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Abstract

Do protectionist policies foster domestic growth and innovation in the digital econ-
omy, and if so, how? This paper investigates the impact of the Great Firewall (GFW) in
China – the world’s largest system of internet regulation – on the development of do-
mestic mobile apps. By blocking foreign apps at times determined mostly by political
considerations, the GFW prompted a 30% user base expansion for Chinese substitute
apps (identified through their baseline text descriptions). Monthly data on these apps’
underlying technologies, extracted from their compiled source code, reveal that Chi-
nese substitute apps accelerated their innovation efforts, with in-house development
increasing by 14% two years after the blockage. This technological progress spilled
over broadly post-blockage, as both domestic and foreign apps adopted more Chinese
technologies. I further show that increased access to data was one important driver.
Chinese apps requested more types of sensitive data and were more likely to share
user data access with outside firms after their foreign substitutes were blocked. These
increased types of user data generate innovation; quasi-random variation in the in-
troduction of new data access raises in-house technology development. Finally, using
data-sharing networks between app developers, I show that in-house development
also increased at the firms that user data was shared with. In summary, protection-
ist policies brought about through China’s GFW boosted its app industry, potentially
contributing to China’s leadership role in this fast-growing industry.
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1 Introduction

Technological protectionism has become an increasingly prevalent trend in the global dig-
ital economy, driven by an urgent desire to foster domestic innovation.1 One of the the-
oretical rationales underlying this shift towards industrial policy is the need to address
market failures arising from static and dynamic externalities, which often necessitate pol-
icy intervention to boost domestic technologies and the competitiveness of domestic firms
(Hirschman, 1958; Baldwin, 1969; Krueger, 1990; Young, 1991; Hausmann and Rodrik,
2003; Melitz, 2005; Stiglitz, Lin and Patel, 2013; Juhász, Lane and Rodrik, 2023).

The nonrivalrous nature of digital products and the evolution of learning methods
have further intensified the dynamics shaping industrial policy. Digital inputs like data
and intermediaries such as software libraries2 can be utilized simultaneously by multiple
entities without depletion (Goldfarb and Tucker, 2019; Jones and Tonetti, 2020). This char-
acteristic fosters external economies through shared library adoption and data exchange,
which can amplify collective technological progress. Additionally, digital tools such as
A/B testing3 and machine learning enable data-driven decisions, broadening learning
opportunities beyond traditional on-the-job methods (Farboodi, Mihet, Philippon and
Veldkamp, 2019; Bajari, Chernozhukov, Hortaçsu and Suzuki, 2019) and opening new
pathways for rapid knowledge acquisition.

This paper presents a comprehensive empirical analysis focusing on two major as-
pects of protectionist policies in the digital economy. First, it directly examines whether
such policies, by generating positive demand shocks, spur innovation of domestic prod-
ucts and cultivate a domestic technology ecosystem. Second, it investigates an important
mechanism through which these policies may function: the increase in data collection and
sharing among domestic firms following protectionist measures, potentially enhancing
productivity through both internal and external economies. This channel is particularly
policy-relevant given the rapid rise in data localization policies – a central form of digital

1This is exemplified by policies like the United States’ CHIPS and Science Act of 2022, which aims
to boost domestic semiconductor production; the European Union’s push for digital sovereignty through
regulations such as the Digital Markets Act of 2020; and India’s “Aatmanirbhar Bharat” (Self-Reliant India)
program introduced in 2020 to promote local technology ecosystems.

2Software libraries are reusable collections of code that provide pre-built functions or tools, allowing
developers to efficiently build applications by integrating existing solutions rather than creating code from
scratch.

3In internet firms, A/B testing is an experimental approach that compares two versions of a product
feature or service to determine which performs better, enabling data-driven decisions to optimize user
engagement and outcomes.
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protectionism.4

I estimate these effects by exploring how the Great Firewall (GFW) in China – the
world’s largest system of internet regulation – impacts innovation in domestic mobile
applications (apps). This is a particularly appropriate setting for studying the effects of
protectionist policies on a domestic digital economy for two reasons: the availability of
precise technological tracking data and China’s rapid app industry growth.

First, mobile apps, the cornerstone products of consumer-facing companies in the dig-
ital economy,5 provide exceptionally granular data that allow for precise tracking of tech-
nological evolution. For example, each version of a mobile app includes detailed docu-
mentation of the technologies it incorporates, down to the functionality level, along with
the corresponding providers within the raw code. This enables precise and comprehen-
sive measurements of technological changes for a product at a monthly frequency, a task
that has been a substantial challenge in prior research.

Second, China’s digital economy, particularly the mobile apps sector, was in its in-
fancy when the GFW was initiated in the early 2000s, but it has since achieved remark-
able growth and competitiveness. Presently, China not only hosts the world’s most local-
ized app market, where nearly all of the most-downloaded apps in 2022 were developed
domestically; it is also the only country that can rival the U.S. in regional and interna-
tional markets of mobile apps (World Bank, 2024). Despite these advances, the lessons of
China’s rapid ascent in the digital realm remain unclear.

To investigate the dynamic effects of the blockage of foreign apps on innovation, I
utilize an event-study design that incorporates three types of variation and three novel
datasets.

The study leverages the staggered timing of foreign app blockages, which introduces
both temporal variation and variation in blockage timing in my analysis. This allows me
to compare the innovation within an app to control for potential industry-wide and firm-
level confounders. Through extensive online research,6 I compile the blockage status of
114 major foreign apps by the GFW from 2009 to 2023, providing detailed start and end

4The number of countries implementing data localization requirements nearly doubled from 35 in 2017
to 62 in 2021, with the total number of such policies (both explicit and de facto) increasing from 67 to 144
over the same period (Cory and Dascoli, 2021).

5In 2021, Meta reports that over 98% of their daily active users access their services via mobile devices,
and over 90% of their advertising revenue comes from mobile platforms. Similarly, In Q4 2021, Netflix
disclosed that more than 70% of its streaming in emerging markets occurs on mobile devices, highlighting
the critical role of mobile apps in user engagement and market expansion.

6The main source is greatfire.orgwhich monitoring the status of foreign websites in China since 2011.
For foreign apps that we cannot find historical information from the website, I search for news articles and
validate with user reviews that complain about inaccessibility of the apps.
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dates and reasons for blockage when available. Notably, the primary intent of the GFW
has been to control information flow and maintain stability; a significant proportion of
these blockages, at least 55%, is triggered by sudden political events.7 This helps to miti-
gate concerns about the selection of promising industries through favoritism – a common
challenge in assessing the impacts of industrial policies.

I then further define cross-sectional variation by classifying foreign-domestic app pairs
into substitutes, complements, and neutrals using large language models. I first classify
20,000 randomly selected foreign-domestic app pairs into these three categories using
gpt-4. After ensuring labeling consistency of gpt-48 and alignment with human evalua-
tions,9 I use these data to train a logistic regression model that I use to classify pairs based
on app descriptions before the blockage of the foreign app.

To measure innovation in mobile apps, I compile three novel datasets. Starting with
the Domestic Apps Dataset, I collect detailed records of over 230,000 apps from 6,000 Chi-
nese internet firms, covering the period from 2014 to 2023. I scrape (i) basic app infor-
mation (including developer, description, reviews, and update logs for each version), (ii)
data on user activity (e.g., monthly active users and time spent per user), and (iii) the com-
plete package for each app version, which is a collection of libraries and data assets neces-
sary for the app’s functionality. Unlike manufactured products, where tracking product
improvements can be challenging, digital products offer a transparent and detailed view
of technological advancement by comparing raw code across versions. I decompile these
packages to extract the libraries – collections of code at the functionality level – and user
data requested by the apps. This process provides insights into the technologies utilized
by these apps and their user privacy practices.

Additionally, I establish the Foreign Apps Dataset by following the same procedure as
the one employed for domestic apps. This dataset includes the 114 foreign apps that were
blocked and approximately 450,000 additional apps, selected by randomly choosing 1%
of apps per country per year. Finally, I create the Library Dataset, which links libraries
extracted from app packages to their respective companies and countries, providing a
comprehensive view of technology sourcing and application.

7For example, foreign domain instagram.com was blocked in China during the 2014 Hong Kong pro-
democracy protests. The platform was used by protesters to share images and information, which the
Chinese authorities wanted to prevent from spreading.

8To test consistency, we randomly selected 20 app pairs and ran the model 10 times for each pair using
identical inputs. We then calculated the average proportion of times the model produced the most frequent
label across these runs, yielding a consistency rate of 0.94, which demonstrates the overall robustness of the
classification.

9All substitutes and complements, along with a randomly selected set of neutrals (2,667 app pairs in
total), were independently labeled by human annotators, achieving an 83% agreement rate with gpt-4
labels.
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The causal effects of blocking foreign substitutes are identified by comparing the mean
differences in outcomes for domestic apps before and after the first blockage of their for-
eign substitutes to those for apps that have not yet been treated or will never be treated.

A month-to-month comparison of active users reveals that blocking foreign substi-
tutes creates a positive demand shock for domestic apps, increasing their monthly active
users by 30% two years after the blockage. Importantly, this increase is not observed prior
to the blockage. On the other hand, the blockage has little impact on domestic apps using
technologies developed by the blocked foreign apps, suggesting that the blockage primar-
ily affects consumers’ access to foreign domains but has minimal effects on Chinese firms’
access to foreign technologies.10 I then demonstrate that blocking foreign substitutes for
Chinese apps leads to a significant increase in the quantity and quality of technologies
developed by Chinese firms.

First, I find a significant increase in in-house technologies and notable shifts in the
composition of libraries within Chinese apps following the blockage of foreign substi-
tutes. To investigate the quantity of innovation, I categorize libraries into three groups
based on their developers: in-house, domestic third-party, and foreign third-party. No-
tably, the number of in-house libraries increases by 14% two years after the blockage.11

This surge in in-house libraries indicates a significant boost in internal development and
innovation capabilities within Chinese firms.

Additionally, the adoption of domestic third-party libraries rises by 14.5%, highlight-
ing increased collaboration among Chinese developers and their practice of leveraging lo-
cal technologies. In contrast, the number of foreign third-party libraries decreases by 7%,
suggesting a reduced reliance on foreign technological inputs. This divergence, driven by
blockages of foreign substitutes, marks a significant strategic shift in Chinese app devel-
opment. It highlights a move toward self-reliance, enhanced local collaboration, and the
creation of a more resilient and innovative domestic tech ecosystem.

Second, I assess the quality of Chinese libraries by examining the adoption of Chi-
nese firms’ self-innovated libraries in foreign markets. I aggregate the treatment to the
firm level by selecting the earliest time when the foreign substitutes of a firm’s apps
are blocked. I then compare the percentage of apps in each non-Chinese market that

10This outcome is due to the nature of the blockage, which operates at the domain level. The restric-
tion of one domain (e.g., chatgpt.com) does not necessarily extend to related domains (e.g., openai.com).
Additionally, even if a library is hosted on a blocked domain, the third-party library is integrated into the
app package during the development stage. Users download the complete package directly from the App
Store to their local devices rather than from the blocked domain. This integration process ensures that the
blockage does not hinder the use of foreign technologies in Chinese apps.

11This increase is substantial, representing about half of the growth observed when Google integrated
an AI-powered search engine into its app in February 2024.
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adopts Chinese firms’ libraries within a firm-country cell. The analysis reveals that Chi-
nese firms’ libraries are increasingly adopted internationally, especially in Asian markets,
after the blockage of their foreign competitors. This trend highlights the competitive qual-
ity of Chinese technologies and their growing acceptance in the global market.

For both the quantity and quality of technologies, there is no effect when using the
blockage of foreign neutrals (i.e., apps that are classified as neither substitutes nor com-
plements of the domestic app) as a placebo test. This lack of impact suggests that, on
average, the influence of confounding factors – such as spillovers from apps whose for-
eign substitutes are blocked – on the control group is negligible.

Lastly, I investigate whether the technological trajectory of domestic apps is driven
by imitation or innovation. While adopting existing technologies (imitation) can stimu-
late short-term growth, long-term progress hinges on firms transitioning to innovation-
driven strategies (Acemoglu, Aghion and Zilibotti, 2006; Benhabib, Perla and Tonetti,
2021; König, Storesletten, Song and Zilibotti, 2022). Determining whether technological
growth arises from imitation or genuine innovation is important to understand the long-
term implications of these blockages.

To assess imitation and innovation, I measure technological similarity between do-
mestic and blocked foreign apps using update logs – textual summaries of newly added
features and functionalities.12 An increase in similarity scores suggests domestic apps are
aligning their updates more closely with foreign apps, indicating imitation. Conversely,
innovation is characterized by the introduction of unique features not present in foreign
apps, which leads to a decrease in the similarity score.

By comparing the technological similarity of substitutable foreign-domestic app pairs
before and after the blockage of the foreign app, the findings reveal a steady decrease
in similarity scores following the blockage, while no effect is observed for neutral pairs.
This pattern suggests that domestic apps begin to pursue divergent innovation paths,
developing more distinct features over time.

The preceding analysis provides direct evidence of the positive impact of blockage on
innovation. Next, I present three pieces of evidence showing one potential mechanism

12The construction of technological similarity involves a four-step process: First, each log is converted
into a vector representing unique features weighted by their importance. Second, cosine similarity quan-
tifies the alignment between any two vectors; a higher score indicates greater feature similarity between
the apps. Third, each domestic app’s monthly update is benchmarked against all foreign app updates from
the preceding 12 months, which represent a potential pool of features for imitation. The cosine similarity
between the domestic and each foreign update is calculated, with the maximum value designated as the
similarity score for that update. Finally, averaging these maximum scores across all updates of the domestic
app within that month yields an overall similarity score for each domestic-foreign app pair.
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that may be an important contributor to this effect: the role of data. In particular, I show
that (i) data collection and sharing efforts significantly increase following the blockage;
(ii) the resulting growth in user data appears to lead to more internal technological de-
velopment; and (iii) the blockage generates positive spillover effects on other apps via
data-sharing networks.

Historical data on apps’ privacy practices enable the analysis. I explore how apps col-
lect user data by examining keys in the information property list file (Info.plist file) of
app versions. These keys are unique identifiers that provide essential information to the
device’s operating system about the app’s configuration and requirements. Specifically, a
certain set of keys specifies the types of user data the app requires, enabling the operat-
ing system to grant access and transfer the data accordingly.13 In alignment with Apple’s
privacy guidelines, I categorize the Info.plist keys into four categories based on data
sensitivity – whether the data include identifiable information – and the extent of data
sharing – whether it is shared with third parties. The categories are: sensitive and shared,
sensitive but not shared, non-sensitive, and unrelated to user data.

