Berk-Nash Rationalizability”

Ignacio Esponda Demian Pouzo
UC Santa Barbara UC Berkeley

October 29, 2025

Abstract

We study learning in complete-information games, allowing the players’ models of
their environment to be misspecified. We introduce Berk—Nash rationalizability: the
largest self-justified set of actions—meaning each action in the set is optimal under
some belief that is a best fit to outcomes generated by joint play within the set. We
show that, in a model where players learn from past actions, every action played
(or approached) infinitely often lies in this set. When players have a correct model
of their environment, Berk—Nash rationalizability refines (correlated) rationalizability
and coincides with it in two-player games. The concept delivers predictions on long-run
behavior regardless of whether actions converge or not, thereby providing a practical
alternative to proving convergence or solving complex stochastic learning dynamics.

For example, if the rationalizable set is a singleton, actions converge almost surely.

*We thank Attila Ambrus, Andreas Blume, Laurent Mathevet, and Kevin Reffet for helpful comments.
Esponda: iesponda@ucsb.edu. Pouzo: dpouzo@berkeley.edu
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1 Introduction

A classic justification for equilibrium is dynamic: players observe past play, update beliefs,
and adapt; if behavior settles, it should reflect some sort of equilibrium. In complete-
information games, the standard notion is Nash equilibrium. For instance, in models of
fictitious play—where each period’s action is a best response to the empirical distribution
of others’ past actions—if the action profile itself settles down (i.e., becomes constant from
some time onward), then it must be a Nash equilibrium. An analogous logic applies under
misspecified learning: when agents update within a (possibly wrong) model class using data
from play, if the action profile settles, it must settle to a Berk—Nash equilibrium. The key
message is not that learning guarantees convergence, but that, conditional on stabilization
of actions, the stabilized outcome must be an equilibrium of the relevant notion (Nash under

correct specification; Berk—Nash under misspecification).

However, this logic is conditional: it has bite only if play actually stabilizes—and in
many learning models, stabilization is not guaranteed or hard to assess. In fictitious play,
paths can cycle rather than settle (Shapley (1964)), and positive convergence is typically
proved only for special classes (e.g., Monderer and Shapley (1996), Hofbauer and Sandholm
(2002)). In misspecified learning, many application-specific papers establish convergence un-
der environment-tailored or parametric assumptions.! More general analyses—using stochas-
tic approximation, differential inclusions, and martingale methods—characterize asymptotic
behavior in broader settings (e.g., Fudenberg, Lanzani and Strack (2021); Esponda, Pouzo
and Yamamoto (2021); Frick, Iijima and Ishii (2023); Murooka and Yamamoto (2023)).
These tools are powerful but technically demanding and not always straightforward to apply;
they may require favorable initial conditions, yield conclusions only with positive probability,
or leave some environments uncovered. As a result, they do not always deliver clear long-run

predictions, especially when actions fail to converge or convergence is hard to verify.

We take a complementary approach. Rather than assume or try to prove convergence, we
ask what can be said about the actions that are played (or approached) infinitely often. To
that end, we introduce Berk-Nash rationalizability for simultaneous-moves games of complete
information. This solution concept is the largest self-justified set of actions: actions that
justify themselves as best responses when beliefs are fit to a single common forecast of

joint play. In the special case where each player’s model is correctly specified and identified

'Examples include Nyarko (1991), Fudenberg, Romanyuk and Strack (2017), Heidhues, Ké&szegi and
Strack (2018, 2021), Bohren and Hauser (2021), He (2022), Ba and Gindin (2023), and Murooka and Ya-
mamoto (2025) among others.



(so Berk—Nash equilibrium coincides with Nash), Berk—Nash rationalizability is analogous
to correlated rationalizability but adds the restriction of a common joint forecast of play.
This additional belief discipline refines correlated rationalizability, which permits separate

player-by-player conjectures that need not derive from any shared joint forecast.

We show that, in a broad learning environment, every action played—or approached—
infinitely often is Berk—Nash rationalizable. Past actions are publicly observed, and this
common record underpins both belief updating and conjectures about others’ play. Each
player is Bayesian about the payoff-relevant parameters of a (possibly misspecified) model
of the game and updates posteriors period by period. To forecast others’ actions, players
use fictitious-play-style rules: forecasts track empirical frequencies and can be interpreted as
Bayesian updating over opponents’ behavior. In each period, players choose a myopic best

response to their current parameter beliefs and these forecasts.

The result delivers convergence-free predictions: it characterizes what can recur on the
path even when actions or beliefs do not settle. When the Berk—Nash rationalizable set is a
singleton, it implies almost-sure convergence; when it is larger, it provides tight bounds on
long-run behavior. The concept is computationally tractable (iterative best-response under
data-consistent beliefs), travels naturally from single-agent applications to games, and—
under correct specification and identification—refines (correlated) rationalizability, sharp-
ening predictions for N > 2 players.? For applied work on misspecification, it offers a
usefool tool: one can study limiting behavior without solving dynamics, heavy regularity as-
sumptions, or verifying convergence theorems, while maintaining a clear link to equilibrium

analysis.

Rationalizability was introduced by Bernheim (1984) and Pearce (1984), with Pearce
characterizing it explicitly as the largest set that is self-justified under the best-response
operator.® In these classical formulations, a player’s belief about opponents’ play is a product
measure (independence across opponents). Brandenburger and Dekel (1987) extended this
to correlated rationalizability, allowing arbitrary joint beliefs over opponents’ actions—the
version we adopt. The standard epistemic foundation is common knowledge of rationality
(Brandenburger and Dekel (1987) , Tan and da Costa Werlang (1988)); by contrast, we use
the concept for its learning-based predictive content—bounding long-run behavior implied

by Bayesian learning rather than modeling epistemic assumptions.

Milgrom and Roberts (1991) establish a link between adaptive learning and (correlated)

2For N = 2 players, our solution concept coincides with correlated rationalizability in the special class of
correctly specified and identified games.
3Pearce called this property the best response property.



rationalizability: in complete-information games, under broad adaptive rules whose fore-
casts place vanishing probability on profiles not played infinitely often, play converges to
(correlated) rationalizable outcomes. When the game is correctly specified and identified,
our environment overlaps with theirs. We obtain a refinement by strengthening the adaptive
discipline: we require forecasts to be consistent with empirical frequencies (a common, data-
consistent joint forecast). This restriction has bite—there are examples where all actions are
classically rationalizable, yet only one remains under our consistency requirement.* More-
over, if we relax the forecasting discipline to allow players to learn from different subsamples
of past data (in the spirit of Milgrom—Roberts’ adaptive rules), our solution concept in the
special case of correctly specified and identified games collapses to (correlated) rationaliz-
ability. These ideas extend to misspecified settings, motivating the notion of Berk—Nash

weak rationalizability as the version without the common restriction on beliefs.

Fudenberg and Kreps (1993) study stochastic fictitious play, where players’ payoffs are
perturbed each period so that, to an outside observer, intended play looks mixed. They show
that if intended mixed strategies converge, the limit must be a Nash equilibrium—providing
the first learning justification for mixed-strategy Nash equilibrium. By contrast, in standard
(unperturbed) fictitious play, even if the empirical distribution of actions converges, it need
not converge to a Nash distribution because a common history can induce correlation across
players’ actions. Payoff perturbations break this history-induced correlation, which is ex-
actly what underpins the Fudenberg—Kreps result. We extend our framework to allow such
payoff perturbations. This yields a version of Berk—Nash rationalizability in which limiting
beliefs are fitted to independent forecasts of opponents’ strategies (no correlation from shared
history). The concept, however, does not collapse to Bernheim—Pearce independent ratio-
nalizability, because the shared data still impose common (now independence-compatible)

belief restrictions across players.

Esponda and Pouzo (2016, henceforth EP16) introduce a misspecified learning framework

to capture both systematic biases and limits to accurate representation of the environment

4For the special class of supermodular games, Milgrom and Roberts (1990) show that the set of rationaliz-
able outcomes is bounded by the smallest and largest equilibria. Because equilibria are always rationalizable,
imposing a common-forecast restriction as we do does not change these bounds.



due to complexity or informational constraints.” They define the Berk-Nash equilibrium
(possibly in mixed strategies) and show that, with Fudenberg—Kreps—style payoff perturba-
tions, convergence of intended strategies implies convergence to a Berk—Nash equilibrium.
Esponda, Pouzo and Yamamoto (2021) study single-agent settings without perturbations
and prove that convergence of the empirical action distribution (without payoff perturba-
tions) leads to a generalized notion of Berk—Nash equilibrium. The same implication applies

in our framework when payoff perturbations are absent.

