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Abstract

Recent literature proposes combining short-term experimental and long-term observa-
tional data to provide credible alternatives to conventional observational studies for identi-
fication of long-term average treatment effects (LTEs). I show that experimental data have
an auziliary role in this context. They bring no identifying power without additional mod-
eling assumptions. When modeling assumptions are imposed, experimental data serve to
amplify their identifying power. If the assumptions fail, adding experimental data may only
yield results that are farther from the truth. Motivated by this, I introduce two assumptions
on treatment response that may be defensible based on economic theory or intuition. To
utilize them, I develop a novel two-step identification approach that centers on bounding
temporal link functions — the relationship between short-term and mean long-term potential
outcomes. The approach provides sharp bounds on LTEs for a general class of assumptions,

and allows for imperfect experimental compliance — extending existing results.
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1 Introduction

Identification of the long-term average treatment effect (henceforth LTE) is an important goal
in economics and various other fields of science. For example, one may be interested in the
effects of childhood intervention on outcomes in adulthood; impact of conditional cash transfers
early in life on employment prospects; or adverse/protective effects of vaccination years after
administration. Gupta et al. (2019) explain that identifying the LTE is also recognized as an
important challenge by researchers in the private sector.

Point identification of the LTE is commonly done using observational data (for examples, see
Currie and Almond (2011), Hoynes and Schanzenbach (2018)). However, observational studies
critically rely on modeling or identifying assumptions that may often be deemed implausible.
While randomized controlled trials (RCTs) eliminate the need for such assumptions, long-term
experiments may be prohibitively costly or infeasible.! Short-term RCTs may be more feasible,
but they do not reveal the long-term outcomes and hence the LTE. Nevertheless, short-term
RCTs may complement observational data.

Motivated by this, a large body of recent work following Athey, Chetty, and Imbens (2020)
and Athey et al. (2024) aims to provide credible alternatives to conventional observational studies
that rely on a combination of: 1) a long-term observational dataset with non-randomized treat-
ment assignment; 2) a short-term experimental dataset with unobserved long-term outcomes.?
Pursuing point identification, this literature commonly imposes assumptions on the selection
mechanism in the observational data, mirroring conventional observational studies. Ghassami
et al. (2022), Van Goffrier, Maystre, and Gilligan-Lee (2023) and Imbens et al. (2024) argue that
frequently used assumptions may fail in contexts of economic interest; Park and Sasaki (2024a)
show that they are incompatible with common selection models, including the Roy model. It
is acknowledged that selection assumptions may broadly be challenging to justify based on eco-
nomic theory. However, existing results do not reveal whether the addition of experimental data
provides identifying power in the absence of such assumptions, or whether it can yield results
closer to the truth should the assumptions fail.

This paper has three main contributions. First, it uncovers the roles of the experimental data
and modeling assumptions by showing that neither of the two claims is true. The addition of
experimental data brings no identifying power in the absence of modeling assumptions. Moreover,

it may only lead to results that are farther from the ground truth if the modeling assumptions

1. Institutions supporting RCTs in development economics frequently require phase-in designs with staggered
rollout of treatment to the whole sample. This limits follow-up for the control group.

2. Structural modeling with data combination predates this work (Todd and Wolpin (2006), Attanasio, Meghir,
and Santiago (2012), Garcia et al. (2020), Todd and Wolpin (2023)). The focus here is on “reduced form” methods.



fail. Hence, data combination may provide credible alternatives to observational studies only
under plausible modeling assumptions. Motivated by this, it introduces two assumptions on
treatment response that may be defensible based on economic theory or intuition, as the second
contribution. Third, it develops a novel two-step identification approach which enables the
utilization of such assumptions. The approach bounds latent temporal link functions — means of
long-term potential outcomes conditional on short-term potential outcome — as an intermediate
step.

The first contribution of the paper is that it uncovers the roles of the experimental data and
modeling assumptions, which relates to ongoing discussions (see Remark 5 and Park and Sasaki
(2024Db)). I show that experimental data provide no identifying power, per se; the identified sets
for the LTE obtained from combined and solely observational data are equal in the absence of
modeling assumptions. Modeling assumptions are thus necessary to leverage the experimental
data and to identify the sign of the LTE. When the assumptions are imposed, the identified set
based on combined data is a subset of the one that uses only observational data. It need not be
a strict subset. Hence, the experimental data serve to potentially, but not necessarily, amplify
the identifying power of the modeling assumptions. These observations reveal the auxiliary
role of experimental data. Assumptions in the observational data remain central under data
combination, mirroring their prominence in observational studies.

I illustrate this point via a selection assumption that is often used in the literature relying on
data combination — latent unconfoundedness (LUC), introduced by Athey, Chetty, and Imbens
(2020). I show that LUC may commonly have identifying power for the LTE using observational
data alone. When experimental data are added, LUC has more identifying power and point
identifies the LTE. In extreme cases, observational data may point identify the LTE under LUC
even without experimental data. Since the LTE is point identified from combined data and LUC,
the experimental data potentially, but not necessarily, amplify the identifying power of LUC.

The amplifying role of the experimental data highlights the importance of modeling assump-
tions. If the imposed assumptions are difficult to justify based on economic substantives, it may
be preferable to discard the experimental data. Under misspecified assumptions, the identified
set obtained using combined data can never be closer to the true LTE than the set obtained using
only observational data. This finding is an application of a more general lemma. The lemma
states that whenever two misspecified identified sets are nested, the smaller one must be at least
as far from the truth as the larger one. This result is strikingly simple, but it appears that it
was not formalized before.

The central role of modeling assumptions motivates the main identification results. To sum-

marize them, let Y'(d) € Y and S(d) € S denote long- and short-term potential outcomes under



treatment d € {0, 1} and let:

mq(s) := E[Y(d)|S(d) = s];
Ya = P(S(d)).

I refer to my(s) as the temporal link functions, while ~y,4 are the distributions of short-term

potential outcomes. We can then write the LTE using the identity:

LTE = E[Y(1) — Y/(0)] = / ma(s)d (5) — / mo(s)dro(s), 1)
oo o

For the second contribution, I introduce two assumptions on temporal link functions (mg, m;)
which are defensible based on economic theory or intuition — latent monotone instrumental vari-
able (LIV) and treatment invariance (TI). LIV asserts that functions mg, are non-decreasing for
any d. That is, means of long-term potential outcomes are non-decreasing in short-term potential
outcomes. It is related to the monotone instrumental variable assumption of Manski and Pepper
(2000). LIV may be interpreted as maintaining that the latent potential outcome S(d) is itself
a monotone instrumental variable. TI posits that the temporal link functions are invariant to
the treatment — m; = mgy. In other words, TT states that the relationship between short-term
potential outcome and the mean long-term potential outcome is unaffected by the treatment.

While LIV may be justifiable based on intuition, TT is implied by a model. For example, TI
would hold under the model proposed by Garcia et al. (2020) in the context of early childhood
intervention. LIV and TT do not impose any restrictions on the selection mechanism and repre-
sent assumptions on treatment response. In contrast, the existing literature primarily imposes
restrictions on the selection mechanism. As mentioned previously, the literature has argued that
frequently used assumptions in the context of LTE identification via data combination may also
fail in economic settings of interest, or may be incompatible with common selection models.
Manski (1997) note that convincing behavioral arguments are generally often lacking for such
assumptions.

The third contribution is a novel two-step identification approach that enables the use of the
proposed assumptions. In the first step, I find all (mq, m1, Y0,71) compatible with the data and
assumptions. In the second step, I collect all values that possible (mg, m1, v9,71) produce via (1),
which yields the identified set for the LTE. The LTE is point identified if this set is a singleton. If
it is not a singleton, the LTE is partially identified. Either is permitted and which occurs depends
on the imposed assumptions and the observed data distributions. It should be emphasized that

in either case, all produced bounds are the smallest possible under the maintained assumptions,



or sharp.

In the first step, I find the set of all possible (mg,m1,70,71) under a generic restriction on
(mg, my), which embodies modeling assumptions maintained by the researcher. To do so, I rely
on appropriately defined random sets. To operationalize the result, I combine two concepts
from random set theory — Artstein’s inequalities and the conditional Aumann expectation. This
characterizes the restrictions on (mg, m1,70,71) via a collection of moment conditions. The two
concepts are commonly used in isolation, or combined when the conditioning variable in the
Aumann expectation is observed (Chesher and Rosen (2017), Chesher and Rosen (2020)). A
distinguishing feature of the setting here is that the conditioning variable is itself a measurable
selection of a random set.

In the second step, I collect all values that possible (mq, mq,70,71) produce via (1), which
yields the identified set for the LTE. I show that this set can be characterized as an interval
bounded by solutions to two generalized bilinear programs (Al-Khayyal (1992)). Bilinear pro-
grams are computationally more demanding than linear programs that are commonly used to
characterize identified sets. To alleviate the computational burden, I show that the bilinear
programs can be restated as bilevel (nested) programs and prove that the inner optimization
problems have closed-form solutions under LIV, TI and existing assumptions. I further reduce
the number of constraints in the outer optimization problems via the concept of core determining
classes (Galichon and Henry (2011)). This characterization leads to tractable plug-in estimators
based on results in Shi and Shum (2015) and Russell (2021).

The two-step identification approach has additional appealing features, beyond providing
bounds under LIV and TI. Concretely, it can computationally produce sharp bounds under
modeling assumptions representable as restrictions on (mg, m;). This can be achieved by intro-
ducing new modeling assumptions as constraints in the optimization problems. The identification
results thus provide a tool to researchers to characterize identified sets under new assumptions
tailored to their empirical setting, without requiring proofs of sharpness. For similar results
in different settings, see Mogstad, Santos, and Torgovitsky (2018), Torgovitsky (2019), Russell
(2021), Kamat (2024) and references therein. The approach may also be of independent interest
in other settings as it allows for direct utilization of assumptions that restrict latent conditional
means.

One additional important advantage of the approach is that it can accommodate imperfect
compliance in the experimental data by allowing partial identification of the subvector (yo,71).
Accommodating imperfect compliance is of great practical relevance. Compliance issues are

prevalent in RCTs, and especially in the experiments previously used in this context.® Moreover,

3. Athey, Chetty, and Imbens (2020) and Park and Sasaki (2024a) use the Project STAR and Aizer et al. (2024)
the Job Corps RCT. Both had significant reassignment/compliance issues (e.g. see Chen, Flores, and Flores-



often considered alternative parameters under non-compliance, such as the intent-to-treat effect
(ITT) and local average treatment effect (LATE) of Imbens and Angrist (1994) are unidentified
in this setting because the long-term outcomes are never observed in the experimental data.*
However, despite its practical relevance and dearth of identified alternative target parameters,
related literature did not consider experiments with imperfect compliance, to the extent of my
knowledge. Since existing identification strategies may be represented as restrictions on (mg, my),
the approach also extends existing identification strategies by allowing them to account for
imperfect compliance.

Section 2 introduces the setting, summarizes the roles of the experimental data and modeling
assumptions, and introduces LIV and TI. Section 3 characterizes the identified set and provides a
consistent estimator. Section 4 discusses the roles of experimental data and modeling assumptions
in detail. Section 5 concludes. Appendix A contains the extensions of the findings, and Appendix

B collects the proofs.

2 Setting and Assumptions

I formalize the problem using the standard potential outcomes model. Let Y(d) € Y and
S(d) € S denote the long-term and short-term potential outcomes under some binary treatment
d € {0,1}, respectively.” Denote the realized treatment by D € {0,1}. The observed outcomes

are:

Y = DY (1) + (1 — D)Y(0)

(2)
S = DS(1) + (1 — D)S(0).

Let X € X be a vector of observed covariates. Define the conditional long-term average
treatment effect (CLTE) 7(z):

7(x) = E[Y(1) = Y(0)[X = x]. (3)

The parameter of interest can be the CLTE itself or its weighted averages - average long-
term treatment effect (LTE). I focus on the former for generality noting that it is sufficient for
identification of the latter. Throughout the paper, I assume E[|Y (d)|] < oo for d € {0, 1}, which

ensures that the parameters are well defined.

Lagunes (2018) and Russell (2021)).

4. Even when identified, ITT or LATE may or may not be of interest, depending on the research question. For
more details see discussions in Deaton (2009), Heckman and Urzua (2010) and Imbens (2010).

5. Supports are invariant to the treatment. This can be relaxed at the expense of more complicated notation.



Example 1. (Head Start Participation) For illustration, D is an indicator for Head Start par-
ticipation, S(d) are cognitive test scores in childhood, and Y (d) are outcomes in adulthood, such

as earnings, under treatment d.

2.1 Observed Data

As in Athey, Chetty, and Imbens (2020), I maintain the existence of a population divided into
two subpopulations from which the two datasets are randomly drawn: a short-term experimental
and a long-term observational dataset. Let G € {O, E'} be the indicator for the subpopulation,
where G = O generates the observational and G = E the experimental dataset.® Let Z € Z be
an exogenous (i.e. randomly assigned) instrument in the experiment, inducing individuals into
treatment. In the experimental dataset, the researcher observes (S, D, X, Z), but not Y. In the
observational dataset, (Y, .S, D, X) are observed, but Z is absent as there is no instrument in the
observational data.

Usually, Z € {0, 1}, representing random assignment to the treatment or the control group.
The identification analysis can accommodate bounded Z with multiple or even a continuum
of points Z = [0,1], as in Heckman and Vytlacil (1999). For expositional simplicity, I refer
to experiments with P(D = Z|G = E) < 1 as having imperfect compliance, as opposed to
perfect compliance when P(D = Z|G = E) = 1. I thus also refer to Z as treatment assignment
regardless of its support, keeping in mind that the Z may contain points beyond {0, 1}.

The main purpose of Z is to allow for imperfect experimental compliance, which is practically
relevant. This represents a critical distinction between the setting of this paper and related
existing work. Researchers often obviate compliance issues by focusing on parameters such
as the ITT and LATE. Identification of ITT and LATE requires jointly observing treatment
assignment Z and the long-term outcomes Y. Since Z is never jointly observed with Y in this

setting, both parameters are unidentified.

Example 1 (continued). The observational dataset is the National Longitudinal Survey of
Youth (NLSY), and the experimental dataset is the Head Start Impact Study (HSIS). In the
HSIS, Z = 1 if the individual is assigned to participation in Head Start and Z = 0 if assigned
to non-participation. D is the indicator for true participation. Kline and Walters (2016) explain
that some individuals may have D # Z.

I maintain the following assumptions throughout the paper.

Assumption RA. (Random Assignment) Z 1L (Y (1),Y(0),S5(1),5(0))|X,G =F

6. This setting has become common. See also Garcia et al. (2020), Athey, Chetty, and Imbens (2020), Ghassami
et al. (2022), Hu, Zhou, and Wu (2022), Van Goffrier, Maystre, and Gilligan-Lee (2023), Chen and Ritzwoller
(2023), Park and Sasaki (2024a), Aizer et al. (2024) and Imbens et al. (2024).




Assumption EV. (Ezperimental External Validity) G 1L (Y (1),Y(0),S(1),S5(0))|X.

Assumption RA holds if Z in the experimental data is randomly assigned. It is a standard
assumption in the program evaluation literature. D U (Y(1),Y(0),S5(1),5(0))|X,G = g is
permitted for any g € {O, E'}. This is expected in the observational dataset, and in the experi-
mental data under imperfect compliance. When compliance is perfect, Assumption RA implies
D 1L (Y(1),Y(0),5(1),5(0))|X,G = E. I do not assume that P(D = 1|G = g) € (0,1) for
any g € {0,1}. Instead, P(D = 1|G = g) € [0,1] which may be relevant for ¢ = O when a
certain treatment is only available in the experiment. This is the case with some early childhood
intervention programs or novel vaccines.

Assumption EV is a standard assumption in the data combination literature, linking the two
datasets. It states that the subpopulations generating them do not differ in terms of counter-
factual distributions (conditional on X). It holds when participants are randomly recruited into
the datasets from the same population (conditional on X).

Under Assumption EV, CLTE is invariant to G, E[Y(1) — Y(0)|X = z,G] = E[Y(1) —
Y (0)|X = 2] = 7(x). Henceforth, I keep conditioning on X implicit. The following analysis

should be understood as conditional-on-X, and I write the parameter of interest 7(z) as:
7= E[Y(1) = Y(0) (4)

and I continue referring to it as the LTE, with the understanding that it represents the CLTE.
Notation: I denote laws of random elements using subscripts when the element needs to be
specified (e.g. Pg(q) is the law of S(d)). If the random element is clear from the context, I write
laws conditional on an event & P(-|€,G = g) as P,(-|€) for g € {O, E}. Whenever Pg(:|€) =
Po(-|€), I omit the subscript g. This is inherited by their features E[-|E,G = g] = E,[|€] and
VEIE.G = g] = Vi)

2.2 Identification Preliminaries
This paper proposes a novel identification approach. To introduce it, recall that for s € S and
d e {0,1}:
mq(s) = E[Y(d)|S(d) = s] (5)
Ya = Ps(a)- (6)

[ refer to my(s) as temporal link functions, since they “link” the short-term and long-term po-

tential outcomes in a way that is meaningful for identification of 7. We can write the parameter



of interest as:

T =E[Y(1) / ma (s)dm (s / mo(s)do(s (7)

Denote the pair of temporal link functions m := (myg, m;), and the pair of short-term potential
outcome distribution functions by v := (70,71) = (Ps(0), Psay). Observe that vy consists of the
marginal distributions Pg(q), and is not the joint-distribution function P(S(0),S(1)). Given
functions (m,~), the corresponding value of 7 follows by (7). Relying on this, the approach
identifies (m,y) as an intermediate step towards identifying 7.

As mentioned in the introduction, this approach two benefits. First, it will computationally
produce sharp bounds for a broad class of modeling assumptions, removing the need for proving
sharpness for each assumption. Second, it allows one to account for imperfect compliance in the
experiment by permitting partial identification of ~, which is of great practical relevance. To
formalize the class of modeling assumptions, let M be the set of all temporal link functions,
i.e. measurable functions mapping S x S — Y x V.” I assume that the researcher knows or
can identify the subset M# C M to which m belongs, which represents a generic modeling

assumption. I will provide the identified set for 7 for any modeling assumption in this form.
Assumption MA. (Modeling Assumption) m € M* C M for a known or identified set M*.

Modeling assumptions may be classified as: selection assumptions, restricting the relationship
between (Y'(1),Y(0),S5(1),5(0)) and D; and treatment response assumptions, restricting how
(Y(1),Y(0),5(1),S(0)) are related to each other.

Assumption MA can accommodate both treatment response and selection assumptions. I
will introduce two treatment response assumptions in Section 2.3. Remark 1 explains that
Assumption MA nests existing selection assumptions and approaches. Thus, the identification
framework will directly extend previously proposed approaches by allowing them to account for
imperfect compliance.

Let H(-) be the identified set for a specified parameter. Finding all (m,~y) consistent with
the data and maintained assumptions, including any restriction in the form of Assumption MA,
yields H(m,~). In turn, by the identity (7), H(7) follows directly. To this end, define the

functional T : M x PS x P° — R, where P collects distribution functions supported on S:

T(m,~) /ml Ydyi (s /mo Ydyo(s (8)

7. More precisely, M is the set of Borel-measurable functions 1 : S xS — Y x Y such that po¢ is P-integrable
for some F/B(S x §)-measurable function ¢ : @ - S x S.




By definition, the identified set H(7) is then equivalent to the set of values 7' can produce
over the identified set H(m,~):

H(7) == {T(m,7) : (m,7) € H(m,7)}. (9)

Section 3 constructs H(m, ), and develops a tractable characterization and estimators of

H(T).

2.3 Modeling Assumptions

Section 4 provides a detailed discussion on the roles of experimental data and modeling as-
sumptions. It reveals that modeling assumptions remain central under data combination, as in
observational studies. Experimental data bring no identifying power on their own, and serve only
to amplify the identifying power of the modeling assumption. Hence, if a modeling assumption
fails, bounds on 7 obtained using just observational data may only be closer to the truth than
the bounds obtained using combined data. Therefore, plausible inference hinges on plausible
modeling assumptions.

As mentioned previously, Ghassami et al. (2022), Van Goffrier, Maystre, and Gilligan-Lee
(2023) and Imbens et al. (2024) argue that frequently used assumptions may fail in contexts of
economic interest; Park and Sasaki (2024a) indicate that they are incompatible with standard
models of selection. 1 thus propose treatment response assumptions that may be defensible
based on economic theory or intuition. These assumptions rely on the identification approach

for implementability.