By comparing the number of sensitive Info.plist keys within each domestic app, I
find that, in terms of data scope, Chinese apps are collecting 22% more types of sensitive
user data and sharing 9% more types of such data with third-party platforms per user
following the blockage. Accounting for the growth in the user base – the scale of data
– the overall scale of data collection has surged by approximately 50%, highlighting a
significant expansion in data acquisition and sharing practices.

Given the expansion in user data collection especially the scope of data, the next ques-
tion is how do these data contribute to innovation in apps? Answering this question
is challenging because directly regressing innovation measures on the types of data col-
lected by apps raises two endogeneity concerns. First, the choice of data is endogenous to
an app’s productivity. Second, causality may be reversed, as an app’s decision to request
more user data could be a response to innovations already implemented.

To identify the causal effect of data on technology development, I focus on data scopes
that allow the use of shift-share instrumental variables (IVs) to capture changes in the
types of data collected. Periodic updates to the iOS developer system introduce new
Info.plist keys, which vary across data types and privacy levels. These introductions

13For instance, keys like NSCameraUsageDescription and NSLocationWhenInUseUsageDescription are
required if an app needs to access the camera or use location services, respectively.
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serve as natural experiments that exogenously enhance14 or reduce15 apps’ capability to
acquire additional user data – the “shift” – based on each app’s existing collection of
Info.plist keys optimized for its functionalities – the “share.” The first stage of the IV
regression shows that introducing a new Info.plist key correlates with 0.016 more user-
data-related keys in an app if its privacy level is higher than existing settings under the
same data type in the app; alternatively, the keys decrease by 0.043 if the privacy level is
lower. Moreover, there is minimal impact on keys and iOS libraries not related to user
data, mitigating concerns that the IVs might be correlated with other iOS system changes
affecting innovation.

The IV regression of the change in the quantity of technologies on the change in data
indicates that having more data significantly increases an app’s technological innovation.
Specifically, when examining apps within firms to control for internal spillover effects,
adding one additional user-data-related Info.plist key to an app leads to an 11% in-
crease in the number of in-house libraries in the following month. The short time span
makes it less likely that adjustments in capital and labor are the primary factors.16 Fur-
thermore, there is no significant effect on the adoption of third-party libraries, implying
that the boost in innovation stems from internal efforts rather than integrating external
technologies.

The observed expansion in data collection following the blockage, combined with
data’s positive impact on technology development, collectively suggests the direct ef-
fect of the blockage on within-app innovation through data. Furthermore, if the block-
age stimulates innovation via data, spillover effects should be observable in other apps
through data-sharing linkages, as data are nonrivalrous and can be utilized by multiple
entities simultaneously (Jones and Tonetti, 2020).

To test the hypothesis, I construct a specific data-sharing network by analyzing data
transfers between apps and third parties over insecure networks. Since 2015, Apple
has required apps to specify exceptions for insecure network communications in their
Info.plist files. From 2015 to 2017, however, most data transfers in China occurred

14For example, in December 2016, Apple introduced the NSLocationAlwaysAndWhenInUseUsageDescription
key, allowing developers to request both “When In Use” and “Always” location access in a single prompt.
This streamlined the process, making it easier to obtain continuous background location data, thereby
increasing the amount of user data that apps could collect.

15For example, in September 2015, Apple introduced the LSApplicationQueriesSchemes key, which
limits an app’s ability to query the presence of other installed apps via their URL schemes. Apps must
now explicitly declare the schemes they want to query in their Info.plist. This change reduced apps’
capability to collect data about other installed apps unless explicitly declared.

16On average, each app in the sample has 0.5 updates per month, suggesting that product iteration is
extremely rapid in this industry. Therefore, the time span is sufficient for observing developments in an
app’s library.
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over insecure channels, partly due to restrictions imposed by the GFW. This environment
provides a unique opportunity to map app-to-firm data-sharing relationships by directly
identifying the declared data receivers at the firm level from the Info.plist files of the
data-provider apps.

By comparing the performance of data receivers before and after the blockage of for-
eign substitutes of data providers I find suggestive positive spillover effects on innovation
through the data-sharing network. Specifically, following the blockage of data providers’
foreign substitutes, there is an upward trend in the number of in-house libraries devel-
oped by data-receiver firms, along with a significant increase in the adoption of self-
innovated libraries. Placebo tests, including blockages of foreign substitutes that occurred
before the data-sharing relationships were established and blockages of foreign neutrals
after the relationships formed, show minimal impacts on data receivers, reinforcing the
causal link between the blockage and the observed innovation spillover.

In summary, revisiting the rationale for industrial policy in light of the evidence, a
number of the results discussed above and features of the setting are strongly suggestive
of the policy rationale for protectionist policies in this context: (i) the growth of an ecosys-
tem and data-sharing network and the likelihood of knowledge spillovers; (ii) positive
spillovers arising from expanding data-sharing networks, which, even when priced, may
yield positive externalities when consumers retain property rights over their data (Jones
and Tonetti, 2020); (iii) the dynamic learning as data increase, which, even if internalized,
may justify policy intervention if firms are credit constrained or myopic.

Related Literature – The debates surrounding industrial policy primarily arise from
practical limitations rather than theoretical ambiguities, as outlined in Juhász et al. (2023).
A substantial theoretical framework supports the rationale for industrial policy, particu-
larly regarding static and dynamic externalities, with foundational contributions from
(Hirschman, 1958; Baldwin, 1969; Krugman, 1987; Young, 1991; Matsuyama, 1992; Melitz,
2005; Stiglitz, Lin and Patel, 2013). While existing empirical research has identified ben-
eficial spillovers from industrial policies, whether broadly through external economies
of scale (Bartelme et al., 2019; Garg, 2024), or via more specific mechanisms like input-
output linkages (Liu, 2019; Manelici and Pantea, 2021; Lane, 2022), knowledge spillovers
(Juhász, 2018; Juhász et al., 2023), and internal learning with financial frictions (Choi and
Levchenko, 2021; Barwick et al., 2024a), direct empirical evidence connecting these posi-
tive externalities to the effectiveness of industrial policy is sparse, especially in reduced-
form analyses. The primary contributions of this paper are twofold. First, I develop novel
metrics for measuring innovation beyond aggregate sales (Juhász, 2018; Rotemberg, 2019;
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Manelici and Pantea, 2021; Barwick et al., 2024b), total factor productivity (Lane, 2022),
and patents (Barwick et al., 2024a), opening the black box of firm productivity changes
and product-level upgrading. This includes directly examining changes in technology
inputs,17 assessing the competitiveness of self-developed technologies, and distinguish-
ing between pure imitation and genuine innovation. Second, I provide new empirical
evidence of positive spillover effects within technology and input-sharing networks.

This paper also contributes to literature on the impacts of international trade on in-
novation.18 Prior studies have documented mechanisms – including market size effects
(Lileeva and Trefler, 2010; Coelli et al., 2022), learning (Atkin, Khandelwal and Osman,
2017), and technology spillovers (Bai et al., 2020; Bergeaud et al., 2024) – that generally
have positive impacts on innovation. However, evidence on the competition channel is
more mixed.19 This paper contributes to this debate by detailing the mechanism through
which the exclusion of foreign competition influences domestic firms’ data collection and
data-sharing practices, which may in turn feed back into innovation.

Lastly, this paper contributes to the expanding literature on the economics of data, par-
ticularly regarding how data enhance firms’ productivity functions; see Veldkamp and
Chung (2024); Goldfarb and Tucker (2019) for an in-depth review. While prior empirical
studies have predominantly examined the impact of data on within-firm productivity,20

this paper offers complementary insights by demonstrating that, beyond driving inter-
nal efficiencies, data can also generate positive spillovers that extend beyond individual
firms.21

Outline – The structure of this paper is outlined as follows: Section 2 provides a de-
tailed description of the research setting. Section 3 elaborates on the data structure and
the construction of variations. Section 4 assesses the impact of the blockage on innova-

17The use of library information in mobile app development to assess developers’ technology choices
is relatively new, though there are already studies in this area. For instance, Jin, Liu and Wagman (2024)
examines how the EU’s privacy law, GDPR, influenced app developers to use fewer third-party tools in
their apps, especially in apps available in both the US and Europe.

18For comprehensive surveys on this topic, see Bloom, Van Reenen and Williams (2019) and Akcigit and
Melitz (2022).

19Gorodnichenko et al. (2010) find robust positive increases in firm-level innovation measures due to
increased import competition; however, Autor et al. (2020) argue that Chinese import competition has a
negative impact on the patenting activity of U.S. manufacturing firms.

20Begenau et al. (2018) suggest that access to big data has lowered the cost of capital for large firms
relative to smaller ones; Bajari et al. (2019) investigate how dataset size influences the performance of data-
driven decision systems at Amazon, finding that while larger datasets improve forecasting accuracy, the
marginal benefits taper off as data volumes become very large; Demirer et al. (2024) show the complemen-
tarity between data storage and computing.

21Beraja et al. (2023) also observe that access to government data via public security contracts substan-
tially boosts the production of commercial AI software in China.
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tion. Section 5 explores the most important underlying mechanism: the expansion in data
collection and data sharing. Finally, Section 6 concludes by evaluating how the findings
support or challenge the infant industry argument.

2 Context

2.1 The Ecosystem of Mobile Apps and Backend Technologies

In this section, I first outline the app development process to contextualize the key data
used in the analysis, such as information property lists, libraries, and update logs. I then
demonstrate how technology networks can be constructed based on the linkages formed
through library adoption. Finally, I highlight how tech companies generate significant
revenue by offering their advanced technologies as APIs22 or SDKs23, enabling other or-
ganizations to seamlessly integrate these tools into their products, thereby expanding the
reach and functionality of these technologies.

App Development Process – The development process of a mobile application project
involves several critical steps to ensure a robust and functional app. Figure 1 describe the
pipeline for a mobile application development.

Figure 1: Conceptual Process of Mobile Application Development

After the development team configures essential project settings such as the app name
and target devices (Step 1 in Figure 1), they proceed to design the user interface compo-

22An API (Application Programming Interface) is a set of rules and tools that allows different software
applications to communicate with each other. It defines methods and data structures that developers can
use to interact with the service.

23An SDK (Software Development Kit) is a collection of software development tools, libraries, and doc-
umentation that developers use to create applications for specific platforms or services. It often includes
APIs, sample code, and development utilities.
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nents and layout structure (Step 2). The next crucial step is the development phase (Step
3), where the app’s core functionalities are implemented and also our major data come
from.

Under the “Development-Configuration” step, developers must specify essential in-
formation (like version number, supported device) about the app in a file called the In-
formation Property List (Info.plist file). A critical aspect of the Info.plist file is its
role in detailing the app’s data collection practices, particularly those related to user pri-
vacy. Developers must include key-value pairs in this file to declare the types of data
their app collects, how this data is used, and whether it is shared with third parties. This
transparency is part of Apple’s stringent privacy requirements, designed to protect user
data and ensure users are informed about how their information is handled. For ex-
ample, if an app requests access to sensitive information such as the camera or location
services, the Info.plist file must contain specific keys like NSCameraUsageDescription

and NSLocationWhenInUseUsageDescription to provide a clear explanation to users.
Under the “Development-Core Functionality” step, developers focus on implement-

ing the primary features and functionalities of the app. The core functionality developed
during this step is ultimately packaged as a main executable file. From this file, one
can extract all classes—the most fundamental units in a computer program—used by the
app. These classes follow a specific naming convention. For example, a class in Douyin
(the Chinese version of TikTok) version 3.0.0 is structured as follows:

com.bytedance.︸ ︷︷ ︸
Developer Name

livestream.

︸ ︷︷ ︸
Library Name

modules.

︸ ︷︷ ︸
Module Name

AbsLiveBroadcastWrapper

︸ ︷︷ ︸
Class Name

This naming structure provides detailed information about the class’s origin, mak-
ing it possible to identify the developer, library, and module associated with each class,
providing insights into the technologies utilized and the source of these technologies.

Libraries play a crucial role in mobile application development by providing reusable
code, tools, and functionalities that simplify and accelerate the development process.
They can be either external or developed in-house. In Figure 2, we decompile the full
package of Douyin (the Chinese version of TikTok) version 3.0.0 to illustrate the composi-
tion of in-house and third-party libraries within a mobile app.
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Two key points are highlighted in this figure: (i) the majority of the libraries are in-
house, indicating a significant reliance on internally developed technology; (ii) despite
foreign domains like google.com and facebook.com being blocked in China, Chinese
firms can still access and adopt technologies from their companies (Google and Meta)
as third-party libraries. This demonstrates the complex interplay between domestic and
foreign technologies in Chinese apps, where even with restrictions, global technologies
continue to play a role.

After the development phase is completed, apps typically undergo updates to intro-
duce new features, improve performance, or fix bugs. Each update is accompanied by an
update log, as illustrated in Step 4 of Figure 1, which reflects all the new libraries added to
the app in a textual format. Additionally, privacy labels must be submitted and reviewed
by Apple, detailing the data collection practices of the app (for more detailed background
about privacy labels, please see Appendix C).

Users can finally access the app after the new version is successfully on the shelf. This
step completes the lifecycle from development to deployment, ensuring that the app is
functional, up-to-date, and compliant with privacy standards. This detailed development
process allows us to track and analyze technological advancements within apps.

B2B Tech Integration – Tech companies are not only developing cutting-edge technolo-
gies for their own consumer-facing (B2C) services but also packaging these mature tech-
nologies as APIs and SDKs to provide business-facing (B2B) services. This strategy en-
ables developers from other organizations to easily integrate advanced tools into their
own products, thereby enhancing functionality and reducing development time.

For example, the Google Maps API,24 launched in June 2005, allows developers to em-
bed Google Maps into their websites or applications, making it one of the most popular
online map services for third-party use. As of 2023, the Google Maps API contributes
18% of Google Maps’ earnings.25 Similarly, large language models (LLMs) are increas-
ingly being offered through APIs or SDKs, with 72% of companies utilizing these models
via such services rather than opting for self-hosting (Xu, 2024). Additionally, 27% of Ope-
nAI’s revenue is generated from its API services, despite its focus on B2C use cases.26

This approach not only extends the reach of the technology but also creates a signif-
icant revenue stream for these tech companies. Chinese tech firms are also focusing on
this model, leveraging their expertise in various technologies to offer comprehensive plat-

24The Google Maps API allows developers to embed and customize Google Maps within their websites
or applications, providing access to a variety of mapping features such as geolocation, route planning, and
traffic information.

