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Abstract

We study learning in complete-information games, allowing the players’ models of

their environment to be misspecified. We introduce Berk–Nash rationalizability: the

largest self-justified set of actions—meaning each action in the set is optimal under

some belief that is a best fit to outcomes generated by joint play within the set. We

show that, in a model where players learn from past actions, every action played

(or approached) infinitely often lies in this set. When players have a correct model

of their environment, Berk–Nash rationalizability refines (correlated) rationalizability

and coincides with it in two-player games. The concept delivers predictions on long-run

behavior regardless of whether actions converge or not, thereby providing a practical

alternative to proving convergence or solving complex stochastic learning dynamics.

For example, if the rationalizable set is a singleton, actions converge almost surely.

∗We thank Attila Ambrus, Andreas Blume, Laurent Mathevet, and Kevin Reffet for helpful comments.
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1 Introduction

A classic justification for equilibrium is dynamic: players observe past play, update beliefs,

and adapt; if behavior settles, it should reflect some sort of equilibrium. In complete-

information games, the standard notion is Nash equilibrium. For instance, in models of

fictitious play—where each period’s action is a best response to the empirical distribution

of others’ past actions—if the action profile itself settles down (i.e., becomes constant from

some time onward), then it must be a Nash equilibrium. An analogous logic applies under

misspecified learning: when agents update within a (possibly wrong) model class using data

from play, if the action profile settles, it must settle to a Berk–Nash equilibrium. The key

message is not that learning guarantees convergence, but that, conditional on stabilization

of actions, the stabilized outcome must be an equilibrium of the relevant notion (Nash under

correct specification; Berk–Nash under misspecification).

However, this logic is conditional: it has bite only if play actually stabilizes—and in

many learning models, stabilization is not guaranteed or hard to assess. In fictitious play,

paths can cycle rather than settle (Shapley (1964)), and positive convergence is typically

proved only for special classes (e.g., Monderer and Shapley (1996), Hofbauer and Sandholm

(2002)). In misspecified learning, many application-specific papers establish convergence un-

der environment-tailored or parametric assumptions.1 More general analyses—using stochas-

tic approximation, differential inclusions, and martingale methods—characterize asymptotic

behavior in broader settings (e.g., Fudenberg, Lanzani and Strack (2021); Esponda, Pouzo

and Yamamoto (2021); Frick, Iijima and Ishii (2023); Murooka and Yamamoto (2023)).

These tools are powerful but technically demanding and not always straightforward to apply;

they may require favorable initial conditions, yield conclusions only with positive probability,

or leave some environments uncovered. As a result, they do not always deliver clear long-run

predictions, especially when actions fail to converge or convergence is hard to verify.

We take a complementary approach. Rather than assume or try to prove convergence, we

ask what can be said about the actions that are played (or approached) infinitely often. To

that end, we introduce Berk-Nash rationalizability for simultaneous-moves games of complete

information. This solution concept is the largest self-justified set of actions: actions that

justify themselves as best responses when beliefs are fit to a single common forecast of

joint play. In the special case where each player’s model is correctly specified and identified

1Examples include Nyarko (1991), Fudenberg, Romanyuk and Strack (2017), Heidhues, Kőszegi and
Strack (2018, 2021), Bohren and Hauser (2021), He (2022), Ba and Gindin (2023), and Murooka and Ya-
mamoto (2025) among others.
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(so Berk–Nash equilibrium coincides with Nash), Berk–Nash rationalizability is analogous

to correlated rationalizability but adds the restriction of a common joint forecast of play.

This additional belief discipline refines correlated rationalizability, which permits separate

player-by-player conjectures that need not derive from any shared joint forecast.

We show that, in a broad learning environment, every action played—or approached—

infinitely often is Berk–Nash rationalizable. Past actions are publicly observed, and this

common record underpins both belief updating and conjectures about others’ play. Each

player is Bayesian about the payoff-relevant parameters of a (possibly misspecified) model

of the game and updates posteriors period by period. To forecast others’ actions, players

use fictitious-play-style rules: forecasts track empirical frequencies and can be interpreted as

Bayesian updating over opponents’ behavior. In each period, players choose a myopic best

response to their current parameter beliefs and these forecasts.

The result delivers convergence-free predictions: it characterizes what can recur on the

path even when actions or beliefs do not settle. When the Berk–Nash rationalizable set is a

singleton, it implies almost-sure convergence; when it is larger, it provides tight bounds on

long-run behavior. The concept is computationally tractable (iterative best-response under

data-consistent beliefs), travels naturally from single-agent applications to games, and—

under correct specification and identification—refines (correlated) rationalizability, sharp-

ening predictions for N > 2 players.2 For applied work on misspecification, it offers a

usefool tool: one can study limiting behavior without solving dynamics, heavy regularity as-

sumptions, or verifying convergence theorems, while maintaining a clear link to equilibrium

analysis.