Assumption LIV. (Latent Monotone Instrumental Variable) For any m € M* and 5,8’ € S
such that s < s it holds that mg(s) < mg(s') for d € {0,1}.

Assumption LIV has an intuitive interpretation. It posits that the mean of the long-term
potential outcome Y (d) is non-decreasing conditional on the short-term potential outcome S(d).
One can symmetrically assume that E[Y (d)|S(d) = s] is non-increasing in s. Results follow
directly by defining S(d) = —S(d) and observing that E[Y (d)|S(d) = s] satisfies LIV.

Example 2. (LIV and Head Start) LIV means that people with higher potential childhood
test scores S(d) under Head Start participation d, on average, also have weakly higher potential

earnings in adulthood Y (d) under d.

LIV is related to the monotone instrumental variable (MIV) assumption of Manski and Pepper
(2000) (see also Manski and Pepper (2009)). MIV maintains that there exists a variable V' € V
such that E[Y (d)|V = v] is non-decreasing in v € V, which is observed for all individuals. The

9



critical distinction is that the conditioning variable in Assumption LIV is a latent counterfactual.

This introduces further complexity, which will be addressed by the identification approach.
Assumption TI. (Treatment Invariance - TI) For allm € M* and s € S, my(s) = mg(s).

The assumption intuitively states that the relationship between the potential outcomes S(d)

and mean long-term potential outcomes Y (d) does not vary with the underlying treatment d.

Example 3. (T1I and Head Start) T1 follows from previously used models in the context of early

childhood intervention. Consider the following separable model of potential earnings:
Y(d) = $4(S(d)) + 4 = ¢(S(d)) + €4, €1~ €0, ea AL S(d),Vd,d" € {0,1}. (10)

S(d) is a vector of short-term potential outcomes including test scores and measures of non-
cognitive skills. S(d) represents inputs in the production function ¢4 for Y (d). The production
function ¢4 and the distributions of unobservables £, do not depend on Head Start participation
d. Therefore, E[Y (d)|S(d) = s] = ¢(s) + E[e] which is invariant to d, so TI is implied by the

model.

Researchers may utilize TT whenever they find the model from Example 3 to be plausible.
For example, based on mediation results in Heckman, Pinto, and Savelyev (2013) and extensive
falsification testing, Garcfa et al. (2020) argue the plausibility of a similar model when the
treatment is an early childhood intervention. They then identify 7 by combining observational
and experimental data in the special case where Po(D = 0) = 1 and compliance is perfect, i.e.
when there is no selection in either dataset. This paper extends their findings by demonstrating
that one may use implications of the same model to provide informative inference on 7 when
there is selection in either dataset.

In the special case of perfect compliance, TI is implied by the statistical surrogacy assumption
of Prentice (1989) — Y 1 S|D,G = E. Appendix A.1.4 explains the differences. However,
researchers may still wish to assign the informal interpretation of the surrogacy assumption to
Assumption TI. Intuitively, one may choose to say that the treatment affects the mean long-term
outcome only through the short-term outcomes.

To connect the findings of this paper with previous results, I will refer to a widely used

selection assumption introduced by Athey, Chetty, and Imbens (2020).
Assumption LUC. (Latent Unconfoundedness) For all d € {0,1} : Y (d) 1L D|S(d),G = O.

According to Chen and Ritzwoller (2023): “Informally, LUC states that all unobserved con-

founding in the observational sample is mediated through the short-term outcomes”. Park and

10



Sasaki (2024a) describe it as a “statistical assumption” and indicate that it is difficult to interpret
economically outside of restricted non-parametric selection models.

Previous work notes that Assumption LUC may be untenable in economic contexts such as
early childhood interventions and job-training programs. In the former case, parental interference
and the child’s inherent ability may be confounding factors for (D, S(d),Y(d)), invalidating
the assumption. In the latter, the confounding factors may be worker’s innate motivation and
resourcefulness. For more details see Ghassami et al. (2022) and Imbens et al. (2024). For
examples of its use, see Hu, Zhou, and Wu (2022), Park and Sasaki (2024b), Aizer et al. (2024).

Remark 1. Existing approaches are subsumed under Assumption MA. For example, Assumption
LUC can be restated as MLV = {m € M : my(s) = Eo[Y|S = 5, D = d],Vs € S}. One can
do the same for the outcome bridge function approach of Imbens et al. (2024, Theorem 1). Let
Sy for t € {1,2,3} be subvectors of S. Then under the corresponding assumptions: MPridse —=
{m € M :my(s3, s2) = h(ss, s2,d), h solves EglY|Ss, S1, D] = Eplh(Ss, S2, D)|S2, S1, D]}.

3 Main Results

Section 3.1 summarizes the main identification results and the underlying intuition behind the
two-step identification approach; technical discussions follow. Section 3.2 characterizes H(m, ).
Section 3.3 provides a tractable implementation of H(7) based on this characterization. Sec-

tion 3.4 proposes a consistent estimator for (7).

3.1 Identification Intuition

The identification approach aims to operationalize the proposed modeling assumptions. However,
it also presents a novel challenge; it necessitates finding H(m,y) as an intermediate step. Both
mq(s) = E[Y(d)|S(d) = s] and v4 = Pg(q) are features of latent random variables Y'(d) and S(d),
and thus (m,~y) are not directly revealed by the data. The identification results exploit this
apparent complexity to construct H(m,~). By characterizing the feasible potential outcomes,
the corresponding (m,~y) follow by definition.

Because potential outcomes are latent, there will exist a set of (5(0),.S(1),Y(0),Y (1)) that
are consistent with the data and maintained assumptions. Concretely, let Q be the set of all
(5(0),.S(1),Y(0),Y (1)) that are consistent with the data, and Assumptions RA and EV. The re-
searcher can determine this set. To find H(m, ), one then only needs to collect all corresponding

(m, ) such that they additionally satisfy the modeling assumption m € M. By definition:

11



Modeling issumption Data + Assumptions RA/EV
me M 3(S(0),5(1),Y(0),Y(1) € Q
Vd € (0,1} : 74 2 S(d), ma(S(d)) = E[Y(d)[S(d)] as.

-

(m,~) correspond to S(d) and Y (d)

H(m,v) =4 (m,7) (11)

Then, again definitionally, H(7) = {T'(m,~) : (m,~y) € H(m,~)}. These expressions demon-
strate that one may use the information on the potential outcomes to relate (m,~v) and 7 to
observed data and assumptions. However, while intuitive, the definitions are intractable.

The first main identification result utilizes (11) to provide a general equivalent character-
ization of H(m,~) in terms of moment restrictions. When S§ and Z are finite, the general

characterization simplifies to:®

((m,y) € MAx (A(S])?:Vd € {0,1}, Vs € S,
v4(s) > max (max,ez Pp(S =s,D =d|Z =2),Po(S=s,D=4d)),

Him,y) = —eD=d) | - D= 12
(m, ) ma(s) > EolY|S =s,D = d]%(i;—w Linfy (1 _ Po(S:Yd(;)D d)) , (12)
\ ma(s) SEo[Y|S:3,D:d]IDO(i:—a;D:@+supy(1_ljo(ij—é)D=@) J

where A(k) denotes the k-dimensional simplex. In turn, this yields the second main identification

result — characterization of H(7) using optimization problems:

M= |l T TG0 as
where the moment conditions definining H(m, ) take the role of the constraint set.

Therefore, the researcher may determine H(7) by solving two constrained optimization prob-
lems. Beyond producing sharp bounds under the previously introduced assumptions, (13) also
provides a tool for researchers to computationally obtain sharp bounds on 7 under tailor-made
modeling assumptions. To do so, it is sufficient to solve the optimization problems with appropri-
ately defined constraints based on M4. Computational characterizations of identified sets have
been exploited previously to obviate the need to prove sharpness for each set of assumptions;
for recent examples in different settings, see Mogstad, Santos, and Torgovitsky (2018), Torgovit-
sky (2019), Russell (2021), Kamat (2024) and references therein. Commonly, the corresponding
optimization problems are linear or have linear equivalents.

A distinguishing feature of the setting here is that both the objective T" and the constraints

8. Conceptually, the identification results do not require S or Z to be finite. The former allows one to compu-
tationally characterize the set in full. Both will be assumed to construct the consistent estimator.
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imposed by H(m, ) are bilinear in (m, ) under existing and proposed assumptions. Hence, the
optimization problems in (13) are generalized bilinear programs (see Al-Khayyal (1992)). Such
programs are nonlinear and computationally demanding, in general. Section 3.3 thus proposes
further simplifications that exploit the structure of the identified sets. I use the concept of core-
determining classes to remove redundant restrictions on . Additionally, I restate the problems

as bilevel programs:

H(t)=| min min 7T(m,7), max max T(m,7)]|. 14
@ YEH(y) MER(MIT) (%) YEH () MER(M|F) (7. %) (14)
and show that inner problems have closed-form solutions for the proposed and existing assump-
tions. Consistent plug-in estimators for H(7) can be constructed based on these representations.

Section 3.2 presents the general characterization of H(m, ) that leads to (12), and discusses
its derivation. Section 3.3 then provides representations of H(7) found in (13) and (14). Sec-

tion 3.4 develops the consistent estimator.

3.2 Identification of (m,~)

This section represents H(m, ) in terms of moment restrictions. This set is conducive to tractable
implementation of H (7). To present the result, I introduce the necessary basic definitions from
random set theory specialized to finite-dimensional Fuclidean spaces. Appendix B.1.1 contains
a more complete but brief overview of the results used in the proofs. I henceforth maintain that
all random elements are defined on a common non-atomic probability space (Q, F, P).?
Notation: A, B and K represent sets. K(A), C(A), and B(A) are the families of all compact,
closed, and Borel subsets of the set A, respectively. co(A) is the closed convex hull of the set A.
I write random sets using boldface letters (e.g. Y), and Y x X as (Y, X).

Definition 1. A measurable map R : Q — C(R?) is called a random (closed) set.'

Definition 2. A random variable R :  — R? such that R € R a.s. is called a (measurable)
selection of R. Sel(R) and Sel'(R) are the sets of all selections, and all integrable selections of
R, respectively.

Definition 3. If the random variable ||R|| = sup{||R|| : R € Sel(R)} is integrable E[||R||] < oo,
then the random set R is said to be integrably bounded.

9. That is, for any A € F with positive measure there exists a measurable B C A such that 0 < P(B) < P(A).
10. R is measurable if for every compact set K € K(RY): {w € Q: R(w)N K # 0} € F. The codomain C(R?)
is equipped by the oc—algebra generated by the families of sets {B € C(RY) : BN K # 0} over K € K(R?).
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Define the following closed random sets for d € {0, 1}:

Y(d) = {Y}, if (D,G) = (d,0) S(d) = {S}, it (D,G) € {(d, E), (d,0)} )

Y, otherwise S, otherwise

Y (d) and S(d) serve to summarize information on the counterfactuals (S(0),.5(1), Y (0),Y (1)),
and thus (m,~), contained in the data and assumptions. Their properties lead to the following

result.

Theorem 1. Let Assumptions RA, EV and MA hold. If Y (d) is integrably bounded, the identified
set for (m,~y) is:

(m, ) € MA x (PS)?:Vd € {0,1}, VB € C(S),
H(m,v) = ¢ 74(B) > max (esssup, Pg(S € B,D =d|Z), Po(S € B,D = d)), (16)
Vu € {=1,1}: umg(s) < upa(s)my,(s) + heoy(u)(1 = m,(5)) v4—a-e.

where heoy) (1) = SUP,eeoy) WY, Ha(s) = EolY|S = s,D =d], and 7, = dPo(S, D = d)/dvy. If
a collection of sets € is a core determining class for the containment functional of S(d), then the
condition VB € C(S) can be replaced with VB € €.

Theorem 1 equivalently characterizes H(m, ) for any modeling restriction in the form m €
M4 via moment restrictions that are identified by the data. This includes, but is not limited to,
assumptions and approaches in Section 2.3 and Remark 1. It also offers computational simpli-
fications via the concept of core-determining classes — sub-families of C(S) which are sufficient
to completely characterize v, (Galichon and Henry (2011)). Informally, a core determining class
allows one to remove redundant restrictions on each ~,;, without any loss of information, which
will be beneficial for tractability. Theorem 1 will be used to provide a tractable implementation
of H(7) in Section 3.3.

The technical contribution of the theorem lies in jointly identifying conditional means and
corresponding distributions of latent random variables via moment restrictions. This necessitates
novel arguments that may be of independent interest. Namely, the proof combines Artstein’s the-
orem (Artstein (1983, Theorem 2.1)) and the conditional Aumann expectation when the relevant
conditioning o-algebra is generated by a selection of a random set, i.e. a latent variable. Sec-
tion 3.2.1 thus sketches how Theorem 1 is obtained. The main results in Section 3.3 do not

require these discussions.
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3.2.1 Mechanics behind Theorem 1

Recalling the intuition, to find all feasible (m,7), one may first summarize the information
about the counterfactuals Y (d) and S(d). By definition, random sets Y (d) and S(d) express all
information on Y'(d) and S(d) contained in the data, respectively. As Beresteanu, Molchanov,
and Molinari (2012) explain, all information in the data about S(d) and Y (d) can be expressed as
(5(0),5(1),Y(0),Y (1)) € Sel((S(0),S(1),Y(0),Y(1))). Intuitively, we can think about random
sets S(d) and Y (d) as bundles of random variables. The data only reveal that S(d) and Y (d)
are elements of these bundles, but not which ones exactly.

Assumptions RA, EV and E|[|Y(d)|] < oo further restrict which elements the potential out-
comes may be. The counterfactuals are consistent with the three assumptions if and only if
(5(0),5(1),Y(0),Y(1)) € Z, where Z is the set of random elements (FE;, By, E3, E4) such that
(B, By, B3, Ey) AL Z|G = E, (B, Ey, B3, Ey) AL G and E[|Es|], E[|Es|] < co. Therefore, all
information about the counterfactuals in the data and the three assumptions can be expressed
by:

(5(0),5(1),Y(0),Y(1)) € Sel((S(0),S(1),Y(0),Y(1)))NZ:= Q.

The identified set for H(m, ) follows by definition as all corresponding (m, ) that additionally

satisfy the modeling assumption:

Him. ) = {(mﬁ)EM x (P9)? : 3(5(0), (1), Y (0) Y<|1>> } a7

vd € {0,1}, 742 5(d), ma(S(d)) = E[Y(d)|S(d)] a.

The definition imposes redundant restrictions on (m, 7), which preclude the use of appropriate
tools needed to obtain moment conditions. The following lemma disposes of such restrictions

and is important for explaining how Theorem 1 is obtained.

Lemma 1. Let Assumptions RA, EV, and MA. The identified set for (m,~) is

Hrm, ) = (m,7) € MA x (PS)?:vd € {0,1}, 3S(d) € Sel(S(d)) N1, (15)
T Y (d) € Sel' (Y(d)), 74 < S(d), ma(S(d)) = Eo[Y(d)|S(d)] as. |

where I is the set of random elements Ey € S such that By 1L G and B, 1L Z|G=E.

The lemma indicates that, for identification of (m, ) it is sufficient to: 1) consider restrictions
imposed by Y (d) and S(d) conditional on G = O, reflected by m4(S(d)) = Eo[Y (d)|S(d)]; 2)
only impose marginal independence conditions S(d) 1. G and S(d) L Z|G = E, instead of the
full joint independence as in Assumption RA and EV.

With Lemma 1, the characterization in Theorem 1 can be constructed. First, for any S(d) €
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Sel(S(d)) N I, collect all conditional expectations Ep[Y (d)|S(d)] over Y(d) € Sel'(Y(d)) into
a set. This yields the random set {Eo[Y(d)|S(d)] : Y(d) € Sel'(Y(d))}. When Y(d) is
integrably bounded, Li and Ogura (1998, Theorem 1) show that this random set is equivalent
to the conditional Aumann expectation denoted by Eo[Y (d)|S(d)]."! Then, it is easy to see that
for a given S(d):

IV (d) € Sel' (Y(d)) : ma(S(d)) = EolY (d)|S(d)] as. & ma(S(d)) € Eo[Y(d)[S(d)] as. (19)

Eo[Y(d)|S(d)] is convex on non-atomic probability spaces. Therefore, it can be repre-
sented using its support function, which equivalently characterizes the condition mg4(S(d)) €
Eo[Y (d)|S(d)] as a set of moment restrictions. For a given S(d) with a distribution ~4, (19)
holds if and only if:

Vu € {—1,1}: umgy(s) < uEolY|S = s,D = d|my,(s) + heoyy(w) (1 — 7y, (5)) 7a—a.e.  (20)

All restrictions on my depend on the selection S(d) only up to its distribution -4, which
will be essential in the next step. Observe that all elements on the right-hand side of (20)
are either known or identified from the data, given v4. Notably, 7., is identified given ~4,
which is evident when ~, is discretely supported. Then, 7., (s) = ID‘D(S,;—(Z’?:CD for s € § (which
implies that v4(s) > 0). This intuition extends to the case when S is not discrete. Note
that Po(D = d|S'(d) = s) = m,(s), so m,, can be interpreted as the latent propensity score,
conditioning on a latent variable S’(d) < ~a (for other uses see Masten and Poirier (2023)).

The result in (20) removes the need to search over Y (d) € Sel'(Y(d)), but the need to search
over S(d) € Sel(S(d)) NI remains. I utilize Artstein’s theorem to address this. By Artstein’s

theorem:

35(d) € Sel(S(d)) N I such that vy < S(d)
(21)
SVB € C(S) : vq4(B) > max (esssup Pp(S € B,D=d|Z),Py(S € B,D = d))
Z

This characterizes the set of distributions v4 such that they are “rationalized” by a selection
S(d) satisfying conditions of Lemma 1; (20) characterizes the set of link functions m, such that
they “rationalized” by a selection Y (d) satisfying conditions of Lemma 1, given a distribution
va- By putting the two results together, Theorem 1 follows. Hence, (m,~) can be characterized

using only moment conditions.

11. The conditional Aumann expectation is defined with respect to any conditioning sub-o-algebra Fy C F.
Here, this is the o-algebra generated by events {{S(d) € B} N {G = O} : B € B(S)}, which I keep implicit for
ease of notation. See Section B.1.1 for a formal definition.
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The theorem provides an additional important simplification that reduces the number of
conditions for -, imposed by (21). This is done via a core-determining class — a subfamily
¢ C C(S) sufficient to summarize all restrictions on ~,4 in (21). More precisely, € is a core

determining class when:

VB € € : 74(B) > max (ess sup Pp(S € B,D =d|Z),Po(S € B,D = d)>

’ (22)

&VB € C(S) : v4(B) > max (esssup Pg(S € B,D=4d|Z),Po(S € B,D= d))
Z

If a core-determining class exists, using it can substantially reduce the number of constraints
on 74. This is instrumental in reducing computational burden when determining H(7) in the

next step.

3.3 Tractable Characterization of # ()

Recall that H(m,~) yields the identified set H(7) = {T'(m,v) : (m,vy) € H(m,~v)}, where
T(m,v) = [g¢ma(s)dyi(s) — [g¢mo(s)dyo(s). This section operationalizes 7 (7) using Theorem 1.

To verify if a candidate (m,y) is in the identified set, one must establish that each v, satisfies
an inequality condition for each closed subset B € C(S). If S is infinite, then so is C(S). Some of
these restrictions may be redundant. However, even the smallest set of non-redundant restrictions
on g, i.e. the smallest core-determining class €, will contain infinitely many sets (Ponomarev
(2024, Theorem 1)). It is thus generally computationally infeasible to fully characterize H(m, )
and H(7) when the relevant outcome space is infinite. This is a well-known issue with identified
sets that follow from Artstein’s theorem. A common way of addressing it is to discretize the
relevant variables or focus on settings where they are finitely supported (Galichon and Henry
(2011), Russell (2021), Ponomarev (2024)). Here, I do the same. A computationally tractable
characterization of H(7) that minimizes the loss of information with infinitely supported S is an
interesting avenue for future research.

