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Abstract. Quantifying the impact of regulatory policies on social welfare generally re-

quires the identification of counterfactual distributions. Many of these policies (e.g. mini-

mum wages or minimum working time) generate mass points and/or discontinuities in the

outcome distribution. Existing approaches in the difference-in-difference literature cannot

accommodate these discontinuities while accounting for selection on unobservables and

non-stationary outcome distributions. We provide a unifying partial identification result

that can account for these features. Our main identifying assumption is the stability of

the dependence (copula) between the distribution of the untreated potential outcome and

group membership (treatment assignment) across time. Exploiting this copula stability

assumption allows us to provide an identification result that is invariant to monotonic

transformations. We provide sharp bounds on the counterfactual distribution of the treat-

ment group suitable for any outcome, whether discrete, continuous, or mixed. Our bounds

collapse to the point-identification result in Athey and Imbens (2006) for continuous out-

comes with strictly increasing distribution functions. We illustrate our approach and the

informativeness of our bounds by analyzing the impact of an increase in the legal mini-

mum wage using data from a recent minimum wage study (Cengiz, Dube, Lindner, and

Zipperer, 2019).
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1. Introduction

Government’s regulatory role and its impact on social welfare has been a critical

question for economists. These regulatory policies often restrict the budget or choice

sets for certain agents in the market by imposing floors or quotas, such as minimum

wages, minimum/maximum working time, wage floors for different occupation groups,

etc. Those types of policies tend to induce behavioral responses that can generate

mass points in the outcome of interest. For instance, an important question in the

labor economics literature is the effect of an increase or introduction of minimum

wages on low-wage jobs or overall employment, see for instance Card and Krueger

(1994), Neumark and Wascher (2008), Cengiz, Dube, Lindner, and Zipperer (2019),

among many others. The figure below (taken from Cengiz, Dube, Lindner, and

Zipperer (2019)) illustrates that an increase in the minimum wage will shift jobs

that were previously paying below the minimum wage MW , and then will create

“excess jobs” at and slightly above the minimum wage. This figure also shows the

heterogeneous effect of such a policy, it is expected to only affect the wage of low-wage

workers and not have an effect on the upper tail of the distribution. In sum, those

types of policies have two main features. First, the potential outcomes of interest

are likely to exhibit some mass points. Second, the causal effect of the policy is

expected to affect only a part of the distribution of the outcomes of interest. As a

result, to adequately analyze the impact of these policies, a distributional treatment

effect analysis is key, as in Cengiz, Dube, Lindner, and Zipperer (2019) for instance;

Figure 1. Figure 1 from Cengiz, Dube, Lindner, and Zipperer (2019)
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see, also, Almond, Hoynes, and Schanzenbach (2011); Assunção, McMillan, Murphy,

and Souza-Rodrigues (2022). Furthermore, measuring the impact of such policies on

social welfare requires recovering the counterfactual distribution of the outcome of

interest.

While these types of policies are paramount in economics, the existing economet-

rics methods are not necessarily adequate to recover distributional causal effects in

these settings. In the presence of data before and after a new policy, one of the

most widely used techniques to assess its impact is the difference-in-differences (DiD)

method. Its main drawbacks, however, are two-fold: (1) it does not identify the coun-

terfactual distribution, (2) it is not invariant to monotonic transformations. While

there are several methods extending DiD to identify the counterfactual distribution

(Athey and Imbens, 2006; Bonhomme and Sauder, 2011; Callaway and Li, 2019;

Havnes and Mogstad, 2015), to the best of our knowledge, the distributional DiD and

changes-in-changes (CiC) are the only two approaches that are invariant to monotonic

transformations.1

Roth and Sant’Anna (2021) show that distributional DiD requires that the dis-

tribution of the untreated potential outcome is independent of policy adoption, is

stationary across time (within each group), or consists of a mixture of two subpop-

ulations each obeying one of the two restrictions. Such conditions are unlikely to

be valid for the policy evaluation questions we are interested in. Indeed, the in-

dependence assumption (random assignment) is implausible in our context since the

decision to implement a new minimum wage policy is a response to the unsatisfactory

features of the pre-policy outcome distribution, such as large wage inequalities, high

proportion of workers under poverty, etc. When the policy is not randomly assigned,

the validity of the distributional DiD essentially rests on the stationarity assumption,

which is restrictive in many practical settings.2

While the CiC approach introduced in the seminal work by Athey and Imbens

(2006) can accommodate endogenous policy (treatment) assignment as well as time-

varying potential outcome distributions, their identification result does not apply to

1The distributional DiD method relies on a parallel trends assumption in the cdfs as opposed to the
expectations (e.g. Havnes and Mogstad, 2015; Roth and Sant’Anna, 2021).
2The stationarity assumption can be tested using the control group. Roth and Sant’Anna (2021)
provide a sharp specification test of the validity of the distributional DiD assumption in general.
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the case where the potential outcomes exhibit some mass points (mixed distributions),

as in Figure 1.3 In fact, Athey and Imbens (2006) introduce the CiC approach for

either continuous or discrete outcomes that are monotonic (time-varying) functions

of a scalar unobservable with a time-invariant distribution across time. In sum, the

CiC approach introduced in Athey and Imbens (2006) cannot be applied to evaluate

the policies described above.

The current paper provides an alternative, unifying identification result that applies

to any type of outcome distribution, is invariant to monotonic transformations, allows

for endogeneity of the policy assignment, and does not restrict the evolution of the

marginal distribution, nor treatment effect heterogeneity. Our identification result

exploits the stability of the dependence (copula) between treatment assignment and

the untreated potential outcome across time without imposing restrictions on the

structural function that generates the potential outcomes. Exploiting this identifying

assumption, we provide a unifying partial identification result for the counterfactual

distribution of the treatment group.

Our copula stability (CS) bounds apply to any type of outcome distribution,

whether it is continuous, mixed, or discrete. Our bounds shrink to the point-identification

result in Athey and Imbens (2006) for outcomes with continuous, strictly increasing

distributions. Indeed, we show that in this case our copula stability assumption is

equivalent to the CiC conditions. For discrete outcomes, we show that our copula

stability assumption can be compatible with multi-dimensional unobserved hetero-

geneity, whereas the CiC bounds for discrete outcomes require a scalar unobservable.

For mixed outcomes, we demonstrate that a näıve implementation of the CiC ap-

proach may lead to an estimand that does not coincide with the true counterfactual,

whereas our CS bounds will include it.4

3Mass points are common for a wide range of economic outcomes resulting from censoring (DellaV-
igna and Gentzkow, 2019; Dustmann, Lindner, Schönberg, Umkehrer, and vom Berge, 2022) or
bunching (Cooper, Craig, Gaynor, and Van Reenen, 2019; Harasztosi and Lindner, 2019; Derenon-
court and Montialoux, 2020; Basri, Felix, Hanna, and Olken, 2021; Goncalves and Mello, 2021;
Kostøl and Myhre, 2021; Boissel and Matray, 2022).
4We refer to this implementation as näıve since Athey and Imbens (2006) did not provide identifica-
tion results for mixed outcomes. Nonetheless, an empirical researcher might ignore the mixed-nature
of this outcome and implement their identification result.
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Since the motivation behind policies, such as increases in the legal minimum wage,

is often to reduce inequality and/or target a specific part of the outcome distribu-

tion, we introduce a broad class of social welfare treatment effect parameters that

can accommodate the policymaker’s objective. While this class includes the average

treatment effect on the treated (ATT) as a special case, the ATT corresponds to a

social welfare function that is inequality-neutral and gives equal weight to all indi-

viduals in the population. As a result, if a policymaker is averse to inequality, then

the ATT would be an inadequate causal parameter to judge the policy’s effectiveness.

In general, the social welfare function adequate to evaluate a specific regulatory pol-

icy can be highly context-specific and may depend on the policymaker’s preference

and/or objective.5 We therefore introduce a broad class of treatment effect parame-

ters that take into account the policy objectives. This broad class specifically includes

the class of generalized Gini social welfare functions (e.g. Mehran, 1976; Weymark,

1981). These social welfare functions can take into account measures of inequality

by putting higher weight on individuals with lower-ranked outcomes. In addition,

we include a class of parameters that can capture the welfare of individuals at the

lower tail or a specific interquantile range of the distribution. Bounds on these so-

cial welfare treatment effect parameters can be easily computed using our bounds

on the counterfactual distribution. We illustrate the usefulness of this broad class of

parameters and compare it to the ATT in the context of our empirical application

examining the impact of a minimum wage policy (Section 3).

Next, we examine the connection between our main identifying assumption and

the parallel trends assumption required by DiD. The parallel trends assumption can

be equivalently stated as a covariance stability assumption. It is specifically a time

invariance assumption on the covariance between treatment assignment and the un-

treated potential outcome, whereas our assumption maintains the stability of the

copula between these two variables. As a result, there are several differences between

our copula stability assumption and covariance stability (parallel trends). First, the

parallel trends assumption restricts the joint variability of treatment assignment and

the untreated potential outcome over time, whereas our copula stability assumption

5Please see the discussion in Berger, Herkenhoff, and Mongey (2022) which illustrates how the
quantitative analysis of the effect of the minimum wage could highly differ depending on the social
welfare weights, which are usually unknown to the researcher.
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only restricts their dependence structure. Second, while the parallel trends assump-

tion restricts the evolution of the marginal distribution of the untreated potential

outcome across time, copula stability does not restrict the evolution of the marginal

distribution, nor treatment effect heterogeneity. Last but not least, parallel trends is

not invariant to monotonic transformations except under strong conditions on het-

erogeneity (Roth and Sant’Anna, 2021). These conditions specifically rule out the

existence of a subpopulation that selects into treatment based on unobservables and

exhibits changes in its potential outcome distribution. By contrast, our copula sta-

bility condition does not rule out such a subpopulation.

Before we proceed, a comparison between our identifying assumption and some of

the related approaches in the literature is warranted. Bonhomme and Sauder (2011)

exploit a separable model of the potential outcome to identify the entire counterfac-

tual distribution of the treatment group in a DiD design. By relying on restrictions

on the outcome model, it is therefore similar in spirit to the identification approach

in Athey and Imbens (2006). Botosaru and Muris (2023) propose identification of

counterfactual parameters for a class of semiparametric panel models, whereas our

approach can accommodate both repeated cross-sections and panel data and is fully

nonparametric. Callaway and Li (2019) also provide a fully nonparametric identifica-

tion result exploiting a copula stability restriction on different objects than the ones

used in this paper. They require the copula between changes and levels of the un-

treated potential outcome to be invariant across time for the treatment group, while

our copula stability assumption does not restrict the evolution of the marginal distri-

bution of the untreated potential outcome (Remark 1). Furthermore, our approach

can be applied to repeated cross-sections or panel data and only requires two time

periods, whereas Callaway and Li (2019) require at least three periods of panel data.

We organize the rest of the paper as follows. Section 2 introduces the analytical

framework, presents our main identification result, introduces the class of social wel-

fare treatment effect parameters and discusses the structural underpinnings of our

main identifying assumption. Section 3 provides an empirical illustration examining

the impact of minimum wage increases on the wage distribution revisiting Cengiz,

Dube, Lindner, and Zipperer (2019).
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2. Analytical Framework and Main Identification Results

Following Abadie (2005), we consider the following potential outcomes model:{
Y0 = Y00

Y1 = Y11D + Y10(1−D)
(2.1)

where Yt denotes the observed outcome at period t and Ytd denotes the potential

outcome at period t ∈ {0, 1} and treatment status d ∈ {0, 1}. In the two-group, two-

period case, D denotes both group membership and the treatment status in period

1.

We use the following shorthand notation: p ≡ P(D = 1), q = 1 − p, R ≡ R ∪
{−∞,∞}, RanH ≡ {H(y) : y ∈ R}, RanF ≡ RanF ∪ {inf RanF, supRanF}, and
DomH denotes the domain of the function H. We consider the following mappings

QT,−
X : [0, 1] → T, and QT,+

X : [0, 1] → T, where QT,−
X (u) ≡ inf{x ∈ T ∪ {∞} :

FX(x) ≥ u} for all u ∈ [0, 1], QT,+
X (u) ≡ sup{x ∈ T ∪ {−∞} : FX(x) ≤ u} for all

u ∈ [0, 1]. We call QT,+
X and QT,−

X generalized quantile functions whenever FX(.) is

a well-defined cumulative distribution function (cdf). We denote by F the space of

all well-defined cdfs. SuppX = X denotes the support of X, and Xs|d denotes the

support of Xs|D = d for d ∈ {0, 1}. Finally, we define f(x−) ≡ supz<x f(z).

2.1. Identifying Assumptions. Our main identification result relies on restrictions

imposed on the dependence structure across time. To do so, we rely on copula theory.

Copulas are functions that enable us to separate the marginal distributions from

the dependence structure of a given multivariate distribution. In our context, we

are interested in the subcopula between the untreated potential outcome and group

membership across time. Working with copulas in our case will allow us to avoid

restricting the marginal distribution of the potential outcomes across time. To fix

ideas, let us first provide a formal definition of the (sub)copula.

Definition 1 (Nelsen (2006)). A two-dimensional subcopula is a function C with the

following properties:

(1) DomC = S1 × S2, where S1 and S2 are subsets of [0, 1] containing 0 and 1;

(2) For all u, u′ ∈ S1, and v, v
′ ∈ S2 such that u ≤ u′, and v ≤ v′, we have:

C(u′, v′) + C(u, v) ≥ C(u′, v) + C(u, v′);
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(3) C(0, v) = C(u, 0) = 0 for all (u, v) ∈ S1 × S2, and C(1, v) = v, C(u, 1) = u

for all (u, v) ∈ S1 × S2.

A copula is a special case of a subcopula where S1 = S2 = [0, 1]. For a fixed v ∈ S2,

u 7→ C(u, v) is usually called the horizontal subcopula. The link between the joint

distribution and the subcopula has been established by the well-known Sklar (1959)

theorem, which provides the following lemma when applied to our context:

Lemma 1 (Sklar, 1959). There exists a unique subcopula C : RanFYtd
× {0, q, 1} →

[0, 1] such that

P(Ytd ≤ y,D = 0) = CYtd,D(FYtd
(y), q), for y ∈ [−∞,∞].

We can now state our main identification assumption as follows.

Assumption 1 (Dependence stability). We impose a stability restriction on the hor-

izontal copula at q: CY00,D(u, q) = CY10,D(u, q) for all u ∈ [0, 1].

Assumption 1 is the key assumption behind our identification approach. It requires

the dependence structure between the distribution of the untreated potential outcome

and group membership to be stable across time. One of the main advantages of using a

copula restriction is its invariance property. Indeed, for any right-continuous function

g, that is strictly increasing on Ytd, we have:6

Cg(Ytd),D(u, q) = CYtd,D(u, q), ∀u ∈ RanFYtd
.

This copula invariance property will ensure our main identification result is invariant

to any strictly monotonic transformation.

Given the wide use of parallel trends assumptions in difference-in-differences set-

tings, it is important to clarify the relationship between our copula stability assump-

tion and the parallel trends assumption. The parallel trends assumption can be

equivalently rewritten as a covariance stability assumption as we show in Appendix

D,

E[Y10 − Y00|D = 1] = E[Y10 − Y00|D = 0] ⇐⇒ Cov(Y00, D) = Cov(Y10, D). (2.2)

6See Embrechts and Hofert (2013, Proposition 4(2)) for a formal proof.
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This equivalence result provides, first, an intuition on why the parallel trends as-

sumption is not invariant to a monotonic transformation since the covariance is not

invariant to a monotonic transformation. Second, it allows us to observe that the

parallel trends assumption jointly restricts the evolution of the marginal distribution

of Yt0 across time and the dependence between Yt0 and D. Unlike the parallel trends

assumption, our copula stability assumption does not constrain the evolution of the

marginal distribution across time, yet it relies only on the stability of the horizon-

tal copula that governs the relationship between Yt0 and D. As can be seen in the

following equation, the two assumptions are non-nested in general:

Cov(Ytd, D) =

∫ [
CYtd,D

(FYtd
(y), q)− FYtd

(y)q
]
dy.

Indeed, copula stability may hold while Cov(Y10, D) ̸= Cov(Y00, D) because FY10 ̸=
FY00 ; and the covariance stability may hold while the copula stability is violated. We

illustrate this in the following example.