25Source: https://shorturl.at/dFPR6
26Source: https://www.tanayj.com/p/openai-and-anthropic-revenue-breakdown
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Figure 3: Current Installs of Azure SDKs

Notes: This figure shows the current installs of Azure SDKs before and after the integration of GPT
models in January 2023. The solid red line represents the actual number of current installs of

Azure-related SDKs. The dashed line depicts the predicted trend based on data before January 2023. This
trend was fit using a cubic polynomial regression model trained on pre-January 2023 data, which was then

used to predict the app count across the entire dataset.

forms and development tools, thus competing with US tech giants in overseas markets
(Huang, 2023). Companies like Tencent and Alibaba, for instance, provide a wide range of
services for payment solutions to other businesses after establishing successful payment
apps, facilitating rapid integration for businesses worldwide.

Technology Network Built on Libraries – The use of external libraries creates a net-
work that measures technological dependencies among tech firms. In March 2024, Ope-
nAI began adopting A/B testing, as announced by Statsig, a company specializing in
A/B testing services.27 This integration is explicitly evidenced in ChatGPT’s version
1.2024.045 source file, uploaded to the Apple App Store in February 2024, where the
StatsigInternalObjC library is imported.

The OpenAI-Statsig link is a rare case where the connection is announced publicly,
highlighting the importance of detecting external libraries to reveal technological connec-
tions between firms. OpenAI and Azure, Microsoft’s cloud computing service, have a
significant partnership that leverages Azure’s powerful computing infrastructure to host
and scale OpenAI’s GPT-3 models. In January 2023, OpenAI’s GPT-3 models became gen-
erally available for business use cases through the Azure OpenAI Service.28 As illustrated

27Source: https://statsig.com/customers
28Source: https://shorturl.at/5zXI0
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in Figure 3, there was a marked increase in the installation of Azure-related libraries fol-
lowing this release. This surge indicates a growing adoption of Azure’s infrastructure by
various businesses, likely driven by the new accessibility and capabilities offered through
the integration of OpenAI’s models. This example highlights how tracking the use of ex-
ternal libraries can provide valuable insights into the technological ecosystems and strate-
gic partnerships within the industry.

2.2 The Great Firewall

The Great Firewall (GFW) of China is the world’s largest system of internet regulation,
established while China’s digital economy was still in its infancy. Initiated in 1998 and
completed in 2006, the GFW has grown to become a key component of China’s internet
infrastructure. At its inception in 2006, China had only 131 million internet users, which
accounted for 10.5% of its population and 18% of the global internet population. By 2023,
this number had surged to nearly 1 billion users, representing 70.6% of China’s popula-
tion and 59.5% of internet users worldwide.

A comprehensive study by GFWatch (Hoang et al., 2021) highlighted the vast censor-
ship capabilities of the Great Firewall (GFW). Over a nine-month period in 2020, daily
tests of millions of domains uncovered 311,000 censored domains, showcasing the exten-
sive reach of the GFW. By linking blocked domains to apps, as detailed in Appendix A.4,
Figure 4 illustrates the distribution of blockages for 114 major foreign apps, categorized
by app type and over time.

This system sets the stage for quasi-random experiments that are (i) predominantly
politically driven, (ii) inherently unpredictable, and (iii) notably difficult for the general
public to circumvent.

Primarily Political Blockages – The initial purpose of GFW was not to promote the do-
mestic digital economy but to control information flows and maintain stability. Instances
of blocked online content often align with the government’s strategy of information con-
trol on sensitive topics, frequently driven by quasi-random political events. For example,
instagram.com was blocked during the 2014 Hong Kong pro-democracy protests to pre-
vent protesters from sharing images and information. Through manual investigation of
the reasons behind major foreign app blockages, at least 55% of these blockages are found
to be triggered by sudden political events. Figure A.11 highlights the temporal distribu-
tion of these politically motivated blockages, providing insight into their frequency and
patterns over time.
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Figure 4: The Distribution of Blockage across App Category and Time

Notes: This figure show the distribution of blocked foreign apps in our sample across app category (in iOS
store) and time. The y-axis represents the app category, the x-axis shows the month when the app is

blocked. The color of the represents year in which the app is blocked. And the height of each bar indicates
the number of blocked apps.

Unpredictability – It is exceptionally challenging for users and domestic firms to pre-
dict which websites or applications will be blocked by the Great Firewall (GFW), espe-
cially at more granular time frames like months. Unlike censorship methods in other
countries that redirect users to pages notifying them of censorship, the GFW uses a more
subtle approach by sending misleading information. For example, when someone in
China tries to access a blocked website, the GFW might provide incorrect directions, caus-
ing the user’s browser to reach the wrong destination or no destination at all. This results
in error messages or connection timeouts without any clear indication that the site is cen-
sored. It makes it seem as if the website is down due to technical issues rather than being
deliberately blocked.29 This tactic obscures the occurrence of censorship, making the an-
ticipation of blockages nearly impossible.

Circumvention Disparities Between Consumers and Firms – The GFW’s robust and
evolving censorship techniques have made circumventing it increasingly difficult, posing

29Technically, utilizing a combination of DNS strategies and IP restrictions can efficiently isolate websites
and servers that are subject to censorship, targeting them by both their domain names and IP addresses. For
instance, DNS manipulation was employed not just to prevent access to controversial material but also to
boost local enterprises. In a notable case from 2002, for a period of two months, attempts to visit google.cn
were rerouted to Baidu, which is the dominant search engine in China.
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distinct challenges for consumers and firms. Virtual Private Networks (VPNs) are among
the most common tools developed to bypass these controls, allowing users to connect to
servers outside China and access blocked content by masking their IP addresses. How-
ever, the Chinese government frequently updates its censorship mechanisms to detect
and disrupt VPN usage, and by March 2018, it began to more strictly enforce regulations
targeting both individuals and businesses using unauthorized VPNs.

While tech firms in China often establish their own VPN tools30 for employees to ac-
cess foreign resources, domestic firms can still access blocked foreign content, especially
technological resources. However, this practice is costly and typically not feasible for in-
dividual consumers. As a result, circumvention remains significantly more challenging
for consumers compared to firms. This disparity between consumers and firms makes
the blockage of foreign products by the GFW resemble a protectionist policy, generating
local positive demand shocks for domestic firms without reducing their access to foreign
technologies.

3 Empirical Strategy

3.1 Data

To examine the impact of the GFW on domestic internet companies, I have compiled
four databases: (1) The Domestic Apps Database contains detailed records on over 230,000
apps from 6,000 Chinese internet firms from 2014 to 2023, including data on user activ-
ity and updates. More importantly, I’ve extracted user permissions and libraries from
the source code of each app version, providing insights into user privacy practices and
the technologies utilized by these apps; (2) The Foreign Apps Database include 114 popu-
lar foreign apps that are blocked in China, as well as approximately 450,000 additional
apps, selected by randomly choosing 1% of apps per country per year. (3) The Library
Database links these libraries to their respective companies and provides detailed descrip-
tions from their GitHub repositories, enhancing the understanding of technology sourcing
and application; (4) The Blockage Database records the blockage status of 114 popular for-
eign products by the GFW, with detailed start and end dates of blockages, sourced from
GFWatch (Hoang et al., 2021) and greatFire.org. Figure A.12 presents an overview of the
data structure and data sources. More details about data construction are described in
Appendix A.

Despite the GFW influencing competition from foreign apps, China’s app industry

30Examples include Kit used by Kuaishou Technology and Feilian for ByteDance.
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demonstrates notable variability in market concentration across different categories. The
Herfindahl-Hirschman Index (HHI), calculated based on each app’s usage share within
its category, reveals a broad spectrum of concentration levels. In the Education category,
the HHI is as low as 450, indicating a highly competitive market, while the Navigation
and Shopping category reaches an HHI of 5,500, suggesting dominance by a few major
players. The median HHI across all categories stands at 1,834.

Moreover, from 2014 to 2023, China’s app industry has remained exceptionally dy-
namic and fast-paced. On average, each Chinese app is updated approximately 0.5 times
per month, indicating that product iterations occur on a near-monthly basis. This high
frequency of updates allows for analyses at the monthly level to effectively capture and
reflect market shocks.

3.2 Mapping App Descriptions to App Relationship

To measure the extent to which the blockage of a foreign app influences domestic apps, I
identify substitutable, complementary, and neutral pairs of apps. This is crucial for two
reasons. First, existing market definitions, such as app categories, can be overly broad
and subject to manipulation by developers.31 Second, defining these relationships allows
us to generate meaningful cross-sectional variation for economic interpretation.

Given the vast number of app pairs and the scarcity of labels of interest, such as sub-
stitute and complement, traditional approaches like consumer surveys are prohibitively
costly and inefficient. To address this, I develop a cost-effective and replicable three-step
methodology: (1) creating a training set by asking gpt-4 to label app relationships based
on their descriptions, (2) validating the labeling results of gpt-4, and (3) training a classi-
fier with this labeled training set. This approach leverages the scalability and adaptability
of language models to efficiently handle large-scale labeling tasks, building on the grow-
ing use of such models in market research (Li, Castelo, Katona and Sarvary, 2024; Brand,
Israeli and Ngwe, 2023).

First, for the creation of the training set, I employ gpt-4 to analyze the descriptions of
pairs of applications. The labeling task presents two main challenges: on the one hand,
the sample is highly imbalanced, with the most important label representing a very small
fraction of the data; on the other hand, using human labeling to generate an effective
training set is prohibitively costly due to this imbalance. To address these issues, I use
large language models that are already trained on millions of human-labeled data points

31For example, Instagram is categorized under Photo & Video, while TikTok is listed under Entertain-
ment, despite the two apps competing directly in the social media space. Developers may strategically
choose their app category to influence their ranking in the Apple App Store.
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for classification. Specifically, I use the gpt-4 model to classify each pair of app descrip-
tions as substitutes, complements, or neutral, using a specific prompt detailed in Figure
A.3. I randomly select 18,066 pairs of applications and label their relationships, thereby
creating a substantial training dataset for. Examples for each category are shown in Figure
A.4.

Second, I validate the labeling consistency of gpt-4 to ensure reproducibility empha-
sized by Dell (2024) and assess its alignment with human evaluations. To test consistency,
I randomly selected 20 app pairs and ran the model 10 times for each pair using identical
inputs. I then calculated the average proportion of times the model produced the most
frequent label across these runs, yielding a consistency rate of 0.94, which demonstrates
the overall robustness of the classification. Figure A.5 visualizes these results, showing
that the model’s classifications for substitutes and complements are generally robust, al-
though complements exhibit slightly less consistency. Additionally, all instances of sub-
stitutes and complements, along with a randomly selected set of neutral labels (2,667 app
pairs in total), were independently reviewed by human annotators, achieving an 83%
agreement rate with gpt-4’s labels.32 More details on the human labeling process can be
found in Appendix B. Figure A.6 presents the confusion matrix, revealing that human
evaluations align closely with gpt-4 for neutral and substitute labels, while complements
show a relatively higher degree of divergence.

Lastly, based on this training set, we encode the descriptions of each application within
these pairs into vectors of size 768.33 Using these vectors as inputs, I train a Logistic Re-
gression model to predict the relationships as classified by gpt-4, achieving an accuracy
rate of 0.86 on the test set.34

Applying the classifier to the full sample of 15,373,920 foreign-domestic app pairs,
where we vectorized the app descriptions prior to the blockage of the foreign app in each
pair, we find that 16.5% are classified as substitutes, 2.1% as complements, and the re-
maining 81.3% as neutral. To ensure that our treatment is not overly concentrated among
a few domestic apps, which would indicate a highly selective treatment effect, we further
analyze the distribution of treatment types across domestic apps. As illustrated in Figure
A.7, 63.6% of the domestic apps have at least one foreign substitute that is blocked, indi-
cating that the treatment is sufficiently widespread. Additionally, 24% of Chinese apps

32This result aligns with Sun (2024), who demonstrates that cosine similarity from large language model
embeddings can effectively capture these substitution patterns.

33This encoding leverages the bert_multilingual_cased model, chosen for its robust performance across
multiple languages and its effectiveness in capturing essential semantic nuances for our analysis.

34We also test other models such as Random Forest Classifier, Linear SVC, and Neural Networks, with
accuracy rates shown in Table A.1.
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have neither foreign substitutes nor complements blocked, forming the never-treated
group in our empirical design. Finally, due to the small size and ambiguity results in
consistency and alignment test, I omit complements in the rest of analysis.

4 Causal Impacts of Blockage on Innovation

In this section, I first examine the direct effect of foreign substitute blockages on the do-
mestic demand for Chinese apps and the number of libraries in domestic apps sourced
from blocked foreign apps. I demonstrate that the blockage mainly generates a positive
demand shock while causing minimal reduction in knowledge spillover. Given this pos-
itive demand shock, I then explore the effect of the blockage on Chinese app innovation
from three perspectives: quantity, quality, and originality.

4.1 Blockage as Demand Shock

Before presenting the results on innovation and other metrics, I begin by analyzing the
average impact of foreign substitute blockages on domestic app demand over the past
decade. To capture both the extensive and intensive margins of demand, I use two key
measures. The first measure, monthly active users, reflects the number of unique users
who engage with an app at least once during a given month. This metric provides a
clear view of the app’s reach, indicating how many users find it valuable enough to use
regularly—capturing the extensive margin of demand. The second measure assesses the
average time each active user spends on the app per month, offering deeper insights
into the intensity of user engagement and the overall user experience—representing the
intensive margin of demand.

To causally identify the effect of the blockage on domestic app demand, I compare the
mean differences in demand measures for domestic apps before and after the blockage of
their foreign substitutes, against those for apps that have not yet been treated or will never
be treated. In order to simplify the estimation by lessening the concern about heteroge-
neous treatment effects, I start by only considering the first blockage of foreign substitutes
that the app receives to benchmark the effect.