Henceforth, I maintain that S(d) € S = {1,2,...,k}, either by definition or following dis-
cretization performed by the researcher. Subtleties related to the interpretation of results under
discretization are discussed in Appendix A.2. I do not require the long-term outcome support
Y to be a finite or discrete set, but I maintain Y C [Y7, Yy for some known finite Y7, Yy, nor-
malized to [0, 1] without loss of generality. This is commonly required for informative inference
under nonparametric treatment response assumptions. The support restriction may be natural
for various Y (d) such as binary indicators, or discrete and continuous variables that are logically

bounded. For some Y (d), they may be restrictive. When, |S| < oo, one can represent 74 as an

17



element of a k—dimensional simplex A(k), and v € A(k) x A(k). Similarly, m € M = V¥ x ¥,
and the modeling assumption can be represented as M4 C V¥ x VF. Let v4(s) and my(s) de-
note the s—th element of the corresponding vectors. This leads to the following characterization

result.

Theorem 2. Let Assumptions RA, EV, and MA hold. Suppose S is a finite set and that M*

1s closed and convex. Then:

H(T) = min T (m,%), max T(m,%5 23
(7) (m,y)eH(m,y) (m,%) (m,y)eH(m,) (m,) (23)
where:
(m,7) € MA x (A(k))?:Vd € {0,1}, Vs € S, ‘
va(s) > max (esssup,(Pg(S = s,D = d|Z), Po(S =s,D = d)),
H(m,v) = o 11 Po(S=s,D=d) (24)
md(8> Z EO[Y|S = S7D == d]'Yd—(S) s
| mal(s) < BolY|S = 5,0 = | PeE=0=0 4 (1 — fol=ap=d)

By the theorem, H(7) can be equivalently restated as an interval bounded by solutions to two
optimization problems where H(m, ) represents the constraint set. The characterization follows
under easily verifiable high-level conditions on M#. Remark 2 explains that these conditions are
satisfied by the proposed and existing assumptions.

Using optimization problems to characterize identified sets has become common in partial
identification analyses. Such representations usually follow directly from the convexity of the
constraint set and linearity of the objective function. Theorem 2 requires a different argument
since T is a difference of two Riemann-Stieltjes integrals, thus bilinear and hence separately
continuous in m and . The proof shows that 7' is jointly continuous, and that Theorem 1 yields
H(m,~y) which is compact and convex under the assumptions of the theorem. Then H(7) is a
continuous image of a compact and convex set, hence a compact and connected set, i.e., a closed

interval.

Remark 2. The assumptions considered here are representable via linear equality and inequality
restrictions on m. Therefore, the resulting M* are polytopes when |S| < oo, and thus closed
and convex. Assumption LIV states that vectors mg; € Y* have non-decreasing components
ma(s) < mg(s + 1); Assumption TI maintains that mi(s) = mg(s). Moreover, whenever m is

identified by the data, such as under LUC, M is a singleton and hence closed and convex.

The constraint set in Theorem 2 utilizes the fact that the family of sets {{s} : s € S}
represents a core-determining class (CDC henceforth) for S(d) when |S| < co. The CDC removes

redundant constraints on H(m, ) in the optimization problems without any loss of information.
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The reduction in the number of constraints depends on the size of |S|, but it is sizeable even
for relatively few support points. Without the CDC, there would be 2¥~! inequality conditions
for each for each 74, one for each nontrivial proper subset in C(S). With the CDC, the number
of constraints for each 74 is reduced to k — 1. Table 1 depicts the magnitude of this reduction,
showing the total number of constraints on v with and without the CDC in a single optimization
problem with respect to |S|.'? If S(d) represents percentiles, then not using the CDC results in
a prohibitively complex constraint set. The number of constraints may potentially be further
reduced by adapting methods in Luo and Wang (2018) and Ponomarev (2024), as {{s} : s € S}

is not necessarily the smallest CDC.

S|
Constraint # for ~ 2 5 10 20 100
Without CDC 4 32 1024 1048576 > 10%°
With CDC {{s}:s€ S8} |2 8 18 38 198

Table 1: Number of constraints on « in H(m, ).

3.3.1 Reducing Computational Complexity of Bilinear Programming

It is immediate that constraints imposed by H(m, ) are bilinear in (m, ). To see this, consider

the following constraint:

Po(S = s,D = d)
Ya(s) (25)
< ma(s)va(s) > EolY|S =s,D =d|Po(S =s,D =d).

md(s) Z Eo[Y|S =S, D= d]

From the second line, it is evident that the constraint is linear in one parameter whenever the
other one is fixed. Consequently, (25) is bilinear. Constraints imposed on v, by Artstein’s
theorem are linear. Remark 2 explains that M# imposes only linear restrictions on m under
Assumptions LIV, TT and LUC. Coupling this with the fact that T is bilinear, the optimization
problems in Theorem 2 represent generalized bilinear programs (see Al-Khayyal (1992)) under
the considered assumptions. Such programs are computationally demanding in general. I thus
propose further simplifications that exploit the structure of the identified set H(m,~y) and the
objective T'. I restate the problems as bilevel programs and show that inner problems may have

closed-form solutions.3

12. The number of constraints on m imposed by the data given ~ is 4k; the total number depends on the
modeling assumptions.
13. Another example of using bilevel optimization problems for identification can be found in Moon (2024).
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First, decompose H(m,~) into its projection H(vy) := {7 : Im' s.t. (m',~') € H(m,~)} and
corresponding fibers H(ml|y') := {m': (m’,~') € H(m,~)} at each v € H(y). The fibers form a
correspondence H(m|-) : H(y) = M?. The identified set can then be written as:

H(t)=| min min 7T(m,7), max max T(m,7)]|. 26
™ FEH () MEH(1m|7) () FEH (y) MEH(1M|F) (m,9) (26)
The inner optimization problems may have known closed-form solutions given by some selec-

tors L, and U, of the correspondence H(m/|-). This is formalized by the following definition.

Definition 4. (Minimal and Maximal Selectors) Let H(m/|-) : H(v) = M be a correspondence
defined by fibers of H(m,y) over its projection H(7y). L. is a minimal selector with respect to
T if for any v € H(y): T(Ly,v) < T(m,~) for all m € H(ml|y). U, is a mazimal selector with
respect to T if for any v € H(v): T(U,,~) > T(m,~) for all m € H(m|y).

Corollary 1. Let conditions of Theorem 2 hold. If H(m|-) has minimal and maximal selectors

with respect to T', then:

H(7) = | min T(Ls,7), max T(Usz,~
(7) FEH () (L5.7) FEH () U57)

Lemma 12 shows that Assumptions LIV and TI produce known minimal and maximal selec-
tors. Moreover, whenever m is identified, such as under LUC, minimal and maximal selectors

exist and coincide by definition.

Remark 3. Optimization problems max / min 5)ew(m.) 1 (1, 7) become linear and simple to
solve in special cases. This happens whenever either H(m,~y) = {m} x H(v); or H(m,7y) =
H(m) x {7} and M can be expressed using linear constraints. Assumptions that point identify
m independently of v, such as Assumption LUC, yield H(m,~) = {m} x H(y). The latter case
would occur for Assumptions LIV and TI under perfect compliance. Note that then Lemma 12

would yield a closed-form expression for H(7) = [T'(L,7), T (U, )] where y takes a single value.

3.4 Estimation

The analysis thus far has focused on identification. I now propose a consistent estimation proce-
dure via sample analogues of H(m,y), and H(7). For this, suppose that the researcher observes
experimental and observational samples {(S;, D;, Z;)}72, and {(Y;, S, D;)};2;, respectively. To
establish consistency, I pose the following assumption.

Assumption E. (Estimation)
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i) {(S}, Dy, Z;)}5E, and {(Y3, Si, Di) }i, are i.i.d. samples;
it) |S|,|2] < oo;

iii) M? is defined through finitely many linear equality and inequality restrictions. The Jaco-

bian of linear equality constraints, if imposed, has full row rank.

i) int(H(m,v)) # 0.

Assumption E i) is standard under random sampling, i7) maintains that short-term potential
outcomes and the instrument Z are finitely supported. Assumption E i) defines the class
of modeling assumptions that are compatible with the estimation procedure. If necessary, it
may be further weakened to allow for continuously differentiable restrictions on m, but it is
sufficiently general to encompass all previously stated modeling assumptions. Assumption LIV
can be represented only using inequality constraints my(s) < mg(s+1) for s € {1,...,k—1} and
d € {0,1} so éii) holds trivially. Assumption TI involves only linear constraints mq(s) = mq(s)
for s € §. Since each constraint restricts a different s, it is immediate that the constraints will
be linearly independent, and the Jacobian matrix will have full row rank. Similar arguments
apply to assumptions that use equality restrictions involving population parameters, such as
Assumption LUC.

Condition E iv) is sufficient for a condition of Shi and Shum (2015, Theorem 2.1) which
provides a consistent estimator without requiring a tuning parameter. It holds when components
in (m,v) are partially identified. It may thus not be restrictive whenever treatment response
assumptions are maintained and there is imperfect experimental compliance. It is restrictive
when the assumption point identifies the link function, as is the case with Assumption LUC. It
may be relaxed at the expense of introducing tuning parameters, as explained by Shi and Shum
(2015, Section 2). The estimator that follows requires no tuning parameters.

Let n = min{no,ng}, and denote by Pr,(S € A,D =d,Z = z) = % Y B {S; € A D; =
d,Z; = z} and Pp,(S € A,D = d) = %2?21 1{S; € A,D; = d} be standard empirical
measures. Denote by Eg, and Ep, the corresponding empirical expectations. Note that their
population counterparts, along with M#, fully characterize H(m,~) and thus H (7). Define the

empirical analog of H(m,~):

(m, ) € M2 x (A(k))?:Vd € {0,1}, Vs € S,

va(s) > max (max,ez Pr,(S =5,D =d|Z = z), P, (S =s,D =d)),
Hn(m7’7) = Po 1 (S=s,D=d) : (27)

md(s) > EO,n[Y‘S = S,D = d]T s

ma(s) < EonlY]S = s, D = d| 225020 4 ToulEsDod)
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where M# highlights that restrictions imposed by the modeling assumptions may depend on
estimated population parameters. For example, this would happen with Assumption LUC which
imposes that my(s) = Eo|Y|S = s, D = dJ, but not with Assumptions LIV and TI since they
only relate components of m to each other. Let H,(v) and H,,(m|y) be the projection and fibers
of H,(m, ), respectively. I propose to estimate H(7) using:

H,(7) := | min min  T(m,%), max max T(m,7)|. 28
) Le?{n(y) EH (m]7) (1. 7) FE€H (7) MEHA (1) ( 7)} (28)
If maximal and minimal selectors of H(m|-) exist, let U, , and L, . be their plug-in sample

analogs. Then, the following equivalence holds:

n(7) = | min T'(Ls,7), T(Us, 7 29
(1) = | min T(Ls.3), max 7(05,7)] 29

The next theorem proves that (28) and (29) are consistent in the Hausdorff distance.

Theorem 3. Let Assumptions RA, EV, MA, and E hold. Then as n — oo:

Ay (Hn (1), H(T)) := max{ sup inf ||7g —7||, sup inf |7 — %H} = 0.
roeH(r) TEHA(T) FEH (1) TOEH(T)

The proof relies on the fact that 7" is a continuous functional in finite-dimensional spaces which
implies that it is sufficient to show that dg (H,(m,~), H(m,~y)) = 0 to ensure dy (H,(7), H(T) =
0. I do so by applying arguments of Russell (2021, Theorem 2) to verify conditions of Shi and
Shum (2015, Theorem 2.1). #,(m,~) is numerically equivalent to the consistent criterion-based
estimator from Shi and Shum (2015, Theorem 2.1) whenever H,,(m,~y) # (). This happens with
probability approaching 1 for large n, yielding consistency of H,(m,~) and thus the plug-in

procedure.

Remark 4. H,(m,v) and hence H,(7) may be empty in finite samples even when H(m,)
and H(7) are not. In that case, one may estimate H(m,~) using the estimator of Shi and
Shum (2015) which will always be nonempty. In turn, this will yield a nonempty estimate of
H(T). However, doing so may be computationally infeasible as it involves finding minimizers of a
function which may be very high dimensional depending on k. The plug-in procedure proposed
here is computationally parsimonious and numerically equivalent, when it produces a non-empty
set. Hence, researchers may prefer to first attempt plug-in estimation and resort to the criterion

approach should the plug-in yield an empty set.
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4 Results on the Roles of Assumptions and Data

Since S is observed in both datasets, the sole benefit of experimental data lies in providing
additional information on ~. This section examines how this can be beneficial.

Let HO(m,~) be the identified set for (m,~) if only observational data are used. Continue
denoting by H(m,~) the identified set for (m,~) when both datasets are used. If (m,~y) are
consistent with both datasets, they must be consistent with just one dataset under the same as-
sumptions. Thus, H(m,v) € HO(m,v). Usually H(m,~) € H(m,~) with or without modeling
assumptions in the observational data because experimental data provide additional information

on 7. By definition (9), the corresponding identified sets for 7 are:

HO(r) = {T(m,7): (m,y) € HO(m,7)}

(30)
H(r) = {T(m.7): (m,7) € H(m,")}

recalling that T'(m,v) = [gmi(s)dy(s) — [s¢mo(s)dyo(s). By definition H(r) € H(r). Simi-
larly, let %O<Py(0)7y(1)) and H(Py(0),y(1)) be the corresponding identified sets for the distribution
function Py (g)y(1) and observe that H(Py o)y 1)) € HO(Py(o),y(l))

Central Role of Modeling Assumptions
[ first ask whether it is possible to have H(7) € HO(7) if no modeling assumptions are
imposed. This would be desirable as then the additional identifying power would solely be the

result of the experimental assignment. However, this is not the case.
Proposition 1. Suppose Assumptions RA and EV hold. Then:

i) HO(1) = H(7);

ii) HO(Pyr),ym) = H(Pr.ym)-

On their own, the experimental data bring no identifying power for T or any functional
of Py(0),y(1)- Modeling assumptions in the observational data are central in the identification
argument for 7, mirroring their importance in conventional observational studies. They are
necessary to benefit from the existence of the short-term experiment. Corollary 2 in Appendix
A.1 further proves that without such assumptions: 1) 7 is unindentified so H(7) = R; 2) H(7)
is equivalent to the bounds of Manski (1990) when the support of Y (d) is bounded. Modeling
assumptions in observational data are thus necessary to identify at least the sign of 7.

The intuition behind the result is simple. Since S(d) is revealed whenever D = d, experimental

data only provide more information on the distribution of S(d) for individuals who choose D # d.
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However, for them, no data restrict the relationship between Y (d) and S(d). If this relationship

is left unrestricted, then additional information on S(d) does not yield more information on Y'(d).

Remark 5. The roles of datasets and modeling assumptions are a topic of ongoing discussion.
A seemingly similar analysis can be found in Park and Sasaki (2024b); however, the conclusion
is fundamentally different. They find that observational data alone yield worst-case bounds on
the treatment effects on treated survivors (ATETS) from Vikstrom, Ridder, and Weidner (2018),
and demonstrate that combined data may be more informative under Assumption LUC. They
thus do not uncover the central role of modeling assumptions.

Athey, Chetty, and Imbens (2020, Lemma 2) show that the addition of experimental data is
not sufficient to point identify 7 in the absence of modeling assumptions, but note that it has
identifying power. I further clarify that it may have identifying power for functionals of distri-
butions pertaining to short-term potential outcomes S(d). However, addition of experimental
data provides no identifying power for any functional of Py (g)y (1), in the absence of modeling

assumptions.

Auxiliary Amplifying Role of Experimental Data

Since modeling assumptions are central, experimental data have an auziliary role. To make
the role precise, continue to denote by H(7) the identified set for 7 when only observational data
are used without modeling assumptions, and let H/4(7) be the identified set when a modeling
assumption is added. Finally, denote by H(7) the identified set from combined data under the
modeling assumption. It is easy to see that by definition H(7) C H/4(r) C HO(7).

By Proposition 1, more information on v does not result in tighter bounds on 7 alone. Any
modeling assumption that only restricts v thus cannot provide more information on 7. Therefore,
any set of assumptions that has identifying power for 7 must also restrict m, so M4 C M. This
yields the following observations.

First, modeling assumptions restricting m may be informative of 7 even in the absence of
experimental data, since some information on ~ is available in both datasets. It is possible
that HO/4(1) € HO(7). Second, more information on vy may make assumptions restricting
m more informative. Experimental data may thus amplify the identifying power of modeling
assumptions so H(7) C HO/A(7). Third, H(r) = H/4(7) is possible. So experimental data do
not necessarily amplify the identifying power of modeling assumptions. The following remark
illustrates these three points using Assumption LUC. Similar results can be derived for other

selection assumptions.

Remark 6. Proposition 2 in Appendix A.1 demonstrates that: 1) LUC provides identifying

power for 7 without experimental data for common data distributions, so HO/4(7) € HO(7)
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is possible; 2) Since LUC point identifies 7 with combined data, usually H(7) C HO/4; 3)
there exist data distributions for which LUC point identifies 7 without experimental data, so
H(7) = HO/A(7) is possible.

Importance of Plausible Modeling Assumptions

In terms of the importance of modeling assumptions, approaches that rely on data combi-
nation effectively conduct observational studies. The amplifying role of the experimental data
emphasizes the importance of plausible modeling assumptions. If the assumptions fail, adding
experimental data may be detrimental. To see this, suppose a modeling assumption fails and
let # be the misspecified identified set for 7 following from combined data. Similarly, let H°/4
be the misspecified set that follows from observational data under the same assumptions. Any

value consistent with both datasets must be consistent with just one dataset, so H C HO/A.

Lemma 2. (Nested Misspecification) Let H C HOM be misspecified identified sets for some
parameter 7. Let d be the point-to-set distance defined as d(A,t) = inf {||t —al| : a € A} for
ACR andt € R. Then:

d(HOA 7)) < d(H,7T)

Lemma 2 states that further reducing the size of any misspecified identified set necessarily
produces results that are weakly farther away from the truth. Thus, adding experimental data can
only move the resulting identified set farther away from the true 7 when a modeling assumption
fails. In that case, the researcher may only obtain results closer to the ground truth by discarding
the available experimental data, and these results may be informative.

Example 4 in Appendix A.1 shows that H/4 can be informative of the sign of 7 and strictly,
not only weakly, closer to 7 than H when the modeling assumption fails. It relies on a non-
pathological data-generating process and standard assumptions. It also demonstrates that adding
experimental data may lead the researcher to incorrectly dismiss the true value of 7. We may
have 7 ¢ H and 7 € HO/, but never the converse. If the modeling assumption holds, 7 is in
both identified sets, and adding experimental data cannot produce results farther away from the

truth.

Remark 7. Lemma 2 is a general misspecification result. It implies that reducing the size of the
identified set can never result in the set being closer to the truth. Here, the reduction may happen

through the addition of data. More commonly, it is a result of layering additional assumptions.

25



5 Conclusion

Recent literature proposes augmenting long-term observational studies with short-term exper-
iments to provide more credible alternatives to conventional long-term observational studies.
This paper shows that data combination is not a replacement for tenable modeling assumptions.
However, it remains appealing for the purpose.

Assumptions relating short-term to long-term potential outcomes may be defensible based on
economic theory or intuition, and thus conducive to plausible inference. Data combination may
be used to amplify the identifying power of such assumptions and thereby yield more informative
plausible inference than observational data alone.

This paper introduces two assumptions that utilize this aspect of data combination. It also
provides a general identification approach that enables computational derivation of bounds under
new modeling assumptions, facilitating further developments. Tailor-made assumptions that are
plausible in specific empirical settings are an interesting topic for future research which may

benefit from these results.

References

Aizer, Anna, Nancy Early, Shari Eli, Guido Imbens, Keyoung Lee, Adriana Lleras-Muney, and
Alexander Strand. 2024. “The Lifetime Impacts of the New Deal’s Youth Employment Pro-

gram.” The Quarterly Journal of Economics.

Al-Khayyal, Faiz A. 1992. “Generalized bilinear programming: Part I. Models, applications and

linear programming relaxation.” European Journal of Operational Research 60 (3): 306-314.

Artstein, Zvi. 1983. “Distributions of random sets and random selections.” Israel Journal of
Mathematics 46:313-324.

Athey, Susan, Raj Chetty, and Guido Imbens. 2020. “Combining experimental and observational

data to estimate treatment effects on long term outcomes.” arXiv preprint arXiv:2006.09676.