Example 1. Consider the following data generating process (DGP) in which the treat-

ment is received when its gain (treatment effect) is bigger than or equal to a threshold,

say 0 for simplicity. This is a simple Roy model where selection into treatment is on

the gain. 
Y0 = U0

Y1 = ηD + U1

D = 1{η ≥ 0}
(2.3)

where

(
U0

U1
η

)
∼ N(0,Σ), Σ =

 σ2
0 δσ0σ1 ρ0σ0

δσ0σ1 σ2
1 ρ1σ1

ρ0σ0 ρ1σ1 1

. In this case, we have the

following:

(a) Copula stability: ρ0 = ρ1 ⇔ Corr(η, Y00) = Corr(η, Y10),

(b) Parallel trends: ρ0σ0 = ρ1σ1 ⇔ Cov(η, Y00) = Cov(η, Y10).
7

(c) Distributional DiD: ρ0 = ρ1 and σ2
0 = σ2

1 ⇔ Y00|D = d ∼ Y10|D = d, for

d ∈ 0, 1. We relegate the proof of all of the above statements to Appendix A.4.

7We emphasize that the simplification of the parallel trends assumption heavily relies on the Gaus-
sianity of the marginal distribution. In Appendix A.5, we demonstrate how this simplification does
not extend to non-Gaussian marginals.
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As can be seen, the copula stability assumption is equivalent to ρ0 = ρ1, meaning

that the correlation between the policy effect η and Yt0 is stable over time. It does not

restrict any moment of the marginal distribution of the potential outcomes Ytd. The

parallel trends assumption, however, restricts the variances of the potential outcomes

Y00 and Y10, since it is equivalent to ρ0σ0 = ρ1σ1. The validity of the distributional

DiD in this setting is implausible, since it requires stationarity of Yt0|D = d. This

could be easily checked using the observed distribution of the control group.

Remark 1. Here, we formally compare our copula stability assumption with the one

introduced in Callaway and Li (2019). To see this, let us define ∆Yt0 = Yt0 − Y(t−1)0,

Callaway and Li (2019) require C∆Yt0,Y(t−1)0|D=1(·, ·) = C∆Y(t−1)0,Y(t−2)0|D=1(·, ·). As

can be seen, their assumption imposes a dependence stability on different objects than

ours, and it requires at least three time periods of panel data. In addition, unlike us,

their identification results require an additional independence condition between the

change in the untreated potential outcome and treatment assignment, ∆Yt0 ⊥ D.

Assumption 2 (Strictly increasing horizontal subcopula). The function u 7→ CY10,D(u, q)

is strictly increasing on [0, 1].

While Assumption 2 is less critical for our bounding approach, it allows us to

significantly refine our bounds. It is essentially a restriction on the type of dependence

between the potential outcomes and group membership. Many well-known parametric

classes of copulas satisfy this assumption, e.g. Frank, Gumbel, Joe, or Gaussian

copulas among many others. It excludes, however, extreme types of dependence

captured by the Fréchet—Hoeffding copula bounds, i.e. C(u, v) = min{u, v} and

C(u, v) = max{u + v − 1, 0}. It is worth noting that this assumption is implied by

some support conditions on the potential outcome distributions, as we show in the

following result.

Lemma 2. If Yt0|1 ⊆ Yt0|0 then u 7→ CYt0,D(u, q) is strictly increasing on RanFYt0,

for t ∈ {0, 1}

The main implication of the above lemma is that for continuous potential outcome

distributions, i.e. RanFYt0 = [0, 1], the strict monotonicity of the copula (Assumption

2) is implied by a condition on the support of Ytd, Yt0|1 ⊆ Yt0|0. That is, the support of
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the untreated potential outcome of the treatment group is included in the support of

the untreated potential outcome of the control group. The support condition imposed

in Athey and Imbens (2006) on the scalar unobservable in the CiC model implies this

support condition on the untreated potential outcome.

2.2. Main Identification Result. We next state our main identification result:

Theorem 1. Suppose that Yt0|1 ⊆ Yt0|0 for t ∈ {0, 1}, then under Assumptions 1 and

2, the bounds for the unobserved counterfactuals FY10|D=1(.) are:

lim
ỹ↓y

sup
{
FLB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
≤ FY10|D=1(y)

≤ lim
ỹ↓y

sup
{
FUB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
for all y ∈ R, where

FLB(t) = FY0|D=1

(
QR,+

Y0|D=0

(
FY1|D=0

(y)
)
−
)

FUB(t) = FY0|D=1

(
QR,−

Y0|D=0

(
FY1|D=0

(y)
))

.

The above bounds are shown to be sharp when RanFY0 is closed.8

Theorem 1 provides a general (partial identification) result on the counterfactual

distribution of the treatment group for any type of potential outcome variables (dis-

crete, continuous, or mixed). Our result neither imposes any restriction on the het-

erogeneity of potential outcomes within a period nor across periods. We specifically

do not impose restrictions on individual treatment effects, Y11 − Y10, or the evolution

of the distribution of the untreated potential outcome across time, FYt0 , t ∈ {0, 1}.
The formal proof is relegated to Appendix A. The derived bounds may look involved

since we aim to provide a general formulation that covers any type of distribution and

want to ensure that our bounds are indeed right-continuous.9 The bounds simplify

for some special cases as we will illustrate in Corollary 1 below.

8We conjecture that the sharpness statement remains valid without this closure requirement, but it
requires a more involved construction of the subcopula that rationalizes the data.
9As recognized by Athey and Imbens (2006), their upper bound in the discrete outcome case is not
necessarily a valid cdf since it may be left-continuous.
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The intuition behind our (partial) identification result is very simple and can be

summarized as follows: In the first period, we observe the joint distribution P(Y00 ≤
y,D = 0) and both marginal distributions, P(Y00 ≤ y) and q. Using the Sklar result,

we can recover the horizontal subcopula CY00,D(u, q) on RanFY00—the dependence

structure in the first period. Then, since we assume the dependence structure to be

stationary across time and we observe the joint distribution P(Y10 ≤ y,D = 0) in the

second period, we can partially recover the marginal distribution P(Y10 ≤ y). The

main reason behind the partial identification is that in the first period we recover the

subcopula CY00,D(u, q) on RanFY0 only and do not know the dependence structure

outside this range.

In the case of continuous potential outcomes, RanFY00 = [0, 1], our bounds shrink

to a point because the first period allow us to recover the entire dependence structure

that we carry out to the second period, as we show in the following corollary of

Theorem 1.

Corollary 1. Under Assumption 1, whenever Yt0|1 ⊆ Yt0|0 for t ∈ {0, 1} and the cdfs

FYt0(.), t ∈ {0, 1} are continuous and strictly increasing, we have:

FY10|D=1(y) = FY0|D=1

(
QR,−

Y0|D=0

(
FY1|D=0

(y)
))

for all y ∈ R.

Corollary 1 recovers the point-identification result obtained in Athey and Imbens

(2006). Athey and Imbens (2006) provide (partial) identification results for only

two types of potential outcomes relying on different assumptions for each of the two

cases: (i) continuous outcomes that are strictly monotonic in a scalar unobservable,

(ii) discrete outcomes that are monotonic in a scalar unobservable. By contrast,

Theorem 1 establishes a unifying identification result for any type of outcome under

consideration. In addition to the connection to our identification result, there is a

link between the CiC assumptions and our copula stability condition for continuous

outcomes with strictly increasing cdfs. We provide the details on this connection and

compare the the two identification approaches in Section 2.2.1.

Building on our unifying, partial identification result for the counterfactual distri-

bution, we provide a class of policy-relevant parameters that quantify the impact of
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policy on social welfare in the entire population, subpopulations in the lower tail of

the distribution or over any interquantile range of the distribution in Section 2.3.

2.2.1. Connection to Changes-in-changes. In this section, we elaborate on the con-

nection between our copula stability assumption and the CiC conditions in Athey

and Imbens (2006). We first show the equivalence between copula stability and the

CiC conditions for strictly increasing, continuous outcome distributions. For discrete

outcomes, we show that copula stability can be compatible with multi-dimensional

unobserved heterogeneity, whereas the CiC conditions require unobserved hetero-

geneity to be uni-dimensional. Finally, we compare our bounds on the counterfactual

distribution with the CiC bounds in a numerical mixed-outcome example mimicking

the minimum-wage empirical illustration in Section 3.

The following result demonstrates that the CiC conditions for continuous, strictly

increasing outcome distributions are equivalent to our copula stability assumption.

Claim 1. Assume the cdfs FYt0(.) for t ∈ {0, 1} are continuous and strictly increasing,

then the two following statements are equivalent:

(i) CY00,D(u, q) = CY10,D(u, q) for all u ∈ [0, 1].

(ii) There exist two strictly increasing functions ht(.), t ∈ {0, 1} and two uniformly

distributed random variables over [0, 1], U00 and U10, such that Yt0 = ht(Ut0)

and U00|D = d ∼ U10|D = d for d ∈ {0, 1}.

The proof of the claim is in the appendix. The main intuition behind it is that

for this class of distributions we can write Yt0 = QR,−
Yt0

(Ut0), where Ut0 = FYt0(Yt0) ∼
U [0, 1]. As a result, the marginal distribution of Ut0 is stable across time by construc-

tion and the stability of the copula between Ut0 and D is necessary and sufficient

for the stability of Ut0|D, which is the conditional time invariance assumption in

Athey and Imbens (2006). Its equivalence to our copula stability follows from the

invariance of the copula under strictly monotonic transformations. For other outcome

distributions, this equivalence does not hold in general. For additional discussion, see

Appendix E.

Next, we provide an example of a binary outcome determined by a multi-dimensional

vector of unobservables, violating the CiC conditions, and demonstrate how it can be

compatible with our copula stability assumption.
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Example 2 (The anti-double hurdle model). Consider the following model

Yt = 1− 1{ηtD + Ut ≤ ct, η̃tD + Ũt ≤ c̃t}, t = 0, 1, (2.4)

where (Y0, Y1, D) is an observed random vector, (η, η̃, U0, U1, Ũ0, Ũ1) is a latent random

vector, and (ct, c̃t) is a constant vector. The untreated potential outcome Yt0 is

Yt0 = 1− 1{Ut ≤ ct, Ũt ≤ c̃t}.

For instance, D could be the student loan forgiveness program, Yt could be a college

attendance decision, Ut and Ũt could respectively be father and mother’s wealth in

the absence of the program. This model assumes that an individual decides to attend

college if at least one of the parents’ wealth is above a (parent-specific) threshold,

whether they were to receive the loan forgiveness program or not.

Since the untreated potential outcome is a function of a two-dimensional (non-

scalar) unobserved heterogeneity, the Athey and Imbens (2006) CiC approach cannot

be applied. We are going to provide conditions under which our subcopula stability

assumption holds.

Suppose D = 1{V > q}, Ut, Ũt, V ∼ U[0,1], and CUt,Ũt,V
(u, ũ, v) = Ct

(
CUt,Ũt

(u, ũ), v
)

where Ct and CUt,Ũt
are two-dimensional Archimedean copulas. Define CYt0,D(u, q) ≡

Ct(u, q). Then, the stability of the copula of (Ut, Ũt, V ) implies the stability of the

copula of (Yt0, D). A proof of this statement is given in Appendix A.7.

Finally, we provide a numerical example of a mixed-outcome that mimics our min-

imum wage application in Section 3. This example demonstrates that for outcomes

with increasing, discontinuous distributions, näıve implementation of the CiC ap-

proach will yield an incorrect counterfactual for the treatment group.

Example 3. Consider a setting where both treatment and control groups have a pre-

existing threshold policy, such as a minimum wage, set at c0 in the pre-treatment

period (t = 0). In the post-treatment period (t = 1), the policy threshold increases for

the treatment group to c1.

Following the conceptual framework presented in Figure 1, we expect to find bunch-

ing at this policy threshold. Due to the presence of a threshold policy in both periods,

bunching at the relevant policy threshold is prevalent in all observed distributions as

demonstrated by Figure 2.
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Figure 2. Numerical Minimum-Wage Example: Observed distributions

Panel A. FY00|D=0 Panel B. FY10|D=0 Panel C. FY00|D=1 Panel D. FY11|D=1& FY10|D=1
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Notes: The potential outcome distributions for the treatment and control groups are given by the following
to satisfy the copula stability condition for (t, d) ∈ {(0, 0), (1, 0), (1, 1)}, FYtd|D=0(y) = 1

q
CYd,D(FYtd(y), q),

FYtd|D=1(y) = 1
p
(FYtd(y)− CYd,D(FYtd(y), q)). The marginal distribution is given by FYtd(y) = FY ∗

td
(y) +

(1−btd)(FY ∗
td
(y)−FY ∗

td
(wtd))1{y ∈ (wd, cd]} and CYd,D(u, q) = (max(u−θd+q−θd−1, 0))−1/θd is the Clayton

copula with parameter θ0 = θ1 = 0.5. We set c0 = 7, c1 = 9, w0 = w1 = 4, b00 = 0.75, b10 = 0.5, b11 = 0.5
and Y ∗

td ∼ χ2(ktd) with k00 = 9 and k10 = k11 = 7. The solid black curves are observed distributions, whereas
the dashed black line in Panel D is the counterfactual distribution, FY!0|D=1.

Figure 3. Numerical Minimum-Wage Example: CS Bounds vs. Näıve
CiC Implementation

Panel A. CS Bounds on Counterfactual Panel B. Näıve CiC Counterfactual
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Notes: In Panel A, the red solid curve is the CS lower bound (LB) and the dashed blue curve
is the CS upper bound (UB). In Panel B, the green curve is the counterfactual obtained from a
näıve implementation of the CiC approach. In both panels, the dashed black line denotes the true
counterfactual (CF) given in Figure 2.

Figure 3 presents the copula stability (CS) bounds on the counterfactual distribu-

tion in Panel A together with a näıve implementation of the CiC counterfactual which
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ignores the mass point in this example. Note that the CS bounds include the coun-

terfactual distribution, and we even have point-identification over a large portion of

the support of the outcome. The näıve CiC counterfactual overlaps with the CS up-

per bound, and therefore does not equal the true counterfactual over the part of the

support where the counterfactual is only partially identified.10

A natural question is whether the CiC bounds for discrete outcomes would yield

bounds that cover the counterfactual in this example. To do so, recall that the CiC

lower bound is given by FY0|D=1

(
Q

Y0|0,+

Y0|D=0

(
FY1|D=0(y)

))
, whereas the CiC upper bound

is given by FY0|D=1

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0(y)

))
. The only difference between the upper and

lower bounds stems from the two generalized quantiles. Since the outcome distribution

in this example is strictly increasing, despite the discontinuity, the two generalized

quantiles are equal on the entire unit interval, Q
Y0|0,+

Y0|D=0(u) = Q
Y0|0,−
Y0|D=0(u) for u ∈

[0, 1]. As a result, the CiC upper and lower bounds are equal and will yield the same

counterfactual as in Panel B in Figure 3. For additional numerical examples, see

Appendix C.

2.3. Policy-relevant parameters: Social welfare treatment effect on the

treated (SWTT). In general, when a policymaker decides to implement a new pol-

icy such as an increase in the legal minimum wage or legal minimum working time,

she expects the policy to have a specific social welfare impact. The social welfare

function used by the policymaker is not necessarily known to the researcher, however.

For instance, the policymaker may consider social welfare functions that put more

weight on specific subpopulations, such as lower-income individuals, or considers only

social welfare functions with specific properties like social welfare functions that re-

spect the Pigou-Dalton principle of transfers11 or the rank-dependent social welfare

functions introduced by Mehran (1976).12

As we will clarify below the widely used average treatment effect on the treated

(ATT) corresponds to the case where the policymaker is inequality-neutral. If the

10Note that the only potential difference between the CiC point-identified counterfactual and the
CS upper bound is that the latter is guaranteed to be right-continuous, whereas the former is not
as pointed out by Athey and Imbens (2006).
11The Pigou-Dalton principle states that a transfer of income from a higher-ranked individual to a
lower-ranked individual that does not change their ranks is always desirable.
12Please refer to Aaberge, Havnes, and Mogstad (2013) for a detailed discussion.
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policymaker is averse to inequality, however, the ATT would not be an adequate

causal parameter to measure the impact of the policy or judge its effectiveness.

For this particular reason, we propose a novel class of parameters of interest that

measure the causal effect of a particular policy in terms of a social welfare function,

SWTTω ≡ SWω(FY11|D=1)− SWω(FY10|D=1),

=

∫ 1

0

ω(τ)
(
QR,−

Y11|D=1(τ)−QR,−
Y10|D=1(τ)

)
dτ

where SWω(FX) =
∫ 1

0
ω(τ)QR,−

X (τ) denotes the social welfare function associated with

a specific distribution FX , and ω(τ) ∈ [0, 1] is a weighting function. This social wel-

fare function can be alternatively viewed as a weighted average of the outcomes of

individuals i where the weights depend on the rank of Xi, SWω =
∫
Xiω(Rank(Xi))di

(Kitagawa and Tetenov, 2021). Since the social welfare function essentially weights

different quantiles of the distribution, the choice of the functional form of the weight-

ing function relates to the inequality aversion of the policymaker and the extent

thereof. We next consider several examples of weighting functions and discuss the

properties of the social welfare functions they imply.