The Berk—Nash rationalizable set arises via sequential elimination of non-rationalizable
actions. Prior work uses iterative arguments to bound long-run behavior: Heidhues, Kdoszegi
and Strack (2018) obtain bounds that collapse to a singleton, and He (2022) adapts this
approach to a specific multi-dimensional setting. Frick, Tijima and Ishii (2023) develop a
general elimination procedure for beliefs and—using a prediction-accuracy preorder with
a supermartingale construction—prove monotone elimination and eventual convergence of
beliefs to the resulting set; their framework also applies to social learning, which we do
not study. Their convergence result requires the existence of a continuous selection from
beliefs to optimal actions, a condition typically violated with finite action sets or when
optimal actions are not unique for a given belief. By contrast, our approach is at the action
level, uses a simple argument based only on off-the-shelf extensions of Berk’s asymptotic-
belief characterization (the EP16 extension), accommodates finite action sets (requiring only
upper hemicontinuity of the action correspondence—no continuous selection needed), and

extends naturally to multiple agents.®

We focus on games of complete information. Extending the analysis to asymmetric
information raises both conceptual and technical issues. Conceptually, one must decide what
the long-run object is: a limit profile of realized states, signals, and actions, or a limit strategy
profile mapping signals to actions. The latter is often more informative—for example, it can

encode monotonicity in private signals, which the former cannot. Technically, forecasts of

5Examples that broadly fit and relate to misspecification include behavioral gametheoretic models Jehiel
(2005); Eyster and Rabin (2005); market adverse selection with misspecified beliefs Esponda (2008); learn-
ing with selective attention Schwartzstein (2014); social learning and herding under misspecified inference
Bohren (2016); Frick, Tijima and Ishii (2020); incorrect causal models Spiegler (2016); overconfidence Heid-
hues, K6szegi and Strack (2018); misspecification in a a recursive general equilibrium model Molavi et al.
(2019); narrativebased misspecification Eliaz and Spiegler (2020); biased social learning due to assortativ-
ity neglect and attribution errors, with implications for inequality and discrimination Frick, Iijima and Ishii
(2022); Chauvin (2023); selective memory Fudenberg, Lanzani and Strack (2024); welfare comparisons under
biased beliefs Frick, Tijima and Ishii (2024); mislearning from prices He and Libgober (2025); and agents
misinterpreting their own motives Heidhues, Készegi and Strack (2023); among others.

6Frick, Tijima and Ishii (2023)’s supermartingale method is also useful elsewhere—for instance, to charac-
terize convergence in “slow-learning” regimes where Berk—Nash tools are uninformative, and in Fudenberg,
Lanzani and Strack (2021) to show stability of uniformly strict Berk—Nash equilibria.



others’ play must be conditional on private signals; with a continuum of signals this calls
for signal-conditional learning rules and, in effect, consistent nonparametric estimation of
opponents’ conditional behavior. We pursue this extension in a sequel (Esponda and Pouzo
(2025)).

Because much of the convergence literature centers on single-agent setting—and our ideas
are most transparent there—we begin with that case in Section 2. Section 3 develops the
general simultaneous-moves, complete-information game framework. Section 4 shows that
limit actions are Berk—Nash rationalizable when agents learn the game’s parameters and
forecast opponents’ strategies. Section 5 relates our solution concept to existing notions of
rationalizability. Section 6 presents extensions: an equivalent distributional version; payoff
perturbations yielding a mixed-strategy variant that eliminates history-induced correlation
in play (but not in beliefs); player-specific histories that lead to a weaker form of Berk—Nash
rationalizability without joint belief restrictions; and discussions of the relationship with

correlated equilibrium and curb sets.

2 Single-agent problem

Primitives. A single agent chooses an action a € A. Consequences take values in Y.
The true consequence kernel is @@ : A — AY. The agent does not necessarily know () but
entertains a parametric model {Qy : 0 € O}, with Qp : A — AY. The payoff function is
m:AXY —R.

We state assumptions explicitly in Section 3 where this environment is a special case.
In particular, all sets are subsets of Euclidean spaces, and we require compactness of A
and © and certain regularity and continuity assumptions on @), )y, and 7 but allow both
discrete and continuous actions and consequences spaces. Throughout this section, we use
the following example from Heidhues, Ké&szegi and Strack (2018) to illustrate definitions,

results, and their application.

Ezample (Returns to effort). A single agent chooses effort a € A = [0,00). Outcomes are
real-valued (Y = R). The true model is

y = (" +a)f" + ¢, e~ N(0,1),

i.e., the true kernel is Q(- | a) = M((a* + a)6*, 1), where a* > 0 is true ability and 6* > 0

is the true return to effort. The agent entertains a parametric model {Qy : 6 € [0, 6]} with



perceived ability a > 0 (held fixed, not learned):
y = (@+a)d + ¢ e~ N(0,1),

s0 Qo(- | @) = N((a + a)d, 1). Overconfidence corresponds to o > a* and underconfidence

to a < o.

Payoffs are 7(a,y) = y — c¢(a), where c is differentiable and strictly convex, and satisfies
c(0) = ¢(0) = 0, and ¢/(a) — oo as a — oo. Although A is unbounded, marginal cost
diverges and returns are bounded ex ante (by #, which we pick to be large enough so it does
not bind), so the optimal effort lies in a finite interval, effectively making the feasible choice

set compact. ¢

Optimal action correspondence Define the expected payoft of action @ under model
parameter 6 by U(a,0) fY m(a,y) Qo(dy | a). For a belief 4 € AO, the optimal action

Correspondence 1S

F(p) = argmaX/U a,0) u(do).

Kullback—Leibler divergence. The KL divergence is a function K : © x A — R, defined

for any parameter value § € © and action a € A as
K(0, a) ::/m (M) oy | @) v(dy). (1)
Y q(y | a)

Furthermore, for any action distribution o € AA, we define

0™(0) —argmln/K (0,a)o(da).
=)

The KL divergence measures the ‘distance’ between the true model ) and the parametric
model Qy. The set ©™ (o) consists of the parameter values § € © whose associated model Qg
provides the best fit to the true model, in the sense of minimizing the expected Kullback—

Leibler divergence given data generated by () when actions are drawn according to o.

Ezample (continued). The KL divergence is

K(0,a) = 5 ((a+a)f — (" +a)f)".

DN | —

There is a unique minimizer of the expected KL divergence for any ¢ € AA, which is a



convex combination of the single-action minimizers: 0™(o) = [ 0™(8,) n,(da), with weights

no(da) o (o + a)? o(da) and normalized to integrate to one. The single-action minimizer is

om(5) =0+ o0 L2

(2)

a+a’

Overconfidence (o > ) implies underestimation of the returns to effort (6™(d,) < 6*, and
therefore 0™ (o) < 6*); underconfidence (a < a*) implies the reverse. The bias [0™(4,) — 67|

falls with a and vanishes as a — oo, since large effort dilutes the impact of ability. ¢

Solution concept. For each Borel set of actions A C A, we define the best response set
as ['(A) := F(UpeaaAO™(0)). Equivalently,

['A)={a€A:3Jo € AA, u € AO™(0) such that a € F(u)}.

In other words, the set I'(A) consists of all actions that the agent might choose (according
to the optimal action correspondence F') when she assigns probability one to the set of
models that provide the best fit under some action distribution with support in A. This
concept aligns with our earlier interpretation of KL divergence. Specifically, if feedback
about consequences arises from actions drawn from the set A, then the models that provide
the best fit are those that minimize KL divergence for some action distribution supported
on A. Consequently, the agent will follow actions that are optimal for beliefs that assign

probability one to these best-fit models.

Ezample (continued). The optimal action corresponding to a degenerate belief dg is (¢/)~1(9),
since the agent chooses a to solve § = /(a). For any Borel set A C A, the best response

operator is
T(A) = {() 1 (67(0)) : 0 € AA} . (3)

¢
We are now ready to define our solution concept for this environment.
Definition 1. An action a is Berk—Nash rationalizable if there exists a set A C A such that

a€c Aand ACT(A).

A Berk—Nash rationalizable action lies in a set A that is self-justified under the operator
[, ie., A CT'(A). Every action in such a set is rationalizable: it is optimal for some belief
supported on parameter values that best fit data generated by a distribution over A—and

different actions may be justified by different distributions. The set of all rationalizable

7



actions is the union of all self-justified sets. Later, we consider a dynamic model with
Bayesian updating from past actions and outcomes, and show that every limit action is

rationalizable. 7

The solution concept typically used in the literature is that of a Berk—Nash equilibrium
(EP16). In terms of our best response operator, an action a € A is a Berk—Nash equilibrium
if a € I'({a}). An immediate implication is that a Berk-Nash equilibrium action is ratio-
nalizable, but the converse is not necessarily true. In particular, the set of rationalizable

actions may be larger than the set of equilibrium actions, as we now illustrate.

Characterization. The operator I' is monotone and, under our assumptions, maps com-
pact sets into compact sets. A well-known implication is that the union of sets that self-
justified under T" (in our case, the Berk—Nash rationalizable set, B) is the largest fixed point
of I' and can be obtained by iteratively applying I' starting from the largest set A. Let
B° = A and B* = T'(B*); then B*™! C B* for all k and

B = |J{BCA: T(B)CB} = (|B* = lim I'"(A). (4)

k—o0
k>0

Ezample (continued). For compact A, expression (3) for I' can be simplified further. Since
0™ (o) is a convex combination of the single-action minimizers, it lies in the convex hull of
the set {60™(d,) : a € A}. Moreover, because 0™ (J,) is continuous on the compact set A, it
attains its minimum and maximum, and this convex hull is simply the interval

acA acA

[min@m(éa), maxem(aa)] .

Applying (¢/)~! to this interval, we conclude that

acA a€A

) = [ (minon(6)) @) (maxo6) | 5)

This step uses the fact that the image of a closed interval under a continuous, strictly

increasing function, (¢/)7!, is again a closed interval.

This characterization of I' motivates the definition of a simpler mapping that acts directly

7Our definition is similar, but not exactly equivalent to rationalizability in a game where player 1 chooses
actions and player 2 chooses model parameters. That interpretation would correspond to a larger oper-
ator F (AU, cas©™(0)), which allows arbitrary mixtures over model parameters fit to different action
distributions. In contrast, our definition restricts attention to beliefs supported on ©™ (o) for some fixed
o€ AA.



on actions. Define T": A — A by
T(a) = ()~(0™(d)),

and note that the set of fixed points of T" coincides with the set of Berk—Nash equilibrium

actions. We will show that the mapping 7" also characterizes the best response operator I'.