Athey, Susan, Raj Chetty, Guido Imbens, and Hyunseung Kang. 2024. Estimating treatment
effects using multiple surrogates: The role of the surrogate score and the surrogate index.

Technical report.

Attanasio, Orazio P, Costas Meghir, and Ana Santiago. 2012. “Education choices in Mexico:

using a structural model and a randomized experiment to evaluate Progresa.” The Review
of Economic Studies 79 (1): 37-66.

26



Beresteanu, Arie, Ilya Molchanov, and Francesca Molinari. 2012. “Partial identification using

random set theory.” Journal of Econometrics 166 (1): 17-32.

Chen, Jiafeng, and David M Ritzwoller. 2023. “Semiparametric estimation of long-term treatment
effects.” Journal of Econometrics 237 (2): 105545.

Chen, Xuan, Carlos A Flores, and Alfonso Flores-Lagunes. 2018. “Going beyond LATE: bounding
average treatment effects of Job Corps training.” Journal of Human Resources 53 (4): 1050
1099.

Chesher, Andrew, and Adam M Rosen. 2017. “Generalized instrumental variable models.” FEcono-

metrica 85 (3): 959-989.

. 2020. “Generalized instrumental variable models, methods, and applications.” In Hand-

book of Econometrics, 7:1-110. Elsevier.

Currie, Janet, and Douglas Almond. 2011. “Human capital development before age five.” In
Handbook of labor economics, 4:1315-1486. Elsevier.

Deaton, Angus S. 2009. Instruments of development: Randomization in the tropics, and the search
for the elusive keys to economic development. Technical report. National bureau of economic

research.
Galichon, Alfred. 2018. Optimal transport methods in economics. Princeton University Press.

Galichon, Alfred, and Marc Henry. 2011. “Set identification in models with multiple equilibria.”
The Review of Economic Studies 78 (4): 1264-1298.

Garcia, Jorge Luis, James J Heckman, Duncan Ermini Leaf, and Maria José Prados. 2020.
“Quantifying the life-cycle benefits of an influential early-childhood program.” Journal of
Political Economy 128 (7): 2502-2541.

Ghassami, AmirEmad, Alan Yang, David Richardson, Ilya Shpitser, and Eric Tchetgen Tchetgen.
2022. “Combining experimental and observational data for identification and estimation of

long-term causal effects.” arXiv preprint arXiv:2201.107/35.

Gupta, Somit, Ronny Kohavi, Diane Tang, Ya Xu, Reid Andersen, Eytan Bakshy, Niall Cardin,
Sumita Chandran, Nanyu Chen, Dominic Coey, et al. 2019. “Top challenges from the first
practical online controlled experiments summit.” ACM SIGKDD Ezplorations Newsletter
21 (1): 20-35.

27



Heckman, James, Rodrigo Pinto, and Peter Savelyev. 2013. “Understanding the mechanisms

through which an influential early childhood program boosted adult outcomes.” American
Economic Review 103 (6): 2052-2086.

Heckman, James J, and Sergio Urzua. 2010. “Comparing IV with structural models: What simple
IV can and cannot identify.” Journal of Econometrics 156 (1): 27-37.

Heckman, James J, and Edward J Vytlacil. 1999. “Local instrumental variables and latent vari-
able models for identifying and bounding treatment effects.” Proceedings of the national
Academy of Sciences 96 (8): 4730-4734.

Hoynes, Hilary W, and Diane Whitmore Schanzenbach. 2018. Safety net investments in children.

Technical report. National Bureau of Economic Research.

Hu, Wenjie, Xiaohua Zhou, and Peng Wu. 2022. “Identification and estimation of treatment
effects on long-term outcomes in clinical trials with external observational data.” arXiv
preprint arXiw:2208.10165.

Imbens, Guido, Nathan Kallus, Xiaojie Mao, and Yuhao Wang. 2024. “Long-term causal inference

under persistent confounding via data combination.” arXiv preprint arXiw:2202.07234.

Imbens, Guido W. 2010. “Better LATE than nothing: Some comments on Deaton (2009) and
Heckman and Urzua (2009).” Journal of Economic literature 48 (2): 399-423.

Imbens, Guido W, and Joshua D Angrist. 1994. “Identification and Estimation of Local Average
Treatment Effects.” Econometrica 62 (2): 467-475.

Kamat, Vishal. 2024. “Identifying the effects of a program offer with an application to head
start.” Journal of Econometrics 240 (1): 105679.

Kline, Patrick, and Christopher R Walters. 2016. “Evaluating public programs with close sub-
stitutes: The case of Head Start.” The Quarterly Journal of Economics 131 (4): 1795-1848.

Li, Shoumei, and Yukio Ogura. 1998. “Convergence of set valued sub-and supermartingales in
the Kuratowski-Mosco sense.” Annals of probability, 1384—1402.

Luo, Ye, and Hai Wang. 2018. “Identifying and computing the exact core-determining class.”
Awvailable at SSRN 315/285.

Manski, Charles F. 1997. “Monotone treatment response.” Econometrica: Journal of the Econo-
metric Society, 1311-1334.

2

. 1990. “Nonparametric bounds on treatment effects.” The American Economic Review

80 (2): 319-323.

28



Manski, Charles F, and John V Pepper. 2000. “Monotone Instrumental Variables: With an
Application to the Returns to Schooling.” Econometrica 68 (4): 997-1010.

.2009. “More on monotone instrumental variables.” The Econometrics Journal 12 (suppl_1):
5200-S216.

Masten, Matthew A, and Alexandre Poirier. 2023. “Choosing exogeneity assumptions in potential
outcome models.” The Econometrics Journal 26 (3): 327-349.

Mogstad, Magne, Andres Santos, and Alexander Torgovitsky. 2018. “Using instrumental variables

for inference about policy relevant treatment parameters.” Econometrica 86 (5): 1589-1619.

Molchanov, Ilya. 2017. Theory of Random Sets. 2nd ed. Vol. 87. Probability Theory and Stochas-
tic Modelling. Springer.

Molchanov, Ilya, and Francesca Molinari. 2014. “Applications of random set theory in economet-
rics.” Annu. Rev. Econ. 6 (1): 229-251.

. 2018. Random Sets in Econometrics. Vol. 60. Cambridge University Press.

Moon, Sarah. 2024. “Partial Identification of Individual-Level Parameters Using Aggregate Data
in a Nonparametric Binary Outcome Model.” arXiv preprint arXiv:2403.07236.

Park, Yechan, and Yuya Sasaki. 2024a. “A Bracketing Relationship for Long-Term Policy Evalua-
tion with Combined Experimental and Observational Data.” arXiv preprint arXiv:2401.12050.

. 2024b. “The Informativeness of Combined Experimental and Observational Data under

Dynamic Selection.” arXiv preprint arXiww:2403.16177.

Ponomarev, Kirill. 2024. Selecting Inequalities for Sharp Identification in Models with Set- Valued
Predictions. http://kponomarev.github.io/files_on_website /sharp%20inequalities.pdf.

Prentice, Ross L. 1989. “Surrogate endpoints in clinical trials: definition and operational criteria.”
Statistics in medicine 8 (4): 431-440.

Rockafellar, Ralph Tyrell. 1970. Convex Analysis. Princeton: Princeton University Press. ISBN:
9781400873173. https://doi.org/doi:10.1515/9781400873173. https://doi.org/10.1515/
9781400873173.

Russell, Thomas M. 2021. “Sharp bounds on functionals of the joint distribution in the analysis
of treatment effects.” Journal of Business & Economic Statistics 39 (2): 532-546.

Schaefer, Helmut H., and M. P. Wolft. 1999. Topological Vector Spaces. Springer.

29


http://kponomarev.github.io/files_on_website/sharp%20inequalities.pdf
https://doi.org/doi:10.1515/9781400873173
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173

Shi, Xiaoxia, and Matthew Shum. 2015. “Simple two-stage inference for a class of partially
identified models.” Econometric Theory 31 (3): 493-520.

Todd, Petra E, and Kenneth I Wolpin. 2006. “Assessing the impact of a school subsidy program in
Mexico: Using a social experiment to validate a dynamic behavioral model of child schooling

and fertility.” American economic review 96 (5): 1384-1417.

. 2023. “The best of both worlds: combining randomized controlled trials with structural

modeling.” Journal of Economic Literature 61 (1): 41-85.

Torgovitsky, Alexander. 2019. “Nonparametric inference on state dependence in unemployment.”

Econometrica 87 (5): 1475-1505.

Treves, Frangois. 2016. Topological Vector Spaces, Distributions and Kernels: Pure and Applied
Mathematics, Vol. 25. Vol. 25. Elsevier.

Van Goffrier, Graham, Lucas Maystre, and Ciaran Mark Gilligan-Lee. 2023. “Estimating long-
term causal effects from short-term experiments and long-term observational data with un-

observed confounding.” In Conference on Causal Learning and Reasoning, 791-813. PMLR.

Vikstrom, Johan, Geert Ridder, and Martin Weidner. 2018. “Bounds on treatment effects on
transitions.” Journal of Econometrics 205 (2): 448-469.

Villani, Cédric, et al. 2009. Optimal transport: old and new. Vol. 338. Springer.
Willard, Stephen. 2004. General topology. Courier Corporation.

Yildiz, Nege. 2012. “Consistency of plug-in estimators of upper contour and level sets.” Econo-
metric Theory 28 (2): 309-327.

30



Appendices

Appendix A Extensions

A.1 Additional Results on the Roles of Data and Assumptions

This appendix collects complementary results for the discussion in Section 4.

A.1.1 Proposition 1 and Existing Bounds

Suppose first that no modeling assumptions are maintained.

Corollary 2. Suppose Assumptions RA and EV hold. If Y = R, the identified set for T is
H(r)=R. If Y =10,1]:

H(T) = [EolY D] — Eo[Y (1 — D)] = Po(D =0), EolY D] — Eo[Y (1 — D)] + Po(D = 1)]. (31)

In both cases, 0 € H(T) and the sign of T not identified.

Corollary 2 shows that if ) is unbounded and no modeling assumptions are imposed, then
7 is unidentified. If the support is bounded, data combination reproduces bounds of Manski
(1990), which utilize only the observational dataset. The bounds remain sharp even when the
experimental dataset is added since it brings no identifying power, on its own.

Athey et al. (2024, Lemmas 1 and 2) provide bounds on long-term treatment effects in a
different setting where D is unobserved in the observational data and experimental compliance

t.14 Their bounds may be narrower than those in Corollary 2, and do not maintain ex-

is perfec
plicit modeling assumptions involving the potential outcomes. However, this does not contradict
the result in Proposition 1. Namely, their bounds are derived under assumptions imposed on
outcome variables: 1) Y 1L D|S,G = E (statistical surrogacy - Prentice (1989)); 2) G 1L Y|S
(comparability). Appendix A.1.4 explains that these assumptions on outcomes imply underlying

selection assumptions.

A.1.2 Assumption LUC and the Role of Experimental Data

Recall that HY(7) the identified set for 7 when only observational data are used and no modeling
assumptions are imposed, and let H/EVC () denote the identified set under Assumption LUC.

Finally, let H(7) be the identified set when combined data are used under Assumption LUC.

14. More precisely, they bound Eg[Y (1) — Y(0)]. These bounds remain valid for 7 when Assumption EV is
imposed.
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Proposition 2. Let Assumptions EV and LUC hold.

i) Suppose the observed data distribution Po(Y, S, D) is such that Vp[Y'|S,D = d] > 0 P—a.s.
for some d € {0,1} and that Y is a bounded set. Then HO/PVC (1) C HO(7).

ii) If the observed data distribution Po(Y,S, D) is such that Eo[Y|S, D = d] is a trivial mea-
surable function for all d € {0,1}, then 7 is point-identified, and H(7) = HO/FVC (7).

A few observations are in order. First, the proposition shows that HC/*VC(r) C HO(7)
is possible. That is, LUC may have identifying power for 7 for a large class of observable
distributions Pp(Y, .S, D) even when experimental data are not used. A sufficient condition for
this is that Y is bounded, and that S is not a perfect predictor of Y for at least some D = d.

Second, Athey, Chetty, and Imbens (2020) show that #(7) is a singleton under combined
data and LUC. Since HO/PUC(7) need not be a singleton, we usually have H(7) ¢ HO/LUC,
Consequently, experimental data may amplify the identifying power of LUC.

Third, the proposition shows that H(7) = H?/*UC(7) is possible. That is, short-term ex-
perimental data are not necessary for point identification of 7 under LUC. Thus, experimental
data do not necessarily amplify the identifying power of LUC. This intuitively happens when the
short-run outcomes S are not predictive of the mean long-term outcomes Y.'> This condition
is strong and may lack practical applicability. However, the result has important theoretical

implications in clarifying the role of the experimental data.

A.1.3 An Example of Nested Misspecification

Section 4 explains that the amplifying role of experimental data has important implications when
the modeling assumption fails. Then, adding experimental data may only produce identified sets
for 7 that are weakly farther away from the truth. Recalling the notation, H and H°/4 denote
misspecified identified sets for 7 using combined and just observational data. The following ex-
ample shows that under a standard modeling assumption and a non-pathological data-generating

process, HO/4 can be strictly closer to 7 than H. Moreover, HO/4 is informative of the sign of 7.

Example 4. Suppose Y, S € {0,1} and that the researcher maintains Assumption LUC. Let the

15. Observe that no restrictions on ) are required in this case.
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DGP be given by:

EolY|S=1,D=1]=0.7 EolY|S=0,D=1]=04
EolY|S=1,D=0]=04 EolY]|S=0,D=0]=02
E[Y(1)]S(1) =1] =05 E[Y(0)]S(0) =1] =03
E[Y(1)|5(1) =0] =0.5 E[Y(0)|5(0) = 0] =0.3
PolS=1/D=1]=0.6 PolS=1/D=0]=04
P[S(1) =1]=0.7 P[S(0) =1] = 0.3
P[D=1]=05

Then 7 = 0.2, HO/4 = [0.15,0.4] and H = {0.35}.

A.1.4 More on Treatment Invariance and Surrogacy

By Lemma 11 4i), Assumption TI is implied by surrogacy when the experiment features perfect
compliance. One may thus wish to intuitively interpret TT as stating that the treatment effect on
the long-term outcome is fully mediated by the short-term outcome, an interpretation commonly
used for the surrogacy assumption. However, surrogacy imposes selection assumptions when
compliance is imperfect. Then it is immediate that by surrogacy Eg[Y (1)|S(1) = s,D = 1] =
Eg[Y(0)]S(0) = s,D = 0] for s € S. This is an a priori restriction on the selection mechanism
of experimental individuals, because Y (d) are never observed for G = E. On the other hand, TI
is always a treatment response assumption.

Work relying on surrogacy for identification, such as Athey et al. (2024), commonly also
maintains — G 1L Y|S (comparability). Comparability and surrogacy jointly imply a selection
assumption even if compliance is perfect. Note that for any s € S and d € {0, 1}:

E[Y (d)|S(d) = s] = Eo[Y'(d)|S(d),
# d|Po(D # d|S(d) = s)
=1]Po(D = 1|5 = s)

)
E[Y(d)[S(d) = s] = Eo[Y (1)
) — 0]Po(D = 0[S = 5)

where the first identity is by the law of iterated expectations (LIE) and the second is by Lemma 11
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vi) and LIE. Therefore, for any s and d such that P(D # d, S(d) = s) > 0 by rearranging terms:

Eo[Y(d)|S(d) = s,D # d] =
_ Eo[Y|S,D = d] (Po(D = d|S = 5) = Po(D = d|S(d) = 5)) + Eo[Y|S, D # d|Po(D # d|S = )

Fo(D # d|5(d) = s)

which relates (Y'(1),Y(0),5(1),5(0)) and D in the observational data, and is hence a selection

assumption.

A.2 Discretization of Short-term Outcomes

In this section, I clarify the implications of discretizing short-term outcomes. To this end, let a
researcher pose a surjective discretization function A : & — 8P := {1,2,...,k} for some k < oo,
and define SP(d) = A(S(d)). Note that this subsumes the case in which S(d) is finitely supported,
since then A(s) = s for all s € S. T introduce A to clarify the subtle differences in applications of
results of Section 3.3 when S(d) is finitely supported and discretized. Similarly define discretized
temporal link functions m? : S — Y, given by m? = E[Y (d)|SP(d)] = E[Y (d)|\(S(d))], and

let mP = (m¥, mP). Pose the following analog of Assumption MA under the discretization.

Assumption MA:D. Suppose M? and MP are known or identified sets, and that m € M4 C
M. Then X is such that m” € MP.

Assumptions MA and MA:D are closely related. The former maintains that the researcher
imposes some modeling assumption that will restrict feasible m, as in Section 2.3. The latter
strengthens this notion and assumes that additionally m” satisfies known restrictions after dis-
cretization. Of course, if Assumption MA holds for a finitely supported S(d), then Assumption
MA:D trivially follows by taking A to be an identity function up with necessary relabeling of S(d)
values, if any. The remark below explains that for some modeling assumptions and discretization

functions, MA:D follows immediately from MA, but that it may be restrictive for others.

Remark 8. Consider LIV which states that E[Y (d)|S(d) = s] is in M* which contains only
non-decreasing temporal link functions. Then E[Y(d)|S” = s] must also be non-decreasing for
any order-preserving A, so Assumption MA:D holds for an appropriately chosen A\. However,
LUC states that my(s) = EolY|S = s,D = d|, which does not directly imply that m%(s) =

E[Y|SP =5, D =d|. A similar remark can be made for treatment invariance.

If S(d) is finitely supported, MA and MA:D are equivalent and Section 3.3 characterizes
the identified set. If S(d) is discretized and Assumption MA:D holds as a direct consequence
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of Assumption MA, such as under LIV, then results characterize the identified set H(7) that
is sharp under finitely-supported short-term outcomes.'® This is also the case if the researcher
believes the modeling assumption holds under discretized data, i.e., is willing to maintain MA:D
directly. Otherwise, the results in Section 3.3 should be viewed as providing an approximation
of the identified set.

Appendix B Proofs

This section contains the proofs of all results. It begins by summarizing notation. Section B.1
collects known supporting results. Section B.2 contains auxiliary results and their proofs. Sec-

tion B.3 provides proofs to the main results.
Preliminaries and Notation

I denote laws of random elements using subscripts when the element needs to be specified
(e.g. Pg(q is the law of S(d)). Laws conditional on an event &£ are denoted by P (e.g. Pgqe
is the conditional law of S(d)). If the random element is clear, I write P(-|€,G = g) as P,(:|€)
for g € {O, E}. Whenever Pg(-|€) = Po(+|€), I omit the subscript g. This is inherited by their
features E[-|€,G = g] = E,[/|€] and V[-|,G = g] = V,[-|€]. Equality of distribution of two
random elements or a random element and a law is denoted by < (eg. Y 2P andY LY’ ).
I denote random sets with boldface letters (e.g. Y), their capacity functionals by boldface T
(e.g. Ty) and containment functionals by boldface C (e.g. Cy). T use (Y, Z) to denote the
random set Y x {Z}. E(Y|X) is used for the conditional Aumann expectation of a random set
Y given a sigma-algebra generated by a random variable X. If a distribution Py is selectionable
from Y I write Py < Y. I use 2 to denote that a random element has a law, or an equivalent
distribution-determining functional (e.g. Y 2 Py and Y L Cy). A, B and K represent sets.
K(A), C(A), O(A), B(A) are the families of all compact, closed, open and Borel subsets of the
set A, respectively. co(A) is the closed convex hull of the set A. The identified sets for a generic
parameter 6 is H(#). The set of distribution functions of random variables with support ) is
PY. 1 assume throughout that Y x S is a locally compact, second countable Hausdorff space,
more precisely R'*? endowed with its natural topology, while any of its subspaces inherit their

relative topologies.

16. Note that this set may be larger than the intractable identified set that would have been obtained using
non-discretized data.
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In the proofs for simpler notation I will use the following random variable:
Z = 1[G = E|Z + 1[G = O)(supZ + 1). (32)

I use LIE to refer to the “law of iterated expectations”.

B.1 Known Supporting Results

B.1.1 Random Set Theory Preliminaries

[ briefly introduce the necessary concepts, and refer the reader to Molchanov (2017) and Molchanov
and Molinari (2018) for a textbook treatment of the topic. More concise overviews are available
in Beresteanu, Molchanov, and Molinari (2012) and Molchanov and Molinari (2014).

