(a) implies that for all x ∈ Xt−1

and t = 1, . . . , T ,

E
[
Z̈it
(
Yit −

(
gt(x) + βt(x)Xit +H ′

itγt
))

|Xi(t−1) = x
]

=E
[
Z̈it
(
E
[
εit|Zit, Hit, Xi(t−1) = x

]
− E

[
εit|Xi(t−1) = x

])
|Xi(t−1) = x

]
= 0. (3.1)

If X0 = 0, the above conditional moment equality reduces to the classic unconditional

moment equality for t = 1. For all t ≥ 2, the above conditional moment equality implies

the identification of (gt(x) βt(x) γ
′
t)
′, for all x ∈ Xt−1. Whether the conditional moment

equality is just-identified or over-identified depends on the dimension of ωt(Zit). If one

is willing to further assume sequential exogeneity of the endogenous treatment alongside

Assumption 3.1, the function gt(.) reduces to αt(.). Otherwise, Assumption 3.1 identifies

the path-dependent contemporaneous treatment effect βt(.) while treating the direct

carryover effect function αt(.) as a nuisance parameter.

3.2 Identification with Potentially Endogenous Additional Controls

Note that Assumption 3.1.(a) requires additional controls in Hit to be exogenous. This

restriction can be relaxed if we do not pursue separate identification of effects from these

additional controls.

Assumption 3.2 (semi-parametric identification: exclusion restriction II) Assume

that E[εit] = 0, E[εit|Xi(t−1), Zit] = E[εit|Xi(t−1)], and E[Hit|Xi(t−1), Zit] = E[Hit|Xi(t−1)],

for all t = 1, . . . , T .

2To see this, let h1(.) and h2(.) be any square integrable functions. Then, for all x,

E
[
h1(εt)h2(Zit)|Xi(t−1) = x

]
= E

[
h1(gε(Xi(t−1), ϵit,us))h2(Zit)|Xi(t−1) = x

]
=

∫ ∫
h1(gε(x, ϵ))h2(z)fϵt,us(ϵ)fXi(t−1),Zit(x, z)/fXi(t−1)

(x)dϵdz

=

∫
h1(gε(x, ϵ))fϵt,us(ϵ)dϵ · E

[
h2(Zit)|Xi(t−1) = x

]
= E

[
h1(εt)|Xi(t−1) = x

]
· E

[
h2(Zit)|Xi(t−1) = x

]
.
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Assumption 3.2 allows the control vector Hit to be endogenous, as long as the external

instrument is mean independent of both Hit and the error term εit after conditioning on

the past treatment Xi(t−1). Let γ̃t(x) = γt +E[HitH
′
it|Xi(t−1) = x]−1E[Hitεi|Xi(t−1) = x]

for all x ∈ Xt−1
3. Assumption 3.2 implies that for all x ∈ Xt−1,

E
[
ωt(Zit)

(
Yit −

(
gt(x) + βt(x)Xit +H ′

itγ̃t(x)
))

|Xi(t−1) = x
]

=E
[
ωt(Zit)εit|Xi(t−1) = x

]
− E

[
ω(Zit)E[εit|Xi(t−1) = x]|Xi(t−1) = x

]
= 0. (3.2)

The first equality is explained in Appendix D. The second equality holds because under

Assumption 3.2, E[εit|Xi(t−1), Zit] = E[εit|Xi(t−1)]. In addition, Assumption 3.2 implies

that for all x ∈ Xt−1

E
[
Hit

(
Yit −

(
gt(x) + βt(x)Xit +H ′

itγ̃(x)
))

|Xi(t−1) = x
]

=E
[
Hitεit|Xi(t−1) = x

]
− E

[
HitH

′
it|Xi(t−1) = x

]
(γ̃(x)− γ(x)) = 0.

Summing up, Assumption 3.2 implies that

E
[
Z̈it
(
Yit −

(
gt(x) + βt(x)Xit +H ′

itγ̃t(x)
))

|Xi(t−1) = x
]
= 0. (3.3)

Compared to the identification result of the last section, allowing Hit to be endogenous

implies that we cannot separately identify its effect on the outcome. However, if the

external instrument used to identify βt(.) does not move with Hit conditional on Xi(t−1),

the endogeneity of Hit does not influence the identification of βt(.). For identification of

βt(.) only, there is no need to distinguish between Assumption 3.1.(a) and Assumption 3.2.

In practice, researchers can choose either of them depending on whether the additional

control vector in the empirical application is potentially endogenous.

4 Semi-parametric Estimation and Inference

This section studies semi-parametric estimation and inference strategies for parameter

functions of interest and the average contemporaneous effect β̄t(.) = E[βt(Xi(t−1)]. With-

out loss of generality, we set t = 2.

3The definition implies that H ′
it (γ̃t(x)− γt(x)) = H ′

itE[HitH
′
it|Xi(t−1) = x]−1E[Hitεi|Xi(t−1) = x] ≡

L[εi|Xi(t−1) = x,Hit], the population level linear projection of εi on Hit conditional on Xi(t−1) = x.
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4.1 Estimation of Functional Coefficients

Let θ2(x) = (β2(x) g2(x) γ
′
2(x))

′ collect all parameters of interest. Let Ẍi2 = (X ′
i2 Ḧ

′
i2)

′.

The identification result of equation (3.1), for the case of t = 2, can be summarized by

the following conditional moment equality:

E[Z̈i2(Yi2 − Ẍ ′
i2θ2(x))|Xi1 = x] = 0. (4.1)

We focus on identification results discussed in Section 3.1 since the difference between (3.1)

and (3.3) lies only in the interpretation of Hit’s coefficients.

Local GMM estimation of the θ2(.) function is straightforward following the above

conditional moment equality. Inspired by the local linear approaches in Cai and Li (2008)

and Su et al. (2013)4, we propose to construct the benchmark estimator of θ2(.) based

on the following augmented conditional moment equality:

E[(Z̈ ′
i2 Ḧ

′
i2,a(x)/h)

′(Yi2 − Ẍ ′
i2θ2(x)− Ḧ ′

i2,a(x)θ
(1)
2,−1(x))|Xi1 = x] = 0, (4.2)

where h is a finite positive constant, Ḧi2,a(x) = Ḧi2 · (Xi1 − x), and θ
(1)
2,−1(.) denotes the

first derivative of θ2,−1(.) ≡ (g2(x) γ
′
2(x))

′. Note that our augmented conditional moment

equality is different from those in Cai and Li (2008) and Su et al. (2013), as equation (4.2)

treats the contemporaneous effect function β2(.), which is the first argument of θ2(.),

differently from the rest of the coefficient vector. This is because a local linear expansion

of β2(.) would increase the number of endogenous regressors in local GMM estimation.

In empirical applications with limited sample sizes, such an expansion can be costly in

terms of the rank condition and, therefore, not desired.

Let ΛZ̈aY
(x;h) = E[(Z̈ ′

i2 Ḧ
′
i2,a(x)/h)

′Yi2|Xi1 = x] be a (K + 2dh2) × 1 matrix and

ΛZ̈aẌa
(x;h) = E[(Z̈ ′

i2 Ḧ
′
i2,a(x)/h)

′(Ẍ ′
i2 Ḧ

′
i2,a(x))|Xi1 = x] be a (K + 2dh2) × (1 + 2dh2)

matrix. Let W(x) be a pre-determined (K + 2dh2)× (K + 2dh2) weighting matrix. Let

θa2 =

(
θ′2

(
θ
(1)
2,−1

)′)′
. For all x ∈ X1, define θ̂

a
2(x;h) as the solution to

min
θa2 (x)

(
Λ̂Z̈aY

(x;h)− Λ̂Z̈aẌa
(x;h)θa2(x)

)′
W(x)

(
Λ̂Z̈aY

(x;h)− Λ̂Z̈aẌa
(x;h)θa2(x)

)
,

4Recently, Bravo (2023) proposes a general local GMM estimation procedure based on a p-th order local

polynomial approximation of the unknown varying-coefficient function, for p = 0, 1, 2, · · · . The estimators

proposed in this section could be generalized to accommodate local polynomial expansion as well.
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where Λ̂Z̈aY
(x;h) and Λ̂Z̈aẌa

(x;h), respectively, are local constant estimators of condi-

tional expectations ΛZ̈aY
(x;h) and ΛZ̈aẌa

(x;h) with kernel function κ(.) and bandwidth

h. It is clear that

θ̂a2(x;h) =
(
Λ̂′
Z̈aẌa

(x;h)W(x)Λ̂Z̈aẌa
(x;h)

)−1
Λ̂′
Z̈aẌa

(x;h)W(x)Λ̂Z̈aY
(x;h)

for all x ∈ X1. If K = 1, the conditional moment equality in (4.1) is just-identified, and

θ̂a2(x;h) =
(
Λ̂Z̈aẌa

(x;h)
)−1

Λ̂Z̈aY
(x;h).

Let [.][j] denote the j-th element of the original vector and [.][j:j′] denote a subvector

with j-th to j′-th elements of the original vector. We can further define

β̂2(.;h) =
[
θ̂a2(.;h)

]
[1]

and θ̂2(.;h) =
[
θ̂a2(.;h)

]
[1:(1+dh2)]

as estimators of β2(.) and θ2(.), respectively.

If a local linear expansion of θ2,−1(.) is not sought after, the parameter function θ2(.)

could be estimated with

θ̂2,ℓ(x;h) =
(
Λ̂′
Z̈Ẍ,ℓ

(x;h)W(x)Λ̂Z̈Ẍ,ℓ(x;h)
)−1

Λ̂′
Z̈Ẍ,ℓ

(x;h)W(x)Λ̂Z̈Y,ℓ(x;h),

for all x ∈ X1 and ℓ = 0, 1, where Λ̂Z̈Y,ℓ(x;h) and Λ̂Z̈Ẍ,ℓ(x;h) are ℓ-th order local

polynomial estimators of ΛZ̈Y (x) = E[Z̈i2Yi2|Xi1 = x] and ΛZ̈Ẍ(x) = E[Z̈i2Ẍ ′
i2|Xi1 = x],

respectively, with bandwidth h.

For notational simplicity, we suppress the h in θ̂2(.;h), θ̂2,0(.;h) and θ̂2,1(.;h) and de-

note the estimators as θ̂2(.), θ̂2,0(.) and θ̂2,1(.), respectively. We also set the predeter-

mined weighting matrix W(.) to the identity matrix without loss of generality.

The next section studies asymptotic properties of the benchmark estimator θ̂2(.) based

on the augmented conditional moment equality (4.2) as well as the two non-augmented

alternatives θ̂2,0(.) and θ̂2,1(.). Monte Carlo simulations of the proposed estimation and

inference strategies are given in Section 4.4.

4.2 Asymptotic Properties of the Proposed Functional Estimator

LetΩ(x) = ΛZ̈Ẍ(x)
(
Λ′
Z̈Ẍ

(x)ΛZ̈Ẍ(x)
)−1

andΣ(x) = ν0
fX1

(x)E
[
ε̃2i2Z̈i2Z̈

′
i2

∣∣Xi1 = x
]
, where

ε̃i2 = εi2 − E[εi2|Xi1]. The following theorem summarizes asymptotic properties of the

proposed semi-parametric estimators on X ∗
1 , an interior subset of X1. The subset X ∗

1
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would be particularly useful when empirical data are not densely distributed over the en-

tire support of Xi1, as in our empirical example in Section 6. Let µk =
∫
ukκ(u)du and

cf (x) = f
(1)
X1

(x)/fX1(x), where fX1(x) is the probability density function of Xi(t−1) eval-

uated at x ∈ X ∗
1 and f

(1)
X1

(x) is its first derivative. Let [A][.,ℓ] denote the ℓ-th column of

a matrix A and A(ℓ)(.) denote the ℓ-th order derivative of matrix A. Let 1{A} be an in-

dicator function that takes 1 if the event A is true and 0 if otherwise.

Theorem 4.1 Suppose that the data {Yi2, Xi1, Xi2, Zi2, Hi2}Ni=1 follow the benchmark

model in (2.1) and Assumptions 3.1 (or having Assumption 3.2 replacing 3.1.(a)) and C.1

hold. Then, for all x ∈ X ∗
1 , the benchmark augmented local GMM estimator θ̂2(x) for

θ2(x) satisfies the following asymptotic property:

√
Nh

(
θ̂2(x)− θ2(x)− h2µ2Ω

′(x)Ba(x)
)
→d N(0,Ω′(x)Σ(x)Ω(x)),

where Ba(x) =
(
[Λ

(1)

Z̈Ẍ
(x)][.,1] + cf (x)[ΛZ̈Ẍ(x)][.,1]

)
β
(1)
2 (x) + ΛZ̈Ẍ(x)θ

(2)
2 (x)/2. Mean-

while, the alternative non-augmented estimators θ̂2,ℓ(x) follow that

√
Nh

(
θ̂2,ℓ(x)− θ2(x)− h2µ2Ω

′(x)Bℓ(x)
)
→d N(0,Ω′(x)Σ(x)Ω(x)),

where Bℓ(x) = Λ
(1)

Z̈Ẍ
(x)θ

(1)
2 (x)+ΛZ̈Ẍ(x)

(
cf (x)θ

(1)
2 (x)1(ℓ = 0) + θ

(2)
2 (x)/2

)
and ℓ = 0, 1.

Theorem 4.1 shows that the proposed functional coefficient estimators are asymptot-

ically normal. The asymptotic variance term of different estimators are the same, while

their leading asymptotic bias terms differ without a clear ranking.5 When dh2 = 1 and

the intercept g2(.) degenerates to a constant, B0(.) = Ba(.). When the dimension of dh2

and/or the curvature of θ2,−1(.) increases, however, the non-augmented estimators are

more likely to have a larger asymptotic bias, as is suggested by the formula. We will

demonstrate this difference in asymptotic bias using Monte Carlo simulations in Section 5.

Let Λ̂Z̈Ẍ(x) be a consistent estimator of ΛZ̈Ẍ(x) and f̂X1 be a consistent estimator

of fX1 . Let ε̂i2 be the residual of individual i, where ε̂i2 = Yi2 − Ẍ ′
i2θ̌2(Xi1) and θ̌2(.)

could be any of the three estimators for θ2(.) discussed in Sections 4.1 and 4.2. Define

Σ̂(x) =
h

Nf̂2X1
(x)

N∑
i=1

ε̂2i2Z̈i2Z̈
′
i2κ

2
h(Xi1 − x).