Specifically, I estimate the following two-way fixed-effect model:

Yit = ∑
l ̸=−1

βlSubstituteBlockedl
it + ψg(i)t + δi + XT

itξ + uit (1)

where SubstituteBlockedl
it is an indicator for domestic app i being l months away from the

first blockage of its foreign substitute at time t; ψg(i)t is a full set of app category-time fixed
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Figure 5: The Effect of Blockage on Domestic App’s Demand

(a) Extensive Margin: Monthly Active Users (b) Intensive Margin: Time Spent per User

Notes: These figures show the effect of blockage on monthly active users and time spent per user. They
plot the estimates based on Equation . The red dots and lines shows the point estimates of βl , and the
bandwidth in grey shows the corresponding 95% confidence intervals of βl . In Panel (a), the outcome

variable is the log of monthly active users for app i in month t. In Panel (b), the outcome variable is the log
of time spent per user of app i in month t. Standard errors are clustered at the app level.

effects, capturing variations in time trends across different categories of apps to account
for broader market trends and category-specific shocks; δi denotes domestic app fixed
effects, controlling for time-invariant characteristics of each app that might influence its
performance; and Xit includes control variables including app age, which accounts for
the maturity and lifecycle effects on app performance; Additionally, I include Yi,t−1 to
control for dynamic bias, as discussed by Klosin (2024), which arises when past outcomes
influence current outcomes.

The identification assumption is the exogenous timing of the blockage events, mean-
ing that the blockage is not correlated with unobserved factors that might simultaneously
affect the demand for the domestic apps.

I present the estimated coefficients graphically in Figure 5, which plots the nonpara-
metrically estimated βl coefficients along with the corresponding 95% confidence inter-
vals. The effect in the year prior to the blockage is normalized to zero.

Figure 5 Panel (a) illustrates a significant increase of approximately 30% in monthly
active users – about 670,000 users – 24 months after the blockage of foreign substitutes,
compared to a monthly growth rate of around 4.9% before the blockage. This effect is
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quantitatively substantial and underscores the impact of the blockage on user engage-
ment. To put this into perspective, the global average cost per installation for iOS apps
was $0.86 in 2017 and $3.50 in 2024.35 Consequently, the surge in demand resulting from
the blockage effectively saved the affected apps approximately $576,200 to $2,345,000 in
user acquisition costs. This represents a significant cost saving and highlights the eco-
nomic impact of the blockage on domestic app developers.

The blockage of foreign substitutes is unlikely to reduce access to foreign technologies
for two reasons. First, the blockage operates at the domain level, meaning the restriction
of one domain (e.g., chatgpt.com) does not necessarily extend to related domains (e.g.,
openai.com). For instance, Google Cloud services remain accessible in China, allowing
Chinese developers to continue using these services despite other Google domains being
blocked.36 As I explained in Section 2.1, even if a library is hosted on a blocked domain,
the third-party library is integrated into the app package during the development stage.
Users download the complete package directly from the App Store to their local devices
rather than from the blocked domain. This integration process ensures that the blockage
does not hinder the use of foreign technologies in Chinese apps. Second, I directly exam-
ine the effect of the blockage of foreign substitutes on the number of libraries in domestic
apps, specifically those developed by the blocked foreign firms. I present the results in
Figure A.13. The analysis reveals that the blockage does not significantly impact the num-
ber of libraries in domestic apps.

Finally, while the primary objective of the GFW has been to control information flow
and maintain political stability, concerns persist that the government may selectively fa-
vor certain promising sectors, as illustrated by the recent blockage of OpenAI. This raises
the possibility that blockages may align with the government’s strategic interests in pro-
moting domestic alternatives or advancing key industries. To address this concern, I have
divided the analysis in Figure A.14 to separately examine the effects of blockages driven
by political events, as identified through news reports (Panel (a)), and those stemming
from non-political or unspecified reasons (Panel (b)). The trends in both cases closely re-
semble those observed in Figure 5, suggesting that the demand patterns are consistent
regardless of the political or non-political motivations behind the blockages.

4.2 Technology Development

Innovation is central to industrial policy. Proponents argue that temporary protection
of selected sectors can permanently alter a country’s pattern of comparative advantage,

35Source: http://alturl.com/acdx7; http://alturl.com/ri9b2
36Source: https://shorturl.at/3V8vP
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fostering long-term competitiveness and growth (Krugman, 1987; Melitz, 2005). How-
ever, critics contend that such protection can shield firms from competitive pressures,
potentially stifling innovation and hindering efficiency improvements (Akcigit, Ates and
Impullitti, 2018).

To investigate the impact of blocking foreign substitutes on domestic firms’ innova-
tion behavior, I decompose my evaluation into three steps. First, I examine the number
of domestic (both in-house and domestic third-party) and foreign libraries used within
Chinese apps before and after the blockage. The findings indicate that Chinese apps are
developing more in-house technologies, with the overall contribution of domestic tech-
nology increasing post-blockage, while reliance on foreign technology decreases. How-
ever, this divergence in technology adoption does not necessarily imply an improvement
in Chinese technology in terms of quality. Therefore, in the second step, I analyze the
adoption of Chinese libraries both in domestic and foreign markets to provide a clearer
understanding of the quality and competitiveness of Chinese technology.

Quantity: Growth in Domestic Technologies – To measure the usage of domestic and
foreign technologies within Chinese apps over time at the monthly level, I follow a sys-
tematic approach: (i) extract all libraries from the package of each version of a Chinese
app, (ii) manually determine the developers of these libraries by linking the prefixes of
the libraries to the corresponding companies, and (iii) categorize the libraries into three
groups based on the developer’s information: in-house libraries (i.e., libraries developed
by the company of the app), domestic third-party libraries, and foreign third-party li-
braries. Figure 2 uses the example of Douyin (the Chinese version of TikTok) in July 2018
to illustrate this process. Technical details are further explained in Appendix A.1. From
2014 to 2024, I collected 789,076 full packages for 186,220 apps from which I extracted
10,788 libraries.

Using the first blockage of a foreign substitute that a Chinese app experienced during
the decade as the treatment, I estimate the effect of the blockage of foreign substitutes
separately on the number of in-house libraries using Equation 2. I follow Chen and Roth
(2024) and use a numerically equivalent way to obtain the estimate of Equation 5 by using
Poisson QMLE to estimate:37

Yit = exp

(
∑

l ̸=−1
βlSubstituteBlockedl

it + ψg(i)t + δi + XT
itξ

)
Uit (2)

37This assumes a “ratio” parallel trends framework, as described in Wooldridge (2023), where, in the
absence of treatment, the average percentage change in the mean outcome for the treated group mirrors
that of the control group.

23



Figure 6: The Effect of Blockage on Technologies in Domestic Apps

(a) Number of In-house Libraries (b) Number of Third-party Libraries

Notes: These figures show the effect of blockage on the adoption of domestic and foreign libraries. The red
dots and lines shows the point estimates of βl in Equation 2, and the bandwidth in grey shows the
corresponding 95% confidence intervals of βl . In Panel (b), the effect of blockage on the number of

domestic libraries are presented with solid lines, while the estimates for foreign libraries are presented
with the dashed line. Standard errors are clustered at the app level.

Figure 6 shows the estimates for the effect of blockage on the number of in-house
libraries with the solid line and the bandwidth in grey shows the corresponding 95%
confidence intervals of the estimates.

There is a significant increase of approximately 14% in the number of in-house libraries
in Figure 6 Panel (a). To put this effect into perspective, consider Google’s introduction
of the “search image with lens” functionality in October 2020, which similarly resulted in
a 14% increase in in-house libraries for the app.38,39 Another notable increase occurred in
February 2024, when Google integrated an AI-powered search engine into its app, leading
to a 26% increase in in-house libraries.

There is no significant increase in the number of in-house libraries before the blockage
of foreign substitutes, and the number of in-house libraries takes off immediately after the
blockage and persists for at least two years. This timing, with no pre-trends, is reassuring
for the validity of my identification strategy. The absence of pre-trends suggests that
there is little anticipation before the blockage of foreign substitutes and there is also no

38iOS app ID is 284815942, Android ID is com.google.android.googlequicksearchbox
39In contrast, the average monthly growth rate in in-house libraries for the app is around 4.7% from 2013

to 2024.
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evidence that foreign apps are selected for blockage based on the number of in-house
libraries owned by their Chinese substitutes.

In Figure 6 Panel (b), I present the estimates for both domestic and foreign third-party
libraries. The patterns depict a clear divergence in the adoption of domestic and for-
eign third-party technologies in Chinese apps after the blockage of foreign substitutes.
Specifically, the adoption of domestic third-party libraries also rose by 14.5%, shown by
the red lines/dots. In contrast, the number of foreign third-party libraries decreased by
7%, shown by the grey lines and dots. This trend suggests that Chinese developers are
increasingly collaborating with other domestic firms, leveraging local technologies to en-
hance their apps’ functionalities. This intra-national cooperation likely fosters a more
robust domestic tech ecosystem, further driving innovation and reducing dependency on
foreign technologies.

Overall, these changes reflect a broader strategic adjustment within Chinese app de-
velopment, emphasizing self-reliance, enhanced local collaboration, and a shift towards
building a more resilient and innovative domestic tech industry. The increased in-house
development and domestic partnerships not only bolster the capacity for innovation but
also pave the way for sustained growth and competitiveness in the global market.

Quality: The Adoption of Chinese Technologies – I have shown that Chinese apps
are increasingly adopting domestic technologies over foreign ones. This trend can be at-
tributed to several mechanisms beyond the mere improvement of Chinese technologies.
One possible mechanism is mechanical: due to internet blockages, Chinese firms may
have less knowledge about foreign technologies, leading them to rely more on domestic
solutions. Another mechanism could be the distance advantage: even if Chinese tech-
nologies are comparable to foreign ones, domestic firms might find it less costly and more
efficient to switch to local technologies due to closer connections and better integration
within the domestic market.

To gain a better understanding of the quality of Chinese technologies, I examine their
adoption in foreign markets. This analysis helps me determine whether the preference
for domestic technologies is driven by their intrinsic quality or by external factors such as
accessibility and connectivity. To track the adoption of Chinese technologies over time,
I randomly select 1% of apps per country per year, ensuring the developers are from
the respective countries. Following the same procedure as with Chinese apps, I collect
the packages, extract the software libraries used by these apps, and link the libraries to
their developer companies. Then, for each Chinese company, I aggregate the number of
libraries adopted and the number of installs for each library at the country-month level.
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Figure 7: The Adoption of Chinese Technologies in Foreign Markets

(a) Trend of Installs in Foreign Markets (b) Effects of Blockage on Foreign Installs

Notes: Panel (a) presents the trend of the average number of libraries adopted per company (represented
by the size of the circle) and the average number of installs per library per company (represented by the

shade of the circle) across countries (y-axis) and time (x-axis). Panel (b) exhibits the estimates of βl in
Equation 3. We conduct the estimation separately for Asian countries and all countries. The estimates for

Asian countries are represented with red dots/lines, while the estimates for all countries are in grey.
Standard errors are clustered at the firm level.

Figure 7, Panel (a) presents the trend of the average number of libraries adopted per
company (represented by the size of the circle) and the average number of installs per
library per company (represented by the shade of the circle) across countries (y-axis) and
time (x-axis). We can clearly see from the figure that Chinese firms are exporting more
libraries and achieving higher adoption rates in foreign apps over the years.

To more precisely identify the effect of blockage on the adoption of Chinese technolo-
gies in foreign markets, I construct the percentage of apps that adopt its libraries in coun-
try c in month t for each Chinese firm f . Then, by defining the earliest time point when a
Chinese firm’s app faces the blockage of its foreign substitute as the firm-level treatment,
I compare the percentage of apps that adopt the firm’s technologies before and after the
firm experiences the first blockage of its foreign competitor. I run the following regres-
sion:

Yf ct = ∑
l ̸=−1

βlSubstituteBlockedl
f t + ψt + δ f c + XT

f ctξ + u f ct (3)

where Yf ct represents the percentage of apps in country c that include at least one library
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developed by Chinese firm f at time t. The term SubstituteBlockedl
f t is an indicator for

Chinese firm f being l months away from the first blockage of its foreign competitor oc-
curring at time t. The variable δ f c is a set of Chinese firm-country fixed effects, controlling
for unobserved characteristics that are constant within each firm-country pair, such as the
firm’s baseline technological capabilities and market strategies. The variable ψt is a set of
time fixed effects that control for factors varying over time but are common across firms
and countries, such as global technological trends and macroeconomic conditions. Lastly,
I control for variables X f ct, which include firm age and the total number of on-shelf apps
in country c at time t.

Figure 7 Panel (b) presents the estimates of βl from Equation 3, estimated separately
for the sample pooling all countries together and the sample including only Asian coun-
tries. The results show that the percentage of foreign apps adopting Chinese companies’
technologies increases after the blockage of foreign competitors (grey dots/lines), with
more pronounced effects in Asian countries (red dots/lines). As more productive firms
select into exporting (Melitz, 2003), the increase in adoption of Chinese technologies by
foreign apps may reflect the higher quality and competitiveness of Chinese technologies,
particularly in regions with closer physical and cultural ties.

Placebos and Robustness – I carry out placebo exercises where I re-estimate the base-
line specification (Equation 2), but for blockages of foreign neutrals. Specifically, for each
domestic app, I randomly select an app pair such that the domestic app is in the pair
and the app pair is classified as neutral. I use the blockage of the foreign app in the ran-
domly selected pair as the treatment and estimate its impact on the number of domestic
and foreign libraries. This placebo exercise allows me to assess whether the results are
not driven by spurious measurement of technology and also enables me to distinguish
the effects of blockage working via signals to all Chinese app developers that foreign
technologies may not be easily accessible in the long run. The results of this exercise are
presented in Figure A.15. The results shows no significant increase in both the number
of libraries (Panel (a)) and foreign installs (Panel (b)), and the point estimates are quanti-
tatively much smaller than my baseline estimates. This lack of impact suggests that, on
average, confounding factors such as spillovers from apps whose foreign substitutes are
blocked on the control group are negligible.

4.3 Imitation versus Innovation

While previous evidence shows that domestic apps are developing more and higher-
quality technologies – suggesting growth in total factor productivity (TFP) – the evolution
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of the TFP distribution primarily hinges on firms’ capacity for innovation, as discussed by
Acemoglu et al. (2006) and König et al. (2022). While adopting existing technologies – re-
ferred to as imitation – can catalyze short-term growth, sustained advancement depends
on firms embracing an innovation-centered strategy. Therefore, even though the current
infant industry literature does not differentiate between imitation and innovation,40 it is
important to examine whether domestic firms are merely imitating existing technologies
or genuinely innovating to fully understand the long-term implications for the blockages.