Overconfidence (o > «*). In this case, the function 6™(d,) is increasing in a, so T is
increasing. An increasing function may have multiple fixed points, so multiple Berk—Nash

equilibria are possible. For any interval A = [L, H], it follows from (5) that

To characterize the limit of iterated best responses, define a sequence of intervals A* =
(@i W) DY

min’ “max

bt = Tlahy,),  abhl =T(ah,),

min min max max

starting from a2. = 0 and a”__ = @, where @ is an upper bound on optimal actions. Then

min max

¢ decreases, and both sequences converge. The limits

min max )

(a*. )y increases, (a*

- klggo Qmins Qmax = klggo Amax

)
min

a

are fixed points of 7' (hence, equilibria), and, by the characterization in (4), the limiting

interval [a2 ,a%® | is the set of all rationalizable actions. This is the case in Figure la, where
oo

min

o0

is the smallest Berk—Nash equilibrium and a; = ag;,,

as = a is the largest equilibrium.
If instead T" had a unique fixed point, the limit would be a singleton and rationalizability

would coincide with equilibrium.

Underconfidence (o < «*). In this case, the function 0™ (d,) is decreasing in a, so T is
decreasing. A decreasing function has at most one fixed point, so there is a unique Berk—Nash

equilibrium. For any interval A = [auyin, Gmax], We have
['(A) = [T (amax); T (Omin)]-
To analyze the dynamics of I', define

akJrl — T(ak )7 akJrl — T(ak )’

min max max min

again starting from [0,a). Then (a*, ) increases, (aF, ). decreases, and both sequences

max



converge to

a?r?in = khm afnin’ azloax = lim a’f:nax?
—00 k—o0
By by the characterization in (4), the limiting interval [aS, , a2 ] is the set of rationalizable

actions. The limits also satisfy

so they form a 2-cycle of T" and are fixed points of 72. If 72 has a unique fixed point, then
it must also be a fixed point of 7', and the limit is a singleton. In that case, rationalizability

< and a® _ are the

min max

coincides with equilibrium. If 77 has multiple fixed points, then a

smallest and largest among them. This latter situation is illustrated in Figure 1b. ¢

mgcost: /()7 N mg cost: ¢(-)
aopt : :
e R 'S underconfident: 6™ (4.)
0* T ()E)t 7777777777777777777777777777
ar,
as overconfident: 0"*(0.)
a g
a ain @ e a
(a) Overconfident agent (b) Underconfident agent

Figure 1: Returns to effort example.
The optimal action a°P* is where the marginal cost curve intersects the true return 6*. Berk—Nash equi-
librium actions lie at intersections of the marginal cost curve and the KL-minimizing curve 6™(4.). In the
overconfident case, there are 3 Berk—Nash equilibria, ag, aps, and ar, and the Berk—Nash rationalizable
set is [ag,ar]; in the underconfident case, there is a unique Berk—Nash equilibrium, and the Berk—Nash
rationalizable set is the 2-cycle interval [aS%_, a2 ].

min’ “max

opt

Limit actions are rationalizable. We consider an agent who learns by Bayesian updating
and chooses myopically optimal actions over time. The agent starts from a full-support prior

1o € AO and, at each discrete time t = 1,2,...:

holds a belief y; € AO;

chooses a; € F'(u;) from the optimal action correspondence;

observes consequence y; ~ Q(- | a;);

updates ;11 by Bayes’ rule.

10



An action a € A is called a limit action of the sequence a™ = (aq, as, .. .) if there exists a
subsequence (ay, )x such that a;, — a as k — co. Equivalently, a is a limit action if, for every
open neighborhood U C A of a, there are infinitely many times ¢ € N such that a; € U.

When A is finite, an action is a limit action if and only if it is played infinitely often.

Theorem 1. Almost surely, every limit action of a Bayesian agent is Berk—Nash rational-

1zable.

Theorem 1 implies that asymptotic behavior is confined to Berk—Nash rationalizable
actions: any non-rationalizable action cannot be a limit action and, in a finite action set, is

played only finitely often (i.e., is eventually eliminated).

Ezample (continued). Proving convergence in these environments is far from trivial. In the
overconfident case, when the Berk—Nash equilibrium (BNE) is unique, Heidhues, K6szegi
and Strack (2018) prove convergence to that equilibrium; in our setting this becomes an
immediate corollary of Theorem 1, since the unique equilibrium is also the unique rationaliz-
able action. With multiple equilibria, their result does not apply; nonetheless, our theorem
delivers asymptotic bounds: in the overconfident case every limit action lies between the
smallest and largest equilibrium. By contrast, Heidhues, Készegi and Strack (2021) cover
both over- and underconfidence but analyze a different data-generating process in which the
disturbance enters the production function (noise inside production) and impose Gaussian
priors (more generally, a one-dimensional sufficient statistic). That specification does not
encompass our baseline setting y; = Q(ay, 0) + €;, where noise is outside production. The
underconfident case in our example is particularly challenging: the Berk—Nash equilibrium is
unique yet unstable in the sense of Esponda, Pouzo and Yamamoto (2021). Even so, Theo-
rem 1 provides usable bounds: long-run actions must lie within the largest two-cycle, which
contains the equilibrium. More generally, one could appeal to the stochastic-approximation
approach in Esponda, Pouzo and Yamamoto (2021) to obtain bounds, extended to a con-
tinuum of actions by Murooka and Yamamoto (2023), but this route requires characterizing

solutions of the relevant differential inclusions. ¢

Later in Section 3 we analyze a more general environment in which Theorem 1 appears
as a special case. For intuition, we sketch the proof in this single-agent case, where the ideas
are easiest to see. Take the set of limit actions, A, and pick any a € A. From the infinite
history, select a subsequence along which actions converge to the limit action a, and, by
passing to a further subsequence if needed, the posteriors converge to p and the empirical
action distribution to o. Because o is a limit of empirical frequencies, it assigns probability

only to actions that actually recur, so supp(c) C A. We slightly extend the argument

11



of EP16 (itself an adaptation of Berk, 1966) to conclude that any limiting belief satisfies
w € AO™ (o) (best-fit parameters for o). Since actions are optimal along the subsequence
and the best-response correspondence F' has a closed graph, limits of optimizers are optimal,
so a € F(u). Hence, for any a in the set of limit actions A, there exist ¢ € AA and
w € AO™ (o) with a € F(u), which shows a € T'(A4). Therefore, A C I'(A) (i.e., the set
of limit actions is self-justified under I') and, by definition, every limit action is Berk—Nash

rationalizable.

3 Games

In this section we extend the framework to strategic environments with multiple decision

makers. In particular, we study simultaneous-moves games of complete information.

3.1 Setup

There is a finite set of players I. For each ¢ € I, the individual action space is A’ and
the joint action space is A := x;c;A’. Player i’s consequences take values in Y*. The true
environment is described by a mapping Q° : A — AY?, which assigns to every action profile
a probability distribution over player i’s consequences. As before, player ¢ does not know
Q' but entertains a parametric model ¢, : A — AY? with parameter #° € ©". An action
profile is an element a = (a');e; € A, and 0 € AA denotes an action-profile distribution.
The payoff function of player i is 7% : A’ x Y* — R, where the distribution of y* € Y* already

incorporates the influence of all players’ actions via Q°.

We impose the following assumptions.®

Assumption (games). (i) Spaces. For each i, the sets A’ and ©' are nonempty compact
subsets of Euclidean spaces; Y’ is a Borel subset of a Euclidean space. (ii) Densities and
a.e. continuity. For each i there exists a Borel measure v* on Y* such that, for every a € A,
Q'(- | a) < v' with density ¢'(- | a), and for every ¢ € ©°, Q}:(- | ) < V' with density
g (- | @); moreover, for v'-a.e. y, the maps a — ¢'(y | a), (0',a) — ¢ (y | @), and (a',y) —
7'(a’,y) are continuous. (iii) LR bound, density envelope, and integrability. For each i there
exist measurable M : Y* — [1,00) and r* : Y* — [0, 00) such that, for all (6,a) € O x A

8As usual, LP(Y,v) denotes the space of all functions f : Y — R such that [ |f(y)|? v(dy) < co. All
Euclidean spaces, including A and O, are endowed with their Borel o-algebra. The spaces AA and A©
denote the sets of Borel probability measures on A and ©, respectively, endowed with the topology of weak
convergence.

12



and v'-a.e. y, one has b (y | a) M'(y)™ < ¢'(y | a) < ¢u(y | a) M(y) and ¢'(y | a) <
r(y), and in Mi(y)ri(y) vi(dy) < oo. (iv) Payoffs. For vi-a.e. y, (a’,y) — w(al,y) is
continuous; moreover, there exists hl : Y' — [0, 00) with |7%(a’,y)| < hi(y) for all ¢’ and
fw he (y) M (y) r(y) v'(dy) < oo.

These assumptions accommodate both discrete and continuous actions and consequences;
ensure that best-fit parameters vary continuously with the action and that optimal actions
vary continuously with beliefs; deliver a uniform law of large numbers; and guarantee that

Bayesian updating never fails, since every realized consequence is admitted by the model.