Before we proceed, it is important to emphasize that, while in many applications

where measuring inequality is a concern, the outcome Y is typically income or wages,

our framework allows Y to denote other outcomes as well as functions of different

outcomes, such as consumption, income and/or human capital.

2.3.1. Generalized Gini social welfare function. The class of generalized Gini social

welfare functions is the class of rank-dependent, equality-minded social welfare func-

tions which satisfy the Pigou-Dalton principle of transfers and is given by

SWΛ(FX) =

∫
Λ(FX(x))dx.

where Λ(·) : [0, 1] 7→ [0, 1] is a convex, non-increasing, and non-negative function with

boundary conditions Λ(0) = 1 and Λ(1) = 0. This class admits the equivalent repre-

sentation as a weighted sum of quantiles with weighting function ω(τ) = ∂(1−Λ(τ))
∂τ

,

SWΛ(FX) = SWω(FX) =

∫
ω(τ)QR,−

X (τ)dτ
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As a result, the class of social welfare treatment effect parameters we introduce include

this class as a special case. We proceed to present two important special cases of this

class of social welfare functions, specifically the utilitarian and Gini social welfare

functions.

Utilitarian welfare function. When ω(τ) = 1, we have SWω(FX) =
∫ 1

0
QR,−

X (τ)dτ =

E[X]. This corresponds to the additive welfare function and in this case our proposed

parameter boils down to the ATT, i.e. SWTTω = ATT . The ATT is therefore

the appropriate parameter if the policymaker weights subpopulations at different

quantiles of the distribution equally.

Gini social welfare function. When ω(τ) = 2(1 − τ), we have SWω(FX) =
∫ 1

0
2(1 −

τ)QR,−
X (τ)dτ = E[X] (1− IGini(FX)) , where IGini(FX) ≡

∫ 1
0 (2τ−1)QR,−

X (τ)dτ

E[X]
is the widely

used Gini inequality index, see Sen (1974). SWω(FX) reflects the trade-off between

the mean and (in)equality in the distribution FX . The product E[X]IGini(FX) is a

measure of the loss in social welfare due to inequality in the distribution FX . In

that case, SWTTω captures the impact of the policy using the Gini social welfare

function, see Blackorby and Donaldson (1978) and Weymark (1981). In other words,

if the policymaker implements the policy in order to reduce the level of inequality

measured by the Gini index, this parameter is the most adequate to judge the impact

of this policy.

Since SWω(FX) = E[X] (1− IGini(FX)), we can decompose the SWTTω associated

with the Gini social welfare function into a mean effect and an inequality effect as

follows

SWTTω = ATT (1− IGini(FY11|D=1
))︸ ︷︷ ︸

Mean Component (∆M )

−E[Y10|D = 1](IGini(FY11|D=1)− IGini(FY10|D=1))︸ ︷︷ ︸
Inequality Component (∆I)

. (2.5)

The first component consists of the product of the ATT and the deviation of the

Gini coefficient for the potential outcome with the treatment from a Gini coefficient

of 1, indicating a perfectly unequal distribution. Its sign is determined by the ATT,

indicating that a positive ATT increases the Gini social welfare. The sign of the
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second component is determined by the difference in the Gini coefficient between the

treated and untreated potential outcome distribution of the treatment group. Note

that a reduction in inequality measured by the Gini coefficient increases the SWTTω.

2.3.2. Second-order dominance. In many cases, when it is possible to do so, most

inequality-averse policymakers like to rank distribution functions consistently with

second-degree dominance. For instance, we say FY11|D=1 second-order dominates

FY10|D=1 if and only if:

SWTTω(u) ≡ SWω(u, FY11|D=1)− SWω(u, FY10|D=1)

=

∫ u

0

(
QR,−

Y11|D=1(τ)−QR,−
Y10|D=1(τ)

)
dτ ≥ 0,

for all u ∈ [0, 1] and holds strictly for some u. In this special case, we have ω(τ) =

1{τ ≤ u}. It is possible, however, that the observed and counterfactual distribution

cannot be ranked using this criterion. Furthermore, the policy’s objective may be

to reduce inequality in a specific part of the distribution. We therefore consider the

following quantile-specific Gini social welfare functions.

2.3.3. Quantile-specific lower tail Gini social welfare function. In the Gini social wel-

fare function discussed above, we assume that the policymaker is interested in the

inequality of the whole population. Some policies may be concerned with reducing

inequality up to specific quantiles of the distribution, however. To quantify the im-

pact of the policy on lower-tail quantiles, we extend the quantile-specific lower-tail

Gini social welfare measures introduced in Aaberge, Havnes, and Mogstad (2013) for

continuous distributions to any type of distribution in order to accommodate the pos-

sibility of discontinuities resulting from censoring or bunching. To do so, we introduce

the random variable Xu = QR,−
X (V ), where V ∼ U [0, u] for u ∈ (0, 1].13 We relegate

the derivations relevant to this section to Appendix A.8.

With this definition of Xu, we can show that the lower-tail Gini social welfare

function can be decomposed into E[Xu] and the Gini coefficient associated with FXu

13For u ∈ RanFX , FXu(x) = P(X ≤ x|X ≤ QR,−
X (u)) for any x ≤ QR,−

X (u), thereby yielding the same
truncated random variable introduced in Aaberge, Havnes, and Mogstad(2013). For u /∈ RanFX ,
Xu remains a well-defined random variable.
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as follows ∫ 1

0

2

u2
(u− τ)1{τ ≤ u}QR,−

X (τ)dτ = E[Xu] (1− IGini(FXu)) ,

where IGini (FXu) ≡
∫ 1
0 (2τ−u)1{τ≤u}QR,−

X (τ)dτ

u2E[Xu]
is the lower-tail Gini coefficient at u defined

in Aaberge, Havnes, and Mogstad (2013). Therefore, SWTTω with ω(τ) = 2
u2 (u −

τ)1{τ ≤ u} yields the following,

SWTTω(u) =

∫ u

0

2

u2
(u− τ)

(
QR,−

Y11|D=1(τ)−QR,−
Y10|D=1(τ)

)
dτ,

and is interpreted as the Quantile-u lower tail Gini social welfare treatment effect on

the treated.

Similar to the Gini social welfare, we can decompose the quantile-specific lower-tail

Gini SWTTω(u) into a mean and inequality component,

SWTTω(u) = ATT (u)(1− IGini(FY u
11|D=1))︸ ︷︷ ︸

∆M (u)

−E[Y u
10|D = 1](IGini(FY u

11|D=1)− IGini(FY u
10|D=1))︸ ︷︷ ︸

∆I(u)

. (2.6)

where ATT (u) = E[Y u
11−Y u

10|D = 1]. As we demonstrate in our empirical application

in Section 3, these quantities can shed light on the impact of policies that target the

lower tail of the distribution, such as the minimum wage.

2.3.4. Interquantile Gini social welfare function. Since policies may target other parts

of the distribution, such as the upper tail, we can generalize these quantile-specific

social welfare treatment effect measures to any range of quantiles [u, u] a researcher

may be interested in. Specifically, let u ∈ [0, 1], u ∈ [0, 1], u < u, V ∼ U [u, u], and
Xu,u = QR,−

X (V ). A derivation of FXu,u is relegated to Appendix A.8. Now by letting

ω(τ) = 2
(u−u)2

(u− τ)1{u < τ ≤ u}, we obtain the Gini social welfare function specific

to the quantile range [u, u],

SWω(u, u) =

∫ 1

0

2

(u− u)2
(u− τ)1{u < τ ≤ u}QR,−

X (τ)dτ = E[Xu,u](1− IGini(FXu,u)),
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where E[Xu,u] ≡
∫ u

u
QR,−

X (τ)dτ and IGini (FXu,u) ≡
∫ 1
0 (2τ−u−u)1{u<τ≤u}QR,−

X (τ)dτ

(u−u)2E[Xu,u]
.14 The

interquantile Gini social welfare treatment effect on the treated over [u, u] is given by

SWTTω(u, u) ≡ SWω(u, u, FY11|D=1)− SWω(u, u, FY10|D=1)

=

∫ u

u

2

(u− u)2
(u− τ)

(
QR,−

Y11|D=1(τ)−QR,−
Y10|D=1(τ)

)
dτ.

2.4. Structural underpinnings of the copula stability assumption. Consider

a policymaker who wants to implement a policy in a specific region, i.e. introduc-

tion/increase of a minimum wage. The policymaker decides to implement a policy if

the gain in social welfare under the policy is higher than the gain in social welfare

without the policy. The gain is evaluated by the policymaker given her information

set I. This decision rule is modeled as:

D = 1 {E[W (Y11)−W (Y00)|I] > E[W (Y10)−W (Y00)|I]} ,

= 1 {E[W (Y11)|I] > E[W (Y10)|I]}

where I is the sigma-algebra characterizing the decision maker information set at the

time of the decision, Ytd for t, d ∈ {0, 1} are I measurable. W (.) is a measurable

function that depends on the type of social welfare the policymaker wants to use.

W (.) can be specified to capture various types of societal welfare, like those discussed

in the previous subsection.

To mimic our empirical illustration, we are considering the case where the outcomes

of interest are mixed random variables because of the pre-existing minimum wage. We

consider a general case where a minimum wage c0 exists in the pre-treatment period

and the policymaker is considering an increase in this minimum wage, i.e. c1 > c0.

Yt0 = Y ∗
t01{Y ∗

t0 > c0}+ c01{Y ∗
t0 ≤ c0}, t = 0, 1,

Y11 = Y ∗
111{Y ∗

11 > c1}+ c11{Y ∗
11 ≤ c1}.

Assume that Z is a vector of random variables that is measurable with respect

to the policymaker information σ-algebra I, and E[W (Y1d)|I] = ψ1d(Z) + V1d, with

E[V1d|Z] = 0, where V1d for d ∈ {0, 1} are the prediction errors made by the policy-

maker given her information set. Z could have a degenerate distribution and in such

14This definition extends the upper tail Gini coefficient to any quantile range [u, u].
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a case, the policymaker does not have additional information based on which she can

form expectations. When Z is observed by the econometrician, all our results hold

conditional on Z.

In the following, we assume that ζ ≡ V10 − V11 and the latent variables have

continuous distributions. Our model simplifies to:
Y0 = Y00

Y1 = Y11D + Y10(1−D)

D = 1 {ψ11(Z)− ψ10(Z) ≥ ζ}
(2.7)

Let CY ∗
t0,ζ|Z=z(u, v; ρt(z)) be the conditional copula that captures the dependence be-

tween Y ∗
t0 and ζ. Suppose that CY ∗

t0,ζ|Z=z(u, v; ρt(z)) belongs to the class of totally

ordered copulas.15 Therefore, it can be shown that if ρ0(z) = ρ1(z) —meaning that

the dependence between the policymaker prediction errors ζ and Y ∗
00 is the same as

the dependence between ζ and Y ∗
10, then the copula stability assumption holds con-

ditional on Z = z, CY00,D|Z=z(u, q) = CY10,D|Z=z(u, q) for all u ∈ [0, 1]. A special case

of this result is imposing a joint normal distribution on all the latent variables in the

model such as Y ∗
00

Y ∗
10

ζ

 |Z = z ∼ N(0,Σ), Σ =

 σ2
0(z) δ(z)σ0(z)σ1(z) ρ0(z)σ0(z)

δ(z)σ0(z)σ1(z) σ2
1(z) ρ1(z)σ1(z)

ρ0(z)σ0(z) ρ1(z)σ1(z) 1

 .

In this case, copula stability conditional on Z is equivalent to ρ0(z) = ρ1(z) ⇔
Corr(ζ, Y ∗

00|Z = z) = Corr(ζ, Y ∗
10|Z = z), since the Gaussian copula belongs to the

family of the strictly totally ordered copula. In this special case, our assumption is

valid when the error of predictions made by the policymakers is correlated with the

latent outcomes in the same way over time. The derivations relevant to this section

are given in Appendix A.9.

15{Cθ} is a totally strictly ordered family of copula if either Cθ(u, v) < Cθ′(u, v) for all (u, v) ∈ [0, 1]2

whenever θ < θ′ for any θ, θ′ in the parameter space or Cθ(u, v) > Cθ′(u, v) for all (u, v) ∈ [0, 1]2

when θ < θ′ for any θ, θ′ in the parameter space.
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3. Empirical Illustration

In this section, we illustrate the CS bounds revisiting the minimum wage study by

Cengiz, Dube, Lindner, and Zipperer (2019). This application demonstrates the use-

fulness of the class of policy-relevant parameters we introduce to examine the impact

of the minimum wage increase. In particular, the lower-tail quantile social welfare

treatment effect estimates allow us to zoom into the lower tail of the distribution,

where we expect the minimum wage to have an impact. Overall, our CS bounds doc-

ument proportionately larger impacts on the Gini social welfare in the lowest part of

the distribution, where the minimum wage increase led to increases in the mean and

reductions in inequality in the lower tails. We also find that the distributional DiD

exhibits violations of monotonicity in the lower tail of the distribution and is therefore

not suitable for this application. In Appendix B.1, we illustrate the CS bounds with

another survey data set, revisiting the seminal work by Card and Krueger (1994).

Cengiz, Dube, Lindner, and Zipperer (2019) examine 138 prominent state-level

minimum wage increases between 1979 and 2016 using the individual-level NBER-

merged Outgoing Rotation Group Earnings Data of the Current Population Survey.

Their goal is to examine the impact of the policy on the wage distribution around the

minimum wage, as illustrated in Figure 1. In order to make the empirical illustration

of the CS bounds in the context of this example succinct, we focus on two years,

2010 (t = 0) and 2015 (t = 1), and examine the distributional impact of a nontrivial

minimum wage increase of $0.25 or more.16 Consistent with Section 2.4, we split

our sample depending on the pre-treatment minimum wage. We specifically perform

our analysis on two subgroups: (1) states with pre-treatment minimum wage below

$8 (Subgroup 1), (2) states with pre-treatment minimum wage above or equal to $8
(Subgroup 2).

16Note that starting 2009, the federal minimum has been $7.25, so a minimum wage increase of
$0.25 or more constitutes an increase of more than 3%. This definition of the treatment variable
was also used in the empirical illustration in Roth and Sant’Anna (2021).
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Table 1. Summary Statistics by Treatment and Control Groups

Pre-treatment (2010) Post-treatment (2015)

Mean S.D. # Obs Mean S.D. # Obs

Subgroup 1: States with Pre-Treatment Minimum Wage < $8
Control 18.43 12.78 44,574 20.41 15.90 42,322
Treatment 20.20 14.26 38,261 22.12 18.21 32,489

Subgroup 2: States with Pre-Treatment Minimum Wage ≥ $8
Control 20.12 13.96 4,737 22.30 15.48 4,454
Treatment 23.13 17.42 19,877 25.83 18.74 18,039

Table 1 presents the summary statistics for hourly wage of both treatment and

control groups before and after the treatment.17 For both subgroups, the summary

statistics show that the mean and standard deviation is different across treatment

and control groups within the same year as well as within groups across time.

3.1. Bounds on the counterfactual distribution. Figure 4 presents the observed

distribution of the treatment group in 2015, F̂Y1|D=1, together with the CS bounds on

the counterfactual distribution for the bottom quartile of the wage distribution where

the minimum wage increase is likely to have an impact.18 In addition, we include the

distributional DiD estimate as well as the näıve CiC implementation.

17We follow the same data cleaning steps as Cengiz, Dube, Lindner, and Zipperer (2019) before they
bin the wage data, including setting hourly wage to zero for unemployed individuals in our sample.
Since our approach is invariant to monotonic transformations of our outcome, we do not need to
deflate it before applying our approach.
18We relegate the figures of the top quartile as well as the entire distribution to the online appendix.
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Figure 4. Observed and Counterfactual Distributions: Bottom Quartile

Panel A. CS, Subgroup 1 Panel B. D-DiD, Subgroup 1 Panel C. Näıve Impl. of CiC, Subgroup 1
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Panel D. CS, Subgroup 2 Panel E. D-DiD, Subgroup 2 Panel F. Näıve Impl. of CiC, Subgroup 2
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Notes: Obs refers to the observed (factual) empirical outcome distribution of the treatment group F̂Y1|D=1.
CF -LB (CF -UB) denotes the lower (upper) CS bound on FY10|D=1, and D−DiD refers to the distributional
DiD estimate of FY10|D=1. Subgroup 1 (Subgroup 2) refers to the subgroup of states with pre-treatment
minimum wage of < $8 (≥ $8).