5Although θ̂2,1(.) always has one fewer leading asymptotic bias term than θ̂2,0(.), it is not guaranteed

that |B1(.)| ≤ |B0(.)|.
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The asymptotic variance stated in Theorem 4.1 could be estimated using Λ̂Z̈Ẍ(x) and

Σ̂(x). Let Ω̂(x) = Λ̂Z̈Ẍ(x)
(
Λ̂′
Z̈Ẍ

(x)Λ̂Z̈Ẍ(x)
)−1

. The following proposition formalizes.

Proposition 4.1 Suppose that the conditions in Theorem 4.1 hold. Then for each x ∈

X ∗
1 , Ω̂

′(x)Σ̂(x)Ω̂(x) →p Ω
′(x)Σ(x)Ω(x).

4.3 Average Effects

Functional estimators discussed in the last section also suggest estimators for the average

effects. Let ϑ2 = E[θ2(Xi1)|Xi1 ∈ X ∗
1 ] = p−1

∫
X ∗

1
θ2(x)dFX1(x), where p = E[1{Xi1∈X ∗

1 }].

Recall that we use θ̌2(.) to represent any of the three θ2(.) estimators studied in Sec-

tions 4.1 and 4.2. Let

ϑ̂2 =
1∑N

i=1 1{Xi1∈X ∗
1 }

N∑
i=1

θ̌2(Xi1)1{Xi1∈X ∗
1 },

be the estimator for ϑ2. Given ϑ̂2, we can define ̂̄β2 =
[
ϑ̂2

]
[1]

as an estimator for the

average contemporaneous treatment effect β̄2 = [ϑ2][1].

Theorem 4.2 Suppose that conditions in Theorem 4.1 hold and the bandwidth addition-

ally satisfies that Nh4 → 0 at a polynomial rate of N . Let Ns =
∑

i 1{Xi1∈X ∗
1 } with

Ns/N → p ∈ (0, 1] as N → ∞. Then, ϑ̂2 satisfies that√
Ns(ϑ̂2 − ϑ2) →d N(0,Σ∗

1 +Σ∗
2),

where Σ∗
1 = cκE[Ω′(Xi1)E[ε̃2i2Z̈i2Z̈ ′

i2|Xi1]Ω(Xi1)|Xi1 ∈ X ∗
1 ], Σ

∗
2 = V[θ2(Xi1)|Xi1 ∈ X ∗

1 ]

and cκ =
∫ ∫

κ(u)κ(u−s)duds. If we further assume that θ2(x) = θ2 for all x ∈ X ∗
1 , then√

Ns(ϑ̂2 − ϑ2) →d N(0,Σ∗
1).

The average estimator converges at a rate faster than its functional counterpart since

the former uses all data with Xi1 ∈ X ∗
1 while the latter only uses data in a shrinking win-

dow defined by the bandwidth h. To achieve the parametric convergence rate described

in Theorem 4.2, a stronger bandwidth condition is required. Similar conditions can be

found in, e.g., Su et al. (2013).

The asymptotic variance of ϑ̂2 consists of two terms: one is associated with the

estimation error of θ̂2(.) and the other with the heterogeneity of θ2(.). If the function
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θ2(.) is not path-dependent, the second term Σ∗
2 degenerates to zero. The variances Σ∗

1

and Σ∗
2 can be estimated, respectively, by

Σ̂∗
1 = p̂ ·N−1

∑
j

ε̂2j2ζ̂(Xj1)Z̈j2Z̈
′
j2ζ̂

′(Xj1),

Σ̂∗
2 = N−1

s

∑
i:Xi1∈X ∗

1

(θ̌2(Xi1)− ϑ̂2)(θ̌2(Xi1)− ϑ̂2)
′,

where ζ̂(x) = N−1
s

∑
i:Xi1∈X ∗

1
κh(Xi1 − x)f̂−1

X1
(Xi1)Ω̂

′(Xi1) and p̂ = Ns/N . Recall that

ε̂j2 is defined in Section 4.2.

Proposition 4.2 Suppose that conditions in Theorem 4.2 hold. Then, Σ̂∗
1 →p Σ∗

1 and

Σ̂∗
2 →p Σ

∗
2.

Remark: note that the parametric convergence rate of the average estimator also

suggests a two-step estimation procedure for the partially linear benchmark model. The

first step involves estimating the average effect ϑ̂2 and obtaining a modified outcome Y ∗
i2 =

Yi2 − Ḧ ′
i2

[
ϑ̂2

]
[−1]

, which partials out the effect of other exogenous controls. The second-

step involves semi-parametric conditional GMM estimation with Y ∗
i2 being the outcome,

Ẍi2 = (Xi2 1)′ being the regressor set, and Z̈i2 = (ω2(Zi2)
′ 1)′ being the instrument set.

The parametric convergence rate of the first-step average effect estimator implies that

first-step estimation error is asymptotically negligible in this two-step estimation strategy.

4.4 Uniform Testing

Besides point-wise inference, researchers might be interested in conducting uniform tests

using the proposed estimators for identified treatment effect functions. Take the path-

dependent contemporaneous effect function as an example. Researchers might be inter-

ested in testing the following null hypotheses:

H0,zero : βt(x) = 0 for all x ∈ Xt−1;

H0,pos : βt(x) ≥ 0 for all x ∈ Xt−1;

H0,neg : βt(x) ≤ 0 for all x ∈ Xt−1;

H0,homo : ∃ a constant C such that βt(x) = C for all x ∈ Xt−1.
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The null hypothesis H0,zero states that the contemporaneous effect is uniformly zero.

The null hypotheses H0,pos and H0,neg state that the contemporaneous effect function is

uniformly non-negative and uniformly non-positive, respectively. The last null hypothesis

H0,homo states that the contemporaneous effect function reduces to a constant.

Let the alternative of each null hypothesis be that the null is incorrect. A rejection of

H0,zero implies that the contemporaneous effect is nonzero for at least some values of the

past treatment. Similarly, a rejection of H0,pos/H0,neg implies that the contemporaneous

effect is negative/positive for at least some values of the past treatment. A rejection of

H0,homo implies that the contemporaneous effect function is path-dependent. Following

the discussions in Lemma 2.1, rejecting H0,homo also raises questions about adopting the

textbook 2SLS estimation strategy in a particular empirical application.

Uniform tests could be carried out using the intersection bounds approach described

in Chernozhukov et al. (2013), since our varying-coefficient functional estimators are

kernel-based. For illustration purposes, we focus on the null hypothesis H0,zero and set

t = 2. We suppress the role of Hi2 without loss of generality because the impact of Hi2 on

the outcome Yi2 could be partialed out using the two-step estimation strategy discussed

at the end of Section 4.3.

Construct the test statistic for H0,zero as

T = sup
x∈X1

∣∣ β̂2(x)
σ̂β(x)

∣∣.
where β̂2(x) is the benchmark augmented semi-parametric estimator and σ̂β(x) is its

standard error obtained from the asymptotic variance estimator defined earlier. Let

{η∗i }Ni=1 ∼ i.i.d. N(0, 1) be a sequence of pseudo-random variables independent of the

sample path. The asymptotic distribution of the test statistic under the null hypothesis

could be approximated by the multiplier bootstrap statistic

T ∗ = sup
x∈X1

∣∣ β̂∗2(x)
σ̂β(x)

∣∣,
where β̂∗2(x) is defined the same as β̂2(.) except for using η∗i ϵ̂i2 to replace the outcome

variable in estimation.

Let ĉ(α) be the 1−α quantile of the empirical distribution of the multiplier bootstrap
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statistic. The decision rule of the test would be to

reject the null hypothesis H0,zero when T > ĉ(α).

This uniform test also controls size at α asymptotically. Similar uniform tests could also

be designed for null hypotheses H0,pos, H0,neg, and H0,homo.

5 Monte Carlo Simulations

In this section, we study the small sample performance of the proposed semi-parametric

estimation and inference strategies using Monte Carlo simulations.

First, we compare the proposed augmented and non-augmented semi-parametric vary-

ing coefficient estimators with three parametric 2SLS estimators. For the purpose of il-

lustration, we focus on estimating the second-period path-dependent contemporaneous

effect function β2(.). The augmented semi-parametric estimator for β2(.) is β̂2(.), denoted

as semi-benchmark. The non-augmented estimators are β̂2,0(.), denoted as semi-alt-lc,

and β̂2,1(.), denoted as semi-alt-ll. As is discussed in Theorem 4.1, there is no clear rank-

ing among the three semi-parametric estimators, although it may be reasonable to expect

that the augmented estimator has a smaller asymptotic bias when the direct carryover

effect is nontrivial and/or when the dimension of the exogenous control vector is large.

The three parametric estimators for β2(.) are constructed from 2SLS regressions of

Y2 on X2 instrumented by Z2 (para-existing), of Y2 on (X2, X1, X1X2) instrumented by

(Z2, X1, X1Z2) (para-alt-1 ), and of Y2 on (X2, X1, X1X2) instrumented by (Z2, Z1, Z1Z2)

(para-alt-2 ). The three parametric estimators rely on different exclusion restrictions.

For semi-parametric estimation, we follow Chernozhukov et al. (2013) and use the

rule-of-thumb bandwidth:

h = ĥROT × ŝ×N1/5−1/ϱ,

where ŝ is the standard deviation of X1 and ϱ is a parameter. ĥROT minimizes the

weighted Mean Integrated Square Error of the local linear estimation of Y2 on studentized

X1. We follow Chernozhukov et al. (2013) to use the quartic kernel function (i.e., κ(s) =

15/16(1− s2)2 · 1{|s|≤1}) and set the value of ϱ to 3.5. Simulations with ϱ = 3.25 and ϱ =

3.75 are reported as a robustness check. Note that under-smoothing and in particularly,

ϱ ≤ 4, is required for the average effect estimator constructed by β̂2(.), β̂2,0(.), or β̂2,1(.),

to have satisfactory asymptotic properties, as discussed in Theorem 4.2.
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Figure 1: The Data Generating Process, DGP A
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Throughout all DGPs, first-period random variables and second-period error terms

are generated following:

(e1, ψ) ∼iid exponential(1), (s1, v1, s2, v2, η) ∼iid N(0, 0.22) independent of (e1, ψ),

X1 = e1 + s1, Z1 = e1 + v1, e2 = ρe1 +
√

1− ρ2ψ, X2 = e2 + s2, Z2 = e2 + v2.

For the China syndrome application, Xt/Zt is the trade exposure in the US/European

countries in decade t, t = 1, 2. Error terms et and st/vt can be understood as the

unobserved supply shock from China and from the US/European countries, respectively.

The correlation between Z2 and X1 is governed by the value of ρ. Unless otherwise

specified, ρ = 1. This simulation setup also features a right-skewed X1 inspired by the

data distribution in Section 6. In both simulation and empirical sections, we set X ∗
1 to

the dense region [0, 0.5].

The second-period outcome equation varies across DGPs. We generate the baseline

model by fitting the empirical dataset used in Section 6 with an OLS regression. The

baseline model features a quadratic functional form for the dynamic treatment effect

functions. We plot the relationship between simulated random variables in Figure 1.

DGP A: the baseline model

Y2 = −3.439− 2.628X1 + 0.324X2
1 + (−0.764 + 0.440X1 − 0.064X2

1 )X2 + u2,

where u2 = 0.6η + 0.8s2.

It is easy to see that X2 is correlated with u2 while all of X1, Z1, and Z2 are inde-

pendent of u2. In addition, the exclusion restriction for para-existing is violated, since
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the estimator completely ignores treatment effect dynamics and, therefore, leaves the er-

ror term with a function of X1 which is correlated with Z2. Similarly, exclusion restric-

tions for both para-alt-1 and para-alt-2 are violated since the two models mis-specify the

functional form of dynamic treatment effects. On the other hand, all semi-parametric

estimators are consistent under DGP A because (Z2, X1) ⊥ u2 implies the required con-

ditional exclusion restriction.

Figure 2 compares the performance of all estimators using sample sizes N = 250

(left) and N = 1, 000 (right). The plotted lines are estimation results averaged across

1,000 simulations. Figure 2 shows that the parametric estimator para-existing performs

extremely poorly. The other two parametric estimators only suffer from mild model

misspecification and, therefore, perform much better than para-existing under DGP A.

Figure 2: Estimates Averaged Across Simulations, DGP A
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5.

Although all semi-parametric estimators are consistent under DGP A, the augmented

estimator semi-benchmark has a better small sample performance, especially when N =

250. This is because the DGP has a substantial direct carryover effect, leading to extra

terms in the leading asymptotic bias formula in non-augmented estimators, as described

in Theorem 4.1. The augmented estimator semi-benchmark also outperforms all para-
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metric estimators under DGP A.

Next, we modify the baseline model to change the form of treatment effect functions.

DGP A-2 shuts down the direct carryover effect completely, while DGP A-3 exaggerates

the curvature of effect functions to illustrate the drawback of parametric estimation under

model misspecification.

DGP A-2: no direct carryover effect

Y2 = −3.439 + (−0.764 + 0.440X1 − 0.064X2
1 )X2 + u2.

DGP A-3: exaggerated curvature of effect functions

Y2 = −3.439− 2.628X1 + 1.620X2
1 + (−0.764 + 0.440X1 − 0.320X2

1 )X2 + u2.

The left graph of Figure 3 reports estimation results for DGP A-2 averaged across

1,000 simulations. As is discussed in Lemma 2.1, when there is no direct carryover effect,

the para-existing estimator is consistent to a weighted average of the true contemporane-

ous effect function. It is easy to derive that the weights are proportional to the values of

X2
1 under DGP A-2. This explains why the simulation average of para-existing reported

in the left graph of Figure 3 is much higher than the simple average of β2(.) or an aver-

age weighted by the density of X1. DGP A-2, therefore, points out another weakness of

para-existing. – Even in special situations where the estimator converges to a weighted

average of the true effect function, the weighted average is likely not empirically relevant.

Under DGP A-2, the three semi-parametric estimators report similar estimation re-

sults. This is expected from Theorem 4.1 because, without direct carryover effect and

with only mild curvature in the contemporaneous treatment effect function, leading

asymptotic bias terms of the three semi-parametric estimators (see Theorem 4.1) are very

close to each other. The three semi-parametric estimators also perform better than all

of their parametric competitors, even though para-alt-1 and para-alt-2 only suffer from

mild model misspecification under DGP A-2.

The right graph of Figure 3 reports estimation results for DGP A-3. Since both the

direct carryover effect function and the contemporaneous effect function have exagger-

ated curvatures, all parametric estimators perform poorly due to substantial model mis-

specification. All semi-parametric estimators continue to yield simulation averages close

to the true effect function, with the augmented estimator leading the horse race.
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Figure 3: Estimates Averaged Across Simulations, DGPs A-2 and A-3
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5.