3.2 Solution concept

Optimal action correspondence. Fixi € I and a (possibly correlated) distribution over

others’ actions 37 € AA~". For §' € ©¢, player i’s expected utility is
U'la', 37", 0") = /_. /‘ﬂi(ai,yi) vi(dy' | a' a™") BN (da™), (6)
Given a belief ;i € AG?, the optimal action correspondence is

Fi(u', ") = argmax/_Ui(aiyﬂ‘i,ﬁi)ﬂi(in)-

ateAr
Kullback—Leibler divergence. For i € I, model #° € ©" and action profile a € A, define

i pi o nqi(yi|a) i | a) v (du i i
@) = [ () dw ), o ee

Let Z' := S" x A" and Z := x¢;Z’. For 0 € AA, define the set of best-fitting models for
player ¢

O™ (g) = arg mln/K’ 0’ da).

[ASICL

Berk—Nash rationalizability. For every A C A (not necessarily a product set), we define

T(A) = {a cA: JoeAAst. Viel, ' € AO™ (o) with a' € Fi(y, a—i)}, (7)
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where 07 € AA™" denotes the marginal of o over A=%."

In other words, the set I'(A) consists of all action profiles that may be chosen when
players assign probability one to the set of models that provide the best fit under some

mixed action profile with support in A, and each player best responds to such beliefs.

The definition of Berk—Nash rationalizability is the same as in the single-agent case,

except that ' is now given by this generalized operator.

Definition 2. An action profile a is Berk—Nash rationalizable if there exists A C A such
that a € A CT'(A).

Moreover, an action profile a is a Berk-Nash equilibrium of the game if a € I'({a}). In

particular, equilibrium profiles are rationalizable, but the converse is not necessarily true.

Existence and characterization. The following result follows from standard arguments
and the facts that I' is nonempty-valued and maps closed sets into closed sets (see the

Appendix).

Theorem 2 (Existence and characterization of rationalizable set). The set of Berk-Nash
rationalizable signal-action profiles, B C A, is nonempty, compact, and is the largest fixed

point of I'. It can be obtained iteratively, as

B=()B" with B°=A and B*"' =T(BY).
k=0

Proof. See the Appendix. n

The theorem gives a simple recipe for computing the rationalizable set. Begin with all
actions and repeatedly apply the operator I', removing anything that can’t be justified given
what remains. The actions that survive every round are exactly the BerkNash rationalizable

actions, and this set is compact and nonempty.

9Formally, A~ is the projection of A onto the opponents’ coordinates: A=% := {a~%: Ja’ with (a’,a™?) €
A}, For any probability o € AA, define o~* as the pushforward under that projection: for any B C X j; A7,
07 (B)=0({a€ A: a~' € B}). For a product set A = xje; A7, we have A~" = x;4;A7, and 0" is the
usual marginal on the opponents’ coordinates.
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3.3 Example

There are three players, a manager (player 1) and two workers (players 2 and 3). Each player
chooses effort a’ € [0,00) and receives outcome y* € R. The technology is interdependent:
the manager’s effort affects only their own outcome and is productive if and only if the
workers’ efforts are sufficiently similar, while the workers’ outcomes feature a multiplicative

complementarity with the manager’s effort.

Let a* > 0 be the true (baseline) team ability and 6* > 0 the true productivity index.
Agents evaluate data through a parametric family that fixes a perceived team ability a > 0
(fixed, not learned) and estimates # € [0,6], with @ large enough to be non-binding. We

focus on overconfidence about team ability: a > o*.

The true outcome equations are
y' = [a +a' 1{]a® — &®| < k}]0* + W', y' = [of +d'a' 0"+, ie{23},

where w' ~ N(0,1) and ¢(x) = 1{z < k} for a threshold & > 0. Thus, the true model is
Q1(- | a) = M [a* +a'1{|a*—a®| < k}]6*, 1) for player 1, and Q;(- | a) = N( [ +a’al]f*, 1)
for players i € {2, 3}.

The perceived (misspecified) outcome equations are
y' = [a+ad 1{|a® - d’| < k}]0 +w', Y =[a+dd' 0+, ie{23}

Thus, the perceived model (with fixed, not learned a and 6 € [0,6]) is Qg1 (- | a) = N [a +
a'1{|a* — a®| < k}]0, 1) for player 1, and Qo (- | a) = N([a + a'a']d, 1) for i € {2,3}.

Payoffs are 7;(a,y") = y* —c(a’), where c is differentiable and strictly convex, and satisfies
c(0) =d(0) =0, and ¢’(a) — o0 as a — co. Because marginal returns are bounded, optimal

efforts are also bounded.

For a degenerate action action profile §, with a = (a', a?, a?), the KL-minimizing param-

eter value is
a* + a'1{|a® — a®| < k}

a+a'l{]a® — a?| < k}’

0™ (5,) = 0"

Lo +alal

0" (6,) = 6 i €{2,3}.

a+atal’
For an action distribution o on [0,00)3, the KL-minimizer §™(c) is a convex combination

of the single-agent minimizers. As in the single-agent case, overconfidence (o > a*) implies
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underestimation: §™(-) < 6* for all 1.

Since the KL minimizer is unique, each player’s belief degenerates at a single 6, so the
best response is the unique action equating marginal cost to perceived marginal benefit.
Hence, for any A C [0, 00)3,

P(4)={ae0.00)°: 30€adst, all - (Cl)_l(emil(a) Bl —al < k1]), 3
a = (c’)*1<0m”(a) Ea[a1]> for i € {2,3}

For simplicity, we begin by providing an outer characterization of I" without imposing

common-o consistency. Fix the workers’ coordinates: (a?,a®) € [0,00)%. For any belief o on

[0, 00)3 define

p(o) :=E,[1{]a* — a®| < k}] € [0,1], a'(o) = (c’)_1<0m’1(0) p(a)).

Starting from a'! € [0, 00), the manager’s one-dimensional upper envelope evolves accord-

ing to
C(* + Mt

M, = ()7 16" My, = ()P ———— ) fort>1,
1= ()7(07), i1 = () ot M, ort >
which is monotone decreasing and converges to the unique fixed point M, characterized by

Lo+ My
C/<Moo) =40 m

Thus the manager’s eventual image is contained in the interval [0, M|, and any point below
M, is obtained by a belief o with p(c) < 1, whereas M, is reached by taking o with
p(o) = 1 supported at a' = M.

Next, we fix player 1’s coordinate to [0, M| and iterate on players 2 and 3 separately.
Let my(0) := E,[a'] € [0, M..]. Player i € {2,3} best responds as

a'(o) = ()7 (0™ () ma(0)).
With a' < M, a first pass gives the upper bound

Ny = () 40" M)
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Iterating with a' < M, and a' < N, yields the one-dimensional map

*+ M N,
Nt+1 = (C/>_1<9*Moo o+ - t)a

(8] + MOONt

which is monotone and converges to the unique fixed point N, solving

o + My Noo

'(N) = 6° M., .
¢ (Noo) a—+ MoNo

Hence the workers’ eventual image is [0, N, |; the lower endpoint is attained by beliefs with

my (o) = 0, and the upper endpoint by beliefs is supported only by a' = M, and a' = N.

Suppose k is not too large relative to the (endogenous) difference between the actions of
players 2 and 3, in particular suppose k& < N.,. Then any belief o supported on [0, M| x
[0, Noo]? must satisfy p(o) = 1. In this case only M, survives for player 1, and therefore
only N, survives for players 2 and 3. We end up with a unique Berk-Nash rationalizable
profile (M, Noo, Nuo)-

Of course, this conclusion does not use the full discipline of I'. For example, a profile
with a?> = 0 and a® = N, cannot arise: to justify a®> = 0, player 2 would have to believe
that a! = 0 with probability one, and then player 3 must share the same belief, ruling out
a® = N4. In the appendix (Section 7.2), we show that the distance between players 2 and

3’s actions is less than or equal to

k* — Noo o C/71<MOO 9* 06_)7

(0%

which implies that whenever k& > k£* the unique Berk-Nash rationalizable profile is
(Ms, Noo, Noo). In the special case where the players know the true ability (o« = o),
the bound simplifies to k* = 0, so we have that (M, Noo, Ns) is the unique Berk—Nash
rationalizable profile for any k& > 0.

4 Limit points are rationalizable

Each player i starts from a full-support prior ui € A©". At each period t = 1,2, ...:

e Given posterior y! and a forecast (belief) 5," € AA™ over opponents’ actions, player
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i chooses a} € F'(u, ;).
e Consequences realize: for each i, y! ~ Q'(- | ay, st).

e The action profile a; is publicly observed; player i updates p 41 using Bayes’ rule and

the personal history h! := (ay., si,;, ¥i,)."!

Forecasting opponents’ actions. It remains to specify how player i forms a forecast &,
about opponents’ actions. A forecasting rule for player 7 is a sequence of Borel-measurable
maps

arg—1 > Vi(ap,_1) € AA™

which produce at each period ¢ a probability measure &, " := Wi(a1,,_;) over the opponents’

actions, as a function of the publicly observed past actions aj.;_1.

Given a realized sequence of opponents’ actions (a;*),>;, define the empirical action

distribution up to time t by
1
o, '(B) = 7 Tz; 1B(CLT_Z), B C A~ Borel.

Definition 3 (Pathwise subsequence consistency). A forecasting rule (%), is pathwise sub-
sequence consistent if, for every realized action path (a;)i>1 and every subsequence (t)x along

which the empirical distribution o, = o € AA, the induced forecasts satisfy

&t’ki:>0’i foralli e I.