First, we examine the bottom quartile of the distributional DiD counterfactual

for both subgroups (Panels B and D of Figure 4). At first glance, we note a clear

violation of the monotonicity property of cdfs for Subgroup 2 (Panel D of Figure

4), indicating a violation of the testable implication of the identifying assumption

of distributional DiD (Roth and Sant’Anna, 2021). In addition, the violation occurs

around the pre-treatment minimum wage of $8, which is part of the distribution

particularly pertinent for the evaluation of the minimum wage increase.
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Table 2. Gini Social Welfare Treatment Effect Estimates
F̂Y1|D=1 SWTT

CS-LB CS-UB DiD D-DiD CiC

Subgroup 1: States with Pre-treatment Minimum Wage < $8
Mean (ATT ) 25.83 0.12 0.56 0.53 -0.10 0.56
Gini SWF (SWTTω = ∆M −∆I) 16.89 0.06 0.36 – 0.25 0.36
Mean Component (∆M ) – 0.08 0.37 – -0.07 0.37

Inequality Component (∆†
I) – -0.28 0.30 – -0.32 0.00

Notes: In order to understand the relative magnitude of the CS bounds, DiD and distribu-
tional DiD estimates, the column labeled F̂Y1|D=1 reports the mean and Gini social welfare
function of the observed (factual) distribution of the treatment group in 2015 (t = 1). The
definitions of the Gini SWTTω, ∆M and ∆I are given in Section 2.3.1.
†We emphasize that the bounds on ∆I are outerset bounds.

Next, we examine the CS bounds on the counterfactual distribution (Panels A and

C in Figure 4). Note that both upper and lower bounds satisfy the properties of

a cdf. Furthermore, since the bounds do not cross, we do not have any detectable

violation of our identifying assumption, unlike the distributional DiD. We also note

that consistent with Example 3, the CiC counterfactual estimate coincides with the

CS upper bound.

Comparing the observed (factual) distribution with the CS bounds on the coun-

terfactual for both subgroups, we note an obvious change in the censoring point as

expected in the context of a minimum wage increase. For instance, for Subgroup 1

(Panel A in Figure 4), both CS bounds on the counterfactual distribution exhibit a

jump around the federal minimum wage of $7.25, albeit to varying degrees, whereas

the observed (factual) distribution exhibits a jump around $8. Furthermore, for both

subgroups (Panels A and C in Figure 4), the CS bounds differ from the observed

(factual) distribution around the new minimum wage and below it, consistent with

the conceptual framework in Cengiz, Dube, Lindner, and Zipperer (2019).19

19Consistent with the conceptual framework of Cengiz, Dube, Lindner, and Zipperer (2019), Figure
A.2 of the online appendix demonstrates that the top quartile of the observed distribution and the
CS bounds on the counterfactual distribution are very similar. While the same holds true for the
distributional DiD estimate of the counterfactual distribution for Subgroup 1, the vertical differ-
ences between the observed and distributional DiD counterfactual distribution are non-negligible for
Subgroup 2, the group for which the distributional DiD exhibits violations of monotonicity in the
bottom quartile of the distribution (Panel D of Figure 4).
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3.2. Bounds on treatment effects. Next, we quantify the impact of the minimum

wage increase on the wage distribution using the ATT and the Gini social welfare

treatment effects both for the overall distribution as well as its lower tail. We also

present estimates of the parameters considered in Cengiz, Dube, Lindner, and Zip-

perer (2019). When comparing the distributional DiD estimates to the CS, it is

important to keep in mind that the monotonicity violations we illustrate in Figure

4 are clear evidence against the identifying assumption of the distributional DiD in

this empirical setting. As for the CiC estimates of the SWTT parameters, we expect

them to coincide with the CS upper bound estimates.

3.2.1. Overall social welfare treatment effects. Table 2 presents the CS bounds, the

distributional DiD and CiC estimates for the ATT and the Gini social welfare treat-

ment effect (SWTTω). Before we proceed, we note that in order to facilitate the

interpretation of the relative magnitude of the different treatment effect estimates,

we report the mean and Gini social welfare function for F̂Y1|D=1, the empirical out-

come distribution of the treatment group in 2015 (t = 1), in the first column of Table

2.

When examining Table 2, we first note that the ATT estimate obtained from the

distributional DiD yields a very different estimate compared to the DiD for both

subgroups, including a sign flip for Subgroup 2. This may be a consequence of the

monotonicity violation we find in Figure 4. If taken at face value, both ATT estimates

obtained from the distributional DiD suggest that the minimum wage increase reduced

the average wage, with a nontrivial reduction of $1 for Subgroup 1. When examining

the impact on the Gini social welfare, the distributional DiD suggests a small, but

negative impact for Subgroup 1 and a positive impact for Subgroup 2.

Our CS bounds provide qualitatively different results. The CS bounds on the ATT

and the Gini SWTT include zero, suggesting that the data is inconclusive on the sign

of the effect of the minimum wage increase on the average wage and social welfare

for Subgroup 1. As for Subgroup 2, our CS bounds on the ATT and the Gini SWTT

suggest a small, positive impact on the average wage.

To aid in the interpretation of the impact on the Gini social welfare, Table 2

presents bounds on the mean and inequality components of the SWTTω, introduced
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in Eq. (2.5) of Section 2.3,

SWTTω = ∆M −∆I ,

where ∆M ≡ ATT (1 − IGini(FY11|D=1)) captures the impact of the minimum wage

increase on the mean and ∆I ≡ E[Y10|D = 1](IGini(FY11|D=1)−IGini(FY10|D=1) captures

the impact on inequality. Note that a negative ∆I implies a reduction in inequality,

contributing to an increase in the Gini social welfare. The bounds on ∆M can be

obtained from scaling the bounds on the ATT by (1 − IGini(FY11|D=1)). We can

provide outerset bounds on ∆I relying on the CS bounds on SWTTω and ∆M . Let

∆LB
M and ∆UB

M (SWTTLB
ω and SWTTUB

ω ) denote the CS lower and upper bound

for ∆M (SWTTω), respectively. Since ∆I = ∆M − SWTTω, we construct outerset

bounds on ∆I using the following,

∆I ∈ [∆LB
M − SWTTUB

ω ,∆UB
M − SWTTLB

ω ].

While these bounds are valid, we emphasize, however, that they are not sharp.

The bounds on ∆M and ∆I in Table 2 suggest that for Subgroup 2 the positive

impact on the Gini social welfare (SWTTω) is driven by the mean component. For

Subgroup 1, the bounds on the two components, ∆M and ∆I , include zero, suggesting

that we cannot identify the sign of either component similar to the SWTTω for this

subgroup.

3.2.2. Lower-tail social welfare treatment effects. In the context of policies such as an

increase in the legal minimum wage, the welfare of subpopulations at the lower tail

of the wage distribution is an important policy target. Table 3 therefore provides the

lower-tail ATT and Gini social welfare treatment effects, ATT (u) and SWTTω(u),

respectively, which we introduced in Section 2.3.3. We also provide bounds on the

components of the SWTTω(u), specifically,

SWTTω(u) = ∆M(u)−∆I(u),

where ∆M(u) ≡ ATT (u)(1−IGini(FY11|D=1)) and ∆I(u) ≡ E[Y u
10|D = 1](IGini(FY u

11|D=1)−
IGini(FY u

10|D=1)). To obtain bounds on ∆M(u), we scale the bounds on ATT (u) by

(1 − IGini(FY u
11|D=1)). As for ∆I(u), we provide outerset bounds similar to those we

construct for ∆I in Table 2.
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Table 3. Lower-tail Gini Social Welfare Treatment Effect Estimates

Subgroup 1: States wit Pre-MW < $8 Subgroup 2: States wit Pre-MW ≥ $8

F̂Y1|D=1 SWTT F̂Y1|D=1 SWTT

CS-LB CS-UB D-DiD CiC CS-LB CS-UB D-DiD CiC

Lower-tail Mean (ATT (u))
u = 0.01 2.37 0.47 0.55 0.44 0.55 3.63 1.59 1.68 1.90 1.68
u = 0.025 4.45 0.15 0.29 0.13 0.29 6.15 0.95 1.06 1.06 1.06
u = 0.05 6.14 0.24 0.44 0.13 0.44 7.57 0.60 0.91 1.06 0.91
u = 0.10 7.30 0.19 0.41 0.22 0.41 8.41 0.32 0.60 0.40 0.60
u = 0.25 9.00 0.03 0.37 0.08 0.37 9.95 0.16 0.44 0.17 0.44
u = 0.50 11.69 -0.09 0.18 -0.05 0.18 13.21 0.12 0.41 0.14 0.41

Lower-tail Gini SWF (SWTTω(u) = ∆M (u)−∆I(u)
u = 0.01 1.40 0.51 0.54 0.48 0.54 2.10 1.39 1.44 1.53 1.44
∆M (u) – 0.28 0.33 0.26 0.33 – 0.92 0.97 1.10 0.97
∆I(u)

† – -0.26 -0.18 -0.22 -0.22 – -0.53 -0.42 -0.43 -0.47
u = 0.025 3.13 0.28 0.39 0.29 0.39 4.58 1.26 1.34 1.44 1.34
∆M (u) – 0.11 0.20 0.09 0.20 – 0.71 0.79 0.79 0.79
∆I(u)

† – -0.28 -0.08 -0.20 -0.18 – -0.63 -0.47 -0.65 -0.55
u = 0.05 4.86 0.23 0.35 0.22 0.35 6.38 0.85 1.04 1.01 1.04
∆M (u) – 0.19 0.35 0.19 0.35 – 0.51 0.76 0.63 0.76
∆I(u)

† – -0.17 0.12 -0.03 -0.01 – -0.54 -0.09 -0.38 -0.28
u = 0.10 6.32 0.23 0.39 0.22 0.39 7.62 0.54 0.80 0.64 0.80
∆M (u) – 0.16 0.35 0.19 0.35 – 0.29 0.54 0.36 0.54
∆I(u)

† – -0.22 0.13 -0.03 -0.04 – -0.51 0.01 -0.28 -0.26
u = 0.25 7.99 0.12 0.38 0.15 0.38 8.99 0.24 0.51 0.29 0.51
∆M (u) – 0.02 0.33 0.07 0.33 – 0.14 0.40 0.15 0.40
∆I(u)

† – -0.35 0.21 -0.08 -0.05 – -0.37 0.16 -0.14 -0.12
u = 0.50 9.84 0.00 0.29 0.04 0.29 11.00 0.17 0.46 0.19 0.46
∆M (u) – -0.08 0.16 -0.05 0.16 – 0.10 0.34 0.12 0.34
∆I(u)

† – -0.37 0.15 -0.08 -0.13 – -0.35 0.17 -0.07 -0.12

Notes: To aid in the interpretation of the lower-tail-specific treatment effects, note that the 5% quantile of

F̂Y1|D=1 is $9. For definitions of SWTTω(u), ∆M (u) and ∆I(u), see Section 2.3.3.
† We emphasize that the bounds on ∆I(u) are outerset bounds.

Table 3 presents the bounds on the ATT(u), the Gini SWTTω(u) and its compo-

nents, ∆M(u) and ∆I(u). Our CS bounds suggest that the minimum wage increase

has a positive impact on the lower-tail mean and Gini social welfare for the bottom

quartile of the wage distribution for Subgroups 1 and 2. When examining the bounds

on the component of the SWTTω(u), we first examine the results for Subgroup 1.

We note that for u ∈ {0.01, 0.025} both the lower and upper CS bounds on ∆M(u)

are positive, whereas the bounds on ∆I(u) are negative. These bounds suggest that

for these lower tails the increase in Gini social welfare is a result of an increase in

the mean and a reduction in inequality. For u ∈ {0.05, 0.10, 0.25}, we find positive

bounds on ∆M , whereas the outerset bounds on ∆I(u) include zero. As for Subgroup
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2, we find that the minimum wage increase is associated with a positive impact on

the lower-tail mean and Gini social welfare. The bounds on ∆M(u) suggest a pos-

itive impact for all values of u we consider, whereas the outerset bounds on ∆I(u)

are negative for u ∈ {0.01, 0.025, 0.05}, suggesting that we can detect reductions in

inequality for these lower tails of the distribution.

Overall, we find proportionately larger impacts on the Gini social welfare for the

lowest values of u, where the minimum wage increase led to both increases in means

and reductions in inequality for the lowest tails for both subgroups.

3.2.3. Main parameters from Cengiz, Dube, Lindner, and Zipperer (2019). Finally,

we compute the primary objects of interest in Cengiz, Dube, Lindner, and Zipperer

(2019), ∆b and ∆a depicted in Figure 1, which quantify the change in employment

rates around the new minimum wage, as well as their sum ∆e, which measures the

overall impact on employment. Note that these quantities can be obtained from the

cdf of the observed and counterfactual distribution as follows,

∆b = FY1|D=1(MW )− FY1|D=1(0)− (FY10|D=1(MW )− FY10|D=1(0)), (3.1)

∆a = FY1|D=1(W )− FY1|D=1(MW )− (FY10|D=1(W )− FY10|D=1(MW )), (3.2)

∆e = ∆a+∆b = FY1|D=1(W )− FY1|D=1(0)− (FY10|D=1(W )− FY10|D=1(0)),

where MW denotes the new minimum wage, and W is a user-specified quantity that

should be the wage level beyond which the increase in the minimum wage should not

have an impact on employment. The first quantity ∆b measures the impact of the

minimum wage increase on the proportion of wage-earners with a wage below the

new minimum wage, MW , whereas ∆a measures the impact of the minimum wage

increase on the proportion of wage earners with hourly wages between MW and W .

Finally, ∆e, which equals the sum of ∆a and ∆b by definition, quantifies the impact

on the proportion of employment around the minimum wage (below W ).
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Table 4 presents the estimates of ∆b, ∆a and ∆e.20 The CS bounds on ∆b suggest

that the minimum wage increase in those states may have led to job losses below

the minimum wage of 2.1-2.3% for Subgroup 1, whereas the CS bounds on ∆b are

much wider for Subgroup 2. The CS bounds on ∆a suggest that the minimum wage

increase may have increased the proportion of employment above the new minimum

wage between 1.87% and 6.11% for Subgroup 1 (-0.93% to 2.31% for Subgroup 2).

While the sign of both bounds are consistent with the conceptual framework of Cengiz,

Dube, Lindner, and Zipperer (2019), the lower bound on ∆a is -0.93% for Subgroup

2, suggesting that it is possible that the minimum wage increase may have slightly

decreased employment for wages above it.21 The CS bounds on ∆e suggest negligible

negative impacts on employment around the minimum wage for Subgroup 2, whereas

for Subgroup 2 they are consistent with negligible negative impacts as well as increase

of up to 3.96%. The distributional DiD estimate suggests modest increases for ∆e for

both groups, whereas the CiC estimates indicate modest increases for both groups.

Table 4. Parameters from Cengiz, Dube, Lindner, and Zipperer (2019)

F̂Y1|D=1 CS-LB CS-UB D-DiD CiC

Subgroup 1: States with Pre-MW < $8
∆b 5.30% -2.34% -2.10% -1.85% -2.14%
∆a (W = 11) 17.93% 1.87% 6.11% 2.34% 1.91%
∆e (W = 11) 23.23% -0.43% 3.96% 0.49% -0.23%

Subgroup 2: States with Pre-MW ≥ $8
∆b 2.27% -2.89% 0.31% -1.18% -2.89%
∆a (W = 11) 16.61% -0.93% 2.31% 1.71% 2.27%
∆e (W = 11) 18.88% -0.62% -0.59% 0.53% -0.62%

Notes: We compute the estimates of ∆b and ∆a using the sample
analogues of Eq. (3.1) and (3.2), respectively, with MW = 8 (MW =
8.5) for Subgroup 1 (Subgroup 2).

20The CS bounds on ∆b are given by the following,

FY1|D=1(MW )− FY1|D=1(0)− (FUB
Y10|D=1(MW )− FLB

Y10|D=1(0))

≤ ∆b ≤ FY1|D=1(MW )− FY1|D=1(0)− (FLB
Y10|D=1(MW )− FUB

Y10|D=1). (3.3)

CS bounds on the ∆a and ∆e are obtained in the same manner.
21It is important to emphasize that our estimates are not directly comparable to the estimates in
Cengiz, Dube, Lindner, and Zipperer (2019), because we are conducting the analysis for specific
states over a two-year period, whereas the regression approach in Cengiz, Dube, Lindner, and
Zipperer (2019) seeks to quantify the effect across 138 different minimum wage changes between
1979-2016.
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4. Conclusion

With the goal of assessing the impact of regulatory policies on social welfare, this

paper provides a unifying, partial identification result for the counterfactual distribu-

tion of the treatment group in difference-in-difference settings. Exploiting the stability

of the dependence (copula) between group membership and the untreated potential

outcome across time, our identification result has several advantages: (1) it applies to

any outcome distribution, whether continuous, discrete or mixed, (2) it is invariant to

monotonic transformations of the outcome, (3) it can allow for nonrandom selection

into treatment without restricting the evolution of the marginal distribution of the

potential outcomes across time. To quantify the impact of regulatory policies on so-

cial welfare, we introduce a broad class of treatment effect parameters to quantify the

impact of the policy on social welfare. This broad class includes the ATT as well as

the Gini social welfare treatment effect on the treated as a special case. We illustrate

the empirical relevance of our results using a minimum wage application revisiting

Cengiz, Dube, Lindner, and Zipperer (2019).
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Appendix A. Proofs of the main results

A.1. An Additional Result.