Rationalizability was introduced by Bernheim (1984) and Pearce (1984), with Pearce

characterizing it explicitly as the largest set that is self-justified under the best-response

operator.3 In these classical formulations, a player’s belief about opponents’ play is a product

measure (independence across opponents). Brandenburger and Dekel (1987) extended this

to correlated rationalizability, allowing arbitrary joint beliefs over opponents’ actions—the

version we adopt. The standard epistemic foundation is common knowledge of rationality

(Brandenburger and Dekel (1987) , Tan and da Costa Werlang (1988)); by contrast, we use

the concept for its learning-based predictive content—bounding long-run behavior implied

by Bayesian learning rather than modeling epistemic assumptions.

Milgrom and Roberts (1991) establish a link between adaptive learning and (correlated)

2For N = 2 players, our solution concept coincides with correlated rationalizability in the special class of
correctly specified and identified games.

3Pearce called this property the best response property.
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rationalizability: in complete-information games, under broad adaptive rules whose fore-

casts place vanishing probability on profiles not played infinitely often, play converges to

(correlated) rationalizable outcomes. When the game is correctly specified and identified,

our environment overlaps with theirs. We obtain a refinement by strengthening the adaptive

discipline: we require forecasts to be consistent with empirical frequencies (a common, data-

consistent joint forecast). This restriction has bite—there are examples where all actions are

classically rationalizable, yet only one remains under our consistency requirement.4 More-

over, if we relax the forecasting discipline to allow players to learn from different subsamples

of past data (in the spirit of Milgrom–Roberts’ adaptive rules), our solution concept in the

special case of correctly specified and identified games collapses to (correlated) rationaliz-

ability. These ideas extend to misspecified settings, motivating the notion of Berk–Nash

weak rationalizability as the version without the common restriction on beliefs.

Fudenberg and Kreps (1993) study stochastic fictitious play, where players’ payoffs are

perturbed each period so that, to an outside observer, intended play looks mixed. They show

that if intended mixed strategies converge, the limit must be a Nash equilibrium—providing

the first learning justification for mixed-strategy Nash equilibrium. By contrast, in standard

(unperturbed) fictitious play, even if the empirical distribution of actions converges, it need

not converge to a Nash distribution because a common history can induce correlation across

players’ actions. Payoff perturbations break this history-induced correlation, which is ex-

actly what underpins the Fudenberg–Kreps result. We extend our framework to allow such

payoff perturbations. This yields a version of Berk–Nash rationalizability in which limiting

beliefs are fitted to independent forecasts of opponents’ strategies (no correlation from shared

history). The concept, however, does not collapse to Bernheim–Pearce independent ratio-

nalizability, because the shared data still impose common (now independence-compatible)

belief restrictions across players.

Esponda and Pouzo (2016, henceforth EP16) introduce a misspecified learning framework

to capture both systematic biases and limits to accurate representation of the environment

4For the special class of supermodular games, Milgrom and Roberts (1990) show that the set of rationaliz-
able outcomes is bounded by the smallest and largest equilibria. Because equilibria are always rationalizable,
imposing a common-forecast restriction as we do does not change these bounds.
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due to complexity or informational constraints.5 They define the Berk–Nash equilibrium

(possibly in mixed strategies) and show that, with Fudenberg–Kreps–style payoff perturba-

tions, convergence of intended strategies implies convergence to a Berk–Nash equilibrium.

Esponda, Pouzo and Yamamoto (2021) study single-agent settings without perturbations

and prove that convergence of the empirical action distribution (without payoff perturba-

tions) leads to a generalized notion of Berk–Nash equilibrium. The same implication applies

in our framework when payoff perturbations are absent.