Define R : Q — C(R?) to be a measurable correspondence recalling that C(R?) is the collection
of all closed subsets of R4 T refer to R as a random (closed) set. Define the containment
functional Cr : C(RY) — [0,1] of R as Cr(B) = P(R C B), and the capacity functional
Tgr : K(R?) — [0,1] of R as Tr(K) = P(RN K # (), recalling that X(R?) is the collection
of all compact subsets of R?. A selection of a random set R is a random vector R defined on
the same probability space such that P(R € R) = 1. The set of all selections of R is denoted
by Sel(R). The set of all random vectors R € Sel(R) such that E[||R||] < oo is denoted by
Sel'(R). Artstein’s inequalities (Artstein (1983, Theorem 2.1), Beresteanu, Molchanov, and
Molinari (2012, Theorem 2.1)) give an equivalent characterization of the set of distributions of

all selections of a random set.

Lemma 3. (Artstein’s Inequalities) A probability distribution p on a locally compact second
countable Hausdorff space X is the distribution of a selection of a random closed set R on the

same space if and only if:

VB € Feont : (B) > Cr(B) & VK € Fupp: u(K) < Tr(K) (33)

where Feont € {C(X), O(X)} and Feop € {C(X),O(X),K(X)}. If R is almost surely compact, then
(33) is equivalent to:
VK € K(X): p(K)> Cgr(K). (34)

Proof. For proof see Molchanov and Molinari (2018, Theorem 2.13, Corollary 2.14). ]

If (33) holds for a distribution function Pg, then I call Pg selectionable with respect to the

distribution of R, and write Pz < R. p is selectionable if and only if there exists a random

17. R is measurable if for every compact set K € K(R9): {w € Q: R(w) N K # 0} € F. The codomain of the
map R is equipped by the o—algebra generated by the families of sets {B € C(R?) : BN K # 0} over K € K(RY).
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element R’ < Pgr and a random set R’ 2 R defined on the same probability space such that
P(R' € R’) = 1. Family of all distributions that satisfy (33) are called the core of the capacity
Tgr. A family of compact sets Kop C KC(X) is a core-determining class if VK € Kep @ u(K) <
Tgr(K) implies (33). A core-determining class may reduce the number of conditions that need
to be verified to consider u selectionable.

If R has at least one integrable selection, that is Sel'(R) # (), then R. is an integrable random
set. Whenever the random variable ||R|| = sup{||R|| : R € Sel(R)} is integrable E|||R||] < oo,
then R is said to be integrably bounded.

Definition 5. (Aumann Expectation) The Aumann expectation of an integrable random set R
is defined as:

E(R) = cl{E[R] : R € Sel'(R)}. (35)
If R is integrably bounded, then:

E(R) = {E[R]: R € Sel(R)}. (36)

Note that when R is a finite-dimensional and integrably bounded, E(R) is a closed set, and
the closure operator is not used in the definition. (Molchanov (2017, Theorem 2.1.37))

The support function for a convex set A € R is defined as ha(u) = sup, 4 a’u for u € R%,
The convex set A is uniquely determined by its its support function via intersections of all

half-spaces defined by h 4 as:
A= (] {aeR™:du<ha(u)} (37)
weRIAjul|=1

If R is integrably bounded and if either the underlying probability space is non-atomic, or if
R is almost surely convex, then hgm)(u) = E[hg(u)] for all u € R%. (Molchanov and Molinari
(2018, Theorem 3.11))

Recalling that (€2, F, P) is the underlying probabilty space, let 7y C F be some sub-c-algebra.

Definition 6. (Conditional Aumann Expectation) Let R be an integrable random set. For each
sub-cg-algebra Fy C F, the conditional Aumann expectation of R given Fy is the Fy-measurable
random set E[R|Fp| such that:

Sel' (E[R|Fo], Fo) = cl{E[R|Fy) : R € Sel*(R)} (38)

where Sel'(-, Fy) denote the set of integrable selections measurable with respect to Fy and the
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closure is taken in L!.

For any integrable random set R, the conditional Aumann expectation E[R|Fy] is integrable,
unique and exists. If R is integrably bounded, so is E[R|Fy] (Molchanov (2017, Theorem 2.1.71)).
When Fj is countably generated, then cl{ E[R|F] : R € Sel'(R)} = {E[R|F] : R € Sel'(R)}.
(Molchanov (2017, pp. 271), Li and Ogura (1998, Theorem 1)) Recall that when Fj is a o-algebra
generated by a random vector, it is countably generated. Therefore, for any random vector W,
Sel'(E[R|o(W)],a(WW)) is a closed set.

If for all A € F with P(A) > 0 there exists B € F with B C A such that 0 < P(B|F) <
P(A|Fy) with positive probability, then the probability measure is said to have not atoms over
Fo. Then, E[R|F] is almost surely convex and E[R|Fy] = E[co(R)|Fo] a.s. (Molchanov (2017,
Theorem 2.1.77)) Then, hgrz)(u) = hepo®) 7] (W) = Elheom)(u)|Fo] as. for all u € R®,
(Molchanov (2017, Theorem 2.1.72))'® Note that this will hold for any sub-o-algebra F, by

Lemma 4 when the probability space is non-atomic.

B.1.2 Other Known Results for Reference

Theorem 4. Let E, F be metrizable and let G be any topological vector space. If E is a Baire
space or if E is barreled and G is locally convex, then every separately equicontinuous family B

of bilinear mappings of E X F into G is equicontinuous.
Proof. See Schaefer and Wolff (1999, Theorem II1.5.1). ]

Corollary 3. Let E, F' be metrizable and let G be any topological vector space. If E is a Baire
space or if E is barreled and G is locally convex, then every separately continuous bilinear map
of E x F into G is continuous (see also Treves (2016, pp. 425)).

Proof. Direct from Theorem 4. O]

B.2 Auxiliary Lemmas

Lemma 4. Suppose the probability space (£, F, P) is non-atomic and that Fo C F is a sub-o-
algebra. Then P is atomless over (2, Fo). That is, for all A € F with P(A) > 0 there exists
B € F with B C A such that 0 < P(B|Fy) < P(A|Fy) with positive probability.

Proof. Pick any A € F with positive measure and fix any B € F such that B C A and 0 <
P(B) < P(A). B exists since (2, F, P) is non-atomic. Let C'= A\ B and observe that A = BUC
and BNC = (. Thus, P(A) = P(B) + P(C), P(C) > 0 and P(A|Fy) = P(B|F) + P(C|Fo)

18. Theorem 2.1.72 states that hgr 7, (u) = E[hr(u)|Fo] a.s. for all u € R*™®. If one wishes to use the support
function to determine elements of E[R|Fy], the step hgr|r,](¢) = hgjco(r)| 7] () by Theorem 2.1.77 is necessary.
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a.s. I proceed by way of contradiction supposing that P(B|Fy) = P(A|Fy) a.s. or P(B|F) =0
a.s. Consider P(B|Fy) = P(A|Fy) a.s. first. Then, P(C|Fy) = 0 which implies P(C) = 0,
contradicting P(C') > 0. If P(B|Fy) = 0 a.s., then P(B) = 0 a.s., contradicting P(B) > 0.
Therefore, the set {w € Q : 0 < P(B|Fy)(w) < P(A|Fo)(w)} has positive probability, which
concludes the proof. O]

Lemma 5. Suppose that Assumption EV holds, and that exerimental data are unobserved. Then

the identified set for the distribution function Py () sy 18
HO (Py(aysa) = {6 € PY*° . 6(B) > Po((Y,S) € B,D =d) VB € C(Y x S)} (39)

Proof. The proof proceeds by extending arguments of Beresteanu, Molchanov, and Molinari
(2012, Proposition 2.4). Define the random set for d € {0,1}:

(Yo(d), SO(d)) _ {(Ya S)}> if (DvG) = (d> O) ' <40)
Y x S, otherwise

By definition, (Y?9(d),S(d)) summarizes all information on (Y(d),S(d)) in the observa-
tional data. Let I be the set of triples random elements (E1, By, E3) such that (Ey, Ey, E3) €
Y xS x G and (Ey, Ey) I E3. Then all information in the data and assumptions can be ex-
pressed as (Y(d), S(d),G) € Sel((Y°(d),S°(d),G)) N I. Note that this set is non-empty since
(Y9(d),S®(d)) produces non-trivial values only for G = O.

By Lemma 3, the distribution function P((Y(d),S(d),G)) € PY*S{EO} characterizes a
selection in Sel((Y?9(d),S9(d),G)) if and only if:

VB eC xS x {E,01): P((Y(d),5(d),G) € B) > P((YO(d),8°(d),G) C B)  (41)
By Molchanov and Molinari (2018, Theorem 2.33), (41) is equivalent to:

VBcC(YxS): P((Y(d),S(d) € B|G) > P((Y°(d),S°(d)) C B|G) P-as.

eVBeC(Y xS8): P((Y(d),S(d) € B|G) > Po((Y°(d),S°(d)) C B) “2)

where the second line follows since experimental data are unobserved, and hence P(G = O) = 1.
For A=Y x 8, Po((Y9(d),S°(d)) C A) = 1. For any other closed subset B C Y x S, the

19. The support of a random variable X is the smallest closed set X such that P(X € X) = 1. Hence
VxSelC(YxS8).
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containment functional can be written as:

Po((YO(d),$°(d)) C B) = Po((Y(d), S(d)) € B, D = d)
= Po((Y,S) € B,D =d).

where the second equality follows by definition of ¥ and S. Hence, the identified set for
Py (a),s(q) follows by (42) and (41). Sharpness follows by construction. For any Py (q) s €
HO(Py(a),5(a)) there exist (Y(d), S(d)) that are consistent with the data and assumptions such
that (Y(d), S(d)) £ Py s(a)- 0

Lemma 6. Suppose that Assumptions RA and EV hold. Then the identified set H(Py (ay,s(a))

for the distribution function Py (4 s(q) 15

H(Py(a),sa) =

VB eC(YxS):
1[3Bs CS: B =) x Bg|x

§(B) > | max (esssupy, Pg(S € Bs, D =d|Z),Po(S € B, D = d)) +
1VBs CS:B#Y x Bs|Po((Y,S) € B,D =d)

§ e pYxs.

(43)

Proof. The proof proceeds by extending arguments of Lemma 5. Define the random set for
de {0,1}:

{(v,9)}, if (D,G) = (d,0)
(Y(d),8(d)) = ¢ Y x {S}, if (D,G) = (d,E) - (44)

Y x S, otherwise

By definition (Y (d),S(d)) summarizes all information in the observed data on (Y'(d), S(d)).
Let I be the set of triples random elements (E1, By, E3) such that (B, Ey, E3) € Y X S X zZ
and (Fp, Fy) 1L E3. Then all information in the data and assumptions can be expressed as
(Y(d),S(d), Z) € Sel((Y(d),S(d), Z))NI. If Assumptions RA and EV hold, Sel((Y(d),S(d), Z))N
I1#0.

By Lemma 3, the distribution function P((Y (d), S(d), Z)) € PY*S*Z characterizes a selection

in Sel((Y(d),S(d), Z)) if and only if:

VBeC(YxSxZ): P(Y(d),S(d),Z) e B)>P((Y(d),S(d),Z) C B) (45)
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By Molchanov and Molinari (2018, Theorem 2.33), (45) is equivalent to:
VBeC(Yy xS8): P((Y(d),S(d) e B|Z)> P((Y(d),S(d)) C B|Z) P-as. (46)

Possible forms that B can take are: 1) B =) x S; 2) B = ) X Bg for some Bg € S; 3)
B # Y x Bg for any Bg C S. Now consider the containment functional P((Y (d),S(d)) C B|Z)
for each case.

For B=Y xS, P((Y(d),S(d)) € B|Z) =1 P-as. If B=Y x Bg for some Bg C S, then
P-as.:

P((Y(d),8(d)) € B|Z) = P((Y,S) € B,D = d|Z)
P(Y €Y,S € Bs,D=d|2)
P(S € Bg,D =d|Z)

where the first equality is by definition of the random set, the second is by the fact that B =
Y x Bg, and the third by definition of )). Finally, if for all B¢ CS: B # ) X Bg:

_ 0,if Z€ Z (ie. G=E)
P((Y(d),S(d)) € B|Z) = L .
Po((Y,S) e B,D=d), if Z¢ Z (ie. G=0)

To see why the first case holds, define the fiber of B at point s as By (s) = {y : (y,s) € B}.
Observe that if for all B C S§ : B # ) X Bg, then for some s it must be that By(s) C V.
Therefore, whenever G = E (or equivalently Z € Z), the random set (Y (d),S(d)) =Y x {S} £
B. Hence, only if G = O can the containment functional be positive, that is, when 7 ¢ Z. That
P((Y(d),S(d)) € B|Z) = Po((Y,S) € B,D = d) when G = O is immediate by definitions of Y,
S, Z and the random set.

Collect the relevant cases to characterize the containment functional:

P(S € Bg,D =d|Z), if B=Y x Bg for some Bg C S

P((Y(d),S) CBIZ)={ " |
1[Z & Z|Po((Y,S) € B,D = d), otherwise

=1[3Bs CS: B =Y x Bg|P(S € Bg,D = d|Z)+
1[VBs CS:B#Y x Bs|llZ & Z|Po((Y, S) € B,D = d)

Hence, the distribution function P((Y (d), S(d),Z)) € P¥*S*Z characterizes a selection in
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Sel((Y(d),S(d), Z)) if and only if VB € C(Y x S) P-a.s.:

P((Y(d), 5(d)) € B|Z) >

13Bs CS: B =Y x Bg|P(S € Bg,D = d|Z)+
1WBs CS:B+Y x Bs|1[Z € Z|Po((Y,S) e B,D =d) |

Finally, to incorporate the fact that Z I (Y(d), S(d)), intersect Sel((Y(d),S(d),Z)) NI
which yields:

P((Y(d),S(d)) € B) > ess sup

1[3Bs CS: B =Y x Bg]P(S € By, D = d|Z)+
1[VBs CS:B+#Y x Bg|1|Z ¢ Z|Po((Y,S) € B,D=4d) |

[ 1[3Bs €S : B =Y x Bglesssup; P(S € Bg, D = d|Z)+
1VBs CS: B # Y x Bs|Po((Y,5) € B,D =d)

1[335§S:B:y><35]><
= | max (esssup, Pg(S € Bs,D =d|Z), Po(S € Bs,D =d)) +
1VBs CS: B +Y x Bs|Po((Y,S) € B, D = d)

where the first line follows by the fact that Z 1L (Y (d),S(d)), the second by the fact that
1[3Bs €S : B =)YxBg]and 1[VBg C S : B # Y x Bg] refer to mutually exclusive deterministic
events, and the third by definition of Z and the fact that P(G = g) > 0 for g € {O, E}. Hence,
the identified set for Py (q) s(q) follows by (46) and (45). Sharpness follows by construction. For
any Py(g) s € HC (Py(d s)) there exist (Y'(d),S(d)) that are consistent with the data and
assumptions such that (Y (d), S(d)) < Py (a),5(d)- O

Lemma 7. Let ’HO(PY y) and H(Pyq)) be the sets of marginals of distributions in HO(Py(d)ﬁ(d))
and H(Py(ay,s(q))- Then:

HO(Py(g)) = H(Py(a) = {6 € PY: 8(B) > Po(Y € B,D =d) VB € C()}. (47)
Proof. For any Borel set B € B(R), by definition of a marginal distribution function:
P(Y(d)e B)=P(Y(d) € B,S(d) € S) =P((Y(d),S(d)) € BxS) (48)

where the last line is by equivalence of events {Y'(d) € B, S(d) € S} and {(Y (d), S(d)) € B x S}.

Lemma 5 yields the identified set for joint distributions Py (4),s(4) using only observational data:

HO(Pyay.sa)) = {0 € PY*®:6(B) > Po((Y,S) € B,D=d)YBeC(Y xS)}.  (49)
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Hence the identified set for marginals Py 4 using only observational data is:

HO(Py(a)) = {Py@ € P : 36 € HP(Py(a),5a) st P(Y(d) € B)=6(B x S) VB € B(R)}
={Py@ € P”: P(Y(d) eB) > Po((Y,S) e BxS,D=d)VBeCY)}
={Py@g € PY: P(Y(d) € B) > Po(Y € B,D =d) VB € C())}

where the first line is by definition of a marginal distribution, second is by Lemma 5 and the
third is by (48).

Lemma 6 yields the identified set for joint distributions Py ()54 using combined data:

H(Py(a),sa) =

VBeC(YxS):
1[3Bs CS: B =Y x Bg|x

d(B) > | max (esssupy Pr(S € Bs,D =d|Z), Po(S € Bs,D =d)) +
1[VBs CS: B #Y x Bg]Po((Y,S) € B.D = d)

5PV

(50)

Observe that the marginals are fully defined by Borel sets of the form B x § with B C ), which
means that for all sets of interest 1[3Bs C S : B =) X Bg] = 0 in the expression above. Thus,

the identified set for marginals Py (4) using combined data is:

H(Pya)) = {Py@ € P¥: 35 € H(Pya)sw) st P(Y(d) € B)=46(B x S) VB € B(R)}
={Py@ € PY: P(Y(d) € B) > Po((Y,S) € BxS,D=d) VB € C(Y)}
={Py@ €PY: P(Y(d) € B)> Po(Y € B,D=d) VB €C())}

where the first line is by definition of a marginal distribution, second is by Lemma 6 and the
fact that 1[3Bs € S : B = Y x Bg| = 0, and the third is by (48). It is then immediate that
H(Py(a)) = H°(Py(a)) [

Remark 9. The formulation of the identified sets H°(Py(q)) and H(Py(q)) coincides by appli-

cation of (33) to the random set:

Y(d) = {Y}, if (D,G)=(d,0)
Y, otherwise

Lemma 8. Let HO(Psa)) and H(Ps)) be the sets of marginals of distributions in HO (Py(4),s(a))
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and ,H(PY(d),S(d)) . Then:

HO(Ps(a)) = {6 € P° : 6(B) > Po(S € B,D =d) VB € C(S)} (51)
VB e C(S) : }

H(Ps(d)) =<0€ PS :
d(B) > max (esssupy, Pg(S € B,D =d|Z),Po(S € B,D =d))

(52)
Let HE(Psq)) be the identified set for Pg(S(d)) obtained using only experimental data. Then:
HE (Ps(a) = {0 € P° €55 5up Pg(S € B,D =d|Z) VB € C(S)}. (53)
Proof. For any Borel set B € B(R), by definition of a marginal distribution:
P(S(d) € B) = P(S(d) € ¥,5(d) € B) = P((Y(d),S(d)) € Y x B) (54)

where the last line is by equivalence of events {Y (d) € Y, S(d) € B} and {(Y(d), S(d)) € Y x B}.

Lemma 5 yields the identified set for joint distributions Py (4,54 using only observational data:
HO (Pyay,5a) = {0 € P:6(B) > Po((Y,S) € B,D=d) VB € C(Y xS)}. (55)
Hence the identified set for marginals P(S(d)) using only observational data is:

HO(Psy) = {P(S(d)) € P*: 30 € H(Py(a)sa) st P(S(d) € B) =8(Y x B) VB € B(R)}
= {P(5(d)) € P°: P(5(d) € B) > Po((Y,S) €Y x B,D =d) VB € C(S)}
= {P(5(d)) e PS: P(S(d) € B) > Py(S € B,D =d) VB € C(S)}

where the first line is by definition of a marginal distribution, second is by Lemma 5 and the
third is by (54).

Lemma 6 yield the identified set for joint distributions Py (4 s(4) using combined data:

H(Py(a),5(a)) =
VB eV xS):
' 1[3Bs €8 : B =Y x Bg]x (56)
" §(B) > | max(esssup, Pp(S € By, D =d|Z),Po(S € Bs,D =d)) +
1[VBs CS:B#£Y x Bs|Po((Y,S) € B,D = d)

Observe that marginals are defined by Borel sets of the form ) x B, which means that for all
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sets of interest 1[3Bs C S : B =) X Bg] = 1 in the expression above. Thus, the identified set

for marginals P(S5(d)) using combined data is:

H(Psy) = {P(S(d)) € P°: 36 € H(Pyay.sa) st P(S(d) € B) = §(¥ x B) VB € B(R)}
={6e€P°:6(B)>Py(Se€B,D=d)VBcC(S)}

_seps, VB e C(S):
0(B) > max (esssup, Pg(S € Bs, D =d|Z), Po(S € Bs, D = d))

where the first line is by definition of a marginal distribution, and the second is by Lemma 6 and
the fact that 1[3Bs CS: B=)Y x Bg] = 1.
For H”(Ps)) a simplified version of the argument for Lemma 6 applies, and is therefore

omitted. O

Remark 10. The formulation of the identified sets H%(Pg(q)) and H(Ps4)) coincides by appli-

cation of (33) to the random set:

S().2) = | S P6) € {(d.E).(d.0)
S, otherwise

and finding the set of selections Sel(S(d), Z) N Ig where I5 is the set of random elements (E;, E»)
such that Fq 1L FEj.