The next simulation experiment keeps the DGP of A-3, except for setting ρ = 0 when

generating e2.

DGP B: external instrument Z2 independent of X1

Same as DGP A-3 except that ρ = 0.

DGP B breaks the link between e1 and e2 in Figure 1. Under the new DGP, both

Z2 and X2 are independent of X1. Following the derivations after Lemma 2.1, it is

easy to show that the para-existing estimator converges in probability to E[β2(X1)] un-

der this special DGP. In addition, under DGP B, leading asymptotic bias terms of the

three semi-parametric estimators (see Theorem 4.1) are exactly the same, as ΛZ̈Ẍ(x) =

(E[Z2X2] 0; 0 0) regardless of the value of x. Figure 4 reports simulation results for

N = 1, 000 using different bandwidths in semi-parametric estimation. The three semi-

parametric estimates have good small sample performances. The estimators do not seem

to be sensitive to the bandwidth choice.

In the last group of DGPs, we modify the baseline DGP to shut down treatment effect

dynamics in the outcome equation.
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Figure 4: Estimates Averaged Across Simulations, DGP B
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb. The left graph uses ϱ = 3.25. The middle graph uses ϱ = 3.5. The right graph uses ϱ = 3.75.

DGP C: no carryover effect or path-dependency in the contemporaneous effect

Y2 = −3.439− 0.764X2 + u2, u2 = 0.6η + 0.8s2.

Under DGP C, all parametric and semi-parametric estimators are consistent. The

left graph of Figure 6 reports the empirical mean squared error (MSE) of each estimator

as a function of X1, for sample size N = 250. Not surprisingly, the simplest parametric

estimator, para-existing, gives the smallest MSE. The three semi-parametric estimators

have efficiency loss compared to both para-existing and para-alt-1 for only using data

within local estimation windows. The most interesting finding is that the parametric

estimator para-alt-2 performs substantially worse than all semi-parametric estimators.

This unsatisfactory small sample performance of para-alt-2 speaks about its demanding

rank condition arising from having three endogenous variables in the regression model.

DGPs C-2 and C-3, defined in the following have the same outcome equation as DGP

C but with a new feedback effect from X1 to the outcome error u2. As is illustrated in

Figure 5, the feedback effect generates a nontrivial correlation between Z2 and u2 as both

are now correlated with X1. As a result, all three parametric estimators are inconsistent

even though there is no treatment effect dynamics in the outcome equation.
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Figure 5: The Data Generating Process, DGP A
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DGPs C-2 and C-3: feedback effect from X1 to u2

C-2: same as DGP C except that u2 = 0.4η + 0.8s2 − 0.3
(
(X1 − µX)

2 − σ2X
)
,

C-3: same as DGP C except that u2 = 0.4η + 0.8s2 + 0.3
(
(X1 − µX)

2 − σ2X
)
,

where µX and σ2X are mean and variance of X1, respectively. It is clear that E[u2] = 0,

E[Z2u2] = 0.3E[Z2((X1−1)2−1)] ̸= 0. The conditional exclusion restriction required for

the proposed three semi-parametric estimators is still satisfied since Z2 ⊥ u2|X1.

Simulation results averaged across 1,000 simulations are summarized in the middle

and right graphs of Figure 6, for N = 250. Similar to the case of DGP B, only the three

semi-parametric estimators show good small sample performances.

Figure 6: MSE of DGP C and Estimation Average of DGPs C-2 and C-3
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5.
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The contemporaneous treatment effect is path-independent under all three DGPs in

group C. Next, we use these DGPs to examine the size control property of the uniform

test H0,homo discussed in Section 4.4. Table 1 reports the rejection proportion of the

uniform test average across 1,000 simulations. It also reports the rejection proportion of a

standard t-test constructed with the average contemporaneous effect estimator, testing if

the average effect is equal to the true value. All tests are constructed using the benchmark

augmented semi-parametric estimator. Table 1 shows that both the uniform test and the

t-test constructed with the proposed average effect estimator have a good small sample

size control, especially when N = 1, 000.

Table 1: Size Control of Proposed Tests

N = 250 N = 1, 000

Size ϱ = 3.25 ϱ = 3.5 ϱ = 3.75 ϱ = 3.25 ϱ = 3.5 ϱ = 3.75

DGP C

Average Effect Test 0.050 0.062 0.054 0.049 0.045 0.045 0.044

Uniform Test for H0,homo 0.050 0.054 0.050 0.058 0.026 0.025 0.031

DGP C-2

Average Effect Test 0.050 0.058 0.054 0.050 0.047 0.048 0.044

Uniform Test for H0,homo 0.050 0.059 0.060 0.068 0.031 0.034 0.035

DGP C-2

Average Effect Test 0.050 0.059 0.053 0.052 0.048 0.047 0.045

Uniform Test for H0,homo 0.050 0.057 0.065 0.069 0.030 0.033 0.040

Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb.

Last but not least, we examine the performance of the proposed asymptotic variance

estimator. We choose three DGPs that are least favorable to the proposed semi-parameter

estimators and carry out point-wise t-tests constructed with the estimators. Figure 7

reports the rejection proportion of each test among 1,000 simulations when the null

hypothesis is true. Specifically, the null hypothesis is H0 : β2(x) = β2,true(x), for x =

0, 0.01, · · · , 0.49, 0.5, where β2,true(.) is the true value. We see that the tests, especially

the benchmark augmented estimator, have very good size control when N = 1, 000. The

tests have some over-rejection when N = 250.
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Figure 7: Rejection Proportions of Point-wise t-tests Under the Null
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Note: Simulations are carried out 1,000 times. N = 250. Semi-parametric kernel function and bandwidth are

chosen following the rule-of-thumb with ϱ = 3.5. Significance level is 5%.

6 Empirical Application: Path-dependent China Shock Effects

Using China’s spectacular, supply-driven export growth as a trade shock, combined with

a first-difference IV strategy, Autor et al. (2013) investigated the impacts of import

penetration on local labor market outcomes. Subsequent studies have adopted or slightly

modified its empirical approach and examined the effects of the trade shock in a variety

of other contexts, including worker-level outcomes (Autor et al., 2014), industry-level

outcomes (Acemoglu et al., 2016), firm reorganization and relocation (Bloom et al.,

2019), innovation (Autor et al., 2020b) and political outcomes (Autor et al., 2020a). In

addition to import competition, Feenstra et al. (2019) revisited the analysis by adding

the expansion of US exports to the framework. However, none of the aforementioned

studies have yet considered treatment effect dynamics.

In this section, we revisit the China syndrome application using the proposed model

with treatment effect dynamics. Our model is the first in the literature that can be
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used to explore path-dependency in trade effects. We use the industry-level data from

Acemoglu et al. (2016).6 The outcome of interest (Yit) is the annual log employment

change over 1991-1999 (t = 1) and over 1999-2011 (t = 2) in industry i. The endogenous

treatment of interest (Xit) is the annual change in US exposure to Chinese import over

the same two periods in industry i. The external instrument (Zit) is the annual change

in exposure to Chinese import in eight other high-income countries defined in Acemoglu

et al. (2016) over the same two periods.

Investigating treatment effect dynamics is especially interesting in the China syn-

drome application since, the China trade shock has persisted through three distinct pe-

riods (c.f., Autor et al., 2021): the gradual beginning of China’s export boom during the

1990s; the dramatic surge of China’s export growth in the 2000s after its WTO acces-

sion; and China’s export plateau after 2010. Across industries, the path of trade shock

growth over time differs dramatically due to the natural shift in China’s export compo-

sition following the growth of its economy.

The empirical literature has suggested different channels through which the contem-

poraneous effect of import competition could be path-dependent. For instance, if an

industry was hit hard by Chinese import competition in the first decade, the industry

may undergo a structural change and transform its production process from low-quality

to high-quality (Bloom et al., 2016).7 Consequently, in the second period, the industry

exhibiting structural transformation may have better capabilities than other industries

with no such transformation in responding to the contemporaneous China import com-

petition. On the other hand, the industry hit hard by Chinese import competition may

reduce innovation activities (Autor et al., 2020c). In such a case, the industry experienc-

ing a slowdown in innovation may have worse competence in coping with Chinese import

6We use the industry-level data in Acemoglu et al. (2016) rather than the location-level data because

external instruments in location-level regressions take a shift-share form, which can cause complications

in inference as is explained in Borusyak et al. (2022) and Adão et al. (2019).
7Campbell and Mau (2021) argue that findings in Bloom et al. (2016) are driven by their empirical

approach of adding one before log transformation. This approach, although popular in empirical studies,

is not suitable for the trade and innovation context since many firms in sectors competing with Chinese

imports had very few patents to begin with. In contrast, Campbell and Mau (2021) find no statistically

significant relationship between Chinese import competition and innovation.
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competition than other industries with no such innovation deceleration. Either scenario

can result in path-dependent contemporaneous treatment effects in the second period.

However, to our best knowledge, no such empirical framework has been proposed to es-

timate path-dependent trade effects.

We use three different variations of the control vector Hit: 1) intercept only, 2) a full

set of one-digit manufacturing sector fixed effects, and 3) the sector fixed effects as well

as all production controls and pre-trend controls considered in Acemoglu et al. (2016),

including production workers as a share of total employment, the log average wage,

the ratio of capital to value added (in 1991), computer investment as a share of total

investment, high-tech equipment as a share of total investment (in 1990), and changes

in the log average wage and in the industry’s share of total employment over 1976–1991.

The data set is a balanced panel of 392 four-digit manufacturing industries over two time

periods.

An important first step in studying the potentially path-dependent trade effect is to

determine the initial trade exposure treatment timing. In this application, US imports

from China had been almost negligible in the 1980s and started to increase in the early

1990s, see Autor et al. (2014, Fig. 1) and Acemoglu et al. (2016, Fig. 2). Therefore, it is

reasonable to consider the period from 1991 to 1999 as the first period where the treat-

ment was given to US industries. Furthermore, around the turn of the century, China’s

accession to the WTO accelerated US imports from China. Given these circumstances,

we focus on estimating the potentially path-dependent treatment effect in the second pe-

riod (1999-2011)—that is, the impact of the China trade shock in the later period (1999-

2011) depending on the magnitude of the treatment in the previous period (1991-1999).

Table 2 presents estimation results of the three parametric estimators studied in

simulation studies in Section 5. Recall that the estimator para-existing, as is reported in

columns (1), (4), and (7), is based on a 2SLS regression of Y2 on X2 instrumented by Z2.

The estimator is based on the simple model (2.2) which completely ignores treatment

effect dynamics. The estimator para-alt-1, reported in columns (2), (5), and (8), is based

on the 2SLS regression of Y2 on (X2, X1, X1X2) instrumented by (Z2, X1, X1Z2). The

estimator para-alt-2, as reported in columns (3), (6), and (9), is based on the 2SLS

regression of Y2 on (X2, X1, X1X2) instrumented by (Z2, Z1, Z1Z2). All 2SLS regressions
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are carried out using the same control vectors as those adopted in Acemoglu et al. (2016).

Columns (1)-(3) are intercept only. Columns (4)-(6) include sector fixed effects. Columns

(7)-(9) include both sector fixed effects and industry production and pretrend controls.

The coefficient estimate reported in Column (1) of Table 2, -1.08, is comparable with

the coefficient estimate of -1.16 reported in column (7) of Table 2 in Acemoglu et al.

(2016). The two numbers are not exactly equal because Acemoglu et al. (2016) weigh

observations by 1991 employment while we do not use regression weights.

Across the columns in Table 2, the contemporaneous effect estimators tend to lose sta-

tistical significance as more controls are added to the parametric 2SLS regression. In ad-

dition, parametric approaches to allowing for direct carryover effect and path-dependency

in contemporaneous effect do not seem to be successful. The direct carryover coefficients

and the parametric path-dependency coefficients reported in columns (5), (6), (8) and

(9) do not have statistical precision.

Table 2: Parametric 2SLS Regression Results

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

para- para- para- para- para- para- para- para- para-

existing -alt-1 -alt-2 -existing -alt-1 -alt-2 -existing -alt-1 -alt-2

X2 -1.08∗∗∗ -1.01∗∗∗ -0.37 -0.47∗∗ -0.44∗ -0.11 -0.31 -0.31 -0.08

(0.21) (0.25) (0.34) (0.19) (0.23) (0.28) (0.20) (0.24) (0.28)

X1 -0.99∗∗∗ -3.26∗∗∗ -0.22 -1.46 -0.03 -0.92

(0.38) (1.13) (0.33) (1.04) (0.33) (1.20)

X1X2 0.13 0.21 0.02 0.05 0.00 0.01

(0.09) (0.15) (0.08) (0.13) (0.07) (0.13)

Stat 742 203 12 621 201 10 574 198 7

N 392 392 392 392 392 392 392 392 392

Note: Data are from Acemoglu et al. (2016). Parametric 2SLS regressions are carried out with Stata. Stat is

the minimum eigenvalue statistic reported following the ivregress 2sls command in Stata. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5%, and 1% level, respectively.

Next, we estimate the potentially path-dependent contemporaneous effect of Chinese

import competition in the second decade, i.e., 1999-2011. Figure 9 focuses on the aug-

mented semi-benchmark estimator. The effect function is evaluated at [0, 0.5], or for in-

dustries that experienced a Chinese import exposure rise of 0-0.5 percentage points per
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Figure 8: Distribution of X1 and First-stage F Statistics
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Note: Data are from Acemoglu et al. (2016). Kernel densities reported in the left and middle graphs use the

density command in R and the default bandwidths. The first-stage F test statistics reported in the right graph

follows from local 2SLS using the non-augmented semi-alt-ll approach.

year over the first decade, i.e., 1991-1999. Given the peculiar heavy right-skewedness (see

Figure 8), the range reported in Figure 9 includes over 80% of the industries. Estima-

tion results for non-augmented estimators semi-alt-1 and semi-alt-2 are reported in the

online appendix, with qualitatively identical empirical findings.

Figure 9 shows that previous decade’s Chinese import exposure magnifies the negative

impact of the current decade’s Chinese import exposure on employment. The magnifying

tendency is fairly mild if previous decade’s Chinese import exposure X1 is small. It

becomes much stronger (i.e., steeper slope) when X1 is larger than around 0.2. Across all

control vector specifications, the statistical significance of the negative semi-parametric

effect estimates is preserved for X1 ∈ [0, 0.3]. The size of the negative effect also tends

to decrease as more control variables are introduced to the model. The lack of statistical

precision after X1 exceeds around 0.3 is due to sparse data and is expected from both

the density graph and the first-stage F test statistics graph in Figure 8.