The Berk–Nash rationalizable set arises via sequential elimination of non-rationalizable

actions. Prior work uses iterative arguments to bound long-run behavior: Heidhues, Kőszegi

and Strack (2018) obtain bounds that collapse to a singleton, and He (2022) adapts this

approach to a specific multi-dimensional setting. Frick, Iijima and Ishii (2023) develop a

general elimination procedure for beliefs and—using a prediction-accuracy preorder with

a supermartingale construction—prove monotone elimination and eventual convergence of

beliefs to the resulting set; their framework also applies to social learning, which we do

not study. Their convergence result requires the existence of a continuous selection from

beliefs to optimal actions, a condition typically violated with finite action sets or when

optimal actions are not unique for a given belief. By contrast, our approach is at the action

level, uses a simple argument based only on off-the-shelf extensions of Berk’s asymptotic-

belief characterization (the EP16 extension), accommodates finite action sets (requiring only

upper hemicontinuity of the action correspondence—no continuous selection needed), and

extends naturally to multiple agents.6

We focus on games of complete information. Extending the analysis to asymmetric

information raises both conceptual and technical issues. Conceptually, one must decide what

the long-run object is: a limit profile of realized states, signals, and actions, or a limit strategy

profile mapping signals to actions. The latter is often more informative—for example, it can

encode monotonicity in private signals, which the former cannot. Technically, forecasts of

5Examples that broadly fit and relate to misspecification include behavioral gametheoretic models Jehiel
(2005); Eyster and Rabin (2005); market adverse selection with misspecified beliefs Esponda (2008); learn-
ing with selective attention Schwartzstein (2014); social learning and herding under misspecified inference
Bohren (2016); Frick, Iijima and Ishii (2020); incorrect causal models Spiegler (2016); overconfidence Heid-
hues, Kőszegi and Strack (2018); misspecification in a a recursive general equilibrium model Molavi et al.
(2019); narrativebased misspecification Eliaz and Spiegler (2020); biased social learning due to assortativ-
ity neglect and attribution errors, with implications for inequality and discrimination Frick, Iijima and Ishii
(2022); Chauvin (2023); selective memory Fudenberg, Lanzani and Strack (2024); welfare comparisons under
biased beliefs Frick, Iijima and Ishii (2024); mislearning from prices He and Libgober (2025); and agents
misinterpreting their own motives Heidhues, Kőszegi and Strack (2023); among others.

6Frick, Iijima and Ishii (2023)’s supermartingale method is also useful elsewhere—for instance, to charac-
terize convergence in “slow-learning” regimes where Berk–Nash tools are uninformative, and in Fudenberg,
Lanzani and Strack (2021) to show stability of uniformly strict Berk–Nash equilibria.
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others’ play must be conditional on private signals; with a continuum of signals this calls

for signal-conditional learning rules and, in effect, consistent nonparametric estimation of

opponents’ conditional behavior. We pursue this extension in a sequel (Esponda and Pouzo

(2025)).

Because much of the convergence literature centers on single-agent setting—and our ideas

are most transparent there—we begin with that case in Section 2. Section 3 develops the

general simultaneous-moves, complete-information game framework. Section 4 shows that

limit actions are Berk–Nash rationalizable when agents learn the game’s parameters and

forecast opponents’ strategies. Section 5 relates our solution concept to existing notions of

rationalizability. Section 6 presents extensions: an equivalent distributional version; payoff

perturbations yielding a mixed-strategy variant that eliminates history-induced correlation

in play (but not in beliefs); player-specific histories that lead to a weaker form of Berk–Nash

rationalizability without joint belief restrictions; and discussions of the relationship with

correlated equilibrium and curb sets.

2 Single-agent problem

Primitives. A single agent chooses an action a ∈ A. Consequences take values in Y.
The true consequence kernel is Q : A → ∆Y. The agent does not necessarily know Q but

entertains a parametric model {Qθ : θ ∈ Θ}, with Qθ : A → ∆Y. The payoff function is

π : A× Y → R.

We state assumptions explicitly in Section 3 where this environment is a special case.

In particular, all sets are subsets of Euclidean spaces, and we require compactness of A
and Θ and certain regularity and continuity assumptions on Q, Qθ, and π but allow both

discrete and continuous actions and consequences spaces. Throughout this section, we use

the following example from Heidhues, Kőszegi and Strack (2018) to illustrate definitions,

results, and their application.

Example (Returns to effort). A single agent chooses effort a ∈ A = [0,∞). Outcomes are

real-valued (Y = R). The true model is

y =
(
α∗ + a

)
θ∗ + ε, ε ∼ N (0, 1),

i.e., the true kernel is Q(· | a) = N
(
(α∗ + a)θ∗, 1

)
, where α∗ ≥ 0 is true ability and θ∗ > 0

is the true return to effort. The agent entertains a parametric model {Qθ : θ ∈ [0, θ]} with
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perceived ability α > 0 (held fixed, not learned):

y =
(
α + a

)
θ + ε, ε ∼ N (0, 1),

so Qθ(· | a) = N
(
(α + a)θ, 1

)
. Overconfidence corresponds to α > α∗ and underconfidence

to α < α∗.