Measurement for Originality – To address this question, I measure the originality of the
new features that Chinese apps are adding to their applications. In particular, I construct
a similarity score based on the update logs of both blocked foreign apps and domestic
apps. These logs textually reflect the functionalities of libraries newly added to an app’s
package, allowing me to assess the similarity between the technologies used in domestic
and foreign apps.

Specifically, let F be the set of blocked foreign apps and C be the set of all Chinese
apps. For each foreign-domestic app pair (F, C) ∈ F × C, I denote the set of update logs
published by the foreign app F in month t as LF

t = {lF
t1, lF

t2, . . . , lF
tn}. The set of update logs

published by the Chinese app C in month t is denoted by LC
t = {lC

t1, lC
t2, . . . , lC

tn}.
For example, Google in December 2018 (LGoogle

t , t = 2018/12) has two update logs:

lGoogle
t,1 : Google Lens: Search what you see and get stuff done using your camera. Scan, search,

and translate text, find clothing and products, identify plants and animals, and more. Tap the Lens
icon in the search box to get started.

lGoogle
t,2 : Collections: Keep track of the content you’ve visited and get back to it later...

Baidu, a substitute app for Google in China, has six update logs from February 2021
(LBaidu

t′ , t′ = 2021/02), including:

lBaidu
t′,1 : Take photos to recognize everything: identify flowers in spring.

I then convert the textual update logs (lF or lC) into word embeddings (vF or vC) using
Term Frequency-Inverse Document Frequency (TF-IDF), a statistical measure commonly
used to assess the importance of a word within a document relative to a corpus. Intu-
itively, each update log is transformed into a vector where each dimension represents a
unique word across all update logs, capturing distinct app features.41 The vector values

40Juhász (2018) examines technology adoption, while Lane (2022) examines TFP in general.
41When preprocessing these logs for TF-IDF calculations, common stopwords and frequent but less in-

formative phrases like ‘fixing bugs’ are removed to enhance the semantic relevance of the data. This pre-
processing step helps to focus on more meaningful terms specific to app updates.
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Figure 8: Illustration for Similarity Measurement

(a) Distance to Group (b) Imitation: Similarity ↑ (c) Innovation: Similarity ↓

Notes: These figures illustrate how similarity between update logs is measured using cosine similarity
(Panel a) and show changes in the magnitude of the similarity score when a domestic app imitates existing

foreign features (Panel b) or innovates new features (Panel c).

reflect the importance of each feature in the log, increasing with the frequency of a word
in the document and decreasing based on the word’s prevalence in the entire corpus.
Mathematically, for a feature i, its TF-IDF score is:

TF-IDF(i, l,D) = tf(i, l)× idf(i,D),

where tf(i, l) is the frequency of word i in update log l, and idf(i,D) is the log of one over
the share of update logs containing i in all update logs D =

(
∪tLC(t)

)
∪
(
∪tLF(t)

)
.

The similarity between a pair of update logs (lF, lC) is then calculated as the cosine
similarity of their vectors, defined as

s(lF, lC) =
vF · vC

∥vF∥∥vC∥ .

A higher score (up to 1) indicates greater functional similarity and alignment in technol-
ogy use between the update logs, while a lower score (down to -1) suggests diverging
functionalities, reflecting technological differentiation. For example, the similarity be-
tween lGoogle

t,1 and lBaidu
t′,1 is s(lGoogle

t,1 , lBaidu
t′,1 ) = 0.42, which is higher than the similarity be-

tween lGoogle
t,2 and lBaidu

t′,1 , where s(lGoogle
t,2 , lBaidu

t′,1 ) = 0.16. This indicates closer functional
alignment in the first pair.

Using this similarity measurement, each update log published by the Chinese app in
month t can be compared to all the update logs published by the foreign app over the
past twelve months, including month t. As illustrated in Panel (a) of Figure A.1, the
similarity with a single domestic app’s update log lC to a set of foreign update logs is
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defined as the maximum cosine similarity42 across all pairs in {lC} × LF
≤t, where LF

≤t =⋃
t−12≤k≤t LF(k):

S(LF
≤t, lC

t ) = max{s(lF, lC)|lF ∈ LF
≤t},

This approach uses existing technologies in foreign apps as a benchmark, allowing
us to capture directional changes in domestic apps’ update logs to distinguish between
imitation and innovation behavior. As shown in Panel (b) of Figure A.1, when a domestic
app imitates existing features of foreign apps (specifically, Feature 2 in the figure), the
similarity S(LF

≤t, lC
t ) becomes larger. Conversely, if the domestic app begins to innovate,

moving in the direction of Feature 1, as illustrated in Panel (c) of Figure A.1, the similarity
S(LF

≤t, lC
t ) decreases, signaling a divergence from the original technological path.

Finally, since each domestic app C can have multiple update logs, denoted by LC
t =

{lC
t1, lC

t2, . . . , lC
tn} in month t, I define the average similarity score for a foreign-domestic

app pair p = (F, C) in month t to be:

Similaritypt =
1

|LC
t |

∑
lC∈LC

t

S(LF
≤t, lC). (4)

The Effect of Blockage on Originality – For all domestic apps with at least one foreign
substitute blocked, I investigate how the update trajectories of foreign-domestic app pairs
classified as substitutes differ following the foreign app’s blockage. Specifically, I examine
whether these pairs exhibit changes in the direction of their updates, as reflected by the
similarity of their update logs, in comparison to substitutable pairs that have not yet been
blocked. To do this, I estimate the following empirical model:

Similaritypt = ∑
l ̸=−1

βlBlockedl
pt × Substitutep

+ ξFt + ψCt + δp + upt

(5)

where Similaritypt is the similarity of foreign-domestic app pair p = (F, C) in month t,
calculated based on Equation 4. Blockedl

pt is a dummy indicating the app pair p is l month
away from the blockage of the foreign app F in p occurring at time t. Substitutep indicates
the foreign F and domestic C in app pair p are substitutes when equals to one, neutrals
when equals to zero.

ξFt denotes foreign app-month fixed effects, ensuring that similarity score compar-
isons are made between pairs sharing the same foreign app (e.g., between pairs such as
(Google, Baidu) versus (Google, TikTok) ), rather than across foreign apps (e.g., (Google, Baidu)

42This is equivalent to defining the distance between an update lC
t and its benchmark set LF

≤t as the
minimum cosine distance (1- cosine similarity) from lC

t to any point in LF
≤t, following the convention in

topology.
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Figure 9: The Effect of Blockage on Similarity between Update Logs

(a) Average Similarity Score

Notes: These figures illustrate the impact of blockages on the similarity scores between the update logs of
foreign-domestic app pairs. The red dots and lines represent the point estimates of βl from Equation 5,

with the shaded areas indicating the corresponding 95% confidence intervals. As a placebo test, the gray
dots and lines show the results when blockages of substitutes in Equation 5 are replaced with neutral

blockages. These gray markers provide the point estimates of βl , allowing us to assess the robustness of
our findings by comparing them to scenarios where no substantive blockage effect is expected.

versus (Instagram, TikTok) ). ψCt denotes domestic app-month fixed effects, which con-
trol for heterogeneous time trends among domestic apps (such as differential changes in
update frequency). upt is the error term.43

I present the results in Figure 9. Panel (a) demonstrates the impact of foreign substi-
tute blockages on the average similarity score, Similaritypt, with the changes depicted by
red lines and dots based on the coefficients βl from Equation 5. Following the blockage,
there is a notable decline in Similaritypt, suggesting that domestic apps rapidly diverged
from the existing features of their foreign counterparts, developing distinct and innova-
tive features. This shift towards uniqueness aligns with findings from König et al. (2022),
which indicate that high-TFP firms are more likely to pursue innovation rather than im-

43For apps that update less frequently, the similarity scores will be missing for most months. To ensure
that the results are not driven by the frequency of app updates, which could bias the estimation due to the
correlation between treatment, update frequency, and update content, I only include apps that have been
updated for more than 30 months within a 3-year period to ensure the balance of this sample. Figure A.17
Panel (b) shows the distribution of the number of observations across event time. Additionally, to address
carry-over effects (Liu et al., 2024), given that all domestic apps might experience multiple treatments in my
setting, I only retain app pairs where the previous treatment occurred more than 12 months prior. Figure
A.17 Panels (b) and (c) show average maximum and minimum similarity scores.
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itation.44 The evidence of developing unique features over time not only suggests that
domestic apps are innovating more but also indicates an dynamic improvement in TFP.

Gray lines and dots in Figure 9 (a) shows the estimates using Equation 5 but replace
Substitutep with Neutralp, the indicator for whether F and C in pair p are neutrals. Since
there is no significant effect from blockages of foreign neutrals, this suggests that the
observed results are not driven by spurious correlations between foreign and domestic
apps. Additionally, this allows us to distinguish the effects of blockages on substitute
pairs that operate through direct competitive dynamics from effects that might arise in
neutral pairs due to general market trends or external shocks.

Another validation exercise to assess whether the similarity score captures imitation or
innovation behavior involves comparing Chinese update logs not with existing versions
of foreign apps but with their future versions, which Chinese apps could not have observed
prior to their monthly updates.45 Panel (a) in Figure A.17 presents the results, showing
no significant effects for either blockages of substitutes or neutrals. This indicates that the
observed decrease in similarity scores in Figure 9 are not due to Chinese apps imitating
future foreign app features – which they could not have known – but rather suggest that
the initial reductions in similarity are attributable to more genuine innovation following
the blockages.

5 Mechanism: The Economy of Data

Infant industry theory supports the growth of new industries by providing temporary
protection, which helps them achieve economies of scale (Krugman and Maurice, 2003).
In the modern tech industry, data is now acknowledged as a critical input in the produc-
tion function of firms. By protecting infant industries and allowing them to amass and
utilize data, governments can enable these firms to achieve competitive scale, thereby
driving innovation and competitiveness in the global market.

Data’s role as a novel yet pivotal input in the digital economy is significant. Data can

44As outlined in Proposition 1 of König et al. (2022), the model explains how firms, based on a pro-
ductivity threshold and varying levels of productivity distributed randomly, decide between imitation and
innovation. This decision-making process fosters a progression in firm productivity, whereby firms above
a certain level increasingly opt for innovation to further their growth, whereas less productive firms may
resort to imitation as a catch-up strategy.

45Specifically, I define the similarity between a single domestic app’s update log lC and a set of
foreign update logs as the maximum cosine similarity across all pairs in {lC} × LF

>t, where LF
>t =⋃

t+1≤k≤t+12 LF(k):

S(LF
>t, lC

t ) = max{d(lF, lC)|lF ∈ LF
>t},
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directly contribute to productivity, where its accumulation and utilization reduce fore-
cast error (Farboodi, Mihet, Philippon and Veldkamp, 2019; Bajari, Chernozhukov, Hor-
taçsu and Suzuki, 2019) or enhance a firm’s quality of ideas (Jones and Tonetti, 2020),
ultimately leading to internal economies. Moreover, since data is nonrival—meaning it
can be used by multiple entities simultaneously without being depleted—it facilitates
external economies through inter-firm data sharing, amplifying collective technological
advancement (Jones and Tonetti, 2020).

I provide three pieces of evidence to show that the expansion of data scale as one
of the mechanisms that drives the effect of blockage on innovation: (i) data collection
efforts significantly expand following the blockage; (ii) the resulting increase in user data
fosters more internal technological development; and (iii) the blockage generates positive
spillover effects on other apps via data-sharing networks.

5.1 Expansion in Data Collection and Sharing

In the first step, I show that Chinese apps collect more data from users after the blockage
of foreign substitutes. Data collection means that apps transmit data off the device in a
manner that allows the app and/or its third-party partners to access it for longer than
necessary to fulfill the immediate request, which is also the official definition from Apple.

To track the historical data collection practices of Chinese apps, I extract keys from the
Info.plist (information property list) file of each app version. As mandated by Apple’s
privacy policy, developers must disclose their data collection practices during the app
submission process by declaring all necessary keys—specific items that define various
properties and behaviors of an app—in the Info.plist file. For instance, if an app re-
quests access to the camera and location, it must include keys such as NSCameraUsageDescription
and NSLocationWhenInUseUsageDescription in its Info.plist file. These practices are
further verified by Apple during the app review process.

I then classify46 the extracted Info.plist keys into four privacy groups based on the
sensitivity of the data and the scope of data sharing, in accordance with Apple’s Privacy

46I use Lasso to identify the keys that most significantly contribute to apps’ privacy labels, as detailed
in Appendix C. I did not rely on (1) the Apple privacy labels published on the iOS Store for each app
version, or (2) the official documentation for key usage (https://developer.apple.com/documentation/
bundleresources/information_property_list). Regarding (1), since Apple’s privacy label policy was
introduced in December 2020, privacy information is unavailable for app versions published before this
time, when many blockages in my sample occurred. As for (2), while the official documentation specifies
the types of user data a particular key can access, there isn’t always a direct one-to-one mapping from
keys to privacy labels. As shown in Figure A.9, some keys do not fully align with a single privacy label.
Additionally, some keys originate from third-party companies, not Apple, which may also access sensitive
user information.
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Labels introduced in December 2020:

• Sensitive and Shared: This corresponds to Apple’s privacy label “Data Used to Track
You”. It includes data that is sensitive and used to track users across different apps
and websites. This can include both data shared within a company (like between
Instagram and Facebook, both owned by Meta) and data shared with third parties
outside the company.

• Sensitive but Not Shared: This corresponds to Apple’s privacy label “Data Linked to
You”. It includes sensitive data that is linked to the user’s identity but is not shared
with third parties.

• Non-sensitive: This corresponds to Apple’s privacy label “Data Not Linked to You”.
It includes data that is collected in an anonymized or aggregated form and is not
linked to the user’s identity.

• Non User Data Related: This group includes keys that handle app functionalities,
such as technical configurations or interface settings, without accessing or process-
ing user data.

After aggregating the key-privacy label data to the app-month level, I analyze the
number of keys under different privacy groups for each app-month. Figure A.18 presents
the average number of keys per app by privacy label over time. Panel (a) displays the
average trend for Chinese apps, while Panels (b) and (c) show the trends for U.S. and
European apps, respectively. There are two key observations: (1) Over the ten years,
the average number of sensitive Info.plist keys related to user data within an app has
increased significantly from 5 to 25. (2) Unlike in the U.S. and European markets, the
majority of sensitive user data in Chinese apps is shared with third parties, as indicated
by the higher proportion of sensitive and shared keys.