Pathwise subsequence consistency requires that, whenever observed frequencies stabi-

lize along a subsequence, players’ forecasts track those stabilized frequencies. We assume

10Formally, for each i and t, the action a! is drawn from a Borel kernel ¢i(- | pi 6;") on A’ with
qﬁ(F Wk, o) |k, ey 1) = 1. We impose no further restriction on ¢! beyond Borel measurability; it may
vary with ¢. History affects actions only through (u?,&; ). EP16 also consider forward-looking agents under
a “weak identification” condition that drives experimentation incentives to zero in the long run; the same
idea could be applied here.

UFormally, for any Borel set S C ©,

_ Jsa(i | ar) pi(dp)
Jor a5yt | ar) pi(d0)

Assumption (iii) implies ¢} (yi | a;) > 0 Q'(- | ar)-a.e. y; for all § € ©F, so the denominator is positive and
Bayes’ rule is well defined.

for Q'(- | a;)-a.e. .

M§+1(S)
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throughout that each player’s forecasting rule is pathwise subsequence consistent, and we

refer to this environment as a game with Bayesian players and consistent forecasts.

Example (smoothed empirical forecasts). Fix o > 0 and a full-support prior v € AA™.
Define , -

oy : — » »
——— V(B — 0, 4(B B CA™
L S(B),  BC

5, (B) = :
o(B) af)—l—t—la

This retains full support for every finite £ and puts vanishing weight on the prior as t — oo.

Proposition 1. Smoothed empirical forecasts satisfy pathwise subsequence consistency.
Proof. See the Appendix. n

This example matches the posterior predictive from Bayesian updating under a Dirichlet
(or Dirichlet process) prior and specializes to empirical-frequency forecasting in fictitious
play with a finite number of actions. Beyond Bayesian schemes, other forecasting rules,
such as kernel- or shrinkage-based smoothers, also satisfy pathwise subsequence consistency,
provided their deviation from the current empirical distribution vanishes over time. This
“empirical-play” assumption also mirrors the standard learning-in-games approach used to
justify Nash (and Berk—Nash) equilibrium: it avoids higher-order belief regress, such as player
1 forming conjectures about what models other players have, what those players think about
the models of others, and so on. Instead, players simply treat the empirical distribution of

past actions as their forecast.

Probability measures. Let A = x;c;A" and Y = X;e;Y’. Let Py, vy denote the law on
the space of infinite action-consequence sequences (A x Y)Y induced by the data-generating
process and the players’ belief, forecasting, and action rules. Write P4~ for the marginal on
AN and for every a® € AN := A x A x ..., write Pynun(- | ™) for the conditional of Y™

given a>.!2

Asymptotic characterization of beliefs.

Lemma 1 (Asymptotic beliefs). Fiz any infinite sequence of actions a® € AN. Almost
surely with respect to Pyn(- | a®), the following holds. Suppose there exists a subsequence

(tk)k such that the empirical measures oy, converge weakly to o. Then, for every player i

?By disintegration, there exists a regular conditional probability (kernel) Py g (- | a®) such that for all

measurable B C AV and C C YN, Py yn(B x C) = woep Pyi(C | a®) Pyn(da™).
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and every closed set E C ©° with EN O™ (g) = @, there exist constants C >0, p > 0, and
an integer K such that, for all k > K,

1 (E) < Cexp{-pty}. (8)

In particular, if the subsequence of posteriors (,uik)k converges to some ut, then p' €

AO™(a).

Lemma 1 says that along any subsequence where the empirical action distribution con-
verges, the posterior probability assigned to any set of models incompatible with the limiting
action distribution converges to zero.'® Consequently, any limit belief must be supported on
the set of models that best explain the observed limiting behavior. The idea originates in
Berk (1966)’s analysis of misspecified models under i.i.d. data and has since been extended
to dynamic learning settings, including by EP16. Lemma 1 generalizes these results by al-
lowing for a continuum of actions and by working with subsequences rather than requiring
convergence of the empirical action distribution; the argument closely follows existing proofs

and appears in the Supplemental Appendix.

Asymptotic characterization of signal-action profiles. An action profile a € A is a
limit action profile of (a;); € AV if there exists a subsequence (ay, ) with a;, — a. Equiv-
alently, for every open neighborhood U C A of a, a; € U for infinitely many ¢t. When A is

finite, @ is a limit action profile if and only if it occurs infinitely often along the path.

Theorem 3. Consider a game with Bayesian players and consistent forecasts. Almost surely

with respect to Pan, every limit signal-action profile is Berk—Nash rationalizable.

Proof. By disintegration, there exists a full P n-measure set A* C AN such that, for each
a® € A*, Lemma 1 holds for Pynun(- | a®)-a.e.. Fix such a* and choose y> from its

conditional probability-one set.

Let Z(a™) denote the set of limit action profiles of a®. Pick any a € Z(a™) and
a subsequence () with a;, — a. By compactness, pass to a further subsequence (not
relabeled) such that

o, =0 € AA and /Lf;k = ' € A@" for each i.

13The convergence is exponentially fast, but the speed of convergence is not necessary for the sequel.
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A standard support argument yields o € AZ(a*). By pathwise subsequence consistency of
forecasts, ;' = o for each i. By Lemma 1 (applied to a* and y>), u' € AO™ (o) for all
1.

Since a;, € F'(u,, 5{;) for all £k and F" has a closed graph (upper hemicontinuous with
closed values), we conclude

a e F'(u', o) for each 1,

so a € I'(Z(a®)). As a € Z(a™) was arbitrary, every limit action profile is Berk—Nash

rationalizable for all a® € A*, i.e., Pyn-a.s. O

Theorem 3 says that, with probability one, every limit (accumulation) point of play
lies in the Berk-Nash rationalizable set. In contrapositive form: if an action profile is not

rationalizable, it cannot arise as a limit point of play except on a probabilityzero set.

5 Relationship to rationalizability

To relate Berk—Nash equilibrium to classical notions of rationalizability (which implicitly
assume players know the game and understand how action profiles map to consequences),

we consider the special case where this is also true in our environment.

Definition 4 (Correct specification and identification).

e Correct specification. For each player i, there exists 0 € ©" such that Q%(- | a) =
Q'(- | a) for alla € A.

e Identification. For each i and each o € AA, the set ©™(c) is a singleton (the mini-

mizer may depend on i and on o).

Proposition 2. Consider a game that is correctly specified and identified. Then for every
ACA,
I(A)={acA:30€AA st Vi, a' € BR'(c7")}, (9)

where BR'(07") := arg maXgieai [, [y 7 (a’, y")Q'(dy" | a',a™")o ™" (da™).

Proof. Correct specification says that for each 7 there exists 9" with Qé,e* = Q%; in particu-

lar, %" € ©™(o) for all o. Identification says the minimizer is unique, so ©™(g) = {#%"}
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for all o, so the belief is degenerate at 0%’ and therefore F(d4i6-,0") = BR'(0c~%). The
result then follows from the definition of I' in (7). O

Bernheim—Pearce operator. By contrast, the Bernheim—Pearce (correlated) operator

I'zp is defined for all product sets A = x;c;A° as

Pup(A) = {a €A+ Vi, 30 € A~ st a € BR(r) )

For both I" and I'gp, the rationalizable set is the largest fixed point of the corresponding
operator.'* Our operator I' differs in that it requires a single ¢ € AA whose marginals o~
simultaneously justify all players’ best replies. This reflects learning from a shared history,

which disciplines conjectures to be mutually consistent.

Theorem 4. In correctly specified and identified games, the Berk—Nash rationalizable set is

contained in the (correlated) rationalizable set. In two-player games, the two sets coincide.

Proof. First, for any product set A we have I'(A) C I'gp(A) (because a common o € AA
yields marginals o~ that justify each a’). Since I'gp maps product sets to product sets,
%5 (A) is a product set for every k. Proceeding by induction on k (so that T*(A) C TEL(A)),

and using monotonicity of I" together with the inclusion on product sets, for each k£ > 0:
I (A) =T(T"(A)) € T(Tp(A)) S Tee(Thp(A)) = Thp' (A),

where the first inclusion uses I'’'s monotonicity and the inductive hypothesis, and the second
uses that 'S (A) is a product set and I'(-) C I'gp(+) on product sets. Taking intersections

over k gives

A TA) € (TEs(A),

k>0 k>0

so the Berk—Nash rationalizable set is contained in the Bernheim—Pearce (correlated) ratio-

nalizable set.

Equality for two players. For |I| = 2 and any product set A = A! x A2, take a € I'gp(A)
with conjectures 0! € A(A?) and 072 € A(A'). The product measure 5 := 0 2®c ' € AA
has marginals 67 = 07, so a' € BR'(¢7%) for i = 1,2, hence a € T'(A). Therefore
I'gp(A) CT'(A), and the two fixed-point sets coincide. O

“For I'pp, this is correlated rationalizability (Brandenburger and Dekel (1987)).
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Our operator [" enforces a single, mutually consistent forecast over joint play; I'gp allows
player-by-player conjectures that need not come from a common joint distribution. With two
players, any pair of marginal conjectures can be combined into a joint product distribution,
so the restriction is without bite and the sets coincide. With three or more players, players’
separate conjectures may be mutually inconsistent, so requiring a common joint forecast can

only shrink the set, yielding containment.