Payoffs are π(a, y) = y − c(a), where c is differentiable and strictly convex, and satisfies

c(0) = c′(0) = 0, and c′(a) → ∞ as a → ∞. Although A is unbounded, marginal cost

diverges and returns are bounded ex ante (by θ, which we pick to be large enough so it does

not bind), so the optimal effort lies in a finite interval, effectively making the feasible choice

set compact. ♦

Optimal action correspondence Define the expected payoff of action a under model

parameter θ by U(a, θ) :=
∫
Y π(a, y)Qθ(dy | a). For a belief µ ∈ ∆Θ, the optimal action

correspondence is

F (µ) := argmax
a∈A

∫
Θ

U(a, θ)µ(dθ).

Kullback–Leibler divergence. The KL divergence is a function K : Θ×A → R, defined
for any parameter value θ ∈ Θ and action a ∈ A as

K(θ, a) :=

∫
Y
ln

(
q(y | a)
qθ(y | a)

)
q(y | a) ν(dy). (1)

Furthermore, for any action distribution σ ∈ ∆A, we define

Θm(σ) := argmin
θ∈Θ

∫
K(θ, a)σ(da).

The KL divergence measures the ‘distance’ between the true model Q and the parametric

model Qθ. The set Θ
m(σ) consists of the parameter values θ ∈ Θ whose associated model Qθ

provides the best fit to the true model, in the sense of minimizing the expected Kullback–

Leibler divergence given data generated by Q when actions are drawn according to σ.

Example (continued). The KL divergence is

K(θ, a) =
1

2
((α + a)θ − (α∗ + a)θ∗)2 .

There is a unique minimizer of the expected KL divergence for any σ ∈ ∆A, which is a
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convex combination of the single-action minimizers: θm(σ) =
∫
θm(δa) ησ(da), with weights

ησ(da) ∝ (α + a)2 σ(da) and normalized to integrate to one. The single-action minimizer is

θm(δa) = θ∗ + θ∗
α∗ − α

α + a
. (2)

Overconfidence (α > α∗) implies underestimation of the returns to effort (θm(δa) < θ∗, and

therefore θm(σ) < θ∗); underconfidence (α < α∗) implies the reverse. The bias |θm(δa)− θ∗|
falls with a and vanishes as a → ∞, since large effort dilutes the impact of ability. ♦

Solution concept. For each Borel set of actions A ⊆ A, we define the best response set

as Γ(A) := F (∪σ∈∆A∆Θm(σ)). Equivalently,

Γ(A) = {a ∈ A : ∃σ ∈ ∆A, µ ∈ ∆Θm(σ) such that a ∈ F (µ)}.

In other words, the set Γ(A) consists of all actions that the agent might choose (according

to the optimal action correspondence F ) when she assigns probability one to the set of

models that provide the best fit under some action distribution with support in A. This

concept aligns with our earlier interpretation of KL divergence. Specifically, if feedback

about consequences arises from actions drawn from the set A, then the models that provide

the best fit are those that minimize KL divergence for some action distribution supported

on A. Consequently, the agent will follow actions that are optimal for beliefs that assign

probability one to these best-fit models.

Example (continued). The optimal action corresponding to a degenerate belief δθ is (c
′)−1(θ),

since the agent chooses a to solve θ = c′(a). For any Borel set A ⊆ A, the best response

operator is

Γ(A) =
{
(c′)−1(θm(σ)) : σ ∈ ∆A

}
. (3)

♦

We are now ready to define our solution concept for this environment.

Definition 1. An action a is Berk–Nash rationalizable if there exists a set A ⊆ A such that

a ∈ A and A ⊆ Γ(A).

A Berk–Nash rationalizable action lies in a set A that is self-justified under the operator

Γ, i.e., A ⊆ Γ(A). Every action in such a set is rationalizable: it is optimal for some belief

supported on parameter values that best fit data generated by a distribution over A—and

different actions may be justified by different distributions. The set of all rationalizable
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actions is the union of all self-justified sets. Later, we consider a dynamic model with

Bayesian updating from past actions and outcomes, and show that every limit action is

rationalizable. 7

The solution concept typically used in the literature is that of a Berk–Nash equilibrium

(EP16). In terms of our best response operator, an action a ∈ A is a Berk–Nash equilibrium

if a ∈ Γ({a}). An immediate implication is that a Berk–Nash equilibrium action is ratio-

nalizable, but the converse is not necessarily true. In particular, the set of rationalizable

actions may be larger than the set of equilibrium actions, as we now illustrate.