Lemma 9. Let Y be a compact set. If there exists d € {0,1} such that Vp[Y|S,D = d] > 0
P—a.s., then EolY|S,D =d] € (inf Y,sup)) P—a.s.

Proof. 1 prove that Eg[Y|S,D =d] < sup) P—a.s. and Ep[Y|S,D = d] > inf Y P—a.s follows
by a symmetric argument. Since ) is a compact set, both sup ) and inf ) are finite.

By contraposition suppose that P(Eo[Y|S,D = d] > sup)) > 0. Then by definition of Y,
P(EolY|S,D = d] =sup)) > 0, so there exists a Borel subset B C B(S) with Po(S € B|D =
d) > 0 such that Ep[Y|S € B, D = d] = sup ). Now I show that this implies P(Y = sup Y|S €
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B, D = d) = 1. Suppose not, so that P(Y =supY|S € B, D =d) < 1, then:

EolY|S € B,D =d] =Ep[Y ]
EolY|Y #sup),S € B,D =d|Po(Y #supY|S € B,D =d)
=FEolY|Y =sup ), S € B,D =d|Po(Y =sup)Y|S € B,D =d)+
EolY|Y <sup)V,S € B,D =d|Po(Y <sup)Y|S € B,D =d)
=supYPo(Y =supY|S € B,D =d)+
EolY|Y <supY,S € B,D =d|Po(Y <supY|S € B,D =d)
<Y

Y =sup)Y,S € B,D=d|P(Y =sup)|S € B,D=d)+

(57)

where the first equality is by LIE, second is by definition of ), third by EglY|S € B, D =d] =
sup Y, and the fourth by Eo[Y|Y <sup)Y,S € B,D =d] <sup) and P(Y = Y|S € B,D =
d) < 1. By assumption, Eo[Y|S € B, D = d] = sup Y. Then (57) yields a contradiction, showing
that P(Y = supY|S € B,D = d) = 1. But then Vp[Y|S € B,D = d] = 0 and Po(S € B|D =
d) > 0, s0 P(VplY|S € B,D = d] = 0) > 0 which contradicts Vp[Y|S € B,D = d| > 0 P—a.s.
Thus Vo[Y'|S, D = d] > 0 P—a.s. implies Ep[Y'|S,D = d] <sup) P—a.s.

[

Lemma 10. For any vq that is a distribution of a selection in Sel((S(d), Z)) N I, there ezists a
va—1integrable function 7., such that for any measurable set B € B(S):

Po(S € B,D =d) - / . sdva. (58)
B

Then for the propensity score functional ., = % and any <, € Sel((S(d), Z)) N1

with < < vy
Po(D = dls}) = 7 () a5 (59)
Proof. Fix any 7,4 such that 3¢; € Sel((S(d), Z)) NI and g £ ¢;. Then for any B € B(S):

Po(§d - B,D = d) < Po(gd - B) = P((d c B) = ’}/d(B)

where the inequality is by observation. For the first equality, recall that I is a set of random
elements (E1, Ey) € S x Z, and observe that (¢4, Z) € I. Therefore, ¢; 1L G, by definition of Z.
For the second equality note that ¢4 2 Yd-

Next, note that that Po(y € B,D = d) = Po(S € B,D = d) for any measurable set
B € B(S) because ¢4 € Sel(S(d)) and Po(S(d) = {S}, D = d) = 1. Therefore, Po(S € B,D =
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d) < v4(B) for any B € B(S). Hence, Py(S, D = d) is absolutely continuous with respect to 7.
Then, by the Radon-Nikodym theorem there exists a measurable function ., such that for any
measurable set B € B(S):

Po<S€B,D:d):/7T7dd’}/d
B

and m,, = dPo(S, D = d)/dva.

Therefore, for any +/ that is a distribution of a selection in Sel((S(d), Z)) N I, there exists
Ty = dPo(S,D = d)/dy) Po(S € B,D = d) = [, 7, dy; for any measurable set B € B(S).
Hence, also m,.(s) = Po(D = d|sg = s), yg—a.e. s €S, which concludes the proof. O

Lemma 11. Suppose Assumption RA holds. Assume that there is perfect experimental compli-
ance so Z = D|G = E P—a.s. and define conditions:

C.1 (Surrogacy) Y 1L D|S,G = E ;
C.2 (Comparability) Y 1L G|S .
Then:
i) C.1 implies E5[Y (1)|S(1) = 8] = Ep[Y (0)|S(0) = s] for all s € S;
ii) C.1and EV imply E,[Y (1)|S(1) = s] = E,[Y (0)[S(0) = s] for all s € S and g, g’ € {0, E};

iii) C.2 implies EglY|S = s] = Eg[Y(1)|S(1) = s|Pe(D = 11S = s) + Eg[Y(0)|S(0) =
s|P(D =0|S =s) foralls € S;

iv) C.2 and EV imply Eo[Y|S = s] = E,[Y(1)|S(1) = s]Pr(D = 1S = s) + E,[Y (0)|S(0) =
s|Pp(D =0|S=s) foralls €S and g,¢' € {O, E};

v) C.1 and C.2 imply Eo|Y|S = s| = Eg[Y(d)|S(d) = | for all s € S;
vi) C.1, C.2 and EV imply Eo[Y|S = s| = E,[Y (d)|S(d) = s]| for all s € S and g € {O, E}.

Proof. i) Write for any d € {0, 1}:
EglY|S] = Epl[Y|S, D = d] = Eg[Y(d)|S(d), D = d] = Eg[Y(d)|S(d)] (60)

where the first equality is by surrogacy, second is by definition, and third is by random assignment
and perfect compliance.

it) Under Assumption EV, Eg[Y(d)|S(d)] = E[Y (d)|S(d)]. The result then follows from 7).
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iii) Write:

= Ep[Y(1)[S(1) = s]Pp(D = 1|S = s) + E[Y(0)|5(0) = s]Pp(D = 0[S = s)
(61)
where the first equality is by comparability, second is by LIE and definitions of ¥ and S,
and the third is by random assignment and perfect compliance. iv) Under Assumption EV,
EglY(d)|S(d)] = E[Y(d)|S(d)]. The result then follows from 4ii).

v) Immediate from i) and iii).

vi) Immediate from v) under Assumption EV.

B.3 Main Results
Theorem 1. Let Assumptions RA, EV and MA hold. If Y (d) is integrably bounded, the identified

set for (m,~y) is:

(m,y) € MA x (PS)?:vd € {0,1}, VB € C(S),
H(m,v) = 74(B) > max (esssup, Pr(S € B,D =d|Z), Po(S € B,D = d)), (16)
Vu € {—1,1}: umg(s) < upa(s)my,(s) + heoy(u)(1 — m,(5)) v4—a-e.

where heo(y) (1) = SUPyeqomy uY, Ha(s) = EolY]S = s,D =d|, and m,, = dPo(S, D = d)/dva. If
a collection of sets € is a core determining class for the containment functional of S(d), then the
condition VB € C(S) can be replaced with VB € €.

Proof of Theorem 1. The proof proceeds through a series of steps:

1. Restrictions on mg given a selection ¢; € Sel((S(d), Z)) N I are equivalently stated using

the conditional Aumann expectation;

2. The restrictions on my given ¢, are restated using the support function of the conditional

Aumann expectation via the convexification property on non-atomic probability spaces;

3. Restrictions on v, given a selection ¢; € Sel((S(d),Z)) NI are stated using Artstein’s

theorem;

4. Restrictions on (m, ) are shown to be invariant to the selection ¢;.
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Steps 1 and 2 remove the need to search over selections vy € Sel*(Y(d)). Steps 3 allows the
removal of search over selections ¢; € Sel((S(d), Z)) N I. This is formalized in Step 4.

Step 1: Reformulating restrictions on my given ¢4 as a conditional Aumann expectation.

Fix an arbitrary d € {0, 1} and ¢4 such that (¢4, Z) € Sel(S(d)) x {Z}N1I. Let o(54|G = O) be

the sub-o-algebra generated by ¢; given {w € Q : G = O}. Let Eo[Y (d)|sq] := cl{Eolvalsa) : va €

Sel'(Y(d))}, where the closure is taken in L' space of all 0(sq|/G = O)-measurable functions.
Eo[Y (d)|s4) exists, is a unique random set, and has at least one integrable selection. Since Y (d) is
integrably bounded, so is Eo[Y (d)|S(d)] (Molchanov (2017, Theorem 2.1.71)). ¢; is a measurable
selection, hence a random vector. Therefore, the conditioning sub-c-algebra o(¢s|G = O) of
Eo[Y(d)|sq] is generated by a random vector and is thus countably generated. Then since
Y (d) is integrably bounded and defined on R, {Ep[vg|sq] : vg € Sel'(Y(d))} is a closed set,
so Eo[Y (d)|sa] = {Eovalsd] : va € Sel'(Y(d))} (Li and Ogura (1998, Theorem 1), Molchanov
(2017, Theorem Section 2.1.6)).
Since Eo[Y (d)|sq] = {Eo[valsa] : va € Sel'(Y(d))}, it is then immediate that:

Jug € Sel' (Y(d)) : ma(sq) = Eolvalss] a.s. < ma(sq) € Eo[Y(d)|sq] a.s. (62)

Therefore:
(o) = m,y) € M4 x (P5)?:Vd € {0,1}, (<4, Z) € Sel(S(d), Z)) N1, (63)
T Few € Sel (Y (), va L ci malsa) = Eolvaled as.

:{ (m,~) € MA x (PS)2:vd € {0,1}, I(cy, Z) € Sel((S(d), Z)) N I, } (64
Ya = sa, ma(sa) € Sel' (Eo[Y (d)]sa])
nnt } (65)

B { (m,7) € M4 x (PS)?:Vd € {0,1}, I(a, Z) € Sel((S(d),
where the first line is by Lemma 1, the second is by (62) and the third follows since Eo[Y (d)|s4]

Ya = sty ma(sa) € Sel(EolY (d)]sd])

is integrably bounded.

Step 2: Representation of restrictions on my given ¢, using the support function.

By assumption, the probability space is non-atomic. By Lemma 4, P has no atoms over
0(ss|G = O) for any measurable selection ¢;. Since E[|Y(d)|] < oo for all d € {0,1}, Y(d) is
integrable. Thus, Eo[Y (d)|s4] is almost surely convex and equal to Eg[co(Y (d))|sq] (Molchanov
(2017, Theorem 2.1.77)). Therefore, hg,[y(a)jc) () = PEoleo(y(@))cy(w) a.s. for all u € R by
definition of the support function h. By Ep[co(Y (d))|sa] = Eo[Y (d)|s4] and integrability of the
latter, the former set is also integrable. It then follows that hg, co(y (d))s,] () = Eo[Peo(y (ay) (@) |sa
a.s. for all w € R (Molchanov (2017, Theorem 2.1.72)). Hence, recalling that Ep[co(Y (d))|si] =
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Eo[Y (d)|s4], also higpy () (v) = Eolco(Y (d))|sq] = Eolheory () (w)|sa] as. for all u € R.
Fix an arbitrary ¢; such that (¢4, Z) € Sel((S(d), Z)) NI and ¢, £, Then:

ma(sq) € Eo[Y(d)|sq] a.s
eVu e {—1,1} 1 uma(sa) < heo[y(d)e,(t) a.s. (66)
SvVu € {=1,1} 1 umqa(sa) < Eolheoy(ay (u)|sal a.s

where the second line is by Rockafellar (1970, Theorem 13.1) and almost sure convexity of

Eo[Y (d)|s4], and the third is by hg,y(d)e (%) = Eolheoy(a))(v)|sa] a.s. for all u € R. Moreover:

Eolheory(ay(w)|sa] = Eolheory (@) (w)|sa; D = d]Po(D = ds)
+ Eolheo(y (a))(w)|sa, D # d]Po(D # d<q)
=uEo[Y|sq, D = d|Po(D = d|sg) + heoy)(w) Po(D # d|sq)
= ulp[Y]S, D = d|Po(D = d|sq) + heoy)(u) Po(D # d|sa)
= upta(sa) Po(D = d|sa) + heoyy(u) Po(D # d|sq)
= uftd(Sa) T, (Sa) + Peoy) (w) (1 — 7y, (ca))

(67)

where the first equality is by LIE. The second follows because co(Y (d)) = {Y'} whenever D = d,
hiyy(u) = uY, and co(Y(d)) = co()) when D # d. The third is by observing that Pp(sq =
S|D = d) = 1 since ¢; € Sel(S(d)) and S(d) = {S} when D = d. The fourth is by definition of
tq and Po(sg = S|D = d) = 1. The final equality is by Lemma 10. Then observe that:

Vu e {—1,1} : umy(sqa) < Eolheory(ay)(w)|sq] a.s.
eVu e {=1,1} 1 umg(sa) < upta(Sa)my, (Sa) + Peoyy(w)(1 — 74, (sa)) a.s. (68)
evVu e {—1,1} 1 umqa(s) < upa(s)my,(5) + heoyy(u) (1 — 74, (s)) va—a.e.

where the second line follows by (67) and the third by ¢, £ ~,. Therefore:

H(m, )

_ { (m,7) € MA x (PS)2:vd € {0,1}, (s, Z) € Sel((S(d), 2)) NI, va < s, } (69)
Vu e {=1,1} 1 umg(s) < upa(s)my,(s) + heoy(u) (1 — my,(s)), va—a.e.

Step 3: Representation of restriction on 7, given ¢4 using Artstein’s theorem.
Note that for any (m,~) € H(m,~), there exists (¢4, Z) € Sel(S(d), Z)) NI such that 4 2 s

I follow similar steps to those in the proof of Lemma 6 to characterize restrictions imposed on

vq¢ by this condition.
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By Lemma 3, a distribution function characterizes a selection in Sel((S(d), Z)) if and only if:

VB eC(Sx Z): P((S(d),Z) e B) > P((S(d), Z) C B) (70)
SYB e C(S): P(S(d) € B|Z) > P(S(d) C B|Z) as. (71)

where the second line follows by Molchanov and Molinari (2018, Theorem 2.33). Now consider
the containment functional P(S(d) C B|Z). If B =S, P(S(d) C B|Z) = 1. If B C S, then
P(S(d) C B|Z) = P(S C B,D = d|Z). Hence, 3(s4, Z) € Sel((S(d), Z)) such that 74 € P and
Yd < ¢q if and only if:

VB €C(S): P(s;€ B|Z)>P(SC B,D=4d|Z) as. (72)
Since (¢4, Z) € 1, (72) is equivalent to:
VB €C(S): P(sy € B) > esssupP(S C B,D =d|Z) (73)
Z

= max (esssupPE(SE B,D =d|Z),Po(S € B,D:d)) (74)
Z

where the first line follows since, by definition of I, ¢; I Z. The second is by definition of Z
and P(G = O) > 0 given that two datasets are observed.

Therefore, write:

I(su, Z) € Sel((S(d), 2)) N1 st. a < ¢

(75)
SVB e C(S): P(sg € B) > max (ess sup Pg(S € B,D =d|Z),Py(S € B,D = d)>
A
By definition, if € is a core determining class, (75) is equivalent to:
ey, Z) € Sel((S(d), 2)) NI s.t. yq % ¢4
(76)

&SVBe€: P(g € B) > max (esssup Pr(S € B,D=d|Z),P5(S € B,D = d))
Z

Recall that for any (m,v) € H(m,~), there exists (¢4, Z) € Sel(S(d), Z))NI such that v4 < ¢
Then each such ~; must satisfy the conditions (75). Hence, by the characterization of H(m, ")
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in (69) it follows that:

H(m,7)

(m,y) € MA x (P5)?:Vd € {0,1}, Iy, Z) € Sel((S(d), Z)) NI, ¥B e C(S),
=4 v4(B) > max (esssup, Pr(S € B,D =d|Z),Po(S € B,D =d)), va 2,

Vu € {=1,1} 1 umq(s) < upg(s)my, (s) + heoyy(u) (1 = 7,(5)), v4—a.e.

(77)

Step 4: Removing search over selections g,.

It remains to show that H(m,~) = H! where:

(m,vy) € MA x (PS)?:vd € {0,1},¥YB € C(S),
H' = ¢ ~4(B) > max (esssup, Pg(S € B,D = d|Z), Po(S € B,D = d)), (78)
Vu e {=1,1} 1 umg(s) < upa(s)my, () + heopyy(u) (1 — my,(s)), ya—a.e.

First, pick (m,v) € H(m,7). Then, since the conditions imposed on elements of H! is a
strict subset of those imposed on elements of H(m,~), it must be that (m,~) € H!. Conversely,
pick (m, ) € H!. By (75) and Lemma 3, for every d € {0,1} there exists ¢; such that (¢, Z) €
Sel(S(d), Z2)) N I, v4 2 4. Therefore (m,~) € H(m,~) and thus H = H(m, ).

If € is a core determining class, then by similar arguments and (76) it follows that:

(m,vy) € MA x (PS)?:vd € {0,1},VB € €,
H' = ¢ ~4(B) > max (esssup, Pg(S € B,D = d|Z), Po(S € B,D = d)), (79)
Vu e {=1,1} 1 umg(s) < upa(s)my, () + heopyy(u) (1 — my,(s)), Ya—a.e.

]
Lemma 1. Let Assumptions RA, EV, and MA. The identified set for (m,~) is:
(m,y) € MA x (P%)?:Vd € {0,1}, 35(d) € Sel(S(d)) N1,
H(m, ) = d - (18)
Y (d) € Sel'(Y(d)), va=S(d), ma(S(d)) = Eo[Y(d)|S(d)] as.

where I is the set of random elements By € S such that By 1L G and E, 1L Z|G=E.

Proof of Lemma 1. Let I be the set of random elements (Ey, F3) € S X Z such that FE, 1l Es.
Recalling the definition of Z in (32), note that S(d) € Sel(S(d)) NI can be equivalently stated
as (S(d), Z) € Sel(S(d), Z) N 1.

The proof then proceeds through a series of steps:

1. Find the set of (mg,~4) which are consistent with the data, Assumptions RA and EV, and
E[|Y(d)|] < oo in terms of measurable selections (v, s4) of (Y (d),S(d));
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2. Equivalently characterize the set, removing redundant restrictions;

3. Find the set of corresponding (m,y) consistent with the data, Assumptions RA and EV,
and E[|Y (d)|] < oo;

4. Collect all (m,~y) that satisfy Assumption MA to obtain H(m, 7).

Step 1: Restrictions on (mg,74) without the modeling assumption and integrability.