Ezxample (Berk—Nash vs. BP rationalizability). This example shows that Berk—Nash ratio-

nalizability can be a strict subset of BP rationalizability.'®

Consider the 3-player game of Section 3.3. In the correctly specified case (o = a*), for
any k£ > 0 we argued there is a unique Berk-Nash rationalizable outcome. Because the
model is correctly specified and identified, one can reach this conclusion far more simply by
iterating I' in (9). Indeed, players 2 and 3 face the same beliefs and therefore best-respond
symmetrically, so as = a3. With this restriction, player 1’s best response is uniquely pinned

down at

M* — (C/)71(9*>,
and then players 2 and 3 best respond at
N* _ (CI)_l(Q*M*).
Hence (M*, N*, N*) is the unique Berk-Nash rationalizable profile (and therefore the unique
Nash equilibrium).

By contrast, if k£ < N*, the set of BP-rationalizable profiles is the whole box
[0, M*] x [0, N*] x [0, N*].

The reason is that BP allows each player to justify a best response with potentially different
beliefs. For instance, player 1 can choose a! = 0 rationalized by the belief that (a?,a®) =
(0, N*); player 2 can choose a? = 0 rationalized by the belief that a' = 0; player 3 can
choose a® = N* rationalized by the belief that a' = M*; and player 1 can choose a' = M*
rationalized by the belief that (a2, a) = (N*, N*). 4

15Tn the appendix we present a game with a finite number of actions in which every action profile is
BP-rationalizable but only a single one is Berk—Nash rationalizable.
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6 Extensions

6.1 Rationalizable distributions

We defined rationalizability over actions. There is an equivalent definition in terms of dis-
tributions over actions, and this alternative definition captures the limit points of empirical-

action distributions.

Distribution-level operator. For a set of action-profile distributions ¥ C AA, define

o(X) = {a € AA : Ya € supp o, 30, € ©s.t.Vi, I’ € AO™ (0,) witha' € Fi(ua,agi)}.

In other words, ®(3) comprises those action-profile distributions whose every support

action is justified by best-fitting beliefs formed relative to some reference distribution in .

Analogously to the action-based notion, we define Berk—Nash rationalizability for distri-

butions as follows:

Definition 5. A distribution o € AA is Berk—Nash rationalizable if there exists a set of
action-profile distributions ¥ C AA such that o € ¥ C $(X).

Moreover, an action-profile distribution o is a generalized Berk—Nash equilibrium of the
game if 0 € I'({o}). A generalized Berk-Nash equilibrium extends the baseline notion in
two ways (see also Esponda, Pouzo and Yamamoto (2021) and Murooka and Yamamoto
(2023)): (i) it allows cross-player correlation in play (distinct from Aumann’s (1974) corre-
lated equilibrium because only the marginals, not players’ conditional strategies, matter),
and (ii) it permits different action profiles to be supported by different beliefs. EP16 define a
stricter version of Berk—Nash equilibrium that rules out both features, justified via Harsanyi-
style independent (see Section 6.2). As usual, equilibrium profiles are rationalizable, but the

converse is not necessarily true.

Versions of Theorems 2 and 3 hold for this case. In particular, the set of Berk-Nash
rationalizable distributions is the largest fixed point of ® and can be obtained by iterating
® starting from Yo = AA. Moreover, every limit empirical distribution of action profiles is

Berk—Nash rationalizable. The proofs are entirely analogous to those for I'.

Let B C A and M C AA denote the set of Berk—Nash rationalizable actions and distri-

butions, respectively. The following result shows the equivalence of the two approaches.
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Proposition 3 (Equivalence of action and distributional approaches).
M = AB.

Proof. Step 1: ®(AB) C AB: Take 0 € ®(AB). By definition of ®, for every a € supp o
there exist o, € AB and, for each player i, a belief !, € AO™(a,) such that a’ € F'(u’,0,").
By the definition of T', this implies a € T'(B) = B. Hence supp o C B, i.e., 0 € AB.

Step 2: AB C ®(AB): Take 0 € AB and let a € supp o. Since a € B = I'(B), there
exist 0, € AB and, for each i, u’, € AO™(0,) with a* € F'(u,0,"). Thus the existential

requirement in the definition of ® is met for each support action a, implying o € ®(AB).

Combining both inclusions yields ®(AB) = AB. Since M is the largest ®-fixed set,
necessarily M = AB. ]

6.2 Mixed-strategy rationalizability

It is well known that fictitious play can converge to correlated distributions, and the same
possibility arises in our setting. To rule out correlation across players, we follow Fudenberg
and Kreps (1993) and introduce Harsanyi-style payoff perturbations independent across
players and time. However, even with these perturbations, the common-o restriction that
defines Berk-Nash rationalizability remains. This underscores that common-belief restric-
tions stemming from a shared history and correlation in strategies induced by a shared

history are distinct phenomena.

Payoff perturbations Given a (possibly correlated) distribution over opponents’ actions
Bt € AA™" and a belief u* € AO!, the baseline expected utility of player for action a’ is
Ui(a®, 37, ') defined in Section 3, equation (6). For the payoff shocks, let €’ be an A" — R
random function with law P.: supported on the set C'(A") of real-valued continuous functions,

independent across players. Under suitable assumptions, the realized action satisfies

a' € arg mix{ Uz, 37" 1)+ ()} as,
TEA®
and the induced intended mized strategy (choice kernel) on Borel sets B C A’ is well defined

as follows:
K(B| ', B7") = Pu (argmaX{U"(faﬁ‘i,ui) +e'(r)} € B) : (10)

TEA?
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so k'(+ | u', B77) € AAY
In addition, by joint continuity of U?, the choice kernel is continuous: If (u!,3,;") —
(1, 87%) in AO" x AA™", then

K, 87 = K| gl B in AAT

For instance, in the special case of a finite number of actions, this follows from assuming

P.i has a continuous density on R4, and the choice kernel becomes, for each a' € A’
£ ({a'} | W, 7)) = Pa(U'(a", B, 1) + b = UV, B 1) + &), for all b € A).

With Type-I extreme value shocks, this is the familiar multinomial logit.

Berk—Nash rationalizability for mixed strategies. We work on x;c;AA?. We refer
to o € AA® as player i’s mized strategy and to o = (0");c; as the mized strategy profile. We
abuse notation by also writing o (resp. 0~°) for the associated product measure ®;c;o0’ € AA

(resp. ®,;4i07 € AA™") when the meaning is clear from context.

For any X C x;c;AA?, define

By (3) = { o€ X AAT 2 36 € st Vi€ [Tl € AO™(6) with o' = Ki(- | 1, 677) }

Thus, a mixed strategy belongs to ®*(X) exactly when there exists a common mixed
strategy profile 6 in ¥ such that, for every player 4, the i-th marginal ¢! is the random-

utility best response x'(- | u*,67*) for some best-fitting belief ;i € AO™(5).

Definition 6. A mized strategqy profile 0 = (0');c; is Berk—Nash rationalizable if there exists
¥ C XierAAY such that 0 € X C @y (%),

Moreover, a mixed strategy profile ¢ = (0%);cs is a Berk-Nash equilibrium (see EP16) of
the game if o € ®y/({0}). In particular, mixed-strategy equilibrium profiles are rationaliz-

able, but the converse is not necessarily true.

The existence and characterization argument in Theorem 2 applies naturally to this set-
ting: the set of Berk—Nash rationalizabile mixed-strategy profiles is nonempty and compact,

and it can be obtained by repeated iteration of ®;; starting from the largest set x;c;AA‘.

The argument of Theorem 3 also applies naturally here to the intended strategy profile
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k = (K');es defined in (10). Define an intended mixed strategy profile a € A as a limit
intended mized strategy profile of (k:); if there exists a subsequence (ky, ), with k;, — a.

Equivalently, for every open neighborhood U C x;c;AA? of K, k; € U for infinitely many ¢.

Theorem 5. Consider a game with independent payoff perturbations. Almost surely, every

limat intended mized-strategy profile is a Berk—Nash rationalizable mixed-strategy profile.
Proof. See the Appendix. m

Finally, we consider the special case of a correctly specified and identified game. By the
usual argument, these assumptions imply that we can replace the belief x! in the definition

of ®,, with a degenerate belief at the truth, so that players best respond to correct beliefs.

Proposition 4. Consider a game with independent payoff perturbations that is correctly
specified and identified. Then for every ¥ C X;c;AAY,

Oy (X)) = { 0 € XiefAA' 36 € such that Vi,o' =br'(- | 67°) }, (11)

where br® is player i’s correct best response probabilistic function.'t

We can contrast our operator to Bernheim and Pearce’s original definition of (indepen-
dent) rationalizability applied to mixed strategies. The BP-operator ®pp is, for any product
Set E — Xie[z}i g Xie[AAi,

Bpp(xserS) = { 0 € Xl AN 1 Vi, 367 € XY st ot = bri(- | 67) }

Independent payoff perturbations eliminate correlated strategies (and hence correlated
conjectures about others’ play), pushing outcomes to product form. Nevertheless, the com-
mon history still ties players’ conjectures to a single reference profile: BP permits player-
specific opponent references drawn independently from x;.;37, whereas @), requires one
0 € X to underlie all conjectures simultaneously. This couples the coordinates and generally

yields a smaller, non-product image (the restriction is vacuous only with two players).

Theorem 6. In correctly specified and identified games with independent payoff perturba-
tions, the Berk—Nash rationalizable set is contained in the (independent) rationalizable set.

In two-player games, the two sets coincide.