Lemma A.1. Let X be a random variable, we then have:

(1) The following bounds are pointwise sharp,

FX

(
QR,+

X (u)−
)

≤ u ≤ FX

(
QR,−

X (u)
)
, for all u ∈ [0, 1]. (A.1)

(2) Let X ⊆ Z, sup {FX (t) : t ≤ x & t ∈ Z ∪ {−∞}} = FX(x).

Before we proceed to provide a proof of the above lemma, we compare the bounds

in Lemma A.1(1) with those used in Athey and Imbens (2006), hereinafter AI2006, to

bound the counterfactual distribution for discrete outcomes. These bounds are given

by the following in our notation,

FX(Q
X,+
X (u)) ≤ u ≤ FX(Q

X,−
X (u)). (A.2)

Now note that the upper bound employed in AI2006 only differs from the upper

bound in Lemma A.1(1) in terms the use of X instead of R. These two quantiles only

differ for u = 0, since {x ∈ R : FX(x) ≥ 0} = R, whereas {x ∈ X : FX(x) ≥ 0} = X.
As a result, QR,−

X (0) = −∞ and FX(Q
R,−
X (0)) = 0, whereas QX,−

X (0) = inf X and
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FX(inf X) ≥ 0. Therefore, our upper bound is lower than the one used in AI2006 for

u = 0.22

The lower bound in Lemma A.1(1) is starkly different from the lower bound in

(A.2). As we discuss in Appendix C, the lower bound in (A.2) equals the upper bound

for several examples with mixed outcomes, due to censoring or bunching, because

QX,+
X (u) = QX,−

X (u) for u ∈ [0, 1] for some mixed outcome distributions. As a result,

the lower bound is not valid in the mixed-outcome case in general. In those cases,

the AI2006 bounds would not cover the counterfactual distribution in the mixed-

outcome case in general as we illustrate in several numerical examples in Appendix

C. By contrast, our lower bound is valid and sharp for any outcome distribution. For

discrete outcomes, our bounds collapse to theirs in numerical examples provided in

Appendix C.

Proof. (Lemma A.1)

(1) QR,−
X (u) ≡ inf{x ∈ R : FX(x) ≥ u}. We know from the properties of a quantile

function that FX(Q
R,−
X (u)) ≥ u. We now show that this inequality is sharp. Suppose

that there exists x̃ ∈ R : FX(x̃) ≥ u and FX(x̃) < FX(Q
R,−
X (u)). On the one hand,

we have FX(x̃) < FX(Q
R,−
X (u)) =⇒ x̃ < QR,−

X (u), since FX is nondecreasing. On the

other hand, FX(x̃) ≥ u =⇒ x̃ ∈ {x ∈ R : FX(x) ≥ u}. Therefore, x̃ ≥ inf{x ∈ R :

FX(x) ≥ u} = QR,−
X (u), which contradicts x̃ < QR,−

X (u).

We next show FX(Q
R,+
X (u)−) ≤ u. For a fixed u ∈ [0, 1], let us define Ω = {y ∈

R : FX(y) ≤ u}. We first show this implication: z < QR,+
X (u) =⇒ FX(z) ≤ u. By

contradiction, suppose that (i) z < QR,+
X (u) and (ii) FX(z) > u. Take y ∈ Ω, then by

(ii) we have FX(z) > u ≥ FX(y), which implies FX(z) > FX(y), which in turn implies

y ≤ z since FX is nondecreasing. Therefore, for all y ∈ Ω, we have y ≤ z. It follows

that supΩ ≤ z, i.e., QR,+
X (u) ≤ z. This leads to a contradiction since z < QR,+

X (u) by

(i). Hence, we have shown that z < QR,+
X (u) =⇒ FX(z) ≤ u. Second, by definition, we

have FX(Q
R,+
X (u)−) ≡ supz<QR,+

X (u) FX(z) ≤ supz<QR,+
X (u) u = u, where the inequality

holds from the previous implication.

22Note that this is inconsequential for their identification result, since they provide bounds on the
counterfactual distribution on its support, and set it to zero below the infimum of its support and
to one above the supremum of its support.
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Now we proceed to show that FX(Q
R,+
X (u)−) ≤ u is sharp. First, let us show that

there does not exist any x̃ ∈ R such that (i) FX(x̃) ≤ u and (ii) FX(Q
R,+
X (u)−) <

FX(x̃−). By contradiction, suppose there exists such an x̃ ∈ R. From (ii), supz<QR,+(u)

FX(z) ≡ FX(Q
R,+
X (u)−) < FX(x̃−) ≡ supz<x̃ FX(z), we deduce that {z < QR,+(u)} ⊂

{z < x̃}. Therefore, QR,+(u) < x̃. From (i), FX(x̃) ≤ u, we have x̃ ∈ {x ∈ R :

FX(x) ≤ u}. Therefore, x̃ ≤ sup{x ∈ R : FX(x) ≤ u} = QR,+(u), which leads to a

contradiction. It follows that there does not exist any x̃ ∈ R such that FX(x̃) ≤ u

and FX(Q
R,+
X (u)−) < FX(x̃).

Second, let us show that there does not exist any x̃ ∈ R such that FX(x̃−) ≤ u

and FX(Q
R,+
X (u)−) < FX(x̃−). If FX(Q

R,+
X (u)−) < FX(x̃−), then from the previous

result, we must have FX(x̃) > u. Hence, we have FX(x̃) > u ≥ FX(x̃−), which

implies x̃ = QR,+
X (u), which in turn contradicts FX(Q

R,+
X (u)−) < FX(x̃−).

□

A.2. Proof of Lemma 2. By Sklar’s Theorem (Nelsen, 2006, Theorem 2.3.3), there

is a unique subcopula CY10,D determined on RanFY10 × {q}, such that the following

hold:

FY1,D(y, 0) ≡ P(Y1 ≤ y,D = 0) = CY10,D (FY10(y), q) , y ∈ R. (A.3)

Using Proposition 1(4) from Embrechts and Hofert (2013), we have:

CY10,D(u, q) = FY1,D

(
QR,−

Y10
(u), 0

)
for all u ∈ RanFY10 . (A.4)

The latter equality holds, because (i) for all u ∈ RanFY10 there exists y ∈ R such

that y = QR,−
Y10

(u) and (ii) from Proposition 1(4) in Embrechts and Hofert (2013)

we have FY10

(
QR,−

Y10
(u)
)

= u for all u ∈ RanFY10 . For u, u′ ∈ RanFY10 such that

u < u′ we have QR,−
Y10

(u) < QR,−
Y10

(u′) ⇒ FY1,D

(
QR,−

Y10
(u), 0

)
< FY1,D

(
QR,−

Y10
(u′), 0

)
⇐⇒

CY10,D(u, q) < CY10,D(u
′, q). The first strict inequality holds because by construction

QR,−
Y10

(u) is strictly increasing on RanFY10 . The second holds because QR,−
Y10

(·) ∈ Y10 ⊆
Y10|0 since Y10|1 ⊆ Y10|0.

□
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A.3. Proof of Theorem 1. The proof follows in three steps. First, we derive the

bounds (Section A.3.1), then we proceed to show sharpness (Section A.3.2). Since

the sharpness proof relies on two intermediate lemmata, the last step is then to prove

these two lemmata (Section A.3.3).

A.3.1. Derivation of the bounds. Take a fixed y ∈ Y10|0, then the following holds for

all ỹ < QR,+
Y0|D=0

(
FY1|D=0

(y)
)
:

FY0|D=0 (ỹ) ≤ FY1|D=0
(y) ≤ FY0|D=0

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

,

FY0,D (ỹ, 0) ≤ FY1,D
(y, 0) ≤ FY0,D

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
)
, 0
)
,

CY0,D (FY0 (ỹ) , q) ≤ CY10,D (FY10(y), q) ≤ CY0,D

(
FY0

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

, q
)
,

CY0,D (FY0 (ỹ) , q) ≤ CY0,D (FY10(y), q) ≤ CY0,D

(
FY0

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

, q
)
,

FY0 (ỹ) ≤ FY10(y) ≤ FY0

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

(A.5)

The first line of the inequality trivially holds from Lemma A.1(1). The third line

holds by Sklar’s Theorem (Nelsen, 2006, Theorem 2.3.3.). The fourth line holds under

Assumption 1, and the last line holds under Assumption 2. Notice that the last line

requires u 7→ CY10,D(u, q) to be strictly increasing only on RanFY10 ∪RanFY00 ⊆ [0, 1].

Now, applying the monotonicity of the function v−CY0,D(v, q) on the inequality (A.5),

for all ỹ < QR,+
Y0|D=0

(
FY1|D=0

(y)
)
we have:

FY0 (ỹ)− CY0,D (FY0 (ỹ) , q) ≤ FY10(y)− CY0,D (FY10(y), q) ≤

FY0

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

− CY0,D

(
FY0

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

, q
)
.
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In addition, since FYt0(y) = FYt0,D(y, 1)+FYt0,D(y, 0) = FYt0,D(y, 1)+CYt0,D(FYt0(y), q)

for t = 0, 1, the latter equality implies the following:

FY0,D (ỹ, 1) ≤ FY10(y)− CY0,D (FY10(y), q) ≤ FY0,D

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
)
, 1
)

FY0,D (ỹ, 1) ≤ FY10(y)− CY10,D (FY10(y), q) ≤ FY0,D

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
)
, 1
)

FY0,D (ỹ, 1) ≤ FY10,D(y, 1) ≤ FY0,D

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
)
, 1
)
,

FY0,D (ỹ, 1) ≤ FY10,D(y, 1) ≤ FY0,D

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
)
, 1
)
,

FY0|D=1 (ỹ) ≤ FY10|D=1(y) ≤ FY0|D=1

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

,

where the second line holds under Assumption 1. So, to summarize, for any fixed

y ∈ Y10|0, we have:

FY0|D=1 (ỹ) ≤ FY10|D=1(y) ≤ FY0|D=1

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

, for all ỹ < QR,+
Y0|D=0

(
FY1|D=0

(y)
)
.

Taking the supremum over ỹ < QR,+
Y0|D=0(FY1|D=0(y)) implies that:

sup
ỹ<QR,+

Y0|D=0

(
FY1|D=0

(y)
)FY0|D=1 (ỹ) ≤ FY10|D=1(y) ≤ FY0|D=1

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

,

which is equivalent to:

FY0|D=1

(
QR,+

Y0|D=0

(
FY1|D=0

(y)
)
−
)

︸ ︷︷ ︸
=FY0|D=1

([
QR,+

Y0|D=0
◦FY1|D=0

]
(y)−

)
≡FLB(y)

≤ FY10|D=1(y) ≤ FY0|D=1

(
Q

Y0|0,−
Y0|D=0

(
FY1|D=0

(y)
))

︸ ︷︷ ︸
=

[
FY0|D=1◦Q

Y0|0,−
Y0|D=0

◦FY1|D=0

]
(y)≡FUB(y)

.

We then finally have:

FLB(y) ≤ FY10|D=1(y) ≤ FUB(y), for all y ∈ Y10|0. (A.6)

Notice that the above bounds naturally extend to the case where y ∈ R \ Y10|0,

however for y ∈ R \ Y10|0 the bounds may no longer be (point-wise) sharp. And this

is because the upper bound may not be right-continuous in some cases, similarly for

the lower bound which may not be right-continuous whenever {ỹ ∈ Y0|D=1 ∪ {−∞} :

FY0|D=1(ỹ) ≤ u} is open for some u ∈ RanFY0|D=1.
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To clarify this point, let us consider the simple case where Yt0, t ∈ {0, 1} are

all discrete random variables with Y10|0 = {y0, ..., yK}. In this case, FLB(.) is a well-

defined cdf, while FUB(.) may not be a right-continuous function. Indeed, the function

u 7→ QY0|0,−(u) is left-continuous and the discontinuities happen at u ∈ RanFY0|D=0.

Now, consider that there exists uk ∈ RanFY0|D=0∩RanFY10|D=0, thus F
UB(.) could be

left-continuous at yk ∈ Y10|0 such that FY10|D=0(yk) = uk. If it is left-continuous and

not right-continuous in yk, we have: {y ∈ R : FUB(y) > FUB(yk)} = (yk,∞]. Let us

consider ϵ > 0 such that yk+ϵ < yk+1. In such a case, FY10|D=1(yk+ϵ) = FY10|D=1(yk),

however, by applying naively the bounds to yk and yk + ϵ we have:

FLB(yk) ≤ FY10|D=1(yk) ≤ FUB(yk), where yk ∈ Y10|0 (A.7)

FLB(yk + ϵ) ≤ FY10|D=1(yk + ϵ) ≤ FUB(yk + ϵ), where yk + ϵ /∈ Y10|0 (A.8)

which implies that the upper bound in (A.8) is not sharp since FUB(yk+ϵ) > FUB(yk).

A valid tighter bound for FLB(y′) for yk < y′ < yk+1 is:

FLB(yk) ≤ FY10|D=1(y
′) ≤ FUB(yk), yk ≤ y′ < yk+1.

Since extending the bounds in Eq. (A.6) to the case where y /∈ Y10|0 provides

non-sharp bounds, we provide an alternative approach that internalizes the idea that

our targeting function of interest must be right-continuous since it is a cdf. Recall,

FLB(t) ≤ FY10|D=1(t) ≤ FUB(t), for all t ∈ Y10|0. (A.9)

then for any fixed y ∈ R, we have:

lim
ỹ↓y

sup
{
FLB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
≤ lim

ỹ↓y
sup

{
FY10|D=1(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
≤

lim
ỹ↓y

sup
{
FUB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
, y ∈ R.

Notice that because Y10|1 ⊆ Y10|0, and FY10|D=1(·) is a right-continuous function, we

have the following equality by Lemma A.1(2):

lim
ỹ↓y

sup
{
FY10|D=1(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
= FY10|D=1(y) for all y ∈ R;
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therefore the last inequality becomes:

lim
ỹ↓y

sup
{
FLB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
≤ FY10|D=1(y) ≤ lim

ỹ↓y
sup

{
FUB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
, y ∈ R. (A.10)

A.3.2. Sharpness of the bounds. In the previous subsection A.3.1, we showed that the

bounds are valid. Now, we will show that both bounds are achievable. For the sake

of brevity, we will focus only on the upper bound. The main idea is to provide a

DGP which is only a function of the observable distributions but verifies the model

assumptions and for which F̃Y10|D=1(y) is equal to the upper bound.

Consider that the unidentified counterfactual distribution is exactly the upper

bound:

F̃Y10|D=1(y) ≡ lim
ỹ↓y

sup
{
FUB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
.

For simplicity, we consider the case where

lim
ỹ↓y

sup
{
FUB(t) : t ≤ ỹ & t ∈ Y10|0 ∪ {−∞}

}
= FUB(y) ≡ FUB

Y10|D=1(y).

We need to define a joint distribution on (Y00, Y10, Y11, D) such that it is compatible

with the data (Y0, Y1, D), and Assumptions 1 and 2 hold. For any vector X, denote

FX,D(x, d) = P(X ≤ x,D = d). Let FY00,Y10,Y11,D(y0, y10, y11, d) be a candidate joint

distribution. We define

F̃Y00,Y10,Y11,D(y0, y10, y11, 0) ≡ FY0,Y1,D(y0, y10, 0) ∗ FUB
Y10|D=1(y),

F̃Y00,Y10,Y11,D(y0, y10, y11, 1) ≡ FY0,Y1,D(y0, y11, 1) ∗ FUB
Y10|D=1(y).

We construct the proposed distribution using the following rule. For F̃Y00,Y10,Y11,D(y0, y10, y11, d)

to be compatible with the data (Y0, Y1, D), we must have

F̃Y00,Y10,Y11,D(y0, y10, y11, 0) = FY0,Y1,D(y0, y10, 0) ∗ F̃Y11|Y00≤y0,Y10≤y10,D=0(y11),

F̃Y00,Y10,Y11,D(y0, y10, y11, 1) = FY0,Y1,D(y0, y11, 1) ∗ F̃Y10|Y00≤y0,Y11≤y11,D=1(y10).