The proposed semi-parametric estimator is contrasted with sub-sample versions of

para-existing, para-alt-1, and para-alt-2, using only data with X1 ∈ [0, 0.5]. We see that

the parametric approaches to allowing for dynamics in trade effects, as reported by the

dot-dashed lines para-alt-1 and para-alt-2, also indicate that previous decade’s import
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Figure 9: Second-period Contemporaneous Treatment Effect Estimates
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Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.5. Robustness checks with ϱ = 3.25 and ϱ = 3.75 are reported

in the appendix and see similar empirical results. The dotted lines for para-existing, para-alt-1, and para-alt-2 in

each of the three graphs correspond to the parametric approaches reported in Table 2, but carried out with the

X1 ∈ [0, 0.5] sub-sample.

exposure magnifies the negative impact of the current decade’s trade effect. However,

compared to the semi-parametric results, the parametric regression fails to discover non-

linearity in the path-dependent contemporaneous treatment effect function and generally

reports a larger magnifying effect across all three control vector specifications.

Table 3 reports average contemporaneous treatment effect estimates constructed with

the semi-parametric functional estimates reported in Figure 9 and Figure 11 in the online

appendix. The first row of the table reports semi-parametric average contemporaneous

effect estimates integrated over the X1 range of [0, 0.3], where the functional estimates

reported in Figure 9 are quite precisely estimated. Compared to parametric estimates

reported in columns (1) and (4) of Table 2, semi-parametric average effect estimates in

Table 3 are around 40% smaller when no control variables are considered and 30% smaller

when sector fixed effects are considered. The semi-parametric average effect estimates

for the model specification with both industry production and pretrend controls and

sector fixed effects are similar to the parametric result reported in column (7) of Table 2,

although the latter does not have statistical significance. All semi-parametric average

estimators reported in the first row of Table 3 are statistically significant at the 5% or
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1% significance level. The parametric regression results (see Table 2), on the other hand,

lose statistical significance as controls and fixed effects are added to the model.

Table 3: Average Contemporaneous China Shock Effect in 1999-2011

Intercept Only Sector FEs Only Controls and Sector FEs

X ∗
1 (1) (2) (3) (4) (5) (6) (7) (8) (9)

semi- semi- semi- semi- semi- semi- semi- semi- semi-

benchmark alt-lc alt-ll benchmark alt-lc alt-ll benchmark alt-lc alt-ll

[0, 0.3] -0.60∗∗ -0.67∗∗ -0.78∗∗∗ -0.30∗∗∗ -0.32∗∗∗ -0.38∗∗∗ -0.29∗∗ -0.31∗∗ -0.39∗∗

(0.26) (0.28) (0.31) (0.11) (0.11) (0.14) (0.14) (0.14) (0.16)

[0, 0.2] -0.54∗∗ -0.61∗∗ -0.72∗∗ -0.26∗∗ -0.28∗∗ -0.34∗∗ -0.24∗ -0.25∗ -0.33∗∗

(0.26) (0.29) (0.31) (0.11) (0.11) (0.14) (0.14) (0.13) (0.16)

[0.2, 0.3] -1.42∗∗ -1.53∗∗∗ -1.70∗∗∗ -0.81∗∗∗ -0.87∗∗∗ -0.92∗∗∗ -1.01∗∗∗ -1.12∗∗∗ -1.30∗∗∗

(0.57) (0.58) (0.59) (0.28) (0.27) (0.32) (0.34) (0.35) (0.41)

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.5. Robustness checks with ϱ = 3.25 and ϱ = 3.75 are reported

in the appendix and see similar empirical results. ∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5%, and 1% level,

respectively.

The second and third rows of Table 3 report contemporaneous effect estimates aver-

aged over the X1 range of [0, 0.2] and [0.2, 0.3], respectively. Across all three model speci-

fications, the contemporaneous China shock effect in 1999-2011 is much larger in the third

row, i.e., when an industry’s China shock exposure in the last decade is over 0.2 percent-

age points per year. In particular, when all production controls, pre-trend controls, and

sector fixed effects are controlled, estimates in columns (7)-(9) suggest that a 1 percent-

age point increase in industry import penetration reduces domestic industry employment

by about 0.25 percentage point when averaged over X1 ∈ [0, 0.2], and over 1 percentage

point when averaged over X1 ∈ [0.2, 0.3]. – The contemporaneous China shock effect in

1999-2011 is at least four folds as large for industries exposed to substantial China shock in

the past decade, compared to industries exposed to small or moderate shock in the 1990s.

The bigger contemporaneous effect estimates of industries exposed to larger earlier

shocks underscore the importance of path-dependency in the contemporaneous treatment

effect in the 2000s. While our goal is not to uncover an underlying mechanism behind

the magnifying effect, the result could be cautiously interpreted as evidence of decreased

innovation activities caused by an earlier exposure to Chinese import penetration during
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the 1990s. For example, industries significantly affected by Chinese import penetration

might have decreased their innovation activities in the first period (Autor et al., 2020c),

which further weakens their ability to cope with Chinese import competition in the

following period.

Last but not least, we carry out uniform tests to further study properties of the path-

dependent contemporaneous effect function. Recall that the four uniform tests illus-

trated in Section 4.4 are for null hypotheses H0,zero, H0,pos, H0,neg, and H0,homo. In this

application, H0,zero states that Chinese trade exposure in the 2000’s has zero contem-

poraneous impact. H0,pos/H0,neg states that the contemporaneous impact in the 2000’s

uniformly increases/decreases with an industry’s trade exposure in the 1990’s. H0,homo

states that the contemporaneous impact from Chinese trade exposure in the 2000’s does

not vary with an industry’s trade exposure in the 1990’s. From the functional estima-

tion results reported in Figure 9 (as well as Figures 10 and 11 in the online appendix),

we expect null hypotheses H0,zero, H0,neg, and H0,homo to be rejected.

Panels A and B of Table 4 carry out the tests using the sub-sample with X1 ∈ [0, 0.5]

and the sub-sample with X1 ∈ [0, 0.3], respectively. P-values reported in panel A are

larger since estimation precision is lower for X1 ∈ [0.3, 0.5] as is shown in Figure 9.

Focusing on panel B, we see that null hypotheses H0,zero and H0,neg are strongly rejected

at the 5% significance level through all model specifications. The null hypothesis H0,homo

is consistently rejected when the richest model specification is used, which allows for both

controls and sector fixed effects to soak up variations in the outcome error and increase

estimation precision. The null hypothesis H0,neg cannot be rejected, which is in line with

the functional estimates reported in Figure 9.

7 Conclusion

In the paper, we propose a new panel IV model featuring treatment effect dynamics.

Specifically, our new model allows for a direct carryover effect of the preceding treatment

and path-dependency in the contemporaneous treatment effect. We show that in the pres-

ence of treatment effect dynamics, existing textbook 2SLS estimators become inconsis-

tent if the external instrument is correlated with previous period’s endogenous treatment.

This is not uncommon in empirical settings since external instruments are often serially
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Table 4: Uniform Testing Results: P-values

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

semi- semi- semi- semi- semi- semi- semi- semi- semi-

benchmark alt-lc alt-ll benchmark alt-lc alt-ll benchmark alt-lc alt-ll

Panel A: sub-sample with X1 ∈ [0, 0.5]

H0,zero 0.034 0.025 0.063 0.024 0.034 0.116 0.041 0.021 0.039

H0,neg 0.998 0.999 0.999 0.833 0.809 0.845 0.216 0.234 0.227

H0,pos 0.014 0.013 0.029 0.012 0.017 0.063 0.022 0.010 0.018

H0,homo 0.198 0.205 0.373 0.263 0.304 0.503 0.058 0.056 0.235

Panel B: sub-sample with X1 ∈ [0, 0.3]

H0,zero 0.020 0.016 0.051 0.013 0.017 0.101 0.000 0.004 0.023

H0,neg 1.000 1.000 1.000 1.000 1.000 0.988 0.996 0.999 0.985

H0,pos 0.005 0.005 0.021 0.008 0.009 0.055 0.000 0.002 0.011

H0,homo 0.076 0.090 0.194 0.046 0.075 0.153 0.005 0.008 0.031

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.5. Robustness checks with ϱ = 3.25 and ϱ = 3.75 are reported

in the appendix and see similar empirical results. Bootstraps are carried out 1000 times for each simulation.

correlated in data. To address this issue, we propose a novel semi-parametric identifica-

tion procedure and three local GMM estimators for parameters in the model, including a

benchmark augmented estimator and two alternatives. We study asymptotic properties of

the suggested estimators and show that proposed estimators have satisfactory small sam-

ple performance in Monte Carlo simulations. When applied to revisit the seminal study by

Acemoglu et al. (2016) on the China syndrome, our proposed method reveals important

empirical findings that have not been discovered previously. In particular, we find that the

contemporaneous impact of increased Chinese import competition on US manufacturing

employment is magnified by the import exposure in the preceding decade. The size of the

magnifying effect is mild if the last decade’s import exposure was small or moderate. But

the interaction between the past and current trade shocks becomes much more significant

when the import exposure over the last decade exceeds 0.2 percentage points per year.
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Appendix A: Robustness Checks for the Empirical Analysis

In this section, we report robustness checks of the empirical results. Table 5 repeats

parametric regressions reported in Table 2 but with different sub-sample definitions.

Table 5: Robustness Checks: Parametric 2SLS Regression Results

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

para- para- para- para- para- para- para- para- para-

existing alt-1 alt-2 existing alt-1 alt-2 existing alt-1 alt-2

Panel A: sub-sample with X1 ∈ [0, 0.5]

X2 -1.20∗∗∗ -0.43∗ 0.23 -0.61∗∗∗ -0.17∗∗∗ 0.08 -0.57∗∗∗ -0.15 -0.01

(0.21) (0.26) (0.33) (0.18) (0.21) (0.27) (0.18) (0.21) (0.25)

X1 -1.53 -11.81∗ 0.79 0.73 1.95 6.08

(2.44) (6.88) (2.15) (6.19) (2.11) (6.67)

X1X2 -5.06∗∗∗ -6.78∗∗ -3.65∗∗ -5.59∗∗ -3.96∗∗∗ -6.17∗∗

(1.64) (3.09) (1.41) (2.62) (1.38) (2.60)

Stat 711 119 11 604 104 9 587 97 7

N 307 307 307 307 307 307 307 307 307

Panel B: sub-sample with X1 ∈ [0, 0.3]

X2 -0.87∗∗∗ -0.44∗ 1.12 0.23 -0.19 0.08 -0.44∗∗∗ -0.15 0.10

(0.20) (0.25) (0.85) (0.17) (0.21) (0.47) (0.17) (0.20) (0.39)

X1 -5.56 -47.85∗∗∗ -1.05 -20.10 1.62 7.57

(3.50) (18.11) (3.01) (13.31) (2.92) (14.59)

X1X2 -4.01∗∗ -12.71 -3.47∗∗ -4.60 -3.96∗∗∗ -6.29

(1.88) (12.14) (1.49) (7.16) (1.45) (6.63)

F Stat 737 169 3 642 169 3 628 154 3

N 277 277 277 277 277 277 277 277 277

Note: Data are from Acemoglu et al. (2016). Parametric 2SLS regressions are carried out with Stata. F Stat is

the minimum eigenvalue statistic reported following the ivregress 2sls command in Stata. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5%, and 1% level, respectively.

Figure 10 reports semi-parametric functional estimation results using alternative non-

augmented local GMM estimation methods. Compared to Figure 9, which reports results

using the augmented approach, estimates in Figure 10 lead to similar empirical findings

of magnifying contemporaneous impact of Chinese import exposure.

Last but not least, we use Figure 10 and Tables 6–7 to demonstrate that semi-

parametric estimation results reported in Section 6 are not sensitive to alternative band-

width choices.
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Figure 10: Robustness Checks: Second-period Contemporaneous Treatment Effect Esti-

mates
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Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.5. The blue dotted line of para-existing and purple dashed

line of para-alt-2 in each graph correspond to the parametric approaches reported in Table 2 but for a sub-sample

with X1 ∈ [0, 0.5].

Appendix B: Parametric Identification

Without loss of generality, we discuss the case T = 2 for parametrically identifying the

benchmark model (2.1).

Let νi,s:t = (ν ′is . . . ν ′it)
′ denote the random vector that stacks νiℓ from period s

to period t. Let ∨ denote the larger and ∧ the smaller of two numbers. Let fit =

ωt(Zi,[(t−s)∨1]:t) be the dft-dimensional vector generated by external instruments from

period [(t− s) ∨ 1] to period t with known function ωt(.). Then unknown parameters in

model (2.1) are identified through classic parametric 2SLS or GMM estimation strategies

under the following assumptions. For t = 1, the enodgeneous regressor is Xi1 and the

external instrument set is fi1. For t = 2, the enodgeneous regressor is ψi,dβXi2 and the

external instrument set is fi2.

Assumption B.1 (parametric identification) Assume that

1. (known functional form) β2(Xi1) = ψ′
i,dβ

ηdβ , where ψi,dβ = (1 ψ2(Xi1) . . . ψdβ (Xi1))
′

and ηdβ is a dβ-dimensional parameter vector;
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Figure 11: Robustness Checks: Second-period Contemporaneous Treatment Effect Esti-

mates

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4
6

intercept only

x1, bw=0.21

semi−benchmark
semi−CI
para−existing

para−alt−1
para−alt−2

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4
6

sector fixed effects

x1, bw=0.21

semi−benchmark
semi−CI
para−existing

para−alt−1
para−alt−2

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4
6

industry controls and sector fixed effects

x1, bw=0.21

semi−benchmark
semi−CI
para−existing

para−alt−1
para−alt−2

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4
6

intercept only

x1, bw=0.27

semi−benchmark
semi−CI
para−existing

para−alt−1
para−alt−2

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4
6

sector fixed effects

x1, bw=0.27

semi−benchmark
semi−CI
para−existing

para−alt−1
para−alt−2

0.0 0.1 0.2 0.3 0.4 0.5

−
4

−
2

0
2

4
6

industry controls and sector fixed effects

x1, bw=0.27

semi−benchmark
semi−CI
para−existing

para−alt−1
para−alt−2

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.25 in the top panel and ϱ = 3.75 in the bottom panel. The

blue dotted line of para-existing and purple dashed line of para-alt-2 in each graph correspond to the parametric

approaches reported in Table 2 but for a sub-sample with X1 ∈ [0, 0.5].