®Formally, for correct beliefs define U(a’,07%) := [, [y 7 (a’,y") Q' (dy" | o' a™ ") o~ (da™").
Given payoff perturbations e, the stochastic best response is the probability kernel bri(B | o7%) =
P.i(argmax,cpi {U'(z,07%) 4+ €'(z)} € B) for all Borel B C A’
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6.3 Player-specific histories

We relax the common-history assumption by allowing each player to maintain a personal,
possibly selective, subsample of periods. Formally, for each player ¢ there is an increasing
sequence of time indices (7),>1 C N with 7/ — co. Whenever a period 7 = 7! lies in 4’s
subsample, she observes the entire action profile a, from that period and her own realized
consequence y'. Let N} := max{n: 7! <t} denote the number of retained periods up to t,

and assume N} — oc.

Player i’s personal empirical distribution over action profiles is
s
6! € AA, 6(B) = N ;13(%%) for Borel B C A.

Forecasts are assumed to be pathwise subsequence consistent with respect to the player’s
own empirical distribution: along any realized path and any subsequence (t;) for which

/\'_i

oy A ~—1 i
6¢ = 0', we have ¢,' = (6")

With player-specific histories, the rationalizability operator permits each player to anchor

beliefs on (potentially) different empirical limits:
Tw(A) = {a €A: Viel, o' € AA and i’ € AO™(5") such that o' € F'(y/', (ai)_i)}.

Definition 7 (Berk—Nash weak rationalizability). An action profile a is weakly Berk—Nash
rationalizable if there exists A C A such that a € A C 'y (A).

Theorem 7. In a game with Bayesian players and consistent forecasts relative to their own
empirical subsamples, almost surely every limit action profile is weakly Berk—Nash rational-

1zable.

Proof. The proof is essentially identical to the proof of Theorem 3, so we only provide a
sketch. Fix a realized path and a limit action profile a from the set of limit action profiles
Z. For each player i, pass to a subsequence (t;) along which 6tik = o' and pik = ut. By
pathwise subsequence consistency (relative to 6%), 6;° = (0!)~". The usual Berk argument
applied player by player yields u* € A@™(¢"). Closed-graph properties of F* then give
a € Fi(ut, (6*)™") for each i, so a € Ty (Z), completing the adaptation. O
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Correct specification and identification. Under correct specification and identifica-

tion, beliefs collapse to that truth and T'y (A) becomes

F'w(A) = {aeA: Viel, 30" € AAst. aiGBRi((ai)_i)}.

This operator coincides with the Bernheim—Pearce (correlated) operator. In I'gp, one
rationalizes a by, for each 7, choosing any conjecture 0" € AA™ with ¢’ € BR'(c7"). Given

such a marginal, one can extend it to some o' € AA whose (—i)-marginal is 0% hence

Cw(A) =Tgp(A).

Theorem 8. In correctly specified and identified games, the Berk—Nash weakly rationalizable

set coincides with the (correlated) rationalizable set.

In the special case of correctly specified and identified games, players only need to forecast
opponents’ actions. Milgrom and Roberts (1991) define adaptive forecasts—Dbeliefs that
assign vanishing probability to action profiles that do not persist—and show that, under such
forecasts, play converges to the set of (correlated) BP-rationalizable profiles. Our forecasting
rule (placing vanishing probability on profiles not observed along the player’s subsequence)
is a special case of adaptive forecasts. Hence, in correctly specified and identified settings,
their result implies convergence to the BP-rationalizable set. Equivalently, this conclusion

follows here by combining Theorems 7 and 8.

6.4 Other solution concepts

Aumann’s (1974) correlated equilibrium has two defining features: (i) it permits correlated
play; and (ii) it imposes conditional best responses—whenever an action is used with positive
probability, it must be optimal given the conditional distribution of opponents actions in
those instances. Its learning foundations come from calibrated best responses (Foster and
Vohra 1997), conditional universal consistency (Fudenberg and Levine 1999), and regret
matching (Hart and Mas-Colell 2000), all of which implement this conditional best-response
logic. By contrast, in our solution concept only the first feature is present: correlation may
arise from common history, but players best respond to the marginal distribution of others’
play rather than to conditional distributions. A natural extension is to allow conditional

forecasts and best responses within our framework.

Following Basu and Weibull (1991), a set of action profiles A is closed under rational

behavior (curb) if it is closed under T, i.e., I'(A) C A, where I is the best-response operator
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(and, more generally, may be taken to be the Berk—Nash operator used in our paper). A
minimal curb set is a curb set that contains no proper curb subset; equivalently, these are
the minimal fixed points of I'. In contrast, (Berk-Nash) rationalizability calls a set A self-
gustified if A C I'(A). The union of all self-justified sets is the set of rationalizable action
profiles, and it is characterized as the largest fixed point of I'. As noted by Basu and Weibull
(1991), minimal curb sets (minimal fixed points) and the rationalizable set (largest fixed
point) are opposite ends of a spectrum. Our limiting results exclude actions outside the
rationalizable set but do not rule out actions that are rationalizable yet not contained in
any minimal curb set. An open question is to identify conditions—on the dynamics and on
game primitives—under which our conclusions can be strengthened to imply convergence to
minimal curb sets or to some other set that may be strictly contained in the rationalizable

set.

7 Appendix
Lemma 2. 1. For each i € I, the best-response correspondence F'(u',o~") C A" is
nonempty, compact-valued, and upper hemicontinuous in (', o~").

2. For each i € I, the set of KL minimizers O™ (o) C ©" is nonempty, compact-valued,

and upper hemicontinuous in o.

Proof. (i) Fix i and define
U'la',0",a7") := / (', y") qb (y' | @', a™") V' (dy).
YZ

By Assumption 3.1(ii) the integrand is v'-a.e. continuous in (a’,6",a™%). By Assump-
tion 3.1(iv) and the LR bound in Assumption 3.1(iii), |7*(a’,y")| < h%(y’) and ¢}, < M'q¢" <
Mri, hence |miqh| < hiM'r" with [ hiM'ridy' < co. Thus U is jointly continuous and
uniformly bounded. For (u',07%) € A(©") x A(A™") set

Vi oy i= [ 00 a0 da ) )

Because U’ is bounded and continuous, (a’, u,07%) — Vi(a’, u*,07") is continuous under

the weak topologies on A(©?) and A(A™%). Since A’ is nonempty and compact (Assump-
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tion 3.1(i)), Weierstrass yields nonemptiness and compactness of

Fi(i',07) i= arg max VV(a', ', 07"),
a'Le 1

By Berges Maximum Theorem, (p¢,07") — F'(u',0~") is upper hemicontinuous.

(ii) By Assumption 3.1(iii), for v/-a.e. and all (6",a), |g'(6",y,a)] = |log(q'/q))| <

log M* < M" and ¢* < r*, with [ M“*dv' < co. Hence

K(0a)| = | [ a'tog 2 v
Qs

< /Miridyi < 00,

uniformly in (6%, a). Let (6, a,) — (6",a). By Assumption 3.1(ii), ¢‘(- | a,) — ¢'(- | a) and
4 (- | an) = ¢ (- | @) a.e. If gj, > 0 then continuity of (u,v) — ulog(u/v) on {u > 0,v > 0}
gives ¢'(- | an)log(q'(- | an)/dh (- | an)) — ¢'(- | @)log(q'(- | @)/gfi(- | @) ace. If g = 0,
then by the LR bound ¢' = 0 as well and |log(¢'(- | an)/q} (- | an))| < log M* < M* while

¢'(- | an) — 0, hence the product converges to 0. Moreover,
|4'(- | @n)log(q' (- | an)/gpy (- | an))| < M'r* € L'(v"),

so by the Dominated Convergence Theorem K*(6!,a,) — K'(6%,a). Thus (¢°,a) — K'(¢, a)
is bounded and continuous. Consequently (6°,0) — K*(6%, ) is continuous on the compact
set ©' x AA (weak topology on AA). For each o, ©" is compact and 6° — K*(#, o) is contin-
uous, so O™(g) := arg mingicg: K*(6", o) is nonempty and compact. Upper hemicontinuity

of o +— ©™(c) follows from Berge’s Maximum Theorem. O

Lemma 3. (i) I is nonempty valued; (ii) For any closed A C A, the set T'(A) is closed.

Proof. (i) Nonemptiness follows from the nonemptiness of @™ and F' (Lemma 2 (1),(2)).

(i) Let (a,), in I'(A) with a,, — a. For each n, there exists o, € AA such that for every
i € I there is !, € AO™(o,) with a!, € F{(u!, 0,%). Since A is closed in a compact set A, it
is also compact, so AA is also compact. Therefore (passing to a subsequence if necessary),
o, = 0 € AA. Because taking opponents’ marginals is the pushforward by the (continuous)
projection, weak convergence is preserved: for each i, 0,° = o~ . By Lemma 2(ii), the
correspondence ©™ is upper hemicontinuous and compact-valued, so along a subsequence
we may assume !, — pt € AO™'(g). By Lemma 2(i), the best-response correspondence F*
is upper hemicontinuous, so taking limits gives a’ € F{(u’, o=*). Since this holds for all 7 € I,

we conclude a € T'(A). Thus I'(A) is closed. O
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7.1 Proof of Theorem 2

Let P(A) denote the power set of A, and consider the partially ordered set (P(A), C). Define
the set of sets self-justified under I" as C := {A C A : A CT'(A)}. Then the set of Berk—
Nash rationalizable actions is given by B’ := Upcc B, which is the supremum of C. Since I is
monotone, Tarski’s fixed point theorem implies that B’ is the largest fixed point of I'. The

iterative characterization follows from Kleene’s fixed point theorem, i.e., B = B'.