Using the number of keys under different privacy groups as the outcome, I re-estimate
Equation 2 to investigate how the blockage of foreign substitutes influences Chinese apps’
data collection practices. To address concerns that changes in data collection practices
might be mechanical due to apps introducing more functionalities, I control for the total
number of updates that apps make monthly.

In Figure 10, I present two types of results: Figure 10 Panel (a) shows that, given
the same number of app updates, the number of sensitive but not shared keys gradu-
ally began to increase following the blockage of foreign substitutes, reaching a 21.9%
increase after two years on average (corresponding to about 0.4 Info.plist key). This
strongly suggests that the blockage leads to Chinese apps collecting more sensitive user
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Figure 10: The Effect of Blockage on Data Collection

(a) Sensitive but Not Shared (b) Sensitive and Shared

Notes: These figures show the effect of blockage on the quantity of data collected from users. The red dots
and lines shows the point estimates of βl in Equation 2 with the total number of updates that apps make
monthly controlled. The bandwidth in grey shows the corresponding 95% confidence intervals of βl . In
Panel (a), we show the result of the number of Info.plist keys that are classified as sensitive but not

shared. In Panel (b), we show the estimates using the number of sensitive and shared keys as the outcome
variable.

data within the app for each user. Given Apple’s stringent privacy policies compared
to Android markets, this increase represents a conservative estimate of the intrusion into
user privacy. If I further consider the 23% increase in monthly active users (Figure 5, Panel
(a)), the effect of the blockage on the total amount of data that an app could access is likely
even more significant, potentially resulting in a 50% increase in overall data collection.

Similarly, in Figure 10 Panel (b), the number of sensitive and shared keys also in-
creased by about 9% (about 0.63 key) after the blockage. Combining this with the fact
that Chinese apps are installing more domestic third-party libraries instead of foreign
ones (Figure 6), it implies a data spillover effect—Chinese apps are not only relying more
on domestic technologies but are also enhancing their data collection capabilities through
these local integrations.

The Scale and Scope of Data – The total data volume collected by an app depends on
two dimensions: the number of users (the data scale) and the variety of data accessed per
user (data scope). Previous evidence indicates that the blockage of foreign substitutes has
influenced both scale (Section 4.1) and scope (Section 5.1).
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What is the correlation between an app’s scale and its data scope (i.e. types of user
data collected by the app)? This relationship can vary – it might be negative if users are
particularly privacy-conscious, or positive if a larger user base enables more extensive
data collection. To investigate this dynamic, I analyzed how apps whose foreign substi-
tutes have never been blocked have adjusted their Info.plist keys with growth. Figure
A.20 demonstrates the correlation between an app’s monthly active users and the number
of sensitive Info.plist keys implemented each month, showing a minimal correlation.
After controlling for app and time heterogeneity, the correlation between monthly active
users (per one hundred million users) and the number of sensitive Info.plist keys is
estimated to be -3.853, which is not statistically significant (see Table A.3).

This minimal correlation implies that the blockage of foreign substitutes affects data
collection practices through factors other than the scale of apps. Economies of scale may
not significantly improve the capacity to collect more data; as apps grow, they might
not necessarily expand the variety of data they collect, possibly due to fixed costs or
operational constraints. More plausibly, the absence of foreign competition bolsters the
market power of domestic apps, enabling them to adopt more aggressive data collection
strategies regardless of user growth. Alternatively, users might become more captive to
the remaining apps, thereby giving these apps greater leeway to enhance data collection
efforts. Chen and Yang (2019)

5.2 Return of Data on Innovation

The preceding analysis provides direct evidence that the scale of data owned by each Chi-
nese app increases after the blockage of its foreign substitutes, both vertically—through
an increase in the total number of users and, consequently, the sample size—and horizon-
tally, with a notable expansion in the information observed per user. The next question is
how the increase in data contribute to innovation.

Estimating the return of data on innovation has been challenging due to the endo-
geneity concerns that arise when regressing measures of innovation on the amount of
data collected by an app. First, the relationship between data collection and innovation
is likely endogenous. For example, lower-quality apps that focus primarily on harvest-
ing user data may exhibit less innovation, distorting the perceived effectiveness of data
collection in driving innovation. Second, the causality between data collection and inno-
vation may be reversed. An app’s decision to request more user data may be a response
to innovations already implemented.

The endogeneity concerns can affect the estimated coefficient when regressing inno-
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vation on data amount. I construct instrumental variable to address the two concerns.

IV: The Introduction of New Access to User Data – The instrumental variable explores
the quasi-random variation in the user data that apps can access, which arises from the
introduction of new data access capabilities through iOS upgrades.

iOS developer system updates periodically introduce new developer tools and fea-
tures, which are often reflected in new Info.plist keys. These keys can significantly
enhance47 or reduce48 an app’s ability to collect user data across various data types and
privacy levels. When an app already possesses the necessary functionalities to handle
data of a similar type and has the infrastructure in place for data processing and storage,
the introduction of new Info.plist keys thus function as natural experiments that ex-
ogenously nudge apps to acquire more user data without requiring the addition of new
functionalities.49

To formalize the IV, consider an app i at time t − 1. The set of Info.plist keys it
posses at time t − 1 is denoted as {ki,t−1}. We denote the data type of ki,t−1 as d(ki,t−1)

and s(ki,t−1) as its privacy level defined in Section 5.1. At time t, a new collection of
Info.plist keys {knew

t } are introduced.
Given a knew

t , if the app already had the necessary functionalities to handle data of a
similar type, i.e. n({ki,t−1 : d(ki,t−1) = d(knew

t )}) > 0, then the app is more likely to adopt
this key in the following month.

According to whether the introduction of new Info.plist keys is enhancing or re-
ducing an app’s ability to collect user data, I construct two instrumental variables. The
first IV, DataEnhancingKeysit, totals the new keys an app is likely to adopt that could
potentially enhance its data collection capabilities. It is defined as follows:

47For example, the introduction of UIBackgroundModes in 2010 marked a significant shift in data collec-
tion capabilities. Prior to this update, apps had very limited ability to operate in the background, as they
were generally suspended when not in active use. The UIBackgroundModes key allowed developers to re-
quest permission for their apps to run specific tasks in the background, enabling continuous data collection,
such as tracking location updates or gathering sensor data, even when the app was not actively being used.

48Before September 2020, user consent for apps to access the photo library was binary: users could
either grant full access or deny it completely. If granted, the app could access all photos, provid-
ing developers extensive data about the user’s photo content. In September 2020, Apple enhanced
user privacy by introducing the option for users to grant “Limited” access through a new feature
(PHPhotoLibraryPreventAutomaticLimitedAccessAlert). This update allows users to select specific pho-
tos or albums they wish to share with the app, significantly reducing the amount of personal data shared.

49In December 2016, Apple introduced the NSLocationAlwaysAndWhenInUseUsageDescription key, al-
lowing developers to request both “When In Use” and “Always” location access in a single prompt. This
streamlined the process, making it easier to obtain continuous background location data, thereby increasing
the amount of user data that apps could collect.
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DataEnhancingKeysit = ∑
knew

t

(
1 {n({ki,t−1 : d(ki,t−1) = d(knew

t )}) > 0}︸ ︷︷ ︸
(1)

×

1 {s(knew
t ) ≥ min{s(ki,t−1) : d(ki,t−1) = d(knew

t )}}︸ ︷︷ ︸
(2)

) (6)

In this equation, part (1) confirms that app i must already manage data of the same type
as the newly introduced key knew

t . Part (2) establishes that knew
t is considered to enhance

data collection capabilities for app i at time t if its privacy level is at least as restrictive as
the least sensitive data currently managed by the app under the same data type d(knew

t ).
The second IV, DataReducingKeysit, calculates the total number of new keys that could

potentially reduce the app’s data collection capabilities, introduced at the same time t . It
is defined as follows:

DataReducingKeysit = ∑
knew

t

(
1 {n({ki,t−1 : d(ki,t−1) = d(knew

t )}) > 0}×

1 {s(knew
t ) < min{s(ki,t−1) : d(ki,t−1) = d(knew

t )}}︸ ︷︷ ︸
(3)

) (7)

where (3) suggests that knew
t is considered as data-reducing for app i if the privacy level of

knew
t is less sensitive than any of the data the app i already manages under the same data

type d(knew
t ).

For both DataEnhancingKeysit and DataReducingKeysit, the core variation of the in-
strumental variables derives from the quasi-random introduction of Info.plist keys,
differing across time, data type, and privacy level. Figure A.21 visually represents the
timeline and diversity in the data type and privacy level of these Info.plist keys, illus-
trating the underlying variability used for the IV estimation.

Results: Return of Data on Innovation – To estimate the return of data on innovation,
we ask whether an app that gains one more access to data (i.e., one additional Info.plist
key) in month t will see a change in how many numbers of in-house libraries it uses in the
following period (month t + 1), compared to apps that do not have the extra data access.
The number of new Info.plist keys adopted by app i in month t is instrumented by
the number of Info.plist keys introduced by the iOS developer system in the previous
month t − 1.

Figure 11 illustrates the timeline for variables in the regression, which clarify the tem-
poral relationship between the introduction of new keys, the adoption of the new keys in
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relevant apps, and the subsequent impact on the number of in-house libraries.

Figure 11: Timeline of Instrumental Variable

Specifically, I estimate the following first-difference equation:

∆Innovationi,t+1 =η∆Datai,t + γ f (i),t+1 + γd(i,t−1) + XT
i,tξ + ui,t+1 (8)

where the independent variable is the measurement for innovation – the number of in-
house libraries. The dependent variable is the number of new Info.plist keys that are
introduced in app i in month t, in other words, the number of keys that do not appear in
the Info.plists of app i before t. The instrumental variable is the predicted increase in
the number of Info.plist keys, as constructed above. I include (1) firm and month fixed
effects to adjust for any firm-level temporal shocks that might influence apps’ data access
choices, including internal spillover effects, and (2) data type fixed effects to account for
differential impacts various types of data may have on an app’s data adoption patterns.

Furthermore, since both the independent variable, ∆Datait, and the instruments, Data-
EnhancingKeysit and DataReducingKeysit, rely on apps’ existing distribution , I follow the
intuition from Borusyak and Hull (2023) and construct average number of data-enhancing
and data-reducing keys based on data introduction counterfactuals. This method in-
volves permutating the introduction dates of Info.plist keys to simulate various sce-
narios. Given each random introduction of Info.plist keys, I calculate a counterfac-
tual number of data-enhancing and data-reducing keys for each app. These simulations
yield an average number of data-enhancing keys, denoted as AvgDataEnhancingKeysit,
and data-reducing keys, denoted as AvgDataReducingKeysit, by averaging the outcomes
across all permutations. Controlling for average number of data-enhancing and data-
reducing keys helps recenter the independent variable and extract the exogenous varia-
tion from the introduction of new access to user data.50

50Since we are using shift-share style, BH controls help with the share part (i.e. Part (1) in Equation 6).
For the shift part, although it also depends on the pre-existing conditions of apps, since it’s unlikely that
the upgrades in iOS system will be set for specific apps, s(knew

t ) is exogenous to s(ki,t−1).
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Table 1 presents the IV results. First, Column 3-5 reports the first-stage results. Col-
umn 3 shows that the instrumental variables DataEnhancingKeysit and DataReducingKeysit

are significantly relevant to the endogenous variable ∆Datait. A new Info.plist key en-
hancing data collection correlates with a 0.016 increase in new user data-related keys,
whereas each data-reducing key correlates with a 0.043 decrease in these keys.

Second, a key concern with this method is the exclusion restriction: the introduction
of new Info.plist keys may coincide with other upgrades in the iOS developer system,
potentially influencing the increase in in-house libraries. In Columns 4 and 5, I examine
the correlation between the two instrumental variables and the number of new non-user
data related keys (Column 4) and the changes in the number of iOS libraries (Column 5).
I find little impact of the two IVs on new non-user data related keys and changes in iOS
libraries, which suggests that these IVs are unlikely to be confounded by other concurrent
system upgrades.

Column 6-7 presents the IV results. They indicate that apps with one additional ac-
cess to user data (represented by one more Info.plist key that is related to user data)
tends to develop more in-house libraries. Conversely, the additional user data does not
significantly affect third-party libraries. In terms of magnitude, compared to the average
number of in-house libraries, the presence of one additional access to user data corre-
sponds to a 40% increase in self-developed libraries.

5.3 Spillover through Data-Sharing Network

The observed increase in data collection following the blockage, combined with data’s
positive impact on innovation, offers strong evidence of a direct effect of the blockage on
within-app innovation through enhanced data access. Additionally, Section 5.1 shows a
9% increase in user data shared with third parties post-blockage, indicating the expansion
of data-sharing networks. Since data is nonrivalrous—meaning it can be used by multiple
entities simultaneously without depletion (Jones and Tonetti, 2020)—spillover effects are
likely to manifest in other apps connected through these data-sharing linkages.

To test this hypothesis, I construct a data-sharing network by analyzing data transfers
between apps and third parties over insecure networks. With the established link between
data providers and data receivers, I then examine how blockages of foreign substitutes for
data providers affect the innovation performance of data receivers, thereby assessing the
spillover effects through the data-sharing network.

Detect Data-Sharing Network – Data sharing between firms can be challenging to sys-
tematically detect. However, in the setting of apps, a specific form of data sharing prac-
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tices can be inferred by examining the network security settings found in the Info.plist

file of an app. Since September 2015, Apple’s App Transport Security (ATS) framework
has mandated that all app network connections utilize HTTPS, ensuring user data is en-
crypted during transmission, as opposed to the less secure HTTP. This security require-
ment is enforced through the NSAppTransportSecurity key. Apps can, however, specify
a list of domains permitted to bypass these security protocols and allow for the insecure
transfer of data51. By further linking the specified domains to their corresponding com-
panies, one could establish a data-sharing network through HTTP between an app p –
the data provider – and a third-party company r – the data receiver.