2. (exclusion restriction) E[εit|Zi,[(t−s)∨1]:t, Hit] = 0, for s = 0, 1 and t = 1, 2;

3. (rank condition) E[(f ′i1 H ′
i1)

′(X ′
i1 H

′
i1)] and E[(f ′i2 H ′

i2)
′(X ′

i1 (ψi,dβXi2)
′ H ′

i2)] are

both of full rank.

Assumption B.1.1 is a standard parametric functional form assumption. Assump-

tions B.1.2 and B.1.3 are standard exclusion restriction and rank condition for para-

metric IV regressions. If s = 1, the assumption reduces to E[εi1|Zi1, Hi1] = 0 and
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Table 6: Average Contemporaneous China Shock Effect in 1999-2011: Robustness Checks

with Alternative Bandwidths

Intercept Only Sector FEs Only Controls and Sector FEs

X ∗
1 (1) (2) (3) (4) (5) (6) (7) (8) (9)

semi- semi- semi- semi- semi- semi- semi- semi- semi-

benchmark alt-lc alt-ll benchmark alt-lc alt-ll benchmark alt-lc alt-ll

Panel B: ϱ = 3.25

[0, 0.3] -0.60∗∗ -0.66∗∗ -0.78∗∗ -0.29∗∗∗ -0.32∗∗∗ -0.39∗∗∗ -0.28∗∗ -0.31∗∗ -0.41∗∗

(0.25) (0.27) (0.31) (0.11) (0.11) (0.14) (0.14) (0.13) (0.16)

[0, 0.2] -0.54∗∗ -0.59∗∗ -0.72∗∗ -0.25∗∗ -0.28∗∗ -0.35∗∗ -0.23∗ -0.24∗ -0.35∗∗

(0.26) (0.27) (0.32) (0.11) (0.11) (0.14) (0.14) (0.14) (0.16)

[0.2, 0.3] -1.54∗∗ -1.62∗∗ -1.68∗∗∗ -0.80∗∗∗ -0.89∗∗∗ -0.83∗∗∗ -0.97∗∗∗ -1.22∗∗∗ -1.20∗∗∗

(0.63) (0.63) (0.61) (0.19) (0.19) (0.23) (0.24) (0.25) (0.30)

Panel B: ϱ = 3.75

[0, 0.3] -0.61∗∗ -0.69∗∗ -0.77∗∗∗ -0.30∗∗∗ -0.33∗∗∗ -0.41∗∗∗ -0.29∗∗ -0.31∗∗ -0.39

(0.27) (0.30) (0.29) (0.11) (0.12) (0.14) (0.14) (0.13) (0.53)

[0, 0.2] -0.56∗∗ -0.64∗∗ -0.70∗∗ -0.27∗∗ -0.30∗∗∗ -0.37∗∗∗ -0.25∗ -0.26∗ -0.32

(0.27) (0.31) (0.30) (0.11) (0.12) (0.14) (0.14) (0.13) (0.55)

[0.2, 0.3] -1.30∗∗∗ -1.46∗∗∗ -1.75∗∗∗ -0.77∗∗∗ -0.82∗∗∗ -0.97∗∗∗ -0.90∗∗∗ -0.97∗∗∗ -1.29∗∗∗

(0.48) (0.50) (0.51) (0.24) (0.24) (0.28) (0.29) (0.30) (0.38)

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.25 in panel A and ϱ = 3.75 in panel B. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5%, and 1% level, respectively.

E[εi2|Zi1, Zi2, Hi2] = 0. If pre-intervention periods of the external instrument (e.g., Zi0,

Zi(−1)) are observed, Assumption B.1.2 could also be modified to utilize such information.

Appendix C: Additional Assumptions and Some Useful Lemmas

The following assumption is required for the asymptotic results stated in Section 4.

Assumption C.1 (a) The observations {Yi2, Xi1, Xi2, Zi2, Hi2}Ni=1 are i.i.d.

(b) The density function fX1(.) of Xi1 is twice continuously differentiable with bounded

derivatives and bounded away from zero on X1, the compact support of Xi1.

(c) The function θ2(.) is three times continuously differentiable on X1.

(d) The kernel function κ(.) is a symmetric density function with compact support.
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Table 7: Uniform Testing Results: Robustness Checks with Alternative Bandwidths

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6)

semi- semi- semi- semi- semi- semi- semi- semi- semi-

benchmark alt-lc alt-ll benchmark alt-lc alt-ll benchmark alt-lc alt-ll

Panel A-1: ϱ = 3.25, sub-sample with X1 ∈ [0, 0.5]

H0,zero 0.067 0.041 0.098 0.044 0.044 0.143 0.128 0.029 0.043

H0,neg 0.997 0.998 0.999 0.854 0.838 0.845 0.126 0.137 0.166

H0,pos 0.036 0.017 0.057 0.024 0.023 0.079 0.061 0.013 0.020

H0,homo 0.261 0.260 0.406 0.347 0.414 0.536 0.150 0.072 0.241

Panel A-2: ϱ = 3.25, sub-sample with X1 ∈ [0, 0.3]

H0,zero 0.043 0.030 0.078 0.022 0.030 0.134 0.007 0.006 0.026

H0,neg 0.999 1.000 1.000 0.999 1.000 1.000 0.996 1.000 1.000

H0,pos 0.025 0.010 0.047 0.014 0.013 0.075 0.003 0.002 0.012

H0,homo 0.103 0.133 0.263 0.066 0.124 0.252 0.010 0.015 0.055

Panel B-1: ϱ = 3.75, sub-sample with X1 ∈ [0, 0.5]

sub-sample with X1 ∈ [0, 0.5]

H0,zero 0.034 0.030 0.047 0.047 0.020 0.047 0.069 0.017 0.636

H0,neg 0.999 0.997 0.999 0.812 0.805 0.846 0.300 0.295 0.515

H0,pos 0.013 0.015 0.019 0.026 0.009 0.023 0.039 0.008 0.319

H0,homo 0.164 0.196 0.274 0.231 0.237 0.351 0.093 0.066 0.502

Panel B-2: ϱ = 3.75, sub-sample with X1 ∈ [0, 0.3]

H0,zero 0.016 0.016 0.036 0.024 0.014 0.042 0.003 0.006 0.629

H0,neg 0.999 1.000 1.000 1.000 1.000 0.922 1.000 0.999 0.869

H0,pos 0.006 0.006 0.015 0.012 0.007 0.019 0.002 0.004 0.315

H0,homo 0.076 0.080 0.126 0.061 0.051 0.024 0.009 0.006 0.326

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Section 5 with ϱ = 3.5. Robustness checks with ϱ = 3.25 and ϱ = 3.75 are reported

in the appendix and see similar empirical results. Bootstraps are carried out 1000 times for each simulation.

(e) The matrix ΛZ̈Ẍ(.) is twice continuously differentiable on X1, and E[ε̃2i2Z̈i2Z̈ ′
i2|Xi1 =

.] is Lipschitz continuous on X1.

(f) There exists an s > 2 such that supx∈X1
E[∥Z̈i2∥2s|Xi1 = x] <∞, supx∈X1

E[|Xi2|2s|Xi1 =

x] <∞ and supx∈X1
E[|Yi2|2s|Xi1 = x] <∞ and N2δ−1h→ ∞ for some δ < 1−s−1.

(g) h→ ∞, Nh3 → ∞, Nh7 → 0 as N → ∞.

Next, we define some useful notations. Let ιj be a (ℓ+ 1)-dimensional vector whose
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j-th element is one and all the rest elements are non-zero. Let X̃ ′
i1(x) = (1 (Xi1 −

x) . . . (Xi1−x)ℓ). For all values of x, the ℓ-th order local polynomial estimator of ΛZ̈Y (x)

is defined as

Λ̂Z̈Y (x) = N−1
∑
i

κh(Xi1 − x)Z̈i2Yi2X̃
′
i1(x)M̂(x)−1ι1,

with M̂(x) = N−1
∑

i κh(Xi1−x)X̃i1(x)X̃
′
i1(x). Similarly, the l-th order local polynomial

estimator of
[
Λ̂Z̈Ẍ(x)

]
.,j

is defined as

[
Λ̂Z̈Ẍ(x)

]
.,j

= N−1
∑
i

κh(Xi1 − x)Z̈i2Ẍi2,jX̃
′
i1(X)M̂(x)−1ι1,

where Ẍi2,j is the j-th element of Ẍi2. We suppress ℓ in estimator definitions in this

appendix.

Define Λ̂Z̈aY
(x) and

[
Λ̂Z̈aẌa

(x)
]
.,j

similar to Λ̂Z̈Y (x) and
[
Λ̂Z̈Ẍ(x)

]
.,j

with ℓ = 0

and (Z̈ ′
i2 Ḧ

′
i2,a/h)

′ and (Ẍ ′
i2 Ḧ

′
i2,a/h)

′ replacing Z̈i2 and Ẍi2, respectively.

To derive asymptotic properties of the above estimators, we first introduce several

matrix notations. We use 0d1,d2 to denote the d1 × d2 matrix of zeros. Let X̃1(x) be a

N × (ℓ + 1) matrix whose i-th row is given by X̃ ′
i1(x) and K(x) be a N × N diagonal

matrix whose diagonal entries are given by {κh(Xi1−x)}Ni=1. For notational convenience,

hereafter let dA denote the dimension of the vector A. Moreover, let Ỹi2 = Z̈i2Yi2 and

X̃i2 = vec(Z̈i2Ẍ
′
i2) and Ỹ2 and X̃2 be N × dZ̈ and N × dZ̈dẌ matrices collecting the

vectors Ỹi2 and X̃i2. Then,

M̂(x) = N−1X̃′
1(x)K(x)X̃1(x),

Λ̂Z̈Y (x) = N−1Ỹ′
2K(x)X̃1(x)M̂(x)−1ι1,

vec(Λ̂Z̈Ẍ)(x) = N−1X̃′
2K(x)X̃1(x)M̂(x)−1ι1.

For each integer j, we let Mj = (µi+k+j−2)1≤i,k≤ℓ+1 with µk =
∫
ukκ(u)du for an integer

k, and let M ≡ M0. It is easy to see that and Mjιs = Mj−1ιs+1 for s = 1, . . . , ℓ. The

matrix D is defined by a (ℓ+1)×(ℓ+1) diagonal matrix whose diagonal entries are given

by {1 h · · ·hℓ}. Moreover, we let LZ̈Ẍ(x) be a dẌdZ̈ × (ℓ+ 1) matrix whose ith column

is given by vec(Λ
(i−1)

Z̈Ẍ
)/(i− 1)!. Following classic kernel derivations in, for example, Fan
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and Gijbels (1996), we know that, for all x ∈ X1, under the conditions of Theorem 4.1,

D−1M̂(x)D−1 = MfX1(x) + hM1f
(1)
X1

(x) +Op(ah), (C.1)

vec(Λ̂Z̈Ẍ(x)) = vec(ΛZ̈Ẍ(x)) +Op((Nh)
−1/2) +Op(hℓ), (C.2)

where ah = (Nh)−1/2 + h2 = o(h) since Nh3 → ∞, and hℓ is h
2 for both local constant

local linear estimation.

In addition, let Da = diag(IdẌ , hIdḦ ). Applying Lemma A.1 of Su et al. (2013), we

have that, for each x ∈ X1,

D−1
a Λ̂Z̈aẌa

(x) = fX1(x)diag
(
ΛZ̈Ẍ(x), µ2ΛḦḦ(x)

)
+ op(1), (C.3)

where ΛḦḦ(x) = E[Ḧi2Ḧ
′
i2|Xi1 = x].

The following two lemmas state useful results for proving the Theorems and Propo-

sitions of the main paper.

Lemma C.1 Let B̂a,1(x) = N−1
∑

i κh(Xi1 − x)Z̈i2Xi2(β2(Xi1)− β2(x)) and B̂a,2(x) =

N−1
∑

i κh(Xi1−x)Z̈i2Ḧ ′
i2(θ2,−1(Xi1)−θ2,−1(x)−θ(1)2,−1(x)(Xi1−x)). Suppose conditions

in Theorem 4.1 hold. Then,

B̂a,1(x) + B̂a,2(x) = fX1(x)h
2µ2Ba(x) +Op(hah). (C.4)

Lemma C.2 Let B̂(x) = N−1
∑

i Z̈i2Ẍ
′
i2θ2(Xi1)X̃

′
i1(x)κh(Xi1−x)M̂−1(x)ι1−Λ̂Z̈Ẍ(x)θ2(x).

Suppose that conditions in Theorem 4.1 hold. Then,

B̂(x) = h2µ2B0 +Op(h
3) if ℓ = 0 and B̂(x) = h2µ2B1 +Op(h

3) if ℓ = 1,

with B0 and B1 defined in Theorem 4.1.

Lemma C.3 Suppose that the conditions in Theorem 4.1 hold. Then, the following holds
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uniformly for x ∈ X1.

sup
x∈X1

∥(IdẌ 0dẌ ,dḦ )Ω̂
′
a(x)− (f−1

X1
(x)Ω′(x) 0dẌ ,dḦ )∥ = Op(ch + h2) (C.5)

sup
x∈X1

∥∥D−1M̂(x)D−1 −
(
MfX1(x) + hM1f

(1)
X1

(x)
)∥∥ = Op(ch + h2) (C.6)

sup
x∈X1

∥Ψa(x)∥ = Op(ch), sup
x∈X1

∥Ψ(x)∥ = Op(ch), (C.7)

sup
x∈X1

∥Ψ̂(x)−Ψ(x)∥ = Op(ch(ch + h)), (C.8)

sup
x∈X1

∥∥vec(Λ̂Z̈Ẍ(x)−ΛZ̈Ẍ(x))
∥∥ = Op(ch + h2), (C.9)

sup
x∈X1

∥(Ω̂′(x)−Ω′(x))Ψ(x)∥ = Op(ch(ch + h2)), (C.10)

sup
x∈X1

∥∥B̂(x)∥ = Op(hch + h2), (C.11)

sup
x∈X1

∥(IdẌ 0dẌ ,dḦ )B̂a(x)∥ = Op(hch + h2), (C.12)

sup
x∈X1

∥(0dḦ ,dẌ IdḦ )B̂a(x)∥ = Op(hch + h), (C.13)

where ch = (log(1/h)/(Nh))1/2, Ω̂a(x) =
(
Λ̂′
Z̈aẌa

(x)Λ̂Z̈aẌa
(x)
)−1

Λ̂′
Z̈aẌa

(x), Ψa(x) =

N−1
∑

i κh(Xi1−x)(Z̈ ′
i2 Ḧ

′
i2,a/h)

′ε̃i2, Ψ̂(x) = N−1
∑

i κh(Xi1−x)Z̈i2ε̃i2X̃ ′
i1(x)M̂

−1(x)ι1,

Ψ(x) ≡ 1
N

∑
i κh(Xi1−x)ε̃i2Z̈i2X̃ ′

i1(x)D
−1M−1ι1f

−1
X1

(x), and B̂a(x) = Λ̂Z̈aY
(x)−Λ̂Z̈aẌa

(x)θa2(x)−

Ψa(x).