I use the random set:

{(Y,9)}, if (D,G) = (d,0)
(Y(d),S(d)) = ¥ x {S}, if (D,G) = (d, E) (80)
Y x S, otherwise

which summarizes all information on (Y(d), S(d)) contained in the data, by definition. Recall
from the proof of Lemma 6 that all restrictions imposed by data and Assumptions RA and EV
on (Y (d), S(d)) can be expressed as (Y (d), S(d), Z) € Sel((Y(d),S(d), Z)) NI where I is the set
of all random elements (F1, Fy, F3) € S x Y X Z such that F5 1L (E1, Es). Then, the set of
(ma,va) consistent with the data and Assumptions RA and EV follows by definition as:

HEVIRA (1 va) = { (m(fi, Ya) € Mg x P : 3(vg, 54, Z) € Sel((Y(d),S(d), Z)) N1, } (81)
Ya = Sa, Malsa) = Flvglsg] a.s.

where My is the projection of M onto its first component. Next, recall the definition of random

sets:

Y(d) = {Y}, if (D,G) = (d,0) S() = {S}, it (D,G) € {(d,E),(d,0)} (82)

Y, otherwise S, otherwise

so that (Y (d),S(d), Z) = Y(d) x S(d) x {Z} for any d € {0,1}.
I now show that Sel((Y(d),S(d),Z)) = Sel(Y(d)) x Sel(S(d)) x {Z}. Fix an arbitrary
(Va,<a, Z) € Sel((Y(d),S(d), Z)). Then:

| = P((Ud,gd,Z) e (Y(d),S(d), Z)
= P(Ud € Y(d),ss €S(d), Z € {Z}> (83)
_ P(Ud €Y(d), ¢ € S(d))
< P(ua € Y(d),



where the first line follows since (vg, <4, Z) € Sel((Y(d), S(d), Z)), the second is by (Y (d), S(d), Z) =

Y(d) x S(d) x {Z}, the third and fourth are by observation. Hence P(Ud € Y(d)) 1. By a

similar argument, P<§d € S(d)) = 1. Therefore (vq,sq, Z) € Sel(Y(d)) x Sel(S(d)) x {Z}.
Next, fix an arbitrary (vg,<q, Z) € Sel(Y(d)) x Sel(S(d)) x {Z}. Then:

d)> + P(Ud €Y(d),q d S(d)>
i €8(d), 7 e {Z}) + P(vd € Y(d), S(d)) (84)
)

where the first line is since v, € Sel(Y(d)), second and third are by observation, fourth is since
P(vd € Y(d), & S(d)) < P(gd ¢ S(d )) — 0 given that ¢; € Sel(S(d)), and the last is by
(Y(d),S(d), Z) = Y(d) xS(d) x {Z}. Thus, Sel((Y(d),S(d), Z)) = Sel(Y(d))x Sel(S(d))x{Z}.

Then write:

MEVIRA (2 { (md,vd ) € My x PS : I(vg, 54, Z) € Sel(Y(d)) x Sel(S(d)) x {Z}y N1, }
Yd = §d, ma(sq) = Elvalsd] as.
~J (ma,7a) € Mg x PS Ay, ~) € Sel((S(d), Z) N1
a { Fug € Sel(Y(d), (va,ca) L Z, va L ca, malsa) = Elvalsd) as. }
| (mava) € Mg x P E|(§d,2) € Sel(( (d),2))N 1,
B { Jug € Sel(Y(d)), (va,sq) 1L Z, va 2 Sa, malsa) = Folvdlsq] a.s. }

(85)

where the first line holds by Sel((Y(d),S(d), Z)) = Sel(Y(d)) x Sel(S(d)) x {Z}, second is
by rearrangement, and third is by (vg, <) AL Z.

Step 2: Equivalent restrictions on (mg,y4) without the modeling assumption.

I show that HEV/EA(my, ~v4) is equivalent to:

HEVIRA (g 2, — { (ma0) € Ma x P < 3(4,2) € Sel((S(d), 2) N1, }
Jug € Sel(Y(d)), va=ss, ma(sa) = Folvalsa] a-s.

First fix (mg,v4) € HPY/EA. Then, there exist (vq,sg) such that mg(sy) = Eolva|ss] a.s. and
Yo x (s, Z) € Sel((S(d), Z)) N T and vy € Sel(Y(d)). Hence (mq,v4) € HEV/ B4 (my, 74).
Next, fix (mgq, va) € HEY/EA(m, ) and let (vq, ¢g) be the corresponding selections in Sel(Y (d))x
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[Sel((S(d), Z) N I] that generate them. I show that there exist (v/,}) such that: 1)(¢}, Z) €
Sel((S(d), Z)) N1 and v/, € Sel(Y(d)); 2) ma(s}) = Eolv))|s}] and ¢, < g 3) (v),¢) AL Z.

Let P, . be a distribution such that Vz € Z, Py o (lsg = s, Z=2)=P,,(la=5G=0)
Vs € S, and Py (|Z = z) = P,(-). Note that these conditions fully specify P, . I first show
that there exist (s}, Z) € Sel((S(d),Z)) NI and v} € Sel(Y(d)) such that (v}, ) < Py . I
then show that (v}, <)) fulfill conditions 2) mu(<)) = Eolv)|s)] and ¢} £ 4 and 3) (v),¢) AL Z.

Recall that, as in the proof of Lemma 6, by Lemma 3 and Molchanov and Molinari (2018,
Theorem 2.33), (v4, <4, Z) € Sel(Y(d)) x Sel(S(d)) x {Z} if and only if VB € C(Y x S) P-a.s.:

13Bs CS: B =Y x Bs|P(S € Bs, D = d|Z)+

e 1[VvBs C S:B#Y x Bs|1[Z & Z|P5((Y,S) € B,D = d)

(B|Z) > : (86)

dsSd

Since (vg, 54, Z) € Sel(Y(d)) x [Sel(S(d)) x {Z}n 1]7 it must be that P (-|Z) = P.,(-) P—a.s..
This a restriction on the marginal of P, hence for any B € C() x S) such that B =) x Bg

for some Bg C S:?°

d»>Sd

PUd,Cd(B|Z) = P€d(BS|Z) = P§d(BS) = Pvd,§d(B) (87)
Where the first equality is by definition of a marginal distribution and B = Y x Bg, the second
is because P.,(-|Z) = P.,(-) P—a.s., and the third is by definition of a marginal distribution and
B =) x Bg.

By (86) and (87), (v4, <4, Z) € Sel(Y(d)) x |Sel(S(d)) x {Z}ﬂ[] only if VB € C(Y x S)
P-as.:

1[3Bs CS: B =Y x Bglesssup; P(S € Bg, D = d|Z)+

Py, (B|Z) > .
| 1[VBs CS:B# Y x Bs|1[Z ¢ Z]Po((Y,S) € B, D = d)

[ 1[3Bs CS: B =Y x By|x (88)
= | max (esssupy, Pg(S € Bs,D =d|Z), Po(S € Bg,D =d)) +
1VBs CS:B#Y x Bg|1[Z & Z|Pp((Y,S) € B,D = d)

Observe that by (88) VB € C(Y x S):

13Bs CS: B =Y x Bg]x
P, ,(B|G=0) > | max (esssupy Pp(S € Bs,D =d|Z),Po(S € Bs,D =d))+ | . (89)
1[VB5 CS:B 7é Y x Bs]Po((Y, S) €B,D= d)

20. Note that the condition need not hold for every B € C(Y x S), only for B s.t. B =Y x Bg for some Bg C S.
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Then for any B € C(Y x §) P—as.:

P,y o (B) = P%%(ByZ) = P,,.,(B|G=0)> Po((Y,S) € B,D = d) (90)

n o (Clsas Z) = Py o (+|sg) and Pgé(-]Z) = P,,(-), the second is
by Py o (lsq = s, 7 =2)=P,,.,(-[sa = 5,G = 0), and the inequality is by (88).
For any B € C() x §) such that B =) x Bg for some Bg C S:

where the first equality is by P,

Py« (B|Z) = Py(Bs|Z) = P.,(Bs) = Py,,(B)

(91)
> max (ess sup Pg(S € Bs,D =d|Z),Po(S € Bs, D = d)) :
z

where the first equality follows by definition of a marginal distribution and B = ) x Bg, the
second is by Pgé(BS|Z) = P_(+), third is by definition of a marginal distribution and B = ) x Bg,
and the inequality is by (88).

By (90) and (91) VB € C(Y x S):

1[3Bs CS: B =Y x Bg|x
PU&SQ(B) > | max (esssup, Pg(S € Bg,D =d|Z),Po(S € Bs,D =d))+ | . (92)
E[VBS CS:B 7& Y x BS]P()((Y, S) €B,D= d)

Then recall that by Lemma 6, 3(v),, <}, Z) € Sel(Y(d)) x Sel(S(d)) x {Z} NI if and only if
VB € C(Y x 8) (92) holds. Therefore, there exist (¢}, Z) € Sel((S(d), Z))NI and v/, € Sel(Y(d))
such that (v}, <)) < Py i

Next, note that since Py o (-) = P, (|G = O), then mqa(s;) = Eolvyls)] a.s. Because
chl<"2) = P,() = P.(), s 2 ¢y L ~,. Finally, because (V)64 Z) € Sel(Y(d)) x Sel(S(d)) x
(Z}N1, (v),¢}) AL Z. Therefore, if (mg, va) € HEV/EA(mg, va), then (ma, va) € HEV/EA(ma, va).

Hence:

HVIRA (. ya) = { (Ma,va) € Mg x PS: 3(sq, Z) € Sel((S(d), Z)) N1, } (93)

Fug € Sel(Y(d)), Y42 ca, malss) = Eolvalsd] a-s..

Finally, impose E[|Y(d)|] < oo. This can equivalently be restated as Y (d) € Sel'(Y(d)).
Then the identified set for (mg,y4) under Assumptions RA and EV, and E[|Y (d)|] < oo is:
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HEVIRA/Int (1 ) — { (M, 7a) € Max P51 I(sa, Z) € Sel((S(d), Z2))N 1, } . (94)

Fug € Sel (Y (d)), Y42 s, malsa) = Eolvalsa) a.s.

Step 3: Restrictions on (m, ) without the modeling assumption.

Since the data never reveal (S(0),Y(0)) and (S(1),Y (1)) jointly, Assumptions RA and EV,
and E[|Y (d)|] < oo do not impose cross-restrictions on them. Then the set of all (m, ) consistent
with the data Assumptions RA and EV, and E[|Y (d)]] < oo is:

IHEV/RA/Int(m’ 7) — HEV/RA/Int(mo, ’YO) % /HEV/RA/Int<m17 71)
f (myya) e M x (P9))?2: Vd e {0,1}, (s, Z) € Sel((S(d), 2)) N1, (95)
Jug € Sel* (Y (d)), ~q 4 Sa, malsa) = Eolvglsq] as. .

Step 4: Identified set H(m, ).

It only remains to impose Assumption MA. To do so, observe that a valid identified set is:

H(m, ) = HEVEVI () 0 (M X (P9)?)

_{ (m,7q) € MA x (PS))2: Vd € {0,1}, 3(ss, Z) € Sel((S(d), Z)) N I, } (96)
] Jug € Sell(Y(d), va s, mals) = Eolvalcd as. '

Next note that for every (m,~) € H(m, ), there exist selections (<o, <1, vp, v1) that generate
them and that are consistent with the data, modeling assumption, Assumptions RA and EV,
and E[|Y(d)|] < oo. Therefore, H(m,~) is sharp. O

Theorem 2. Let Assumptions RA, EV, and MA hold. Suppose S is a finite set and that M*

1s closed and convex. Then:

H(T) = min  T(m,7), max T(m,~ 23
(7) (m,7)eH(m,7) (m,%) (m,y)€H(m,v) (m,9) (23)
where:
([ (m,~) € M* x (A(K))?:Vd € {0,1}, Vs € S, ’
va(s) > max (esssup,(Pg(S =s,D =d|Z), Po(S =s,D =d)),
H(m,v) = . 71 Pp(S=s,D=d) ’ (24)
md(s) 2 Eo[Y’S = S,D = d]T s
| ma(s) < EolY|S =s,D=d Poli=e 0D + (1 - —P(J(S;gf’:d)) J

Proof of Theorem 2. The proof proceeds through a series of steps:
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1. Derivation of H(m,~);

2. Proving that T'(m,~y) is jointly continuous;

3. Proving that H(m,~) is convex when M = M*%;

4. Proving that H(m,~) is compact when M = M*%;

5. Proving that H(m,~) is convex when M* is closed and convex;
6. Proving that H(7) is an interval.

Step 1: Derivation of H(m,~).
For any selection vy € Y(d), vqg € Y so E[Jvg|] < |sup Y| < oo where the strict inequality
follows by boundedness of ). Hence, Y (d) is integrably bounded. Since § = {1,2,...,k},

represent v, as an element of a k—dimensional simplex A(k) and my € Y*. Let y4(s) and mq(s)

denote the s—th element of the corresponding vectors. Then:

([ (m,7) € MA x (A(K))?:Vd € {0,1}, VB € C(S),
H(m,v) = { 74(B) > max (esssupy, Pg(S € B,D =d|Z),Po(S € B,D =d)),Vs € S,
| Vu € {1, 1} uma(s) < wa(s)7,(8) + heo) (u) (1 = 7y, (5)) )
[ (m,7) € MA x (A(k))?:Vd € {0,1}, VB € C(S), )
= { v(B) > max (esssup, Pr(S € B,D =d|Z),Po(S € B,D=d)),VseS, 3
| Ve {=1,1}: wma(s) < upta(s) 2E=EP=D 4 hyiy () (1 — Dols=0=d))

(97)

where the first line is by Theorem 1, and the second is by |S| < oo, and definition of ., (s).
S is closed by definition. Since it is finite, it is bounded. Hence, S(d) is almost surely compact,
by definition. Then, by Beresteanu, Molchanov, and Molinari (2012, Lemma B.1) {{s} : s € S}

is a core-determining class for the containment functional of S(d). Then, by Theorem 1:

((m,7) € M4 x (A(R)?:Vd € 0,1}, Vs € S, Yu € {~1,1},
H(m,v) =< 74(s) > max (esssup,(Pp(S =s5,D =d|Z),Po(S =s,D=4d)),

Po(S=s,D=d Po(S=s,D=d
| wma(s) < upta(s) 070+ heoy) (u) (1 - 0 ))

r (98)
(m,y) € MA x (A(k))?:Vd € {0,1}, Vs € S, Vu € {—1,1},

=< 7a(s) > max (esssup,(Pr(S =s,D =d|Z),Po(S =s,D =4d)),

| wma(s) S uB[Y|S =5, D = d]RE=L=0 g () (1 - Tols=aped))

where the second line is by definition of ji4(s). Then, by definition of heyy)(u), (24) follows.
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Step 2: T is jointly continuous.

Endow the set of reals with its natural topology, making it a locally convex topological vector
space (t.v.s.). By bilinearity of the Riemann-Stieltjes integral in the integrand and integrator,
T(m,~) is a bilinear map. Since T is a bilinear map in a finite-dimensional space, it is separately
continuous in each argument. Note that 7" : R?% x R?¥ — R and that R?¢ is Polish (separable
and completely metrizable), and hence metrizable. By a corollary of the first Baire category
theorem, every Polish space is a Baire space, so R?® is a Baire space (Willard (2004, Corollary
25.4)). By Corollary 3, T is jointly continuous since every separately continuous bilinear map
from a product of a Baire space and a metrizable space to a locally convex t.v.s. is jointly
continuous.

Step 3: H(m,~) is convex when M4 = M.

Define the identified set for (m,~) when M4 = M:

(m,y) € M x (A(k))?:Vd € {0,1}, Vs € S,
> Pep(S=s,D=d|Z),Po(S=s,D=d)),
HYC (m, ) = als) = max (esssupy Pl PS(S D d)| : O(P (st D=d) ) - (99)
md(s) S Eo[Y’S =S, D = d]% +1-— %,

ma(s) > EolV|S = s, D = d]feli=2p=d)

Pick any (m,~), (m’,7") € HV(m,~) and fix a € (0,1). I show a(m,7) + (1 —a)(m',v') €
HWC(m, ). Tt is immediate that for any d € {0,1} and s € S:

ayq + (1 —a)y,; > max (ess sup Pg(S =s,D =d|Z),Po(S=5s,D = d)) (100)
Z

since both v, and v/, satisfy the same condition. Next, note that for any d € {0,1} and s € S:

avy(s) + (1 —a)ya(s) 1
Ya(s)

Yals) ava(s) + (1 — a)yy(s)
_ (a75(8) + (1 — a)va(s))(ava(s) + (1 — a)g(s)) — vals)va(s)
Va($)7a(s)(ava(s) + (1 — a)vy(s))
_ (@ + (1 —a)* = Dyg(s)vals) + a(l — a)(v4(5)* + 7als)?)
Ya(s)va(s)(avals) + (1 — a)vy(s))
_ 2a(a — 1)vg(s)va(s) + a(l — a)(4(s)* + 7a(5)*)
Ya(8)va(s)(ava(s) + (1 — a)y(s))

__al—a)(als) —vals))*

Ya(s)vg(s)(ava(s) + (L —a)yg(s)) —

(101)
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Then for any d € {0,1} and s € S:

amg(s) + (1 —a)ml(s) > EolY|S = s,D =d|Po(S = s,D = d) <%;(LS) + i{’j_(s()l>

> EolY|S = 5, D = d|Po(S = 5,D = d) <‘W&(3>7j< ;)17&—(3%@))

Po(S =s,D = d)

> EolY|S=sD = d])a’yd(s) + (1 = a)yg(s)

(102)

where the first line follows by (m,~), (m’,+') € H"Y(m,~), second is by observation and the
third is by (101). Finally, for any d € {0,1} and s € S:

amd(s)+(1—a)mfj(s)§(EO[Y|S:s,D:d]—1)PO(S:S’D:d)( a +1—a)+1

Po(S:S,D:d)

< (BolY|S =D =d| =1) s o

+

(103)

where (m,~), (m’,7") € H"W(m,~) yields the first line, and the second follows by (101) and
(EolY|S =s,D =d] —1) <0. Hence, a(m,v) + (1 —a)(m/,y") € KV (m,~).

Step 4: H(m,~) is convex when M4 = M.

It is immediate that H"¢(m,v) is bounded since " (m,~) C [0, 1]* x (A(k))?, by bounded

support of Y (d) and S being a finite set. I now show it is closed, which proves compactness

since (m, ) is finite-dimensional. Take any convergent sequence (m/,~’) — (m*,v*) as j — oo.
Then for any j, d € {0,1} and s € S:

v(s) > max (ess sup Pg(S =s,D =d|Z),Po(S=3s,D = d)>
Z

Po(S =s,D = d)

7a(s) 7a(s)
Po(S =S, D= d)

7(s)

m?(s) < EolY|S = s,D = d

m?(s) > Eo[Y|S = s,D = d
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Then by continuity of f(x) = 1/x and limit-preservation of weak-inequalities:

v;(s) > max (ess sup Pp(S =s,D =d|Z),Po(S =s,D = d)>
Z

mi(s) < EolY|S = S,D:d]PO(S :*‘z’)D:d) 4o FolS :*?’f):d) (105)
a\s a\s
mi(s) > EolY|S = s D:d]PO(S:s’D:d>.
e ’ 7i(s)

Hence (m*,v*) € HVC(m, ), so the set is closed. Then it is also compact.

Step 4: H(m,~) is compact, convex, and non-empty.

By assumption, M# is convex and compact. A(k) is a k—dimensional simplex, and hence
convex and compact. Then M# x (A(k))? is also convex and compact. By co()) = [0,1],
heoy)(—1) = 0 and heoyy(1) = 1. By (24), it is immediate that H(m,v) = H"(m,~v) N M* x
(A(k))%. Since HVC(m, ) is compact and convex, and intersections preserve compactness and
convexity, H(m, ) is compact and convex. If the maintained assumptions hold, then H(m,~) is
non-empty.

Step 5: H(7) is an interval.

T was shown to be a continuous map, so it preserves connectedness. Hence, H(7) = {T'(m,~) :
(m,~) € H(m,v)} is a connected set. Since H(7) C R, it is an interval. Continuous images

preserve compactness, so the H(7) is a compact interval, so:

H(r) = inf  T(m,7v), sup T(m,~) (106)
(my)eH(m) (m,y)EH(m,Y)

= min  T'(m,v), max T(m, 107

[(m,v)GH(mﬂ) (m,7) (m.y)EH (m,) ( 7)} (107)

where the second line follows by continuity of 7" and compactness of H(m, ).