The distributions F̃Y11|Y00≤y0,Y10≤y10,D=0(y11) and F̃Y10|Y00≤y0,Y11≤y11,D=1(y10) are coun-

terfactual. We set both of them equal to F̃Y10|Y00≤∞,Y11≤∞,D=1(y10) = FUB
Y10|D=1(y),

which is the counterfactual distribution that we consider above.
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We now show that F̃Y10|D=1(y) is a cdf. It is easy to see that F̃Y10|D=1(y) is nonde-

creasing since for y ≤ y′ we have{
FUB(t) : t ≤ y & t ∈ Y10|0 ∪ {−∞}

}
⊆
{
FUB(t) : t ≤ y′ & t ∈ Y10|0 ∪ {−∞}

}
.

The limits of the function F̃Y10|D=1(y) at −∞ and ∞ are 0 and 1, respectively. By

construction, the function F̃Y10|D=1(y) is a right-continuous function.

We have

FY00,Y10,D(y0, y10, 0) = qCY0,Y1|D=0

(
1

q
CY0,D(FY0(y0), q),

1

q
CY10,D(FY10(y10), q)

)
,

= CY0,Y1,D (FY0(y0), FY10(y10), q) .

We now need to construct copulas C̃Y0,D(u, q), C̃Y10,D(u, q), C̃Y0,Y1|D=0(u0, u1), and

C̃Y0,Y10,D(u0, u1, q) such that the following holds:

FY00,Y10,D(y0, y10, 0) = qC̃Y0,Y1|D=0

(
1

q
C̃Y0,D(FY0(y0), q),

1

q
C̃Y10,D(F̃Y10(y10), q)

)
,

= C̃Y0,Y1,D

(
FY0(y0), F̃Y10(y10), q

)
,

where F̃Y10(y10) = pFUB
Y10|D=1(y10) + qFY1|D=0(y10) ≡ FUB

Y10
(y10).

Define

C̃Y0,D(u, q) =



FY0,D(QR,−
Y0

(u), 0) if u ∈ RanFY0 ∩RanF̃Y10

FY0,D(QR,−
Y0

(u), 0) if u ∈ RanFY0
∩ (RanF̃Y10

)c

FY1,D(Q̃R,−
Y10

(u), 0) if u ∈ (RanFY0
)c ∩RanF̃Y10

FY0,D

(
QR,−

Y0
(u(u)), 0

)
+

(
FY0,D

(
QR,−

Y0
(u(u)), 0

)
− FY0,D

(
QR,−

Y0
(u(u)), 0

))
u−u(u)

u(u)−u(u)

if u ∈ (RanFY0
)c ∩ (RanF̃Y10

)c, u(u) ∈ RanFY0
, and u(u) ∈ RanFY0

FY1,D

(
Q̃R,−

Y10
(u(u)), 0

)
+

(
FY1,D

(
Q̃R,−

Y10
(u(u)), 0

)
− FY1,D

(
Q̃R,−

Y10
(u(u)), 0

))
u−u(u)

u(u)−u(u)

if u ∈ (RanFY0
)c ∩ (RanF̃Y10

)c, u(u) ∈ RanF̃Y10
, and u(u) ∈ RanF̃Y10

FY1,D

(
Q̃R,−

Y10
(u(u)), 0

)
+

(
FY0,D

(
QR,−

Y0
(u(u)), 0

)
− FY1,D

(
Q̃R,−

Y10
(u(u)), 0

))
u−u(u)

u(u)−u(u)

if u ∈ (RanFY0
)c ∩ (RanF̃Y10

)c, u(u) ∈ RanF̃Y10
, and u(u) ∈ RanFY0

FY0,D

(
QR,−

Y0
(u(u)), 0

)
+

(
FY1,D

(
Q̃R,−

Y10
(u(u)), 0

)
− FY0,D

(
QR,−

Y0
(u(u)), 0

))
u−u(u)

u(u)−u(u)

if u ∈ (RanFY0
)c ∩ (RanF̃Y10

)c, u(u) ∈ RanFY0
, and u(u) ∈ RanF̃Y10

C̃Y10,D(u, q) = C̃Y0,D(u, q),

where for any u ∈ [0, 1], u(u) ≡ sup{q ∈ RanFY0 ∪RanF̃Y10 : q ≤ u}, u(u) ≡ inf{q ∈
RanFY0 ∪RanF̃Y10 : q ≥ u}, and Q̃R,−

Y10
(u) ≡ inf{y ∈ R : F̃Y10(y) ≥ u}.
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C̃Y0,Y1|D=0(u0, u1) =



FY0,Y1|D=0(Q
R,−
Y0|D=0

(u0), Q
R,−
Y1|D=0

(u1)) if (u0, u1) ∈ RanFY0|D=0 ×RanFY1|D=0

FY0,Y1|D=0

(
QR,−

Y0|D=0
(u(u0)), Q

R,−
Y1|D=0

(u(u1))

)
+[

FY0,Y1|D=0

(
QR,−

Y0|D=0
(u0(u0)), Q

R,−
Y1|D=0

(u1(u1))

)
− FY0,Y1|D=0

(
QR,−

Y0|D=0
(u0(u0)), Q

R,−
Y1|D=0

(u1(u1))

)]
∗ (u0−u0(u0))(u1−u1(u1))

(u0(u0)−u0(u0))(u1(u1)−u1(u1))
if (u0, u1) /∈ RanFY0|D=0 ×RanFY1|D=0

where for t ∈ {0, 1} and for any (u0, u1) ∈ [0, 1]2, ut(u) ≡ sup{q ∈ RanFYt|D=0 : q ≤
u}, while ut(u) ≡ inf{q ∈ RanFYt|D=0 : q ≥ u}.

We then define for (u0, u1) ∈ [0, 1]2

C̃Y00,Y10,D(u0, u1, q) = qC̃Y0,Y1|D=0

(
1

q
C̃Y0,D(u0, q),

1

q
C̃Y0,D(u1, q)

)
.

We can verify that C̃Y00,Y10,D(u0, u1, q) is a well-defined copula. We start by showing

that C̃Y0,D(u0, q) is a well-defined subcopula. To do so, we need to introduce two

intermediate lemmata:

Lemma A.2. For any u ∈ RanFUB
Y10

and v ∈ RanFY0 such that u < v, we have

C̃Y0,D(u, q) < C̃Y0,D(v, q).

Lemma A.3. Suppose FY0(y−) ∈ RanFY0 for all y. For any u ∈ RanFUB
Y10

and

v ∈ RanFY0 such that v < u, we have C̃Y0,D(v, q) < C̃Y0,D(u, q).

First, we have C̃Y0,D(1, q) = FY0,D(Q
R,−
Y0

(1), 0) = q. Now let us show that for

all (u, v) ∈ [0, 1]2 such that u < v, we have C̃Y0,D(u, q) < C̃Y0,D(v, q). From the

definition of C̃Y0,D(u, q) and Lemma 2, it follows that when u and v belong to the

same range this monotonicity condition holds. We are going to prove it when u and

v belong to different ranges. On the one hand, if u ∈ RanF̃Y10 and v ∈ RanFY0 ,

then from Lemma A.2, we have C̃Y0,D(u, q) < C̃Y0,D(v, q). On the other hand, if v ∈
RanF̃Y10 and u ∈ RanFY0 , then from Lemma A.3, we have C̃Y0,D(u, q) < C̃Y0,D(v, q).

Since C̃Y0,Y1|D=0(u0, u1) is an extended copula of the identified part of the copula of

(Y0, Y1)|D = 0 through the Sklar theorem, it is a well-defined copula. Any extended

copula of this form should work for the proof, as we do not impose any additional

restrictions on the true copula of (Y0, Y1)|D = 0.

We also need to check that C̃Y00,Y10,D

(
FY0(y0), F̃Y10(y10), q

)
= FY0,Y1,D(y0, y10, 0).

This latter equality holds by construction of C̃Y00,Y10,D(u0, u1, q).
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When we let u0 go to 1, we obtain

C̃Y10,D(u1, q) = C̃Y00,Y10,D(1, u1, q) = qC̃Y0,Y1|D=0

(
1

q
C̃Y0,D(1, q),

1

q
C̃Y0,D(u1, q)

)
= q

1

q
C̃Y0,D(u1, q) = C̃Y0,D(u1, q).

Similarly,

C̃Y00,D(u0, q) = C̃Y00,Y10,D(u0, 1, q) = qC̃Y0,Y1|D=0

(
1

q
C̃Y0,D(u0, q),

1

q
C̃Y0,D(1, q)

)
= q

1

q
C̃Y0,D(u0, q) = C̃Y0,D(u0, q).

And by construction, we have C̃Y10,D(u, q) = C̃Y0,D(u, q) for all u ∈ [0, 1] (Assumption

1 holds). Furthermore, we have shown above that C̃Y0,D(u, q) is strictly increasing in

u (Assumption 2 holds).

By construction, the proposed joint distribution F̃Y00,Y10,Y11,D(y0, y1, y2, d) is com-

patible with the data and the proposed copulas C̃Y0,D(u, q), and C̃Y10,D(u, q) satisfy

Assumptions 1 and 2.

The proof is similar for the lower bound on FY10|D=1
(y) and any distribution in the

identified set of FY10|D=1(y10).

To complete the proof, it remains to show the two intermediate lemmata.

A.3.3. Proofs of Intermediate Lemmata.

Proof of Lemma A.2. First, we start by the following claims:

Claim A.1. For any uy = FUB
Y10

(y) ∈ RanFUB
Y10

, the smallest v ∈ RanFY0 such that

uy ≤ v is vy = FY0(h(y)).

Proof. We have

uy = qFY10|D=0(y) + pFUB
Y10|D=1(y) = qFY10|D=0(y) + pFY0|D=1(h(y)).

Since FY0|D=1(h(y)) ∈ RanFY0|D=1, to obtain the smallest element v ∈ RanFY0 , we

need to find the smallest element s on RanFY0|D=0 such that FY1|D=0(y) ≤ s. From

Lemma A.1.(1), s = FY0|D=0(Q
R,−
FY0|D=0

(FY1|D=0(y))). This completes the proof of Claim

A.1.
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Claim A.2. For any u ∈ RanFUB
Y10

, there exists v ∈ RanFY0 such that u ≤ v =⇒
C̃Y0,D(u, q) ≤ C̃Y0,D(v, q).

Proof. uy ≡ FUB
Y10

(y) = qFY10|D=0(y)+pF
UB
Y10|D=1(y), where F

UB
Y10|D=1(y) = FY0|D=1(h(y))

with h(y) = QR,−
Y0|0

(FY1|D=0(y)). Then, uy ≤ qFY0|D=0(h(y)) + pFY0|D=1(h(y)), since

FY10|D=0(y) ≤ FY0|D=0(h(y)) by construction. So, uy ≤ FY0(h(y)) ≡ vy ∈ RanFY0 .

Now, the following hold:

uy ≤ vy =⇒ qFY10|D=0(y) + pFY0|D=1(h(y)) ≤ qFY0|D=0(h(y)) + pFY0|D=1(h(y)),

=⇒ qFY10|D=0(y) ≤ qFY0|D=0(h(y)),

=⇒ FY10,D(y, 0) ≤ FY0,D(h(y), 0),

=⇒ C̃Y0,D(F
UB
Y10

(y), q) ≤ C̃Y0,D(FY0(h(y)), q),

=⇒ C̃Y0,D(uy, q) ≤ C̃Y0,D(vy, q).

This completes the proof of Claim A.2.

Now we proceed to complete the proof of the lemma. Take u ∈ RanFUB
Y10

and

v ∈ RanFY0 such that u < v. Since u ∈ RanFUB
Y10

, there exits y such that uy = FUB
Y10

(y).

Then, from Claim A.1, there exists vy = FY0(h(y)) such that uy ≤ vy. From Claim

A.1, we have vy ≤ v. If v = vy, then we have FUB
Y10

(y) < FY0(h(y)), which implies

successively

qFY10|D=0(y) + pFY0|D=1(h(y)) < qFY0|D=0(h(y)) + pFY0|D=1(h(y)),

qFY10|D=0(y) < qFY0|D=0(h(y)),

FY10,D(y, 0) < FY0,D(h(y), 0),

C̃Y0,D(F
UB
Y10

(y), q) < C̃Y0,D(FY0(h(y)), q),

C̃Y0,D(u, q) < C̃Y0,D(v, q).

If vy < v, then from Claim A.2 we have C̃Y0,D(u, q) ≤ C̃Y0,D(vy, q). And since

C̃Y0,D(v, q) is strictly increasing on RanFY0 from Lemma 2, we have C̃Y0,D(vy, q) <

C̃Y0,D(v, q). Therefore, C̃Y0,D(u, q) < C̃Y0,D(v, q).

Proof of Lemma A.3. We first, start by stating and proving the following claim:
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Claim A.3. Suppose FY0(y−) ∈ RanFY0 for all y. For any uy = FUB
Y10

(y) ∈ RanFUB
Y10

,

there exist wy ∈ [0, 1] and vy ∈ RanFY0 such that vy ≤ wy ≤ uy and C̃Y0,D(vy, q) ≤
C̃Y0,D(wy, q) ≤ C̃Y0,D(uy, q).

Proof. We have

uy = FUB
Y10

(y) = qFY10|D=0(y) + pFUB
Y10|D=1(y),

≥ qFY10|D=0(y) + pFLB
Y10|D=1(y) = qFY10|D=0(y) + pFY0|D=1(h(y)−) ≡ wy,

≥ qFY0|D=0(h(y)−) + pFY0|D=1(h(y)−) ≡ vy,

where h(y) = QR,+
Y0|0(FY1|D=0(y)), and the second inequality holds from Lemma A.1.

We discuss two cases.

Case 1: FUB
Y10|D=1(y) = FLB

Y10|D=1(y)

In this case, uy = wy, we have

uy ≥ vy =⇒ qFY10|D=0(y) + pFY0|D=1(h(y)−) ≥ qFY0|D=0(h(y)−) + pFY0|D=1(h(y)−),

=⇒ qFY10|D=0(y) ≤ qFY0|D=0(h(y)−),

=⇒ FY10,D(y, 0) ≤ FY0,D(h(y)−, 0),

=⇒ C̃Y0,D(F
UB
Y10

(y), q) ≤ C̃Y0,D(FY0(h(y)−), q),

=⇒ C̃Y0,D(uy, q) ≤ C̃Y0,D(vy, q).

Case 2: FLB
Y10|D=1(y) < FUB

Y10|D=1(y)

In this case, wy /∈ RanFUB
Y10

. From Lemma A.1, vy is the highest element of RanFY0

such that wy ≥ vy. First, suppose wy /∈ RanFY0 . Then wy ∈ (RanFY0)
c∩ (RanFUB

Y10
)c.

Let u(wy) ≡ inf{q ∈ RanFY0 ∪ RanFUB
Y10

: q ≥ wy}. We have vy ≤ wy < u(wy) ≤ uy,

and either u(wy) ∈ RanFY0 or u(wy) ∈ RanFUB
Y10

.

If u(wy) ∈ RanFY0 , then

C̃Y0,D(wy, q)

= FY0,D

(
QR,−

Y0
(vy), 0

)
+

[
FY0,D

(
QR,−

Y0
(u(wy)), 0

)
− FY0,D

(
QR,−

Y0
(vy), 0

)]
∗ wy − vy
u(wy)− vy

.
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Since 0 ≤ wy−vy
u(wy)−vy

≤ 1 and

[
FY0,D

(
QR,−

Y0
(u(wy)), 0

)
−FY0,D

(
QR,−

Y0
(vy), 0

)]
≥ 0 from

Lemma 2, the following holds:

C̃Y0,D(vy, q) ≡ FY0,D

(
QR,−

Y0
(vy), 0

)
≤ C̃Y0,D(wy, q) ≤ FY0,D

(
QR,−

Y0
(u(wy)), 0

)
≤ FY0,D

(
QR,−

Y0
(uy), 0

)
≡ C̃Y0,D(uy, q),

where the last inequality holds because QR,−
Y0

(u) is monotone in u. Hence,

C̃Y0,D(vy, q) ≤ C̃Y0,D(wy, q) ≤ C̃Y0,D(uy, q).

If u(wy) ∈ RanFUB
Y10

, then u(wy) ∈ RanFUB
Y10

= uy, and

C̃Y0,D(wy, q)

= FY0,D

(
QR,−

Y0
(vy), 0

)
+

[
FY1,D

(
Q̃R,−

Y10
(uy), 0

)
− FY0,D

(
QR,−

Y0
(vy), 0

)]
∗ wy − vy
u(wy)− vy

,

= C̃Y0,D(vy, q) +

[
FY1,D(y, 0)− FY0,D (h(y)−, 0)

]
∗ wy − vy
u(wy)− vy

Since 0 ≤ wy−vy
u(wy)−vy

≤ 1 and

[
FY1,D(y, 0) − FY0,D (h(y)−, 0)

]
≥ 0 from Lemma A.1,

the following holds:

C̃Y0,D(vy, q) ≤ C̃Y0,D(wy, q) ≤ FY1,D (y, 0) ≡ C̃Y0,D(uy, q).