Proof of Lemma C.1

Let B̃a,1(x) = N−1
∑

i κh(Xi1−x)(Xi1−x)Z̈i2Xi2β
(1)
2 (x) and B̃a,2(x) = (2N)−1

∑
i κh(Xi1−

x)(Xi1 − x)2Z̈i2Xi2β
(2)
2 (x). We have

B̂a,1(x) = B̃a,1(x) + B̃a,2(x) +RBa,1(x). (C.14)

Under Assumption C.1.(c), by standard point-wise convergence arguments of kernel es-

timators,

B̃a,1(x) = E
[
κh(Xi1 − x)

[
ΛZ̈Ẍ(Xi1)

]
.,1

(Xi1 − x)
]
β
(1)
2 (x) +Op(h(Nh)

−1/2)

= µ2h
2fX1(x)

(
[Λ

(1)

Z̈Ẍ
(x)].,1 + cf (x)[ΛZ̈Ẍ(x)].,1

)
β
(1)
2 (x) +Op(hah), (C.15)

B̃a,2(x) = 2−1E
[
κh(Xi1 − x)[ΛZ̈Ẍ(Xi1)].,1(Xi1 − x)2

]
β
(2)
2 (x) +Op(h

2(Nh)−1/2)

= 2−1h2µ2fX1(x)[ΛZ̈Ẍ(x)].,1β
(2)
2 (x) +Op(h

2ah). (C.16)
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and RBa,1(x) = Op(h
3).

Similarly,

B̂a,2(x) =(2N)−1
∑
i

κh(Xi1 − x)Z̈i2Ḧ
′
i2θ

(2)
2,−1(x)(Xi1 − x)2

+ (6N)−1
∑
i

κh(Xi1 − x)Z̈i2Ḧ
′
i2θ

(3)
2,−1(ξi)(Xi1 − x)3

=2−1µ2h
2fX1(x)

[
ΛZ̈Ẍ(x)

]
.,−1

θ
(2)
2,−1(x) +Op(h

2ah) +Op(h
3). (C.17)

The desired result is obtained from (C.15), (C.16) and (C.17) and that [ΛZ̈Ẍ(x)].,1β
(2)
2 (x)+

[ΛZ̈Ẍ(x)].,−1θ
(2)
2,−1(x) = ΛZ̈Ẍ(x)θ

(2)
2 (x).

Proof of Lemma C.2:

Given that Λ̂Z̈Ẍ(x)θ2(x) = (θ2(x)⊗ IdZ̈ )
′vec(Λ̂Z̈Ẍ(x)) , we find that

B̂(x) = N−1
∑
i

(
(θ2(Xi1)− θ2(x))⊗ IdZ̈

)′
X̃i2ι

′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x)

= B̃1(x) + B̃2(x) +RB(x), (C.18)

where

B̃1(x) = (θ
(1)
2 (x)⊗ IdZ̈ )

′N−1
∑
i

h

(
Xi1 − x

h

)
X̃i2ι

′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x)

≡ (θ
(1)
2 (x)⊗ IdZ̈ )

′N−1
∑
i

b̂i1(x),

B̃2(x) = (θ
(2)
2 (x)/2⊗ IdZ̈ )

′N−1
∑
i

h2
(
Xi1 − x

h

)2

X̃i2ι
′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x)

≡ (θ
(2)
2 (x)/2⊗ IdZ̈ )

′N−1
∑
i

b̂i2(x),

RB(x) = N−1
∑
i

(θ
(3)
2 (ξi)/6⊗ IdZ̈ )

′h3
(
Xi1 − x

h

)3

X̃i2ι
′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x).

where RB(x) is the Taylor expansion remainder term with ξi lying between x and Xi1

for all i.

For the term B̃1(x), we know that

E[N−1
∑
i

b̂i1(x)|Xi1] = N−1
∑
i

vec(ΛZ̈Ẍ(Xi1)) (Xi1 − x) X̃ ′
i1(x)M̂

−1(x)ι1κh(Xi1 − x)

= N−1
∑
i

(
LZ̈Ẍ(x)X̃i1(x) (Xi1 − x) + hℓ+2 1

(ℓ+ 1)!
vec(Λ(ℓ+1)(x))

(
Xi1 − x

h

)ℓ+2
)

× X̃ ′
i1(x)M̂

−1(x)ι1κh(Xi1 − x) +Op(h
ℓ+3).
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Let H(x) be a diagonal matrix whose ith entry is given by Xi1 − x. First, note that

N−1
∑
i

LZ̈Ẍ(x)X̃i1(x) (Xi1 − x) X̃ ′
i1(x)M̂

−1(x)ι1κh(Xi1 − x) (C.19)

= N−1LZ̈Ẍ(x)X̃
′
1(x)H(x)K(x)X̃1(x)M̂

−1(x)ι1

= N−1
ℓ+1∑
s=1

[LZ̈Ẍ(x)]sι
′
sX̃

′
1(x)H(x)K(x)X̃1(x)M̂

−1(x)ι1

= N−1
ℓ∑

s=1

[LZ̈Ẍ(x)]sι
′
s+1X̃

′
1(x)K(x)X̃1(x)M̂

−1(x)ι1

+N−1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1X̃

′
1(x)H(x)K(x)X̃1(x)M̂

−1(x)ι1

= N−1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1DD−1X̃′

1(x)H(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1

= hℓ+1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1

(
M1fX1(x) + hM2f

(1)
X1

(x) + op(h)
)

×
(
f−1
X1

(x)M−1 + hcf (x)f
−1
X1

(x)M−1M1M
−1 + op(h)

)
ι1.

The third equality holds because H(x)X̃1(x)ιs = X̃(x)ιs+1 for s = 1, . . . , ℓ. The fourth

equality holds becauseN−1ι′s+1X̃
′
1(x)K(x)X̃1(x)M̂

−1(x)ι1 = ι′s+1M̂(x)−1M̂(x)ι1 = ι′s+1ι1 =

0 for all s = 1, ..., ℓ. The last equality holds from standard kernel derivations.

Furthermore, given symmetry of the kernel function κ(.), the (i, k)-th element of M

is zero if i + k is odd. This implies that the adjoint matrix of the (1, k)-th element of

M is singular if k is even and, therefore, M−1ι1 is a (ℓ + 1) × 1 vector with all even

elements equal to zero. On the other hand, ι′ℓ+1Mj = (
∫
uℓ+jκ(u)du ...

∫
u2ℓ+jκ(u)du)

have zero odd elements when ℓ + j is odd and zero even elements if ℓ + j is even.

Therefore, ι′ℓ+1M1M
−1ι1 = 0 when ℓ is even. Using similar arguments, we know that

ι′ℓ+1M1M
−1M1M

−1ι1 = 0 when ℓ is even and ι′ℓ+1M2M
−1ι1 = 0 when ℓ is odd.

Therefore, we have

(C.19) = hℓ+1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1M1M

−1ι1 +Op(h
ℓ+2), (C.20)

if ℓ is odd and

(C.19) = hℓ+2[LZ̈Ẍ(x)]ℓ+1cf (x)ι
′
ℓ+1M2M

−1ι1 +Op(h
ℓ+3), (C.21)
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if ℓ is even. Similarly, the other component of E[N−1
∑

i b̂i1(x)|Xi1] follows

N−1
∑
i

hℓ+2 1

(ℓ+ 1)!
vec(Λ(ℓ+1)(x))

(
Xi1 − x

h

)ℓ+2

X̃ ′
i1M̂

−1(x)ι1κh(Xi1 − x)

= hℓ+2 1

(ℓ+ 1)!
vec(Λ(ℓ+1)(x))ι′ℓ+1M2M

−1ι1 +Op(h
ℓ+3),

if ℓ is even and Op(h
ℓ+3) if ℓ is odd.

For the term B̃2(x), we know that

E[N−1
∑
i

b̂i2(x)|Xi1]

=N−1
ℓ+1∑
s=1

[LZ̈Ẍ(x)]sι
′
sX̃

′
1(x)H

2(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1 +Op(h

ℓ+3)

=N−1[LZ̈Ẍ(x)]ℓι
′
ℓ+1DD−1X̃′

1(x)H(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1

+N−1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1DD−1X̃′

1(x)H2(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1

+Op(h
ℓ+3).

The first term in the RHS is not relevant for ℓ = 0. When relevant, it reduces to

hℓ+1[LZ̈Ẍ(x)]ℓι
′
ℓ+1M1M

−1ι1+Op(h
ℓ+2) when ℓ is odd and hℓ+2[LZ̈Ẍ(x)]ℓcf (x)ι

′
ℓ+1M2M

−1ι1+

Op(h
ℓ+3) when ℓ is even. The second term reduces to hℓ+2[LZ̈Ẍ(x)]ℓ+1ι

′
ℓ+1M2M

−1ι1 +

Op(h
ℓ+3) when ℓ is even and Op(h

ℓ+3) when ℓ is odd.

Using similar derivations, one can show that V[N−1
∑

i(̂bi1(x)+b̂i2(x))|Xi1] = Op(h/N) =

Op(h
4) if Nh3 → ∞ and that RB(x) = Op(h

3) under the uniform boundedness condi-

tions.

Summing up, we conclude that

B̂(x) = (θ
(1)
2 (x)⊗ IdZ̈ )

′ · h2vec(Λ(1)

Z̈Ẍ
(x))ι′2M1M

−1ι1

+ (θ
(2)
2 (x)/2⊗ IdZ̈ )

′ · h2vec(ΛZ̈Ẍ(x))ι
′
2M1M

−1ι1 + op(h
2)

= h2µ2

(
Λ

(1)

Z̈Ẍ
(x)θ

(1)
2 (x) +ΛZ̈Ẍ(x)θ

(2)
2 (x)/2

)
+Op(h

3),

when ℓ = 1 and

B̂(x) =h2µ2

[(
cf (x)ΛZ̈Ẍ(x) +Λ

(1)

Z̈Ẍ
(x)
)
θ
(1)
2 (x) +ΛZ̈Ẍ(x)θ

(2)
2 (x)/2

]
+Op(h

3)

when ℓ = 0, which corresponds to the statement in the lemma.
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Proof of Lemma C.3

To show the first result (C.6) of the lemma, we notice that for all x ∈ X ∗
1 ,

DaΩ̂
′
a(x) =

(
D−1
a Λ̂′

Z̈aẌa
(x)Λ̂Z̈aẌa

(x)D−1
a

)−1
D−1
a Λ̂′

Z̈aẌa
(x),

while Λ̂Z̈aẌa
(.) has a uniform convergence result that

Λ̂Z̈aẌa
(x)D−1

a = diag(ΛZ̈Ẍ(x), µ2ΛḦḦ(x)) +Op(ch + h2),

following from (A.1) of Fan and Huang (2005). The uniform convergence result leads

to (C.6) since ΛZ̈Ẍ(.) and µ2ΛḦḦ(.) have eigenvalues uniformly bounded and bounded

away from zero and bounded from above. Then, if we let Âx (resp. Ax) denote the

denominator of DaΩ̂a(x) (resp. that of Ωa(x)), we have A−1
x is bounded uniformly in

x ∈ X1 by the invertibility of Schur complement. In addition,

sup
x∈X1

∥Â−1
x −A−1

x ∥ = sup
x∈X1

∥Â−1
x (Ax−Âx)A

−1
x ∥ ≤ Op(1) sup

x∈X1

∥Ax−Âx∥ = Op(ch+h
2).

Equation (C.6) then follows.

The result in (C.6) follows from the uniform convergences that supx
∥∥D−1M̂(x)D−1−

E[D−1M̂(x)D−1]
∥∥ = Op(ch) and supx

∥∥E[D−1M̂(x)D−1] − MfX1(x) − hM1f
(1)
X1

(x)
∥∥ =

Op(h
2). The former is a trivial extension of the uniform convergence result stated in Mack

and Silverman (1982) for local constant estimation to local polynomial estimation. The

latter follows from standard kernel bias derivation and uniform boundedness conditions

stated in the assumptions.

The first part of (C.7) is a trivial consequence of Lemma A.1 in Fan and Huang

(2005). The second part is similarly obtained by using supx∈X1
|f−1
X1

(x)| < ∞ (Assump-

tion C.1.(b)) and the fact that

sup
x∈X1

∥N−1
∑
i

ε̃i2Z̈i2X̃
′
i1(x)D

−1κh(Xi1 − x)∥ = Op(ch). (C.22)

The result in (C.8) is obtained as a consequence of (C.6) and (C.22); specifically, we

have

∥Ψ̂(x)−Ψ(x)∥

≤ ∥N−1
∑
i

ε̃i2Z̈i2X̃
′
i1(x)D

−1κh(Xi1 − x)∥∥(D−1M̂(x)D−1)−1 −M−1f−1
X1

(x)∥

≤ Op(ch)∥(D−1M̂(x)D−1)−1∥∥D−1M̂(x)D−1 −MfX1(x)∥∥M−1f−1
X1

(x)∥

= Op(ch)Op(ch + h), (C.23)
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uniformly in x ∈ X1. The second inequality follows from A−1 −B−1 = B−1(A−B)A−1

for matrices A and B.

To prove (C.9), we define υi = vec(Z̈i2Ẍ
′
i2 −ΛZ̈Ẍ(Xi1)) and then, given that ΛZ̈Ẍ(.)

is twice continuously differentiable, we have

vec(Λ̂Z̈Ẍ(x)−ΛZ̈Ẍ(x))

=N−1X̃′
2K(x)X̃1(x)M̂(x)−1ι1 − LZ̈Ẍ(x)N

−1X̃′
1(x)K(x)X̃1(x)M̂

−1(x)ι1

=N−1(X̃2 − X̃1(x)L
′
Z̈Ẍ

(x))′K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
D−1ι1.