However, this method may bias sample selection as companies that continue to use
HTTP may be less technologically advanced or productive.52 This concern is particularly
mitigated in China before 2017 due to the low adoption rate of HTTPS in China, largely
because the GFW more effectively monitors and controls unencrypted traffic. Firms us-
ing HTTPS faced the risk that their domains could be completely blocked, presenting
a significant barrier to HTTPS adoption by Chinese firms until the GFW became more
sophisticated post-2017.53

Spillover Effect of Blockage through Data-Sharing Network – Between 2015 and 2017,
I identified 2,989 Chinese apps that used HTTP for data communication, corresponding
to interactions with 536 domestic companies. The network helps me to know whether
app p is sharing user data with firm r at time t.

For all apps belonging to data receiver firms, I investigate how the blockage of a data
provider app p’s foreign substitutes influence data receiver firms’ app i through the data-
sharing between app p and firm r(i). I compare outcomes of app i before and after the
blockage of foreign substitutes of app p who share data with app i’s firm r(i). The corre-
sponding regression function is as follows:

Yit = exp

(
∑

l ̸=−1
βlDataSharep→r(i) × SubstituteBlockedl

pt + ψg(i)t + δi + γp + XT
itξ

)
Uit

(9)
where SubstituteBlockedl

pt is an indicator for domestic app p being l months away from

51Specifically, apps will include NSExceptionDomains and NSThirdPartyExceptionAllowsInsecureHTTPLoads.
Figure A.22 provides a screenshot of the Info.plist of an app which specify a list of domains permitted
to bypass these security protocols.

52There are several general reasons for apps to use HTTP for data transmission: (1) HTTP is less resource-
intensive than HTTPS, making it attractive for apps prioritizing speed and bandwidth efficiency over secu-
rity; (2) developers may opt for HTTP to maintain compatibility with legacy systems or older devices that
do not fully support HTTPS; and (3) smaller or less advanced companies may lack the technical resources
or expertise to implement HTTPS protocols effectively.

53Source: https://www.thesslstore.com/blog/https-google-china/
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Figure 12: Spillover Effect of Blockage through Data-Sharing Network

(a) App Level: Number of Libraries

Notes: These figures show the effect of blockages of foreign substitutes for data providers on the
performance of data receivers. In Panel (a), I show the result of number of in-house and third-party

libraries. The red dots and lines shows the point estimates of βl in Equation 9 . The bandwidth in grey
shows the corresponding 95% confidence intervals of βl .

the blockage of its foreign substitute at time t, and DataSharep→r(i) indicates whether
app p is sharing data with the app i’s firm r(i) before the blockage. I also include data
provider app and data receiver app fixed effects, γp and δi, to control for inherent app
characteristics. The category-month fixed effects, ψg(i)t, take care of app category and
time heterogeneity.

Figure 12 presents the results. Following the blockage of data providers’ foreign sub-
stitutes, there is an upward trend, although not significant due to the limited sample size,
in the number of in-house libraries developed by data receiver firms.

Two placebo tests further validate the spillover effects on in-house libraries. First,
instead of using the blockage of foreign substitutes of app p as the treatment, I use the
blockage of foreign neutrals for the same app. I examine whether apps from companies
sharing data with app p exhibit similar patterns in their in-house technology development
before and after the blockage, as the blockage of substitutes do. Second, the impact on
app i resulting from the blockage of foreign substitutes of app p is assessed prior to app
p initiating data sharing with firm r(i), the developer of app i. The results of these two
placebo tests are presented in Figure A.23, showing negligible impacts, contrasting with
the findings in Figure 12.
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6 Assessing the Rationale for Industrial Policy

Providing a definitive justification for industrial policy, especially for protectionist poli-
cies, requires pinpointing the precise sources and magnitudes of agglomeration economies.
This empirical challenge, widely recognized in the literature (Juhász, Lane and Rodrik,
2023), stems from the difficulty of determining whether the benefits are external or inter-
nal to firms. For example, in this paper, assessing whether data sharing between firms is
contractual and at what price requires detailed data on firm interactions. Despite these
challenges, the findings presented in this paper offer suggestive evidence for several
mechanisms that justify protectionist policies aimed at correcting static externalities or
fostering infant industries.

First, externalities suggested by the growth of an domestic ecosystem (Katz and Shapiro,
1985; Jacobides, Cennamo and Gawer, 2024) and data-sharing networks and the likeli-
hood of knowledge spillovers support the optimality of protectionist policies (Krugman,
1987; Lucas, 1988; Matsuyama, 1992; Young, 1991). Evidence includes: (1) technology
spillovers across geographical distances, as evidenced by higher adoption of Chinese li-
braries in domestic apps compared to other Asian countries and the rest of the world
(Figures A.24 and 7), and (2) the expansion of a larger domestic technological ecosystem
(Figure 6, Panel (b)) and domestic data-sharing networks (Figure 10, Panel (b)) following
the blockage, where the network’s value increases as more participants join.

Second, the expansion of data-sharing networks (Section 5.1) and the positive spillovers
they generate (Section 5.3) indicate the presence of positive externalities. While the extent
to which these externalities are internalized by firms remains uncertain in this paper,
Jones and Tonetti (2020) highlights that assigning property rights over data to consumers
could yield nearly optimal allocations when data is extensively utilized across firms, even
considering privacy concerns; if data exchanges are governed by firms, the rationale for
government intervention through protectionist measures may be weakened.

And lastly, dynamic learning from data (Section 5.2) – even if internalized by firms –
may justify policy intervention if firms are credit-constrained or myopic. The high fixed
costs associated with data learning, such as significant development expenses for internal
A/B testing platforms54 and substantial initial user acquisition costs55 due to pronounced

54For a mid-sized company, initial development costs for an internal A/B testing platform can be
substantial, ranging from 3 months for a basic tool to up to a year for more complex systems. Source:
http://alturl.com/m2czx.

55Customer Acquisition Costs (CAC) have increased by 222% over the last decade, rising from $9 to $29
per user, and U.S. spending on user acquisition campaigns for shopping apps reached $6.6 billion in 2023.
Source: http://alturl.com/mpbhf.
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network effects, pose barriers that protectionist policies could help mitigate. Pronounced
network effects may strengthen the case for protectionist policies, as acquiring substan-
tial market share from established incumbents can be prohibitively expensive without
such interventions. Previous sections have demonstrated clear impacts on domestic firm
growth, both within and outside of China, from the blockage of foreign apps. While not
definitive, the arguments presented in this section suggest that such protectionist policies
may be justified from an efficiency standpoint in this context.
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A Data Construction

A.1 App-level Data

Sample Selection – Our app-level data consists two parts: domestic apps and foreign
apps. For domestic apps, we compiled a dataset of 6,000 Chinese companies and obtained
comprehensive listings of apps available on the iOS store developed by these companies
through qimai.com. Using qimai.com, we scraped firms based on their IDs, which range
from 1 to 10,000. These IDs are assigned by the website itself according to the release date
of each company’s first app. Due to some IDs being empty, we ultimately included 6,000
companies.

This effort resulted in a total of 230,312 apps, representing approximately 17% of the
current offerings on the Chinese iOS store. We focused on the iOS store because of the
highly fragmented nature of the Android market in China, where each major phone de-
veloper maintains its own dedicated app store, resulting in eight separate markets. Of the
230,312 apps we collected, 65% are also available on the Android platform.

For foreign apps, besides the 114 foreign apps that were blocked, we further collect
information for approximately 450,000 additional apps, selected by randomly choosing
1% of apps per country (according to the location of developers) per year.

App Basic Information – For each app in our sample, we scrapped historical basic infor-
mation from qimai.com, including app name, developer name, app description, screen-
shots, price, version history including version id and update logs, category, compatibility,
languages, age rating, developer website, privacy policy and details.

App Performance – We further enhance our data analysis by sourcing monthly active
user metrics and user engagement times from qianfan.tech, operated by Analysys. This
platform distinguishes itself through its unique data collection methodology, utilizing
both proprietary tools and strategic collaborations. qianfan.tech has developed a spe-
cialized SDK that is embedded in over 30,000 mobile apps from its partners. This SDK
methodically captures detailed user activity data, enabling precise tracking and analysis
of user behaviors across these applications. Additionally, they amplifies its data coverage
and accuracy by integrating information provided by major wireless carriers in China.

The primary advantage of qianfan.tech is their foundational reliance on actual user
behavior data rather than on predictive algorithms commonly used by other data providers
in the market. However, one notable limitation with qianfan.tech’s approach is the
scope of data coverage. While covering the major apps in Chinese app market, our data
set currently encompasses app performance metrics for only 11,453 apps. This limitation,
primarily due to the direct data collection method.

App Packages and Libraries – To track the evolution of libraries in app over time, we
collect IPA file for each app version for 186,220 apps from apkmirror.com and therefore
789,076 IPA files. IPA file is the standard format for distributing and installing applica-
tions on Android operating systems, which encapsulates all elements of an app, including
its code, resources, assets, and manifest file, which collectively define the app’s structure
and behavior.
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For iOS apps, we utilize class-dump to reverse engineering the IPA files (the pack-
ages of iOS apps). class-dump works by extracting the Objective-C runtime information
embedded within an app’s binary. This information includes details about the classes,
categories, and protocols used in the application, along with their associated instance
variables and methods. The tool can generate header files representing the data struc-
tures and interfaces that the application uses, effectively providing a snapshot of the app’s
internal APIs.

To extract libraries from APK files, a systematic and comprehensive approach was em-
ployed. First, each application file was unpacked to access its contents by being decom-
piled with apktool. This step accesses the underlying structure and codebase of the appli-
cation, where SDK references are typically embedded. Subsequently, we parse through
the decompiled files to recognize SDK-specific signatures, package names, and initial-
ization routines, thereby enabling the accurate identification of SDK versions and their
respective instances across different app versions.

A.2 Library-level Data

For each libraries extracted from apps, recognizing that libraries often include unique
identifiers that hint at their origins, we leveraged this information to form hypotheses
about the libraries’ identities. We utilized CocoaPods’ search functionality, accessible both
through their website and via the command line (pod search), to locate libraries that
matched our initial hypotheses.

Upon finding potential matches on CocoaPods, we conducted a detailed compari-
son of the libraries’ metadata—such as classes, methods, and other identifiers extracted
during our analysis—with the documentation available on CocoaPods and the libraries’
public repositories, such as GitHub. This meticulous comparison was crucial to ascertain
if the public APIs of the libraries corresponded with the headers we generated. We also
thoroughly examined the podspec files on CocoaPods, which provided additional valu-
able metadata about the libraries, including their source files and version history. This
information was essential for confirming whether a library used in the app was indeed
the one listed on CocoaPods.

In-house libraries are integrated by including them directly in the project or as sepa-
rate modules. This approach ensures that custom functionalities developed internally are
seamlessly incorporated into the app. The decision to include in-house libraries directly
in the project or as separate modules depends on the library’s complexity and scope.
Smaller, utility-focused libraries are often integrated directly into the project for ease of
use, while larger, feature-rich libraries are included as separate modules to enhance mod-
ularity and maintainability.

External libraries are added using dependency managers, which streamline the pro-
cess by automatically downloading and including these libraries as part of the appli-
cation’s executable code. During the build process (Step 4 in Figure 1), these libraries
are packaged into the application bundle along with the rest of the app’s code. When
users download the application from any store or distribution point, they receive the
complete application from the app store, inclusive of all integrated libraries. The installa-
tion process does not differentiate between the app’s original code and the code from the
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Figure A.1: Descriptive Statistics for Libararies

(a) Avgerage Number of Executable Files

(b) Proportional Change in Library Usage
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libraries—both are seamlessly installed as part of a unified package.

A.3 Firm-level Data

To match company names extracted from libraries, we utilize the API provided by Crunch-
base which allows one to effectively search English names and find the corresponding
firms at scale.

A.4 Blockage of Foreign Apps

To compile a list of the most notable blocked domains, I first gathered the top 5,000 do-
mains from the Alexa traffic rank, a key metric for assessing website popularity. I then
checked these domains against GFWatch (Hoang et al., 2021) to determine if they were
blocked and when the blockage happened, as illustrated in Figure A.2.

Figure A.2: Example of GFWatch.

Next, I linked the blocked domains to their corresponding applications by examining
the apps’ support websites. To further validate the timing of each blockage, I manually
coded the dates based on information from news reports and internet searches. Addi-
tionally, I utilized data from greatFire.org, which has monitored blocked websites and
keywords since 2011, confirming most of the necessary historical blockage information.
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B Substitutability and Complementarity

B.1 Training Set Construction

To evaluate the relationship between software applications–whether they are substitutes
or complements–we utilized a novel approach that leverages the capabilities of the Ope-
nAI language model. This method involves a detailed two-step process aimed at analyz-
ing the descriptions of applications to understand their interactions.

Step 1: Prompt Formulation - We began by crafting a detailed prompt that encapsulates
the main functionalities and unique attributes of the applications being analyzed. This
prompt aims to succinctly set the stage for the AI to conduct a comparative analysis. As
illustrated in Figure A.3, the prompt asks: “Based on the descriptions provided for App A
and App B, are these applications more likely to be substitutes, serving similar purposes,
or complements, enhancing functionality when used together?”

The setup for this prompt includes specific model parameters to optimize the analysis:
we utilized a model configuration with a temperature of 0 to maximize response deter-
minism, a max_tokens limit of 20 to focus responses, top_p set to 1 ensuring only the most
likely completions are considered, and zero frequency_penalty and presence_penalty
to allow unbiased consideration of all relevant aspects. These parameters are critical in
guiding the AI’s response pattern and are illustrated in the figure below.

Figure A.3: Prompt and parameters used for
creating training set with OpenAI API.

Figure A.4: Example of an application
analysis using the AI model.

B.2 Validation for Consistency

To demonstrate the consistency of gpt-4’s outputs and ensure reproducibility, the temperature
parameter was set to 0 and top_k to 1, with a fixed sampling seed to maintain determin-
ism. Despite these measures, complete determinism is not guaranteed, especially with
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longer outputs. To evaluate the consistency of labeling, we randomly selected 20 app
pairs and ran the model 10 times for each pair using the same inputs. We then calculated
the average proportion of times the model produced the most frequent label across these
multiple runs, resulting in a consistency rate of 0.94. Figure A.5 illustrates the classifica-
tion results from these tests, highlighting the robustness of the model under controlled
settings.

Figure A.5: Consistency of gpt-4 Output

Notes: This figure displays the results of ten runs of the gpt-4 model for each of 20 randomly selected app
pairs. The matrix illustrates how often each app pair was classified under each relationship type across

these runs. The x-axis represents the relationship types—complement, neutral, and substitute—while each
cell shows the number of times a specific app pair was classified into one of these categories across
multiple model executions. The intensity of the color in each cell corresponds to the frequency of

classifications, ranging from 0 (no occurrences) to 10 (classified as such in all runs). The rightmost column
provides a visual summary of the distribution of results, underscoring the model’s consistency or

variability in classifying each app pair.