Second, suppose wy ∈ RanFY0 . Then, from Lemma A.1, we must have wy = vy,

which implies FY1,D(y, 0) = FY0,D(h(y)−, 0), which in turn implies C̃Y0,D(uy, q) =

C̃Y0,D(vy, q) = C̃Y0,D(wy, q).

This completes the proof of Claim A.3.

Now we proceed to complete the proof of the lemma. Take u ∈ RanFUB
Y10

and

v ∈ RanFY0 such that v < u. Since u ∈ RanFUB
Y10

, there exits y such that uy = FUB
Y10

(y).

From Claim A.3, there exists wy ∈ [0, 1] and vy ∈ RanFY0 such that v ≤ vy < wy ≤ u.

Case 1: FUB
Y10|D=1(y) = FLB

Y10|D=1(y)
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In this case, uy = wy, we have

uy > vy =⇒ qFY10|D=0(y) + pFY0|D=1(h(y)−) ≥ qFY0|D=0(h(y)−) + pFY0|D=1(h(y)−),

=⇒ qFY10|D=0(y) > qFY0|D=0(h(y)−),

=⇒ FY10,D(y, 0) > FY0,D(h(y)−, 0),

=⇒ C̃Y0,D(F
UB
Y10

(y), q) > C̃Y0,D(FY0(h(y)−), q),

=⇒ C̃Y0,D(uy, q) > C̃Y0,D(vy, q) ≥ C̃Y0,D(v, q), since vy, v ∈ RanFY0 ,

=⇒ C̃Y0,D(u, q) > C̃Y0,D(v, q).

Case 2: FLB
Y10|D=1(y) < FUB

Y10|D=1(y)

The proof here is very similar to Case 2 in Claim A.3, except the strict inequality

0 < wy−vy
u(wy)−vy

< 1. This strict inequality implies

C̃Y0,D(v, q) ≤ C̃Y0,D(vy, q) < C̃Y0,D(wy, q) ≤ C̃Y0,D(uy, q).

Hence, C̃Y0,D(v, q) < C̃Y0,D(u, q).

Now we have completed the proof of the two intermediate lemmata and thereby

the proof of Theorem 1.

□

A.4. Dependence stability vs parallel trends in Example 1. Consider the DGP

in Example 1. We have QR,−
Y0

(u) = Φ−1(u)σ0, and Q
R,−
Y10

(u) = Φ−1(u)σ1, where Φ
−1(u)

denotes the quantile of the standard normal distribution. We also have:

FY0,D(y, 0) ≡ P(Y0 ≤ y,D ≤ 0) = Φ2

(
y

σ0
, 0; ρ0

)
,

FY10,D(y, 0) ≡ P(Y10 ≤ y,D ≤ 0) = Φ2

(
y

σ1
, 0; ρ1

)
,

where Φ2(., .; ρ) is the joint cdf of a standard bivariate normal random variable with

parameter ρ.

From Nelsen (2006, Corollary 2.3.7), we have for u ∈ [0, 1],

CY0,D(u, q) = FY0,D(Q
R,−
Y0

(u), QR,−
D (q)) = Φ2

(
Φ−1(u), 0; ρ0

)
,

CY10,D(u, q) = FY10,D(Q
R,−
Y10

(u), QR,−
D (q)) = Φ2

(
Φ−1(u), 0; ρ1

)
.
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Since the function Φ2(., .; ρ) is strictly increasing in ρ,23 we conclude that CY0,D(u, q) =

CY10,D(u, q) if and only if ρ0 = ρ1.

In Example 1, parallel trends in distribution implies σ1 = σ0 and ρ1 = ρ0, i.e.,

U0 and U1 have the same distribution N(0, σ2
1), and copula stability (Assumption 1)

holds. Indeed, parallel trends in distribution states:

FY10|D=1(y)− FY0|D=1(y) = FY10|D=0(y)− FY0|D=0(y),

which implies

FY10,D(y, 1)− FY0,D(y, 1)

P(D = 1)
=

FY10,D(y, 0)− FY0,D(y, 0)

P(D = 0)
,

FY10,D(y, 1)− FY0,D(y, 1)

0.5
=

FY10,D(y, 0)− FY0,D(y, 0)

0.5
,

FY10(y)− FY10,D(y, 0)− FY0(y) + FY0,D(y, 0) = FY10,D(y, 0)− FY0,D(y, 0),

FY10(y)− FY0(y) = 2(FY10,D(y, 0)− FY0,D(y, 0)),

that is, Φ( y
σ1
) − Φ( y

σ0
) = 2(Φ2(

y
σ1
, 0; ρ1) − Φ2(

y
σ0
, 0; ρ0)) for all ρ0, ρ1, and y. In the

special case where ρ0 = ρ1 = 1, and y > 0, we have: Φ( y
σ1
)− Φ( y

σ0
) = 2(min( y

σ1
, 0)−

min( y
σ0
, 0)) = 0. Hence, Φ( y

σ1
) − Φ( y

σ0
) = 0 implies y

σ1
= y

σ0
, which implies σ1 = σ0.

Therefore, Φ2(
y
σ0
, 0; ρ1) = Φ2(

y
σ0
, 0; ρ0) for all ρ0 and ρ1, which implies ρ0 = ρ1 as the

function Φ2(., .; ρ) is strictly increasing in ρ.

A.5. A variant of Example 1 with non-normal marginals. In this section, we

present a variant on Example 1 with exponential, instead of Gaussian, marginals. A

main takeaway from this example is that parallel trends assumption no longer has a

simple interpretation as in Example 1, whereas copula stability does.

Example A.1. Consider the following data generating process (DGP) in which the

treatment is received when its gain (treatment effect) is bigger than or equal to a

23See Sibuya (1959) and Sungur (1990).
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threshold, say 0 for simplicity. This is a simple Roy model where selection into treat-

ment is on the gain. 
Y0 = U0

Y1 = ηD + U1

D = 1{η ≥ 0}
(A.11)

where Ut ∼ exp (θt), CUt,η(u, v) = Φ2 (Φ
−1(u),Φ−1(v); ρt), ρt ̸= 0.

In this case, we have the following:

(a) Copula stability: ρ0 = ρ1

CU0,η = CU1,η ⇔ ρ0 = ρ1 since Φ2 (., .; ρ) is strictly increasing in ρ.

(b) Parallel trends:
∫
CU0,D(1−e−θ0u, q)−(1−e−θ0u)qdu =

∫
CU1,D(1−e−θ1u, q)−

(1− e−θ1u)qdu

⇔∫
Φ2

(
Φ−1(1− e−θ0u),Φ−1(q); ρ0

)
−(1−e−θ0u)qdu =

∫
Φ2

(
Φ−1(1− e−θ1u),Φ−1(q); ρ1

)
−

(1− e−θ1u)qdu

CUt,D(1− e−θtu, q) = P(Ut ≤ u,D = 0),

= P(Ut ≤ u, η ≤ 0),

= CUt,η(FUt(u), Fη(0)),

= Φ2

(
Φ−1(1− e−θtu),Φ−1(q); ρt

)
.

(c) Distributional DiD: ρ0 = ρ1 and θ0 = θ1

Since ρt ̸= 0, D ̸⊥⊥ Ut. Therefore, from Roth and Sant’Anna (2021), dis-

tributional PT holds iff stationarity holds, i.e., P(U0 ≤ u|D = d) = P(U1 ≤
u|D = d) for all u and d, which implies P(U0 ≤ u,D = d) = P(U1 ≤ u,D = d)

for all u and d, which in turn implies P(U0 ≤ u) = P(U1 ≤ u), which finally

implies θ0 = θ1. Now, using the equality P(U0 ≤ u,D = 0) = P(U1 ≤ u,D =

0), we have Φ2

(
Φ−1(1− e−θ0u),Φ−1(q); ρ0

)
= Φ2

(
Φ−1(1− e−θ0u),Φ−1(q); ρ1

)
,

which implies ρ0 = ρ1 since Φ2 (., .; ρ) is strictly increasing in ρ.

A.6. Proof of Claim 1.

Proof. (i) =⇒ (ii).
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Since the cdf FYt0 is continuous and strictly increasing, we have

Yt0 = QR,−
Yt0

(FYt0(Yt0)) ,

= QR,−
Yt0

(Ut0)) , where Ut0 ≡ FYt0(Yt0) ∼ U[0,1],

= ht(Ut0), where ht(u) ≡ QR,−
Yt0

(u).

By definition, ht is continuous and strictly increasing as is the quantile function

QR,−
Yt0

. Then, the following equalities hold:

CYt0,D = Cht(Ut0),D = CUt0,D,

where the second equality holds from the invariance principle in Embrechts and Hofert

(2013, Proposition 4(2)). Therefore,

CY00,D(u, q) = CY10,D(u, q) =⇒ CU00,D(u, q) = CU10,D(u, q),

=⇒ CU00,D(FU00(u), FD(0)) = CU10,D(FU10(u), FD(0)),

=⇒ FU00,D(u, 0) = FU10,D(u, 0),

=⇒ u− FU00,D(u, 0) = u− FU10,D(u, 0),

=⇒ FU00(u)− FU00,D(u, 0) = FU10(u)− FU10,D(u, 0),

=⇒ P(U00 ≤ u,D = 1) = P(U10 ≤ u,D = 1),

where the second implication follows from Ut0 ∼ U[0,1] and FD(0) = q, the third holds

from Sklar’s theorem, and the fifth follows from Ut0 ∼ U[0,1]. Hence, we have:

CY00,D(u, q) = CY10,D(u, q) =⇒ P(U00 ≤ u,D = d) = P(U10 ≤ u,D = d) for d ∈ {0, 1},

=⇒ P(U00 ≤ u,D = d)/P(D = d) = P(U10 ≤ u,D = d)/P(D = d),

=⇒ FU00|D(u|d) ≡ P(U00 ≤ u|D = d) = P(U10 ≤ u|D = d) ≡ FU10|D(u|d),

=⇒ U00|D = d ∼ U10|D = d.

(ii) =⇒ (i). Suppose there exist two strictly increasing functions ht(.), t ∈ {0, 1}
and two uniformly distributed random variables over [0, 1] U00 and U10 such that
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Yt0 = ht(Ut0) and U00|D = d ∼ U10|D = d. Then, we have

FU00|D(u|d) = FU10|D(u|d) =⇒ FU00|D(u|d)P(D = d) = FU10|D(u|d)P(D = d),

=⇒ P(U00 ≤ u,D = d) = P(U10 ≤ u,D = d),

=⇒ FU00,D(u, 0) = FU10,D(u, 0) for d = 0,

=⇒ CU00,D(FU00(u), FD(0)) = CU10,D(FU10(u), FD(0)),

=⇒ CU00,D(u, q) = CU10,D(u, q),

=⇒ Ch0(U00),D(u, q) = CU00,D(u, q) = CU10,D(u, q) = Ch1(U00),D(u, q),

=⇒ CY00,D(u, q) = CY10,D(u, q),

where the fourth implication holds from Sklar’s theorem, the fifth follows from Ut0 ∼
U[0,1], the sixth follows the invariance principle in Embrechts and Hofert (2013, Propo-

sition 4.(2)), and the last holds from the assumption Yt0 = ht(Ut0). □

A.7. Proof of Example 2. We have: CU0,Ũ0,V
(u, ũ, q) = CU1,Ũ1,V

(u, ũ, q) for all

(u, ũ, q) ∈ [0, 1]3 implies successively

CU0,Ũ0,V
(u, 1, q) = CU1,Ũ1,V

(u, 1, q),

C0(CU0,Ũ0
(u, 1), q) = C1(CU1,Ũ1

(u, 1), q),

C0(u, q) = C1(u, q),

CY00,D(u, q) = CY10,D(u, q).

We need to check that the Sklar theorem holds on the range in this model. We have

P(Yt0 = 0, D = 0) = P(Ut ≤ ct, Ũt ≤ c̃t, V ≤ q),

= CUt,Ũt,V
(ct, c̃t, q),

= Ct(CUt,Ũt
(ct, c̃t), q),

= CYt0,D(CUt,Ũt
(ct, c̃t), q),

= CYt0,D(P(Yt0 = 0), q) as P(Yt0 = 0) = CUt,Ũt
(ct, c̃t),

= CYt0,D(P(Yt0 = 0),P(D = 0)) as P(D = 0) = q.

□
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A.8. Derivations of Section 2.3. Here, we provide the distributions of Xu and

Xu,u which are used to define the quantile-specific social welfare functions in Section

2.3.

Let Xu = QR,−
X (V ), where V ∼ U [0, u]. Note that by definition, FXu(x) = 1 for

x ≥ QR,−
X (u). As for x < QR,−

X (u), by Proposition 1(5) in Embrechts and Hofert

(2013), it follows that

FXu(x) = P(QR,−
X (V ) ≤ x) = P (V ≤ FX(x)) =

FX(x)

u
(A.12)

As a result,

FXu(x) =

{
FX(x)

u
for x < QR,−

X (u),

1 for x ≥ QR,−
X (u).

(A.13)

For u ∈ RanFX , FXu(x) = FX(x)
u

= FX(x)

FX(QR,−
X (u))

= P(X ≤ x|X ≤ QR,−
X (u)) for any

x ≤ QR,−
X (u), thereby yielding the same truncated random variable introduced in

Aaberge, Havnes, and Mogstad(2013). For u /∈ RanFX , X
u remains a well-defined

random variable.

Now consider Xu,u = QR,−
X (V ), where V ∼ U [u, u]. By similar arguments to the

case of Xu, it follows that

FXu,u(x) =


0 for x < QR,−

X (u),
FX(x)−u

u−u
for QR,−

X (u) ≤ x < QR,−
X (u),

1 for x ≥ QR,−
X (u).

(A.14)

A.9. Proof in the imperfect foresight case. By definition, Yt0 = Y ∗
t01{Y ∗

t0 >

c0} + c01{Y ∗
t0 ≤ c0}. Take y > c0. In the following, all arguments are conditional on

Z = z:

P(Yt0 ≤ y,D ≤ 0) = P(Yt0 ≤ y, ζ ≤ ψ(z)),

= P(Yt0 ≤ y, ζ ≤ ψ(z), Y ∗
t0 > c0) + P(Yt0 ≤ y, ζ ≤ ψ(z), Y ∗

t0 ≤ c0),

= P(c0 < Y ∗
t0 ≤ y, ζ ≤ ψ(z)) + P(Y ∗

t0 ≤ c0, ζ ≤ ψ(z)),

= P(Y ∗
t0 ≤ y, ζ ≤ ψ(z))

Making the conditioning on Z = z explicit, we have P(Yt0 ≤ y,D ≤ 0|Z = z) =

P(Y ∗
t0 ≤ y, ζ ≤ ψ(Z)|Z = z) = Φ2

(
y
σt
, ψ(z); ρt(z)

)
, which implies CYt0,D|Z=z(u, q) =
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Φ2

(
QR,−

t0 (u)

σt
, QR,−

D (q); ρt(z)
)
= Φ2(Φ

−1(u), 0; ρt(z)). Therefore, it follows that

CY00,D|Z=z(u, q) = CY10,D|Z=z(u, q) ⇐⇒ ρ0(z) = ρ1(z).

□
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Dalia Ghanem Désiré Kédagni Ismael Mourifié

Appendix B. Supplementary Empirical Analysis 2

B.1. Revisiting Card and Krueger (1994) 2

B.2. Supplementary Figures for Section 3 3

Appendix C. Numerical Examples 7

Appendix D. Parallel Trends as Covariance Stability 13

Appendix E. Conditional Time Invariance and Dependence Stability 13



2 REGULATORY POLICIES AND SOCIAL WELFARE

Appendix B. Supplementary Empirical Analysis

B.1. Revisiting Card and Krueger (1994). In this section, we illustrate the CS

bounds in a smaller sample, revisiting Card and Krueger (1994), where the minimum

wage increase leads to a stark difference in the censoring point of the distribution of

wages. To assess the impact of the minimum wage increase in New Jersey in 1992

from $4.25 to $5.05 per hour, Card and Krueger (1994) survey fast food restaurants in

New Jersey and eastern Pennsylvania before and after the minimum wage rise. While

their main outcome was employment, for the purposes of this illustration we focus on

the wages offered by the firms, since its distribution is clearly neither continuous nor

discrete (see Figure A.1).

Table A.1. Revisiting Card and Krueger (1994): Summary Statistics

State Mean Variance # of Stores

Wave 1 Wave 2 Wave 1 Wave 2 Wave 1 Wave 2

Full Sample

Wages Offers:
NJ 4.61 5.08 0.12 0.01 314 318
PA 4.63 4.62 0.12 0.13 76 71
Diff -0.02 0.46

DiD: 0.44

Balanced Sample

Wage Offers:
NJ 4.61 5.08 0.12 0.01 285 285
PA 4.65 4.62 0.13 0.13 66 66
Diff -0.04 0.46

DiD: 0.50

Notes: The minimum wage increase took place in New Jersey on
April 1, 1992. Wave 1 (2) denotes the first (second) wave of the
survey which took place February 15-March 4, 1992 (November
5-December 31, 1992). The balanced sample we consider here
consists of restaurants with complete data for employment and
wages across both waves.