By (C.6) and Assumption C.1.(b) on the density function, we know that
(
D−1M̂(x)D−1

)−1
=

Op(1) uniformly in x ∈ X1. In addition, we have

N−1(X̃2 − X̃1(x)L
′
Z̈Ẍ

(x))′K(x)X̃1(x)D
−1 = r11(x) + r12(x), (C.24)

where r11(x) =N
−1
∑
i

υiX̃
′
i1(x)D

−1κh(Xi1 − x),

r12(x) =1{ℓ=0}N
−1h

∑
i

vec(Λ
(1)

Z̈Ẍ
(x))

(
Xi1 − x

h

)
κh(Xi1 − x)

+N−1h2
∑
i

vec(Λ
(2)

Z̈Ẍ
(ξi1))

(
Xi1 − x

h

)2

X̃ ′
i1(x)D

−1κh(Xi1 − x),

by the Taylor expansion for some ξi1 between Xi1 and x. Because E[υi|Xi1] = 0 and

supx∈X1
E[|νi∥s|Xi1 = x] < ∞, we follow the uniform convergence results in Mack and

Silverman (1982) and Fan and Huang (2005, Lemma A.1) and obtain that r11(.) = Op(ch)

uniformly on X1. Similarly,

r12(x) =h1{ℓ=0}vec(Λ
(1)

Z̈Ẍ
(x))E

[(
Xi1 − x

h

)
κh(Xi1 − x)

]
+ h2E

[(
Xi1 − x

h

)2

vec(Λ
(2)

Z̈Ẍ
(ξi1))X̃

′
i1(x)D

−1κh(Xi1 − x)

]
+Op(ch)

= h2(vec(Λ
(2)

Z̈Ẍ
(x)) + op(1))(fX1(x)ι

′
1M2 +Op(h)) +Op(ch + h2),

uniformly in x ∈ X1. The last equality follows from uniform boundedness conditions in

Assumptions C.1.(b) and C.1.(e). Then, the desired result is followed.

N−1(X̃2 − X̃1(x)L
′
Z̈Ẍ

(x))′K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
D−1ι1 = Op(ch+ h2).
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We then focus on (C.10). Because of (C.9) and Assumption 3.1, we have ∥Ω̂(x) −

Ω(x)∥ = Op(ch+h
2) uniformly in x ∈ X1 since the inverse of Λ

′
Z̈Ẍ

(x)ΛZ̈Ẍ(x) is uniformly

bounded in x ∈ X1. Then, the desired result is obtained by combining this with (C.7).

To study the last part, we recall that B̂(x) can be decomposed into B̃1(x), B̃2(x) and

RB(x), each of which is defined in the proof of Lemma C.2. We then let

N−1
∑
i

bi1(x) = N−1
∑
i

h

(
Xi1 − x

h

)
X̃i2ι

′
1M

−1D−1X̃i1(x)κh(Xi1 − x)f−1
X1

(x),

N−1
∑
i

bi2(x) = N−1
∑
i

h2
(
Xi1 − x

h

)2

X̃i2ι
′
1M

−1D−1X̃i1(x)κh(Xi1 − x)f−1
X1

(x).

Because of the uniform boundedness conditions in Assumptions C.1.(b), C.1.(c) and

C.1.(f) and the uniform convergence result in Lemma A.1 in Fan and Huang (2005), we

find that

N−1
∑
i

(
Xi1 − x

h

)
X̃i2X̃

′
i1D

−1κh(Xi1 − x)

= vec
(
ΛZ̈Ẍ(x)

)
ι′1M1fX1(x)

+ hfX1(x)
(
cf (x)vec

(
ΛZ̈Ẍ(x)

)
ι′1M1 + vec

(
Λ

(1)

Z̈Ẍ
(x)
)
ι′1M2

)
+Op(ch + h2),

uniformly in x ∈ X1. By using similar arguments in proving (C.20) and (C.21), we have

ι′1M1M
−1ι1 = 0 and thus N−1

∑
i bi1(x) satisfies the following:

N−1
∑
i

bi1(x) = h2vec
(
Λ

(1)

Z̈Ẍ
(x)
)
ι′1M2M

−1ι1+Op(h(ch+h
2)) = Op(hch+h

2). (C.25)

Similarly, the following holds uniformly in x ∈ X1:

N−1
∑
i

(
Xi1 − x

h

)2

X̃i2X̃
′
i1D

−1κh(Xi1−x) = vec
(
ΛZ̈Ẍ(x)

)
ι′1M2fX1(x)+Op(ch+h),

from which it is deduced that

N−1
∑
i

bi2(x) = h2vec
(
ΛZ̈Ẍ(x)

)
ι′1M2M

−1ι1+Op(h
2(ch+h)) = Op(h

2ch+h
2). (C.26)

Then, the followings are deduced from Assumption C.1.(c), (C.6), (C.25), and (C.26):

B̃1(x) = (θ
(1)
1 (x)⊗ IdZ̈ )

′N−1
∑
i

bi1(x) + op(hch + h2) = Op(hch + h2), (C.27)

B̃2(x) = (θ
(2)
1 (x)/2⊗ IdZ̈ )

′N−1
∑
i

bi2(x) + op(h
2ch + h2) = Op(h

2ch + h2), (C.28)
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uniformly in X1. Using similar derivations, one can show that RB(.) = op(hch+ h2). By

combining these results, the last part of the lemma is obtained.

Since B̂a(x) = B̂a,1(x)+ B̂a,2(x), results in (C.12) and (C.13) can be proven by using

Lemma A.1 in Fan and Huang (2005). Specifically, we have

[B̂a(x)]1:dẌ = N−1
∑
i

κh(Xi1 − x)Z̈i2Ẍ
′
i2(θ2(Xi1)− θ2(x)− θ

(1)
2 (x)(Xi1 − x))

+ hN−1
∑
i

κh(Xi1 − x)Z̈i2Xi2β
(1)
2 (x)

Xi1 − x

h

= h2E

[
κh(Xi1 − x)Z̈i2Ẍ

′
i2θ

(2)
2 (ξi)

(
Xi1 − x

h

)2
]
+Op(hch),

where ξi ∈ [Xi1, x] for each i. Then the desired result follows from the uniform bound-

edness of θ
(2)
2 (.) and ΛZ̈Ẍ(.). Similarly, the last dḦ rows of B̂a(x) satisfy that

[B̂a(x)](dẌ+1):(dẌ+dḦ)

= h2E

[
κh(Xi1 − x)Ḧi2Ẍ

′
i2θ

(2)
2 (ξi)

(
Xi1 − x

h

)3
]

+ hE

[
κh(Xi1 − x)Ḧi2Xi2β

(1)
2 (x)

(
Xi1 − x

h

)2
]
+Op(hch)

= Op(hch + h), (C.29)

where the last last follows from that E
[
κh(Xi1 − x)Ḧi2Xi2(Xi1 − x)2/h2

]
= µ2E[Ḧi2Xi2|Xi1 =

x] +O(h). This concludes the proof.

Appendix D: Proofs of Theorems and Propositions

Proof of equality (3.2)

The first equality in equation (3.2) holds because

E
[
ωt(Zit)

(
Yit −

(
βt(x)Xit +H ′

itγ̃t(x)
))

|Xi(t−1) = x
]

=E
[
ωt(Zit)

(
εit −H ′

it(γ̃t(x)− γt(x))
)
|Xi(t−1) = x

]
=E

[
ωt(Zit)εit|Xi(t−1) = x

]
− E

[
ω(Zit)E[L[εit|Xi(t−1) = x, H̃it]|Zit, Xi(t−1) = x]|Xi(t−1) = x

]
=E

[
ωt(Zit)εit|Xi(t−1) = x

]
− E

[
ωt(Zit)E[L[εit|Xi(t−1) = x, H̃it]|Xi(t−1) = x]|Xi(t−1) = x

]
,
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where the first two equalities hold respectively from the outcome equation in (2.1) and by

the law of iterated expectations. The third equality holds because E[H̃it|Xi(t−1), Zit] =

E[H̃it|Xi(t−1)] by Assumption 3.2 while the fourth holds because E[L[εit|Xi(t−1) = x, H̃i]|Xi(t−1) =

x] = E[εit|Xi(t−1) = x] by the definition of linear projection. To see this, one just

needs to show by block matrix inversion that E[L[Y |X]] = E[Y ], where L[Y |X] =

(1 X ′)(E[(1 X ′)′(1 X ′)])−1(E[(1 X ′)′Y ]) for any scalar random variable Y and random

vector X.

The second equality in equation (3.2) is explained in the main text.

Proof of Theorem 4.1

We prove the theorem without loss of generality with an identity GMM weighting

matrix.

First of all, the augmented local GMM estimator θ̂a2 satisfies that

θ̂a2(x)− θa2(x) = (IdẌ 0dẌ ,dḦ )
(
θ̂a2(x)− θa2(x)

)
= (IdẌ 0dẌ ,dḦ )Ω̂

′
a(x)

(
Λ̂Z̈aY

(x)− Λ̂Z̈aẌa
(x)θa2(x)

)
, (D.1)

By (C.3), we know that

(IdẌ 0dẌ ,dḦ )Ω̂
′
a(x) =

(
f−1
X1

(x)Ω′(x) 0dẌ ,dḦ

)
+ op(1). (D.2)

Meanwhile, the first dẌ elements of Λ̂Z̈aY
(x)− Λ̂Z̈aẌa

(x)θa2(x) satisfies that

√
Nh[Λ̂Z̈aY

(x)− Λ̂Z̈aẌa
(x)θa2(x)][1:dẌ ] =

√
Nhh2µ2Ba(x)+

√
Nh[Ψa(x)][1:dẌ ]+op(1).

By Lyapunov’s central limit theorem, for each x ∈ X1,

√
Nh[Ψa(x)]1:dẌ →d N (0, f2X1

(x)Σ(x)). (D.3)

Since
√
Nh[ΛZ̈aY

−ΛZ̈aẌa
θa2(x)][(dẌ+1):(dẌ+dḦ)] = Op(1), we have that

√
Nh(θ̂a2(x)− θ2(x)− f−1

X1
h2µ2Ω

′(x)Ba(x)) = f−1
X1

(x)Ω′(x)[Ψa(x)][1:dẌ ] + op(1)

→d N (0,Ω′−1(x)Σ(x)Ω(x)).

Next, we focus on the alternative non-augmented estimators θ̂2,0(x) and θ̂2,1(x).

For both ℓ = 0, 1, θ2(x) = Ω̂′(x)Λ̂Z̈Ẍ(x)θ2(x). Since Λ̂Z̈Y (x) = N−1
∑

i κh(Xi1 −
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x)Z̈i2Ẍ
′
i2θ2(Xi1)X̃

′
i1(x)M̂

−1(x)ι1 + N−1
∑

i κh(Xi1 − x)Z̈i2ε̃i2X̃
′
i1(x)M̂

−1(x)ι1. The dif-

ference between θ̂2(x) and θ2(x) can be written as:

θ̂2,ℓ(x)− θ2(x) = Ω̂′(x)B̂(x) + Ω̂′(x)Ψ̂(x). (D.4)

From (C.2), we have

Ω̂(x)−Ω(x) = Op((Nh)
−1/2) + op(hℓ), (D.5)

where Ω(x) = ΛZ̈Ẍ(x)
(
Λ′
Z̈Ẍ

(x)ΛZ̈Ẍ(x)
)−1

as is defined in Theorem 4.1.

Next, rewrite Ψ̂(x) as follows.

Ψ̂(x) =
(
ι′1(D

−1M̂D−1)−1 ⊗ IdZ̈

)
N−1

∑
i

ε̃i2κh(Xi1 − x)(D−1X̃i1(x)⊗ IdZ̈ )Z̈i2

≡
(
ι′1(D

−1M̂D−1)−1 ⊗ IdZ̈

)
N−1

∑
i

φi(x),

where φi(x) is a dZ̈ × dẌ dimensional vector. Note that

(ι′1(MfX1(x))
−1 ⊗ IZ̈)V(

√
hφi(x))((MfX1(x))

−1ι1 ⊗ IZ̈)

= f−2
X1

(x)E
[
hκ2h(Xi1 − x)ι′1M

−1D−1X̃i1(x)X̃
′
i1(x)D

−1M−1ι1E[ε̃2i2Z̈i2Z̈ ′
i2|Xi1]

]
= f−1

X1
(x)E[ε̃2i2Z̈i2Z̈ ′

i2|Xi1 = x]ι′1M
−1MκM

−1ι1 + o(1), (D.6)

where Mκ is a (ℓ + 1) × (ℓ + 1) matrix whose (i, j)-th component is νi+j−2. Note that

ι′1M
−1MκM

−1ι1 = ν0 for both ℓ = 0, 1.

Then, because of (D.6), the convergence of D−1M̂D−1 in (C.1), the Cramér-Wold

device, the Lyapunov’s central limit theorem, and Slutsky’s theorem, we have the weak

convergence result that

√
NhΨ̂(x) →d N (0,Σ(x)) .

Together with (D.4) and (D.5), the weak convergence result of the theorem is proven.

Proof of Proposition 4.1

The point-wise consistency of Ω̂(x) has been established in (D.5). In this proof, we
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focus on the consistency of Σ̂(x). Let f̂X1(x) be a consistent estimator of fX1(x). Then,

Σ̂(x) = f̂−2
X1

(x)
h

N

∑
i

ε̃2i2Z̈i2Z̈
′
i2κ

2
h(Xi1 − x) +RΣ(x)

= f−2
X1

(x)E[ε̃2i2Z̈i2Z̈ ′
i2hκ

2
h(Xi1 − x) +RΣ(x) + op(1)

= f−2
X1

(x)

∫
V(ε̃i2Z̈i2|Xi1 = x+ uh)fX1(x+ uh)κ2(u)du+RΣ(x) + op(1)

= f−1
X1

(x)V(ε̃i2Z̈i2|Xi1 = x)

∫
κ2(u)du+RΣ(x) + op(1)

= Σ(x) +RΣ(x) + op(1), (D.7)

where RΣ(x) is the sum of two terms, RΣ,1(x) and RΣ,2(x), defined by

RΣ,1(x) :=
h

N

∑
i

(
Ẍ ′
i2(θ̂2(Xi1)− θ2(Xi1))

)2
Z̈i2Z̈

′
i2κ

2
h(Xi1 − x),

RΣ,2(x) :=
2h

N

∑
i

(
ε̃i2Ẍ

′
i2(θ̂2(Xi1)− θ2(Xi1))

)
Z̈i2Z̈

′
i2κ

2
h(Xi1 − x).

The second and third equalities of (D.7) are obtained from the standard arguments

on the point-wise consistency of the kernel estimator and kernel estimation derivations.

The fourth equality is obtained from Assumptions C.1.(b) and C.1.(f). The rest of the

proof then focuses on showing that RΣ(x) is op(1).

The first remainder RΣ,1(x) is bounded above as follows.