Monotonicity of I' ensures that the sequence {B*} is nested. Moreover, by Lemma 3
in the appendix, I' is nonempty-valued and maps closed sets to closed sets. So, starting
from the feasible set B® = A, each iterate B is nonempty and closed (hence, compact).
The infinite intersection of nested, nonempty compact sets is nonempty, so B = ,-, B* is

nonempty and compact. O

7.2 Example in Section 3.3

We provide a tighter characterization of the iteration of I' and prove the statement in the
text about the threshold k*.

Fix the box [0, M] x [0, N]?. For any belief o supported in this box with E,[a!] = p €
[0, M], and for i € {2,3}, set X := a'a’. The KL-minimizer is
e+ X) (@ + X)L aat + (a+ o) px +vx

07i(0) = 0 -y
() Eo(a + X)?] a? + 20 pux + vy

where py = E,[X] and vy := E,[X?]. Under only the support and mean constraints,
0<pux <Np, 0<vy <N?E,[(a')] < N?*puM,

with the lower bounds attained by a’ = 0, a' = i, and the upper bounds by a' = N and a
twopoint distribution for a! € {0, M} with mean u. Since §™(o) is increasing in (ux, vy)

for a > a*,

o ad*+ (a+a*)Nu+ N*uM
o a?+2a Nu+ N?uM '

0™i(o) € [e*— .0

The worker best response is a’(c) = (¢/)~(p0™(c)), hence

ai(o) € [(C/)fl(/ﬁe*%)a (C/)A(Me*aa*+(a+a*)Nu+N2uM>].

a24+2a Nu+N2uM
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Define diff (u) := U(u) — L(p), where

_on-1f, pgrar ol g0t 4 (a+a*) N+ N2 uM
Ly =) (MH °‘>’ Uln) = (€) (“6 a? +2a Np+ N2 puM )

We show below that diff(-) is nondecreasing. It follows that

Bo= sup diff(u) = (&) (MO ) — () (M),

a+NM
pelo,M]

and in the text we use M = My, and N = N.
Proof that diff(-) is nondecreasing: Let
L(p) = () (tw), ) =po%, Ul =) (u(p), up)=p6r(u),

aa* + (a+ a*)Nu+ N2M u

rin) = a? +2aNp+ N2M p

Define the inner gap
g(p) = u(p) — €(n) = H*M(T(u) - %)-

A direct calculation yields

N —a* NM
r'(p) = ole - o ot )2 >0 (a>a"),
(02 +2aNp+ N2Mp)

hence ¢'(p) > 0, with equality only at 1 = 0. Thus u(u) —#(u) is increasing on (0, M]. Since
(¢')~! is increasing, the desired result follows.

Proof of Proposition 1

Suppose o4, = o on A. The continuous mapping theorem applied to the projection onto
A ‘ A ‘ ag+271
o, = w4+ (1 —wy)o, . For any bounded continuous f: A~ — R,

/fd&mj:wtk/fdui + (1—wtk)/fdatki1 — /fdai,

because wy, — 0 and ffdat_ki_1 — [ fdo™". Thus 5[; = o "

A7 gives 0, = o~ and hence also o', = o' — 0 and note that

Let w; :=
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Supplemental Appendix

S1 Proof of Lemma 1

In this Supplemental Appendix, we provide the proof of Lemma 1 for completeness. As
remarked in the text, this proof is a straightforward extension of existing ones (e.g. Esponda,
Pouzo and Yamamoto (2021)) to a continuum of actions and convergent subsequences instead

of sequences.

The result holds for each player 2. Henceforth, we drop the ¢ superscript from the notation

and focus on an individual player.

Define

t

Lufa™,y=)(8) i= 1 3 In A0 L 0r)

—1 qe(yﬂ' | a‘r) '

We will use the following fact:

Uniform SLLN. For any ™, there exists V,~ with P(),~ | a®) = 1 such that, for any
Y™ € Vaoo and for every e > 0 there exists T (a>, y>) such that for all t > T} (a*>, y>),

sup | Li(a™, y>)(0) — /K(Q,a)at(aoo)(da)] <e. (S1)
90

See Section S1.1 for a proof of this result.

From this point on, we fix any a* and consider any y*> € ),~. For simplicity, we drop
(a>,y>) from the notation. Let (o, ), be a subsequence converging to o and let £ C © be

a closed set disjoint from ©™ (o). We rely on the following two results:

Approzimate (o, ), with its limit o. Since K is continuous and © is compact, then for
every ¢ > 0, there exists 72 such that, for all k such that ¢, > T2,

sup| [ K(6,0), (da) - / K (6, a)o(da)| < .

E is well separated. Since K is continuous and E is closed in a compact set (hence,

compact), there exists § > 0 such that for all § € E,

/K(G,a)a(da) > K*(o) + 9,



where K*(0) := mingeo [ K (0, a)o(da).

We now prove (8) in Lemma 1. For any £ > 0, note that

 Jpe PO pg(dh) S e O g (dh)

E - )
Mtk( ) f@ e_tLtk(e)/,L0<d6) - f@g(o’) e_tkLtk(e)/,L()(de)

where O¢(0) := {0 € ©: [ K(0,a)o(da) < K*(o) + &}

Consider first the numerator. From UniformSLLN, the approximation of (oy, )r with its
limit o, and well separation of E, it follows that, for all k such that ¢, > max{T}, T2},
L () > K*(0) + 6 — 2¢ for all § € E, and so

/ e_tkLtk (G)NO(dQ) S ,LLO(E)G_tk(K*(O—)JNS—Qs). (82)
E

Next, consider the denominator. From UniformSLLN and the approximation of (oy, )
with its limit o, it follows that, for all £ such that t, > max{T}, T2}, L; (0) < K*(c)+&+2¢
for all § € ©¢(o), and so

| e n(d0) = o Oelo))e e, (53)
O¢(0)

Combining (S2) and (S3) and setting ¢ = £ < 6/10, we obtain that for all k& such that
tr, > max{T} T?},

gr7e

fo(E) o tr(8/2)
wolB) < e

Since © is compact and 6 — [ K(6,a)o(da) is continuous, a minimizer §* € © exists and
satisfies 0* € O¢(0). By continuity, there exists an open ball around #* contained in O¢ (o).
Since po has full support, this ball has positive measure, so 1y(O¢(c)) > 0. Equation (8) in
the statement of Lemma 1 then follows by setting p = /2 > 0 and C' = po(E)/110(O¢(0)).
Since po(£) > 0 and p(O¢(0)) > 0, it follows that C' > 0 and C < oo.

Suppose, in addition, that (i, )r converges to u. By equation (8), for any closed E
such that E N O™ (o) = 0, liminf, o py, (E) = 0. By the Pormanteau lemma, u(E) <
lim infy oo pir, (E) = 0. Now consider any § € ©\ 0™ (o). There exists an open neighborhood
Uy with closure Uy such that Uy N ©™ (o) = 0. Since Uy is closed, u(Uy) = 0, and so 6 is not
in the support of p. Thus, supppu C ©™(0).



S1.1 Uniform

Esponda, Pouzo and Yamamoto (2021) (henceforth, EPY 2021) proves the uniform SLLN
(equation S1) for the case of a finite number of actions (see their Lemma 2). The proof for
the case where A’ is a compact subset of Euclidean space is essentially identical, but we need

to establish the following two claims uniformly for all actions.

Claim (uniform L? bound for g). Fixi, § € ©° and € > 0. Then

i 2 i
swp [ sup g0 0)]*Qdy @) < .
ach Jyi /€0(6,¢)

Proof. For any a,

/ sup [4'(0'.y,a)]" Q'(dy | a) Z/Sg/p‘logw "¢y | a) vi(dy).

0'c0(0,¢) (y | a)

By the LR bound, supy|log(q'/gj)| < log M" < M a.e., hence

S/(logMi(y))qu(y\a)Vi(dy) < 2/M"(y)qi(y!@) V' (dy),

where we used (logt)? < 2t for ¢ > 1. By the density envelope, ¢'(- | a) < r' a.e., so

< 2/Mi(y) r(y) V' (dy),

which is finite by Assumption 3.1(iii) and independent of a. Taking the supremum over

a € A gives the claim. O

Claim (uniform oscillation bound, eq. (12) in EPY 2021). Fixi, 6 € ©%, and ¢ > 0.
Then there exists §(0,¢) > 0 such that

sup EQi(.|a)|: sup |gi(9',Y, a) —g'(0,Y, a)‘ ] < 0.25¢e.
a€h 0'c0(0,5(0,¢))

Proof. Let H,(y) := supg_gj<r. aca |9'(0,y,a) — g'(6,y,a)|. By a.c.-continuity on the
compact set ©F x A (Assumption 3.1(ii)), H,.(y) { 0 for v*-a.e. y as r | 0. By the LR bound
(Assumption 3.1(iii)), H,(y) < 2|¢"(0,y, a)| < 2log M'(y) < 2M"'(y) a.e., and by the density



envelope Q'(dy | a) = ¢'(y | a)v(dy) < r*(y)v'(dy). Hence, for every a,

EQi(.|a)[ sup |¢'(#,Y,a) — ¢'(0,Y, a) /H “(y | a) vi(dy) < /H Vi (dy).
0'cO(0,r)

Since H, — 0 a.e. and H,(-) r*(-) < 2M"(-)r*(-) with [ 2M*r" dv' < co (Assumption 3.1(iii)),

the Dominated Convergence Theorem yields [ H,r"dv' — 0 as r | 0. Thus

sup Eqi(ja| sup [¢'(#.Y,a) — ¢'( GYa /Hrdy — 0.
ach 0€0(0,r) rl0

Choose 0(6,¢) > 0 so that the right-hand side is < 0.25¢. O
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