B.3 Alignment with Human Evaluation

To confirm the accuracy of gpt-4’s classifications, I tasked 11 Chinese annotators with
labeling the relationships of 2,667 app pairs, distributing the workload so each annotator
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evaluated around 700 pairs. These pairs includes:
(1) 1,645 app pairs that are all substitutes classified by gpt-4;
(2) 22 app pairs which are all app pairs that are classified as complements by gpt-4;
(3) 1,000 app pairs that are randomly selected from the 16,392 app pairs that are classi-

fied as neutral by gpt-4;
Each app pair is randomly assigned to annotators. To ensure robust classification results,
each app pair was reviewed by three annotators. The final label for each pair was deter-
mined through majority voting.

Figure A.6 presents a confusion matrix comparing gpt-4’s relationship labels to the
human majority voting labels.

Figure A.6: Confusion Matrix: LLM versus Human Labeling

Notes: This figure is a heatmap visualization of the confusion matrix that compares the relationship labels
generated by GPT to the human majority voting labels. The matrix is presented in percentages, showing

the proportion of each predicted label class relative to the total count of that class.

B.4 Training with gpt-4 Labeled Data

- Upon completing the prompt formulation, we utilized GPT-4 to analyze the descrip-
tions of pairs of applications. Figure A.4 showcases examples of app pairs classified as
substitutes, complements, or neutral based on their relationship.

We randomly selected 18,066 pairs of applications and labeled their relationships us-
ing GPT-4, creating a substantial training dataset for a natural language processing (NLP)
model. For each application within these pairs, we encoded the descriptions into word
embeddings of size 768 using bert_multilingual_cased. We chose this model due to its
robust performance across multiple languages and its effectiveness in capturing semantic
nuances essential for our analysis.
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Subsequently, for each app pair, we combined their corresponding word embeddings
and employed various machine learning models to predict their relationships as classified
by GPT-4. We utilized models such as Logistic Regression, Random Forest Classifier, and
Linear SVC for this task. The accuracy rates of these models are summarized in the table
below:

Table A.1: Accuracy rate of different models

Model Accuracy Rate

Logistic Regression 0.86
Decision Tree 0.844
Random Forest 0.8131
Multilayer Perceptron (small) 0.8990
Multilayer Perceptron (large) 0.878

Figure A.7: The Intersection of Treatment Types across Domestic Apps

Notes: This figure visualizes the distribution of interactions between apps, categorized by treatment types.
The x-axis represents the interaction size, while the y-axis lists various categories. The largest interaction
category, highlighted in red (101,809), accounts for 63.6% of the total interactions, indicating a substantial

portion. Smaller groups represent other interaction sizes, with percentages noted for each. Below, the
black bars represent different categories (e.g., “substitute”) alongside their corresponding sizes, with the

bar lengths proportional to the interaction size.

This integrated process establishes a robust NLP algorithm that we utilize to clas-
sify the relationships between app pairs. Applying the classifier to the full sample of
15,373,920 foreign-domestic app pairs, we find that 16.5% are classified as substitutes,
2.1% as complements, and the remaining 81.3% as neutral. To ensure that our treatment is
not overly concentrated among a few domestic apps, which would indicate a highly selec-
tive treatment effect, we further analyze the distribution of treatment types across domes-
tic apps. As illustrated in Figure A.7, 63.6% of the domestic apps have at least one foreign
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substitute that is blocked, indicating that the treatment is sufficiently widespread. Addi-
tionally, 24% of Chinese apps have neither foreign substitutes nor complements blocked,
forming the never-treated group in our empirical design.
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C User Privacy

C.1 Background

Apple’s Privacy Labels – According to Apple’s definition, data collection involves trans-
mitting data off the device in a manner that allows you and/or your third-party partners
to access it for longer than is necessary to fulfill the immediate request. Starting December
2020, users should be informed of such data collection by categorizing it into three groups:
“Data Used to Track You”, “Data Linked to You”, and “Data Not Linked to You”. Developers
must disclose their data collection practices during the app submission process, ensuring
they comply with Apple’s stringent privacy guidelines, which are verified during the app
review process.

Figure A.8: An Example of Apple Privacy Labels

The category “Data Used to Track You” includes data collected from a user’s device
that is linked to their identity and used to track them across different apps and websites.
Examples of such data include advertising identifiers (like IDFA), email addresses shared
with third-party advertising networks, and location data if shared with third parties for
tracking purposes.

“Data Linked to You” refers to data collected in a way that is directly associated with
your identity, such as your account information, device details, or personal details like
your phone number. To classify data as collected but not linked to you, developers must
employ privacy measures like removing direct identifiers, such as user IDs, before collect-
ing the data and ensuring they do not link the data back to your identity after collection.

In contrast, “Data Not Linked to You” encompasses data collected in an anonymized or
aggregated form, not linked to the user’s identity. Examples include general app usage
statistics without personal identifiers, anonymized crash data, and performance metrics
related to network and app performance that are not tied to individual users.

An example of this categorization is shown in Figure A.8.

Property List – In practice, developers must specify the types of data their app collects
by including key-value pairs in a file called the info.plist (Information Property List)
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file when they submit the app to Apple Store for review. The info.plist file is a struc-
tured text file used in iOS development that contains essential metadata about the app.
This metadata includes information such as the app’s version number, supported device
capabilities, and more importantly privacy-related data collection practices.

Each key-value pair in the Info.plist file represents a specific piece of information
about the app. For things related to data,

C.2 Identify Collected Data and Privacy Labels

Data and Preprocessing – We collect historical privacy labels for 23,643 app versions
(3991 apps) and matched them with keys in the info.plist of each app version. For the
privacy labels, they are dummies to indicate whether the app version are obtaining (1)
data used to track users, (2) data linked to users, (3) data not linked to users, or (4) no
data are collected by the app at all. Based on the sample, we calculate the probabilities
for a key appearing in an app with a specific privacy label and present them in Figure
A.9. From the raw data, we already can see strong correlations between keys and privacy
labels.

With this, we establish a correspondence between info.plist keys, which we could
consider as the inputs, and privacy labels which indicate whether the app version con-
tains data that track, link to, not link to users, or no data collected at all.

Model Training – We then use a logistic regression model configured for multinomial
outcomes, appropriate for scenarios with more than two class labels. The model is defined
mathematically by the softmax function, used to predict the probabilities of the multiple
classes:

P(y = k | x) =
exp

(
xTβk

)
∑K

j=1 exp
(
xTβ j

)
where x represents the feature vector, βk is the coefficient vector for class k, and K is the
total number of classes. L1 regularization was applied to enhance feature selection, imple-
mented through the penalty=’ 11′ parameter in the logistic regression. This regularization
adds a penalty equal to the absolute value of the magnitude of the coefficients to the loss
function, in order to (1) promote sparsity in the model parameters for feature extraction,
and (2) .

The dataset was split into a training set (70%) and a testing set (30%) to validate the
model’s performance.

Model Visualization and Validation – Initially, we assess the classification results by
analyzing the log odds ratios associated with various keys in our model, particularly
focusing on the contributions of keys listed within the Info.plist file. This file is vital
as it encapsulates configuration details for iOS apps. Our analysis specifically targets
keys that start with “NS” and “UI”, as these prefixes generally indicate crucial system
and user interface configurations, respectively. Keys prefixed with “NS” are often linked
to app settings that involve user privacy, functionality, and system integration. These
typically demonstrate higher log odds in the model due to their direct impact on how
the app interacts with iOS features and handles sensitive user data. Conversely, keys
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Figure A.9: Correlation between Info.plist Keys and Privacy Labels

Notes: This figure shows the probabilities for a key appearing in an app with a specific privacy label. The
x-axis presents privacy labels where are at the app level. The y-axis shows the name of keys. And the color
of the heat map indicates the the probabilities for a key appearing in an app (x-axis) with a specific privacy

label (y-axis).
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Table A.2: Classification Report

Class Precision Recall F1-score Support

No data collected 0.97 0.96 0.97 57880
Data that not linked to you 0.99 0.99 0.99 91690
Data that linked to you 0.97 0.97 0.97 84809
Data that used to track you 0.97 0.96 0.96 66208

Macro avg 0.97 0.97 0.97 454931
Weighted avg 0.97 0.97 0.97 454931
Accuracy on test set 0.97 (454931 samples)

beginning with “UI” are primarily concerned with interface elements, aiming to enhance
the intuitiveness and effectiveness of the user experience, which are generally less directly
related to privacy concerns but crucial for user interaction. Figure A.10 illustrates these
coefficients, aligning with our expectations regarding the relevance of “NS” and “UI”
keys to privacy labels and user interface design, respectively.

Second, we conducted a case study on a Chinese iOS app (id 977946724), which has
been previously noted for potential user data leakage1. Despite the absence of explicit
warnings in the privacy labels on the Apple App Store, our investigation revealed that
the app contains 44 Info.plist keys that are classified as sensitive and shared.

1Source: https://shorturl.at/ExIYS
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Figure A.10: Log Odds in Classifier

Notes: This figure visualizes the coefficients of a subset of Info.plist keys.
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D Additional figures and tables
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D.3 The Effect of Blockage on Libraries from Blocked Firms

Figure A.13: The Effect of Blockage on Libraries from Blocked Firms

Notes: These figures show the effect of blockage on the adoption of domestic and foreign libraries. The red
dots and lines shows the point estimates of βl , and the bandwidth in grey shows the corresponding 95%
confidence intervals of βl . The effect of blockage on the number of domestic libraries are presented with

solid lines, while the estimates for foreign libraries are presented with the dashed line.
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D.4 The Effects of Blockage on Demand: Political versus Non-Political

Figure A.14: The Effects of Blockage on Demand: Political versus Non-Political

(a) Blockages Due to Political Reasons

(b) Blockages Due to Non-Political and Unspecified Reasons

Notes: These figures present the placebo tests for the effects of blockages on demand, divided by political
and non-political/unspecified reasons. The red dots and lines represent the point estimates of βl in

Equation 2, while the red bands show the corresponding 95% confidence intervals of βl .
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D.5 Placebo Exercises with Foreign Neutrals

Figure A.15: Placebo Exercises with Foreign Neutrals

(a) Quantity: Number of Libraries

(b) Quality: Foreign Installs

Notes: These figures show the placebo tests for the effects of blockage on innovation. The red dots and
lines shows the point estimates of βl , and the bandwidth in grey shows the corresponding 95% confidence

intervals of βl . The effect of blockage on the number of domestic libraries are presented with solid lines,
while the estimates for foreign libraries are presented with the dashed line.
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D.6 Descriptives and Robustness of Similarity Score Results

Figure A.16: Descriptives for Similarity Scores

(a) Distribution of Similarity Score
(b) Observations by

Event Time and Classification

Notes: The figures present distributions of similarity scores between update logs at app pair-month level.

Figure A.17: Other Robustness Exercises

(a) Similarity Score
Based on Future Versions

(b) Similarity Score
Based on Cutoff=24 Month

(c) Similarity Score
Based on Dot Product

Notes: The figures present results based on different versions of similarity scores to test the robustness of
the findings.
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D.8 Placebo Exercises for Data Collection & Sharing

Figure A.19: Placebo Exercises with Foreign Neutrals: Data Collection & Sharing

Notes: This figure visualizes the temporal introduction of various data types associated with Info.plist
keys across different months from 2009 to 2022. Each row represents a specific data type (e.g., advertising

data, contacts, customer support data, etc.), and each column represents a month of release. The color
gradient, ranging from blue to red, signifies the average privacy level of the respective keys. A value of 0

indicates no user data is involved, 1 represents non-sensitive user data, 2 denotes sensitive data that is not
shared, and 3 reflects sensitive data that is shared.
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D.9 Correlation Between Data Scale and Scope in Never-Treated Apps

Figure A.20: Correlation Between MAU and Sensitive Keys in Never-Treated Apps

Table A.3: Regression Table

# of Sensitive Info.plist Keys
MAU -3.853e-08 2.128e-08

(3.223e-08) (3.314e-08)
App FE Y Y
Month FE Y
R-square 0.8683 0.8579
Obs 12,781 12,781

Notes: This figure and table together show the correlation between monthly active users and number of
sensitive Info.plist keys.
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D.11 Example of Domains Permitted to Bypass ATS in an App

Figure A.22: Example of Domains Permitted to Bypass ATS in an App

Notes: This figure displays a segment of an app’s Info.plist, highlighting configurations that allow
specific domains to bypass standard security protocols. Specifically, it shows the domains sinaimg.cn and

weibo.cn authorized to transfer data via HTTP, as permitted under
NSThirdPartyExceptionAllowsInsecureHTTPLoads. This example illustrates how exceptions to data

security requirements are specified within app settings.
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D.12 Placebo Tests for Spillover Effects of Blockage through Data-Sharing
Network

Figure A.23: Placebo Tests for Spillover Effects of Blockage through Data-Sharing Network

(a) Blockage of Foreign Neutrals
(b) Blockage of Foreign Substitutes

before Data-Sharing

Notes: These figures show the placebo tests for the spillover effects of blockage through data-sharing. In
Panel (a), we show the effects of blockages of foreign neutrals on apps that are indirectly affected through

the data-sharing network. The red dots and lines shows the point estimates of βl in Equation

Yijt = ∑
l ̸=−1

βl NeutralBlockedl
jt × DataSharej→c(i) + ψg(i)t + δij + XT

it ξ + uijt

. The bandwidth in light red shows the corresponding 95% confidence intervals of βl . In Panel (b), for the
same set of apps, we show the effects of blockages of foreign substitutes before the data-sharing

connection establishes.
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D.13 The Effect of Blockage on Library Installs in Domestic Market

Figure A.24: The Effect of Blockage on Library Installs in Domestic Market

Notes: These figures show the effect of blockage on the adoption of libraries from treated companies in
Chinese domestic market. The red dots and lines shows the point estimates of βl , and the bandwidth in
grey shows the corresponding 95% confidence intervals of βl . The effect of blockage on the adoption of
libraries from treated companies in Chinese domestic market are presented by red lines/dots, while the

estimates for installs in Asian markets are provided as a benchmark in grey lines/dots.
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