∥RΣ,1(x)∥ ≤ 2N−1
∑
i

∥Ẍi2∥2∥Z̈i2∥2∥θ̂2(Xi1)− θ2(Xi1)∥2hκ2h(Xi1 − x)

≤ sup
x∈X1

∥θ̂2(x)− θ2(x)∥2N−1
∑
i

∥Ẍi2∥2∥Z̈i2∥2hκ2h(Xi1 − x).

Then, because of the results in (D.4), (D.5), and (C.8), and Lemma C.3, we find that

sup
x∈X1

∥θ̂2(x)− θ2(x)∥+ op(1) ≤ sup
x∈X1

∥Ω̂(x)∥ sup
x∈X1

(
∥B̂(x)∥+ ∥Ψ̂(x)∥

)
= op(1).

(D.8)

Moreover, because of the Markov’s inequality and Assumptions C.1.(a), C.1.(d), and

C.1.(f), we have that N−1
∑

i ∥Ẍi2∥2∥Z̈i2∥2hκ2h(Xi1 − x) = Op(1). Hence, by combining

these, we have uniformly in x ∈ X1

∥RΣ,1(x)∥ = op(1). (D.9)
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By using similar arguments, we find that uniformly in x ∈ X1,

∥RΣ,2(x)∥ ≤ op(1)N
−1
s

∑
i:Xi1∈X1

∥ε̃i2∥∥Ẍi2∥∥Z̈i2∥2hκ2h(Xi1 − x) = op(1). (D.10)

Thus, the desired result is given from (D.5), (D.7), (D.9) and (D.10).

Proof of Theorem 4.2

Unless otherwise specified, all summations in the proof over i are with respect to

Xi1 ∈ X ∗
1 , while all summations over j are with respect to the full sample, or j = 1, ..., N .

Let ϑ̃2 = Ns
−1∑

i:Xi1∈X ∗
1
θ2(Xi1) and p̂ = Ns/N . The estimator ϑ̂2 satisfies√

Ns(ϑ̂2 − ϑ2) =
√
Ns(ϑ̂2 − ϑ̃2) +

√
Ns(ϑ̃2 − ϑ2). (D.11)

Because ϑ̃2 − ϑ2 = N−1
s

∑
i:Xi1∈X1

(θ2(Xi1) − ϑ2) = N−1
s

∑
i(θ2(Xi1) − E[θ2(Xi1)|Xi1 ∈

X1]), and by the CLT, we have that the second summand satisfies√
Ns(ϑ̃2 − ϑ2) →d N(0,V[θ2(Xi1)|Xi1 ∈ X ∗

1 ])
d
= N(0,Σ∗

2). (D.12)

Then, we focus on the first summand in (D.11). Because of (C.5) and (C.7) in Lemma C.3,

we find that√
Ns(ϑ̂2 − ϑ̃2) = N−1/2

s

∑
i

(IdẌ 0dḦ )(θ̂
a
2(Xi1;h)− θa2(Xi1))

= N−1/2
s

∑
i

f−1
X1

(Xi1)
(
Ω′(Xi1) 0dḦ

)
Ψa(Xi1;h)

+N−1/2
s

∑
i

(
Ω̂a(Xi1;h)− f−1

X1
(Xi1)(Ω

′(Xi1) 0dḦ )
)
Ψa(Xi1;h)

+N−1/2
s

∑
i

(
Ω̂a(Xi1;h)− f−1

X1
(Xi1)(Ω

′(Xi1) 0dḦ )
)
B̂a(Xi1;h)

+N−1/2
s

∑
i

f−1
X1

(Xi1)Ω
′(Xi1)[B̂a(Xi1;h)][1:dẌ ,.]

= N−1/2
s

∑
i

f−1
X1

(Xi1)Ω
′(Xi1) [Ψa(Xi1;h)][1:dẌ ] + op(1),

= N−1N−1/2
s

∑
j

∑
i ̸=j

f−1
X1

(Xi1)κh(Xi1 −Xj1)Ω
′(Xi1)Z̈j2ε̃j2 + op(1).

= (Ns/N)1/2 ·N−1/2
N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 + op(1), (D.13)
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where ζ(Xj1) = N−1
s

∑
i ̸=j f

−1
X1

(Xi1)κh(Xi1 −Xj1)Ω
′(Xi1). The third and fourth equali-

ties follow from Lemma C.3 and that N−1/2
∑

i f
−1
X1

(Xi1)Ω
′(Xi1)Z̈i2ε̃i2 = Op(1), because

of Markov’s inequality and the independence of εi2|(Xi1, Z̈i2) across i.

Let ζ(x) = E[ζ(x)|Xi1 ∈ X ∗
1 ] = E[Ω′(Xi1)κh(Xi1 − x)f−1

X1
(Xi1)|Xi1 ∈ X ∗

1 ]. It is easy

to show that ζ(x) = p−1
∫
X ∗

1
Ω′(t)κh(t − x)dt and therefore ζ(Xj1) = p−1

∫
X ∗

1
κh(t −

Xj1)Ω
′(t)dt. Since E[ζ(Xj1)ε̃j2Z̈j2] = 0 by the exclusion restriction, we know that

E[ζ(Xj1)ε̃j2Z̈j2] = 0 and E[(ζ(Xj1)− ζ(Xj1))ε̃j2Z̈j2] = 0 as well. In addition,

N−1E[∥
∑
j

(ζ(Xj1)− ζ(Xj1))ε̃j2Z̈j2∥2] ≤ E
[
∥ζ(Xj1)− ζ(Xj1)∥2E[ε̃2j2∥Z̈j2∥2|Xj1]

]
≤ O(1)E[∥ζ(Xj1)− ζ(Xj1)∥2] = O((Nh)−1). (D.14)

Then, by the Markov’s inequality, we have

N−1/2
N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 −N−1/2
N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 = op(1). (D.15)

Combining this with (D.13), we have√
Ns(ϑ̂2 − ϑ̃2) = (Ns/N)1/2 ·N−1/2

N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 + op(1). (D.16)

with E[ζ(Xj1)ε̃j2Z̈j2] = 0 and

E[ζ(Xj1)ε̃
2
j2Z̈j2Z̈

′
j2ζ

′
(Xj1)]

= p−2

∫ ∫
X ∗

1

∫
X ∗

1

κh(t−Xj1)κh(t̃−Xj1)Ω
′(t)V(ε̃j2Z̈j2|Xj1)Ω(t̃)dtdt̃dFX1(Xj1)

= p−2

∫ ∫
κ(u)κ(u− s)u(u− s)′duds

×
∫
X ∗

1

Ω′(w)V(ε̃j2Z̈j2|Xj1 = w)Ω(w)dFX1(w) + o(1)

= p−1Σ∗
1 + o(1).

Moreover, we note that, because ζ(.) is uniformly bounded,

E[∥ζ(Xj1)∥2+δ∥εj2Z̈j2∥2+δ] ≤ O(1)E[∥ζ(Xj1)∥2+δ] = O(1),

and by combining it with the boundedness of the variance of ζ(Xj1)ε̃j2Z̈j2, one can show

that the Lyapunov’s condition holds. Therefore, the following is obtained by applying

the Lyapunov CLT to (D.16) and Ns/N → p;

(Ns/N)1/2 ·N−1/2
∑
j

ζ(Xj1)ε̃j2Z̈j2 →d N(0,Σ∗
1) (D.17)
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Then, the desired result follows from (D.12) and (D.17) and the fact that ϑ̃2 − ϑ2 is a

function of Xi1 only and thus E[(ϑ̃2 − ϑ2)
′ζ(Xi1)Z̈i2ε̃i2] = 0.

We then focus on θ̂2,ℓ. We notice that√
Ns(ϑ̂2,ℓ − ϑ2) =

√
Ns(ϑ̂2,ℓ − ϑ̃2) +

√
Ns(ϑ̃2 − ϑ2). (D.18)

For notational convenience, we for the moment let the scalar-valued random variable

ςℓ(Xi1, Xj1) be defined as follows.

ςℓ(Xi1, Xj1) = κh(Xj1 −Xi1)f
−1
X1

(Xi1) · X̃ ′
j1(Xi1)D

−1M−1ι1.

In our case of ℓ = 0, 1, the random variable ςℓ(Xi1, Xj1) reduces to κh(Xi1−Xj1)f
−1
X1

(Xi1)

for any i and j, because ι′1M
−1D−1X̃j1(.) = 1 for any j.

Then, the following holds because of results in Lemma C.3:√
Ns(ϑ̂2,ℓ − ϑ̃2) =N

−1/2
s

∑
i

(
θ̂2,ℓ(Xi1)− θ2(Xi1)

)
=N−1/2

s

∑
i

(
Ω̂′(Xi1)B̂

′(Xi1) + Ω̂′(Xi1)Ψ̂
′(Xi1)

)
=N−1/2

s

∑
i

(
Ω̂′(Xi1)Ψ̂

′(Xi1)
)
+Op(

√
N(hch + h2))

=N−1/2
s

∑
i

Ω′(Xi1)Ψ(Xi1)

+N−1/2
s

∑
i

(Ω̂′(x)−Ω′(x))Ψ(x)

+N−1/2
s

∑
i

Ω̂′(Xi1)(Ψ̂(x)−Ψ(x)) +Op(
√
N(hch + h2))

=N−1/2
s

∑
i

Ω′(Xi1)Ψ(Xi1) +Op(
√
N(ch + h)2)

=N−1N−1/2
s

∑
j

∑
i

ε̃j2Ω(Xi1)
′Z̈j2ςℓ(Xi1, Xj1) + op(1)

=N−1N−1/2
s

∑
j

∑
i ̸=j

ε̃j2Ω(Xi1)
′Z̈j2ςℓ(Xi1, Xj1) + op(1).

The second last equality holds from
√
N(ch + h)2 = o(1) under the rate condition in

Assumption C.1 and the additional condition Nh4 = o(1) stated in the theorem. The
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last equality holds because

N−1N−1/2
s

N∑
j=1

Ω′(Xj1)Z̈j2ε̃j2ςℓ(Xj1, Xj1)

≤ sup
x∈X1

∥∥f−1
X1

(x)
∥∥ sup
x∈X1

∥∥Ω′(Xj1)
∥∥ι′1M−1ι1κh(0)N

−1N−1/2
s

N∑
j=1

Z̈j2ε̃i2 = op(1).

Let ζℓ(Xj1) = N−1
s

∑
i:i ̸=j Ω

′(Xi1)ςℓ(Xi1, Xj1). For ℓ = 0, 1, we have E[ζℓ(x)|Xi1 ∈ X ∗
1 ] =

E[Ω′(Xi1)κh(Xi1 − x)f−1
X1

(Xi1)X̃j1(Xi1)
′D−1M−1ι1|Xi1 ∈ X ∗

1 ] = E[Ω′(Xi1)κh(Xi1 −

x)f−1
X1

(Xi1)|Xi1 ∈ X ∗
1 ] = ζ(x). Then, by using similar arguments in (D.14) and (D.15),

we have√
Ns(ϑ̂2,ℓ − ϑ̃2) = (Ns/N)1/2 ·N−1/2

N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 + op(1). (D.19)

Therefore, the desired result for the alternative estimator is given as a consequence of

(D.12) and (D.17).

Proof of Proposition 4.2

The suggested estimator of Σ∗
1 is as follows,

Σ̂∗
1 = p̂ ·N−1

∑
j

ε̂2j2ζ̂(Xj1)Z̈j2Z̈
′
j2ζ̂

′(Xj1), (D.20)

where ζ̂(x) = N−1
s

∑
i:Xi1∈X1

f̂−1
X1

(Xi1)κh(Xi1 − x)Ω̂′(Xi1) and ε̂i2 = ε̃i2 − Ẍ ′
i2(θ̂2(Xi1)−

θ2(Xi1)). Then, because of (C.6) in Lemma C.3, (D.5), and the fact that ι′1M
−1X̃j1(.)

reduces to 1 for all j the following holds uniformly in x ∈ X1:

∥ζ̂(x)− ζ(x)∥ ≤ Op(1) sup
x̃∈X ∗

1

(
|f̂−1
X1

(x̃)− f−1
X1

(x̃)|+ ∥Ω̂(x̃)−Ω(x̃)∥
)
= op(1). (D.21)

In addition, because of Lemma A.1 in Fan and Huang (2005), ζ(.) satisfies that

sup
x∈X1

∥ζ(x)− ζ(x)∥ = Op(ch), (D.22)

The uniform convergence results in (D.21) and (D.22) imply that

sup
x∈X1

∥ζ̂(x)− ζ(x)∥ = op(1). (D.23)

We for the moment define Σ̃∗
1 as follows.

Σ̃∗
1 = p̂ ·N−1

∑
j

ζ(Xj1)ε̃
2
j2Z̈j2Z̈

′
j2ζ

′
(Xj1).
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Then, by the LLN for the i.i.d. data and the probability limit of p̂, we have

Σ̃∗
1 →p Σ

∗
1. (D.24)

Moreover, because of (D.8), (D.23), (D.24), Assumption C.1.(c), the uniform bounded-

ness of ζ(.), and N−1
∑

j ∥Ẍj2∥2∥Z̈j2∥2 = Op(1) (Assumption C.1.(f)), we find that

∥Σ̂∗
1 − Σ̃∗

1∥ ≤ Op(1) sup
x∈X1

(
∥ζ̂(x)− ζ(x)∥+ ∥θ̂2(x)− θ2(x)∥

)
= op(1). (D.25)

Therefore, the consistency of Σ̂∗
1 can be obtained from (D.24) and (D.25).

The suggested estimator of Σ∗
2 is given by

Σ̂∗
2 = N−1

s

∑
i:Xi1∈X1

(θ̂2(Xi1)− ϑ̂2)(θ̂2(Xi1)− ϑ̂2)
′. (D.26)

Let Σ̃∗
2 be defined by

Σ̃∗
2 = N−1

s

∑
i:Xi1∈X1

(θ2(Xi1)− ϑ2)(θ2(Xi1)− ϑ2)
′, (D.27)

and then because of the LLN, it satisfies that

Σ̃∗
2 −Σ∗

2 = op(1). (D.28)

Note that θ̂2(.) − ϑ̂2 = θ̂2(.) − θ2(.) + θ2(.) − ϑ2 + ϑ2 − ϑ̂2 and because of the uniform

boundedness of θ2(.), (D.8) and Theorem 4.2, we find that

∥Σ̂∗
2 − Σ̃∗

2∥ ≤ Op(1)

(
∥ϑ̂2 − ϑ2∥+ sup

x∈X ∗
1

∥θ̂2(x)− θ2(x)∥

)
= op(1). (D.29)

Then the consistency of Σ̂∗
2 can be established by using (D.28) and (D.29).
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