[]

Corollary 1. Let conditions of Theorem 2 hold. If H(m|-) has minimal and mazimal selectors

with respect to T', then:
— 1 ok Y ) a, ok Y
H(T) &Iell 1(71)1 (L5,7) ilen (X7)1 (U5,7)

Proof of Corollary 1. By observation, it is immediate that iterated and joint minima and maxima
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search over all values of the set H(m,y) Thus:

H(T) = min  T(m,%), max T(m,*5 108
( ) Lfn,‘y)e’ﬂ(mw) ( ’V) (m,7) EH(m,y) ( 7)} ( )
= | min min 7T(m,7y), max max T(m,7)]|. 109
LGH(V) met(m|7) (m.%) FEH(y) meH (m|7) ( Vﬂ (109)

By definition of L., and U,:

Therefore:

min  T(m,v) = T(L,,7)

meH(ml|y)

(111)
max T'(m,vy)=T(U,,).
pbax  T(m, ) =T Uy 7)
m
Theorem 3. Let Assumptions RA, EV, MA, and E hold. Then as n — oo:
dg(Hn(7),H(7)) :==max{ sup inf ||7o—7||, sup inf ||7o—7|| p — 0.
To€H () TEHN(T) FEH, (1) TOEH(T)
Proof of Theorem 3. Consider the following two estimators.
H,(7) = | min min T (m,7y), max max T(m,7)]|. 112
™ LGHn(W) mEHA(m|Y) (. ) YEHR(Y) MEHA (1]F) ( 7)] (112)
7:ln T) = min T(m,"y), max T(m,7y)| . 113
™) L%’Y)E"Hn(mﬂ) (.7 (M,7)EHn(m,Y) ( 7)] (113)

By the proof of Corollary 1, H,,(7) and H,,(7) are numerically equivalent. Similarly, the es-
timator [minsey(y) 7'(Ly,¥), maxses () T'(Us, 7)] obtained using minimal and maximal selectors
in (112) is numerically equivalent to H,,(7) and hence numerically equivalent to 7, (7). There-
fore, consistency of H,,(7) yields consistency of H,(7) both with and without using minimal and
maximal selectors.

It remains to prove dg(H,(7),H(r)) <> 0. For this, note that #(7) and H,(r) are both
closed intervals by Theorem 2 and the definition of the latter. Then, by definition of the Hausdorff
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distance, it is sufficient to show that boundaries of 7:[n(7) converge in probability to boundaries
of H(r) as n — oc.

Considering the upper bounds of H(7) and H,(7), I show that for any ¢ > 0:

limsup P <
n—>roo

max T(m,7vy) — max T'(m,y)| >¢c| =0 114
(M, 7)EHn (m,7) (m.) (m,3)EH(m,7) ( 7)‘ ) (114)

and the argument for the lower bounds is symmetric. Fix any € > 0 and note that:

max 1'(m,5)— max T(m,7)

< su T(m,~y) —T(m', )|
(M,7)EHn(m,y) (m,7)eH(m,Y) N b [T(m, ) (m, 7))

1(m,y) = (m! AY)|<d g (H(myy), Ha (m,y))

N

(115)

M4 is a set of finite-dimensional vectors, defined by finitely many linear equality and in-
equality constraints, thus a polytope, and therefore compact. M4 x (A(k))? is then also com-
pact. Proof of Theorem 2 shows that T is a jointly continuous functional under maintained
assumptions. Hence, T : M# x (A(k))? — R is uniformly continuous over its domain by the
Heine-Cantor theorem. For the fixed ¢, let ¢/ = 2¢ > 0. By uniform continuity, there exists a
§" > 0 such that [|(m,v) — (m/,~)|| < ¢ implies |T'(m,~) —T(m/,v')| <¢'. Let 6 =¢'/2 > 0. If
|T(m,~) —T(m',~')| > € > e it must be that dg(H(m,~), H,(m,v)) > § > §. Therefore:

(

Thus, to prove (114), it is sufficient to show that given ¢ > 0:

max  T(m,y) -  max T(mﬂ)’>6> < P(du(H(m,7), Hn(m,)) > 6) (116)
(77) €M () (75)EH(m,)

lim_s>up P(dg(H(m,v), Hn(m,7)) > 0) = 0. (117)

Therefore to prove (114), it is sufficient to prove dy(H(m,v), Hn(m,v) = 0. To do so,

I adapt the arguments in Russell (2021, Theorem 2). Let pg4 be a k-dimensional vector with

components ji4(s) = Eo[Y|S = s,D = d]. Let 1y be a k x |Z| matrix with the element (s, ?)

being 14(s, 2) = P(S = s,D = d|Z = z). Finally, collect 8 = (1o, jt1,70,71) € B. Let 3, be the
plug-in estimator of 5. By elementary arguments 3, — 3 as n — oo.

By Assumption E i), M4 = {m € M : h(m,B3) >0, g(m,3) = 0} for some known linear
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functions g and h. Then:

([ (m.7) € MA x (A(K))?:Vd € {0,1}, Vs € S,
va(s) > max (max,ez Pr(S =s,D =d|Z = 2),Po(S =s,D =d)),
=Y y(s) 2 Eoly|s = s, D = afetszsb=i

ma(s) < Bo[Y|S =s,D = d]s—st)+(1_M>

\ Ya(s) Ya(s)
(m,v) € Y** x (A(k))?: h(m,B) >0, g(m,B) =0, Vd € {0,1}, Vs € S,
va(s) > max (max,cz Pp(S =s,D =d|Z =2),Po(S =s,D=4d)),

| mals) = Eo[Y|S = s, D = dfelip=d)

md(s) < Eo[Y|S =s,D= d]M + (1 Po(S:s,D:d)>

\ = a(s) 7a(s)
(m,7) € Y* x (A(K))? : h(m, B) > 0, g(m,B3) =0, )
vd € {0,1}, Vs € S,

= de(S> > maxzez nd<37~2)7

ma(s) > pa(s )M

Ya(s)_ ’
ma(s) < pra(s) MSRTH (1 - s ZE) )
(m,7) € Y** x (A(K))* - ( ,B8) =20, g(m,pB) =0,
vd € {0,1}, Vs € S, V3
Ya(s) = na(s, 2),
ma(s)Va(s) > pa(s)na(s, sup Z + 1) |
| (ma(s) = 1)7a(s) < (pa(s) — Dnals, sup Z + 1) )

Vs

-

(118)

where the first line follows by Theorem 2 and Assumption E i), the second line is by definition
of M#, third is by definition 1y and pg and Z and the fourth is by observation. Hence, H(m, )

can be equivalently represented through a set of equality and inequality constraints as:

Hm,7) ={ (m,7) € Y% < (AR)? < h(m,7,8) >0, g(m, ) =0 }.  (119)

where iL(m,’}/, B) collects all linear inequality restrictions h(m, ) > 0 and remaining linear
and bilinear inequality constraints in (118).

Next, convert all inequality constraints B(m, v, ) to equality constraints by introducing slack-
ness parameters \; € [0, 1] for each inequality constraint, as in Shi and Shum (2015, Remark

pp. 497).2! Denote by A the vector of all slackness parameters, and let 6 = (m,~,\) € T be a

21. Note that for proofs of consistency, it is sufficient to just add slackness parameters to each inequality
constraint.
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vector of dimension dy x 1. Write all converted equality constraints and existing equality con-
straints g(m, 3) as (0, ) = 0. Define also the inequality constraints hy(#) > 0, which collect
non-negativity constraints A\, > 0. Now define © = {6 : §(0,5) = 0, h,(6) > 0.}. Under the

assumptions, both H(m,~) and © are non-empty. Therefore, equivalently write:

© = argmin §(6,5)g(0,p) (120)

0€T:hx (0)>0

and let the corresponding estimator be:

O, = argmin §(0,3,)'5(6, 5,). (121)
0€T:h (6)>0

Note that for any (m,v) € H(m,~) if and only if (m,v,\) € © for some feasible A. Then,
the projection of © onto (m,~) two components is #(m,v). Therefore, whenever H,,(m, ) # 0,
H,,(m,~) is numerically equivalent to the projection of ©, onto (m,~). Moreover, since 3, < 3
asn — 00, P(H,(m,~) # 0) — 1 (see Yildiz (2012, Footnote 10)). Thus, for (117) and therefore
(114), it is sufficient to show that dy(0,,©) = 0. This follows immediately by verifying the
conditions of Shi and Shum (2015, Theorem 2.1).

First, the preceding arguments argue that 3, = 3. Second, for d € {0, 1}, ug, mq € [0, 1]*,
Na, Ya € A(k), A € [0,1] for all ¢ < oo, hence the parameter spaces for T and 8 are compact.
Third, g(-, 3) is continuously differentiable for § € 9B as it is bilinear in 8; hy(+) is linear in 6 and
hence continuous. Applying identical arguments of Step 4 in the proof Russell (2021, Theorem
2) then yields dy(0,,0) = 0.

O

Proposition 1. Suppose Assumptions RA and EV hold. Then:
i) HO(r) = H(7);
it) HO(Py),y1)) = H(Pyo)y))-

Proof of Proposition 1. 1 show that HC(Py)ya)) = H(Py()y()), which immediately yields
HO(7) = H(T).

The data never reveal (Y(0),Y (1)) jointly, so the data and assumptions do not impose cross-
restrictions on Y (0) and Y'(1). Then the identified set for Py (g)y ) given Pyqy and Py (g is the
set of all joint distributions consistent with the marginals Py(1) and Py (o). The identified set for
Py (0),y(1) is the union of such sets over all possible (Py(o), Py(1)>.

To that end, let I1(vg, v1) be the set of couplings of probability measures vy and vy defined as
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(Villani et al. (2009, Definition 1.1)):

(122)

(g, 1) = {56P3’x7?3’: VACY 0(A X Y) =w(A), }

(Y xA) =wr(A)

(v, v1) is always non-empty (Galichon (2018, Section 2.1)). Equivalently, the identified set
for Py(o),ya) given Pyy and Py (o) is II(Py (o), Py(1)). Using the identified sets for the marginals
Py gy € HO(Py(q)) for d € {0,1}, the identified set HP(Py(9),y(1)) is then the union of all possible

couplings:

HO(Pyroyy) = U vy, v1). (123)
(VO:Vl)eHO(Py<U))XHO(Py(l))

Similarly for H(Py o),y (1)):

H(Pyo)yay) = U (v, 11). (124)
(vo,v1)EH(Py (0)) X H(Py (1))

Lemma 7 shows that H?(Py @) = H(Pyq)) for any d € {0,1}. That H(Pyo)ya)) =
H(Py(o%y(l)) follows.
Next, observe that 7 is a functional of Py (g)y ). It is then immediate that HO(T) = H(7),

Remark 11. The same result may be obtained directly by defining the random set:

(% {8} x Y x {Y}, if (D,G) = (1,0)
(Y.S) = Sx{S} xYxY, if (D,G)=(1,FE) (125)
{S} xS x{Y} x Y, if (D,G)=(0,0)

({S}xSxYx Y, if (D,G)=(0,F)

which summarizes all information on (5(0), S(1),Y(0),Y (1)), and retracing the steps of Lem-
mas 5, 6 and 7 for the joint distribution Py (g)y1)-

O
Lemma 2. (Nested Misspecification) Let H C HOM be misspecified identified sets for some
parameter 7. Let d be the point-to-set distance defined as d(A,t) := inf {||t —al|| : a € A} for

ACR andt € R. Then:
d(HO 7) < d(H,T)
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Proof of Lemma 2.
AR, 7y =it {|lt = 7|t e HOAY <inf { |t 7|t e H} =d(Fr)  (126)

where the inequality follows by H C HO/A. O]

Corollary 2. Suppose Assumptions RA and EV hold. If Y = R, the identified set for T is
H(T)=R. If Y =10,1]:

H(7) = [EolY D] — EolY (1 — D)] — Po(D = 0), EolY D] — Eo[Y (1 — D)] + Po(D = 1)]. (31)

In both cases, 0 € H(T) and the sign of T not identified.

Proof of Corollary 2. Suppose first that Assumptions RA and EV hold. Assume that ) = R and
pick an arbitrary ¢ € R. I show that & € H°(7) which is equivalent to ¢ € H(7) by Proposition 1.
Define a distribution function for any (a,d) € R x {0, 1}:

Yala(B) = Po(Y € B,D =d) + 1[a € B|Po(D # d)
for any Borel set B € B()). Recall from Lemma 7 that:
HO(Py(a)) ={y€P”:4(B) > Po(Y € B,D =d) VB € C(Y)}.

Since C(Y) C B(Y), then v4a(B) € HO(Py(a)) for any (a,d) € R x {0,1}. Note also that any
coupling of 7,1 € HO(Py 1)) and o € HP(Py (o)) is compatible with the observed data.
Next, observe that 7,4 is a pushforward measure of the random variable Y1[D = d|+al[D #

d], which has the expectation of E[Y1[D = d]| + aPo(D # d). Let ¢ = E_EO[YIIDDO]?[;E;SS/O_D)] € R.

Then ., yields the expected value:

ElYD]+ 5= EO[Y]%(EZO([K“ —D)]

Po(D = 0) = é+ Eo[Y (1 — D)].

Similarly, vojo yields the expected value E[Y (1 — D).

Now take ye1 € HO(Py (1)) and Y0 € HP(Py (o)) as distribution functions of Y (1) and Y (0),
recalling that any coupling of 71 and 7o is compatible with the observed data. It follows that
7= FE[Y(1) — Y (0)] = ¢. Since ¢ was arbitrary, H°(7) = R. By Proposition 1, H°(7) = H(7).

Next, let ) = [0, 1]. Since Proposition 1 holds for any J C R, I can again recover H(7) by
using only distributions in H%(Py (). Equivalently, I can find H(7) by utilizing only information
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in the observational data. Then, by elementary arguments as in Manski (1990), the bounds in
(31) follow. O

Proposition 2. Let Assumptions EV and LUC hold.

i) Suppose the observed data distribution Po(Y, S, D) is such that Vp[Y'|S,D = d] > 0 P—a.s.
for some d € {0,1} and that Y is a bounded set. Then HO/PVC (1) C HO(7).

i) If the observed data distribution Po(Y,S, D) is such that Eo[Y|S, D = d| is a trivial mea-
surable function for all d € {0,1}, then T is point-identified, and H(7) = HO/FVC (7).

Proof of Proposition 2. 1 prove the claims in order.
i)
Y is closed by definition. Since it is bounded, it is a compact set. Then sup) < oo and

inf Y > —oco. Using arguments of Manski (1990), the sharp upper bound of H°(7) is:
7 < Eo[Y(2D — 1)] +sup YPo(D = 1) — inf YPo(D = 0) = sup HP (7). (127)

By Lemma 9 Vp[Y|S,D = d] > 0 P—a.s. implies Eo[Y|S,D = d] < sup) P—a.s. If there
exists d € {0,1} s.t. V[Y|S,D = d] > 0 P—a.s., then it must be that for every Borel subset
B C B(S) with Pp(S € B|D = d) > 0 we have Ep[Y|S € B, D = d] < sup). Under Assumption
LUC then:

EolY (d)|D # d] = Eo|EolY (d)|S(d), D # d]|D # d|Po(D # d)
= Eo[Eo[Y(d)|S(d), D = d|D # d]|Po(D # d)
= Eo[EolY|S, D = d]|D # d]FPo(D # d)
< SupYPo(D # d)

(128)

where the first line is by LIE, second by Assumption LUC, third by definition, and the fourth
since F[Y'|S € B, D = d] < sup ) for every Borel set B of positive measure. Then under LUC:

EY(d)] = Eo[Y1[D = dl| + E[Y (d)|D # d|Fo(D # d)

(129)
< EolY1[D =dJ|| +sup YPo(D # d).
Therefore, under Assumption LUC:

7= E[Y(1) - Y(0)]
— FEo[Y D]+ E[Y(1)|D = 0]Po(D = 0) — E[Y(1 — D)] — E[Y(0)|D = 1]Po(D = 1)
< Eo[Y (2D — 1)] +supYPo(D = 1) — inf YPo(D = 0) = sup H?(7)
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where the inequality follows by (129). Thus sup HO/*V¢(7) < sup H(7). So there must exist a
point in H(7) which is not contained in H/*V¢ (7). Conclude that HO/*VC (1) C HO (7).

ii)

Suppose that for every d € {0,1} Ep[Y|S,D = d] is a trivial measurable function. Hence
there exists a y € ) such that Eo[Y|S, D] =y P—ass.

Then, following the same steps as in (128):

EolY (d)| # d] = EolEo[Y (d)[S(d), D # d]|D # d|Po(D # d)
= EolEolY (d)|S(d), D = d|D # d]|Po(D # d)
= Eo[EolY|S, D = d||D # d|Po(D # d)
=yPo(D # d)

(130)

where the final line follows since Ep|Y|S, D] = y P—a.s. and Supp(S(d)) = S. Given that y
is identified by the data, then Eo[Y (d)] is identified for every d € {0, 1}, so 7 is too. It is also
immediate that H(7) = HO/FVC (1) since for every d € {0,1} and any 74 € PS, we have that

ElY(d)] = [sydvya(s) = y. Since experimental data only affect the feasible 74, the result follows.
O

Lemma 12. Let Assumptions RA, and EV hold. Suppose that S is a finite set.

i) Suppose that Assumption LIV holds. Then for s € S:

L (s)=| minEplY|S=5,D=0
o) <> o | 70(s") Yo(s")

Po(S=s,D=
max Eo[Y]S = o/, D = o8 =5 D=1}
s'<s n(s')

p Po(S=¢5,D=0)
= EolY|S=5,D =
U"/(‘g) (g}g? O[ |S S O] ’}/0(8/)

min Ep[Y|S=5',D =1
min EolY| = ()



m(s)27" = min Ep[Y|S =s,D = d Fol5=5D =d)

o o | (132)
’ Po(S=sD=d Po(S=sD=d
m(S)U”Y = max Ep[Y|S =s,D =] o(S = s, ) L1 o(S = s, )
o %ls) ()

Proof. i)

Fix any 4/ such that there exists (m,’) € H(m,~). Then H(m|y") # 0. By bounded ),
heo)(—1) = 0 and hee(y)(1) = 1. By Theorem 2, Vs € S restrictions imposed by data on mg(s)
can then be equivalently stated for d € {0,1} as:

Po(S =s,D = d)
Va(s) ’
Po(S =s,D = d)
Ya(s) V4(s)

ma(s) € |EolY]S =s,D =d]

EolY|S =s,D =d

By Manski and Pepper (2000, Proposition 1) under Assumption LIV the sharp bound on mg(s)

1S:

Po(S=5,D=d)

ma(s) > mg(s)HVE .= sup Eo[Y|S = &/, D = d

N §'<s '721(3/)
/ . Po(S=45,D=d) Po(S =5,D =4d)
< LIVUA .= inf EoY|S = ¢/, D = d|=2 : 1- ’
md(s) = md(s) slgs O[ | S, ] 7:1(3/> + 7(/1(3/)

(134)

First, note that both mdLW’L”/ and mdLIV’U’7/ are non-decreasing in s by definition for all d €
{0,1}. Thus, L := (mEVV7 mEVEYy ¢ pMA and Uy = (mE™V 2 mEV0) € MA. Hence
(Ly, '), (Uy, ') € H(m,~). Since 4" was arbitrary, (L.,~'), (Uy,~') € H(m,v) for any o' €
H(7y). Therefore, L., and U, are selectors of H(m|-). Then, observe that 7" is non-decreasing
in m;(s) and non-increasing in mg(s) for each s € S. Therefore, Ym € H(m|y') T(Ly,7') <
T(m,~'), so L, is a minimal selector with respect to 7. Similarly, Ym € H(m|y") T(U,,~') >
T(m,v'), so Uy is a maximal selector with respect to 7'. Since |S| is a compact set, infima and
suprema may be replaced by minima and maxima.
i)

As in proof of i), fix any 7/ such that there exists (m,~") € H(m,~), so H(m|y) # 0.
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Assumption TT maintains that m; = mg. Then write for any s € S and d € {0, 1}:
T, y) = [ mi(s)ari(s) = [ mo(arils) = [ mals)nio) - i) (135)
Define:

Lot = EolY|S=s,D=d
m(s) in olY[S =s, = )

B B B (136)
m(s)%7" == max EplY|S =s,D= d]P o(5 /S’D =) +1-— Fo(5 _,S’D =)
de{0,1} v,(s) v,(s)
Next let for any s € S:
m(s)E = m(s)P 1 (s) > p(s)] + m(s)"T 1 (s) < vp(9)] (137)

m(s)TH0 = m(s) P L (s) < ()] + m(s)" T Llyi(s) 2 7o(s)]

and L := (mTHEY" mTLEY) and U,y i= (mTHUY" 10,
By Theorem 2, it is immediate that for H(m|y') = {m € M : my = my, Vd € {0,1}, Vs €
S, ma(s) > m(s)L7, ma(s) < ma(s)V'}. Hence (L, %), (Uy,v') € H(m|y'). Since v was
arbitrary, (L,,'), (Uy,7') € H(m|y') for any 4" € H (7). Therefore, L., and U, are selectors of
Then observe that by (135), Ym € H(m|y") T(L,,v") <
with respect to T'. Similarly, Vm € H(ml|y'") T(U,,~') > T(m,v’'), so U, is a maximal selector
with respect to T O

T(m,'), so L, is a minimal selector
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