Before we apply the CS, we first provide summary statistics on the wage offers in

the sample of Card and Krueger (1994).24 The table presents the results for the full as

well as balanced sample from the two survey waves. The DiD estimates suggest that

24Before we proceed with this exercise, we replicate the DiD estimates for employment.
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the minimum wage increase led to an average increase of $0.5 ($0.44) in the wages

offered by firms in the balanced (full) sample.

Next, we apply the CS bounds to wage offers to estimate the counterfactual dis-

tribution for the treatment group in Figure A.1, respectively.25 Panels A and B of

each of these figures present the empirical cdfs for the control group (Pennsylvania

restaurants). Panel C presents the empirical cdf of the treatment group (New Jer-

sey restaurants) before the minimum wage increase, whereas Panel D presents the

empirical cdf after the minimum wage increase as well as the CS bounds on the coun-

terfactual distribution. The observed distributions for wage offers is clearly neither

continuous nor discrete (Figure A.1). When we consider the observed post-treatment

distribution of wage offers for the treatment group and the CS bounds on the counter-

factual distribution, we find that the distribution are starkly different, specifically due

to the minimum wage increase, the left-censoring threshold is higher in the observed

than counterfactual distribution. Panel E presents the distributional DiD estimate

of the counterfactual which violates the monotonicity and integration properties of a

cdf.

B.2. Supplementary Figures for Section 3. We include the CS bounds and the

distributional DiD estimates of the top quartile of the counterfactual wage distribution

in Figure A.2 as well as the entire counterfactual wage distribution in Figures A.3

and A.4.

25We present the results of the balanced sample. The results for the full sample are nearly identical,
so we omit them for brevity.
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Figure A.1. Revisiting Card and Krueger (1994) using CS: Wage
Offers (Balanced Sample)
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Figure A.2. Observed and Counterfactual Distributions: Top Quartile
Panel A. CS, Subgroup 1 Panel B. D-DiD, Subgroup 1
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Panel C. CS, Subgroup 2 Panel D. D-DiD, Subgroup 2
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Notes: Obs refers to F̂Y1|D=1, CF -LB (CF -UB) denotes the lower (upper) CS bound on FY10|D=1,
and D − DiD refers to the distributional DiD estimate of FY10|D=1. Subgroup 1 (Subgroup 2)
refers to the subgroup of states with pre-treatment minimum wage < $8 (≥ $8).
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Figure A.3. Observed Wage Distribution and CS Bounds on the
Counterfactual Distribution

Panel A. Subgroup 1 (Pre-Treatment MW<$8 Panel B. Subgroup 2 (Pre-Treatment MW≥$8)
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Figure A.4. Observed Wage Distribution and Distributional DiD Es-
timated Counterfactual Distribution

Panel A. Subgroup 1 (Pre-Treatment MW<$8) Panel B. Subgroup 2 (Pre-Treatment MW≥$8)
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Appendix C. Numerical Examples

In this section, we illustrate the wide applicability of the CS identification approach

using several numerical examples of outcomes with discrete and mixed distributions.

We consider four different marginal distributions presented in Table A.2, including

the Poisson distribution (Example I), left- and right-censoring (Examples II-III) and

a bunching example (Example IV). While Example I falls under the AI2006 identifi-

cation results, the remaining examples are not covered by their approach.

Table A.2. Examples of Marginal Distributions of Yt0
I. Poisson FYt0

(y) = Πt(y), where Πt(·) is the Poisson cdf with mean λt.

II. Left-censoring

FYt0(y) =

{
0 if y < ct
Λt(y) if y ≥ ct

,

where Λt(·) is the χ2 cdf with kt degrees of freedom.

III. Right-censoring

FYt0(y) =

{
Λt(y) if y < ct
1 if y ≥ ct

,

where Λt(·) is the χ2 cdf with kt degrees of freedom.

IV. Bunching


FYt0

(y) =

{
Φt(y) if y ̸∈ [ct, wt)
Φt(ct) + bt(Φt(wt)− Φt(ct)) if y = ct
Φt(ct) + bt(Φt(wt)− Φt(ct)) + (1− bt)(Φt(y)− Φt(ct) if y ∈ (ct, wt)

where Φt(.) is the standard normal cdf with mean µt and standard deviation
σt.

Given marginal distributions of Y00 and Y10, we can generate conditional potential

outcome distributions that satisfy the copula stability condition by the following, for

t = 0, 1,

FYt0|D=0(y) =
1

q
CY0,D(FYt0(y), q), (C.1)

FYt0|D=1(y) =
1

p
(FYt0(y)− CY0,D(FYt0(y), q)) . (C.2)

We set CY0,D(u, q) = (max(u−θ + q−θ − 1, 0))−1/θ. In the following examples, we let

θ = 1 to fulfil the strict monotonicity condition imposed on the horizontal copula

for u ∈ [0, 1]. Note that all parameters of the marginal distributions we consider are

allowed to vary across time in an arbitrary manner.

Figures A.5-A.9 present the numerical examples. Each figure presents a plot of

each of the observed distribution used in the evaluation of the CS bounds (FY0|D=0,

FY1|D=0 and FY0|D=1) in Panels A-C. Panel D of ech figure presents the counterfactual
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distribution for the treatment group (FY10|D=1) together with the CS bounds labeled

as CF and LB/UB, respectively.

Figure A.5 illustrates our bounds for the Poisson example with λ0 = 1 and λ1 = 3.

Since the CiC bounds proposed in AI2006 can be applied, we compute them and

compare them to the CS bounds proposed here. In this numerical example, both

bounding approaches coincide as illustrated in Panel D of Figure A.5.

Next, we examine mixed outcome distributions that fall outside the scope of the

AI2006 identification results. Figures A.6-A.8 provide two different parametriza-

tions of the left-censoring example (Example II). In the first case (Figure A.6),

RanFY10|D=1 ⊂ RanFY0|D=1 and, as a result, the counterfactual distribution is point-

identified. In the second case (Figure A.8), RanFY10|D=1 ̸⊆ RanFY0|D=1, and we

therefore only attain partial identification of the counterfactual distribution. Figure

A.8 illustrates the CS bounds for a right-censoring example (Example III), where the

censoring cutoff as well as the degrees of freedom of the χ2 distribution vary across

time. Finally, we consider a bunching example (Example IV), where the bunching cut-

off (ct), the width of the bunching window (wt− ct) and the bunching probability (bt)

are time-varying. One notable feature of the bunching example is that the potential

outcome distributions are strictly increasing, but discontinuous. Panel D of Figure

A.9 shows that the CS bounds in this bunching example cover the counterfactual

distribution. Overall, for these mixed outcome distributions, our numerical analysis

illustrates that point-identification of the counterfactual distribution is possible on

the intersection of the range of FY10|D=1
and FY0|D=1, whereas only set-identification

is possible outside this intersection.

Finally, it is important to discuss how the AI2006 CiC bounds would perform in

the context of the mixed-outcome examples we consider. In several of these examples,

the two quantiles used in the upper and lower bound in the AI2006 CiC bounds equal

each other, specifically Q
Y0|0,+

Y0|D=0(u) = Q
Y0|0,−
Y0|D=0(u) for u ∈ (0, 1) (e.g. Examples III and

IV). It follows that the AI2006 CiC lower bound would equal its upper bound, and

the CiC bounds would not include the counterfactual distribution. As AI2006 point

out, the bound on quantiles that they exploit in their partial identification result for

discrete outcomes is not valid for outcomes with mixed distributions.
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Figure A.5. Numerical Example I: Poisson with λ0 = 1, λ1 = 3
Panel A. FY00|D=0 Panel B. FY10|D=0
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Notes: In Panel D, CF denotes the counterfactual distribution for the treatment group
(FY10|D=1), LB-AI2006 (UB-AI2006) denotes the CiC lower (upper) bound from AI2006,
and LB (UB) denote the CS lower (upper) bound proposed here.
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Figure A.6. Numerical Example II: Left-censoring, c0 = c1 = 5, k0 =
5, k1 = 3

Panel A. FY00|D=0 Panel B. FY10|D=0

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

Panel C. FY00|D=1 Panel D. CS Bounds on FY10|D=1

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y

cd
f

LB
UB
CF

Figure A.7. Numerical Example II: Left-censoring, c0 = c1 = 5, k0 =
3, k1 = 5
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Figure A.8. Numerical Example III: Right-censoring, c0 = 5, c1 = 10,
k0 = 3, k1 = 5
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Figure A.9. Numerical Example IV: Outcome Distribution with Bunching
Panel A. FY00|D=0 Panel B. FY10|D=0
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Notes: The figures are generated by numerically evalu-
ating the conditional potential outcome distribution for
the bunching example (IV) in Table A.2 with c0 = 0.5,
w0 = 1, c1 = 2.5, w1 = 3, b0 = 0.25, and b1 = 0.75.
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Appendix D. Parallel Trends as Covariance Stability

Lemma A.4. Suppose P(D = 1) ∈ (0, 1).

E[Y10 − Y00|D = 1] = E[Y10 − Y00|D = 0] ⇐⇒ Cov(Y00, D) = Cov(Y10,D).

Proof. The result follows by first multiplying E[Y10−Y00|D = 1]−E[Y10−Y00|D = 0]

by P(D = 1)P(D = 0) and then simplifying the resulting expression as follows,

P(D = 1)P(D = 0)E[Y10 − Y00|D = 1]− P(D = 1)P(D = 0)E[Y10 − Y00|D = 0]

= P(D = 0)E[(Y10 − Y00)D]− P(D = 1)E[(Y10 − Y00)(1−D)]

= E [(Y10 − Y00)(1− P(D = 1))D − (Y10 − Y00)(1−D)P(D = 1)]

= E [(Y10 − Y00)(D − P(D = 1))] = E [(Y10 − Y00)(D − E[D])]

= Cov(Y10 − Y00, D).

The =⇒ (⇐=) direction follows from noting that it would imply the left-hand (right-

hand) side of the equality is zero. □

Appendix E. Conditional Time Invariance and Dependence Stability

In this section, we provide additional discussion on why outside of the strictly

increasing, continuous cdf case, the copula stability and CiC conditions may not be

equivalent.

The following result relies on a representation condition that merits some discussion

before we proceed. We specifically assume that there exist Ut ∼ U [0, 1] for t = 0, 1,

such that (Yt0, D)
d
= (Q−

Yt0
(Ut), D) for t = 0, 1. The reasoning behind this represen-

tation condition stems from Proposition 2(2) in Embrechts and Hofert (2013), which

implies that since Ut ∼ U [0, 1], Q−
Yt0

(Ut) ∼ FYt0 . Since Q−
Yt0

is weakly monotonic

by definition, Proposition 2(2) in Embrechts and Hofert (2013) therefore underscores

that the weak monotonicity of the structural function as well as the scalar, continu-

ous unobservable imposed in AI2006 holds wlog for any random variable. Proposition

2(2) in Embrechts and Hofert (2013) further implies that the time invariance of the

marginal distribution of Ut also holds wlog. Thus, it is the conditional time invari-

ance restriction on Ut|D that is the essential restriction in AI2006. Now note that

since Ut has a time-invariant continuous marginal distribution, the time invariance
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of the horizontal subcopula of (Ut, D) implies the conditional time invariance of the

distribution of Ut|D imposed in AI2006. As a result, in Claim D.1, we examine the

relationship between dependence stablity of (Yt0, D) and (Ut, D).

Part (i) of the following claim imposes dependence stability on (Yt, D) and derives

the implication on the relationship between the horizontal subcopulas of (Ut, D) for

t = 0, 1. Part (ii) of the claim imposes dependence stability on (Ut, D) and derives

the implication on the relationship between the horizontal subcopulas of (Yt0, D) for

t = 0, 1.

Claim D.1. For t = 0, 1, consider (Yt0, D) such that Yt0 ∼ FYt0 and D is a binary

variable with P(D = 0) = q ∈ (0, 1). Suppose that there exist Ut ∼ U [0, 1] for t = 0, 1

such that (Yt0, D)
d
= (Q−

Yt0
(Ut), D) for t = 0, 1.

(i) If CY00,D(u, q) = CY10,D(u, q) for all u ∈ [0, 1], then for v ∈ Ran(FY00) ∩
Ran(FY10)

CU0,D(v, q) = CU1,D(v, q). (E.1)

(ii) If CU0,D(v, q) = CU1,D(v, q) for all v ∈ [0, 1], then for u ∈ Ran(FY00)∩Ran(FY10),

CY00,D(u, q) = CY10,D(u, q). (E.2)

Proof. (i) For y ∈ R

CYt0,D(FYt(y), q) = FYt0,D(y, 0) = P(Yt0 ≤ y,D = 0) = P(Q−
Yt0

(Ut) ≤ y,D = 0)

=P(Ut ≤ FYt0(y), D = 0) = CUt,D(FYt0(y), q). (E.3)

where the first two equalities follow by definition. The third equality follows by

the assumption that (Yt, D)
d
= (Q−

Yt0
(Ut), D). The penultimate equality holds by

Proposition 1(5) in Embrechts and Hofert (2013) and the right-continuity of FYt0 ,

which ensure that Q−
Yt0

(u) ≤ y ⇔ u ≤ FYt0(y)). As a result, for t = 0, 1, CYt0,D(v, q) =

CUt,D(v, q) for v ∈ Ran(FYt0).

As a result, the dependence stability condition in Claim D.1(i), CY00,D(u, q) =

CY10,D(u, q) for all u ∈ [0, 1], implies the following for v ∈ Ran(FY00) ∩Ran(FY10)

CU0,D(v, q) = CY00,D(v, q) = CY10,D(v, q) = CU1,q(v, q) (E.4)
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where the first and last equalities follow from (E.3), whereas the second follows by

the dependence stability assumption on CYt,D imposed in Claim D.1(i).

(ii) For y ∈ R,

FUt,D(FYt0(y), 0) = CUt,D(FYt0(y), q) = P(Ut ≤ FYt0(y), D = 0) = P(Q−
Yt0

(Ut) ≤ y,D = 0)

=P(Yt0 ≤ y,D = 0) = CYt0,D(FYt0(y), q) (E.5)

where the first two equalities follow by definition, the third follows from Proposition

1(5) in Embrechts and Hofert (2013) since FYt0 is increasing and right-continuous.

The last two equalities follow by definition.

As a result, the dependence stablity condition imposed in Claim D.1(ii) implies the

following for u ∈ Ran(FY00) ∩Ran(FY10),

CY00,D(u, q) = CU0,D(u, q) = CU1,D(u, q) = CY10,D(u, q) (E.6)

where the first and last equalities follow from (E.5), whereas the second follows by

the dependence stability assumption on CUt,D imposed in Claim D.1(ii). □

Part (i) of Claim D.1 establishes that the copula stability on the potential outcomes

implies copula stability for the unobservables for specific values on [0,1]. In general,

this would not be sufficient for the conditional time invariance assumption in AI2006,

except if Ran(FY00) = Ran(FY01) = [0, 1], that is, when outcomes are continuous. Part

(ii) of Claim D.1 shows that copula stability on (Ut, D) implies the copula stability

on (Yt0, D) for u ∈ [0, 1] if Ran(FY00) = Ran(FY10) = [0, 1]. However, in general, it

would only hold on the intersection of the two ranges.


	1. Introduction
	2. Analytical Framework and Main Identification Results
	2.1. Identifying Assumptions
	2.2. Main Identification Result
	2.3. Policy-relevant parameters: Social welfare treatment effect on the treated (SWTT)
	2.4. Structural underpinnings of the copula stability assumption

	3. Empirical Illustration
	3.1. Bounds on the counterfactual distribution
	3.2. Bounds on treatment effects

	4. Conclusion
	References
	Appendix A. Proofs of the main results
	A.1. An Additional Result
	A.2. Proof of Lemma 2
	A.3. Proof of Theorem 1
	A.4. Dependence stability vs parallel trends in Example 1
	A.5. A variant of Example 1 with non-normal marginals
	A.6. Proof of Claim 1
	A.7. Proof of Example 2
	A.8. Derivations of Section 2.3
	A.9. Proof in the imperfect foresight case

	Appendix B. Supplementary Empirical Analysis
	B.1. Revisiting CK1994
	B.2. Supplementary Figures for Section 3

	Appendix C. Numerical Examples
	Appendix D. Parallel Trends as Covariance Stability
	Appendix E. Conditional Time Invariance and Dependence Stability