Characterization. The operator Γ is monotone and, under our assumptions, maps com-

pact sets into compact sets. A well-known implication is that the union of sets that self-

justified under Γ (in our case, the Berk–Nash rationalizable set, B) is the largest fixed point

of Γ and can be obtained by iteratively applying Γ starting from the largest set A. Let

B0 = A and Bk+1 = Γ(Bk); then Bk+1 ⊆ Bk for all k and

B∗ =
⋃

{B ⊆ A : Γ(B) ⊆ B} =
⋂
k≥0

Bk = lim
k→∞

Γk(A). (4)

Example (continued). For compact A, expression (3) for Γ can be simplified further. Since

θm(σ) is a convex combination of the single-action minimizers, it lies in the convex hull of

the set {θm(δa) : a ∈ A}. Moreover, because θm(δa) is continuous on the compact set A, it

attains its minimum and maximum, and this convex hull is simply the interval[
min
a∈A

θm(δa), max
a∈A

θm(δa)

]
.

Applying (c′)−1 to this interval, we conclude that

Γ(A) =

[
(c′)−1

(
min
a∈A

θm(δa)

)
, (c′)−1

(
max
a∈A

θm(δa)

)]
. (5)

This step uses the fact that the image of a closed interval under a continuous, strictly

increasing function, (c′)−1, is again a closed interval.

This characterization of Γ motivates the definition of a simpler mapping that acts directly

7Our definition is similar, but not exactly equivalent to rationalizability in a game where player 1 chooses
actions and player 2 chooses model parameters. That interpretation would correspond to a larger oper-
ator F

(
∆
⋃

σ∈∆A Θm(σ)
)
, which allows arbitrary mixtures over model parameters fit to different action

distributions. In contrast, our definition restricts attention to beliefs supported on Θm(σ) for some fixed
σ ∈ ∆A.
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on actions. Define T : A → A by

T (a) := (c′)−1(θm(δa)),

and note that the set of fixed points of T coincides with the set of Berk–Nash equilibrium

actions. We will show that the mapping T also characterizes the best response operator Γ.

Overconfidence (α > α∗). In this case, the function θm(δa) is increasing in a, so T is

increasing. An increasing function may have multiple fixed points, so multiple Berk–Nash

equilibria are possible. For any interval A = [L,H], it follows from (5) that

Γ(A) = [T (L), T (H)].

To characterize the limit of iterated best responses, define a sequence of intervals Ak =

[akmin, a
k
max] by

ak+1
min = T (akmin), ak+1

max = T (akmax),

starting from a0min = 0 and a0max = ā, where ā is an upper bound on optimal actions. Then

(akmin)k increases, (akmax)k decreases, and both sequences converge. The limits

a∞min = lim
k→∞

akmin, a∞max = lim
k→∞

akmax

are fixed points of T (hence, equilibria), and, by the characterization in (4), the limiting

interval [a∞min, a
∞
max] is the set of all rationalizable actions. This is the case in Figure 1a, where

aS = a∞min is the smallest Berk–Nash equilibrium and aL = a∞max is the largest equilibrium.

If instead T had a unique fixed point, the limit would be a singleton and rationalizability

would coincide with equilibrium.

Underconfidence (α < α∗). In this case, the function θm(δa) is decreasing in a, so T is

decreasing. A decreasing function has at most one fixed point, so there is a unique Berk–Nash

equilibrium. For any interval A = [amin, amax], we have

Γ(A) = [T (amax), T (amin)].

To analyze the dynamics of Γ, define

ak+1
min = T (akmax), ak+1

max = T (akmin),

again starting from [0, ā]. Then (akmin)k increases, (akmax)k decreases, and both sequences
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converge to

a∞min = lim
k→∞

akmin, a∞max = lim
k→∞

akmax,

By by the characterization in (4), the limiting interval [a∞min, a
∞
max] is the set of rationalizable

actions. The limits also satisfy

T (a∞min) = a∞max, T (a∞max) = a∞min,

so they form a 2-cycle of T and are fixed points of T 2. If T 2 has a unique fixed point, then

it must also be a fixed point of T , and the limit is a singleton. In that case, rationalizability

coincides with equilibrium. If T 2 has multiple fixed points, then a∞min and a∞max are the

smallest and largest among them. This latter situation is illustrated in Figure 1b. ♦

θ∗

overconfident: θm(δ·)

mg cost: c′(·)

aopt

aS
aM

aL

a

(a) Overconfident agent

a∞
min a∞

max

θ∗
underconfident: θm(δ·)

mg cost: c′(·)

aopt

a

(b) Underconfident agent

Figure 1: Returns to effort example.
The optimal action aopt is where the marginal cost curve intersects the true return θ∗. Berk–Nash equi-
librium actions lie at intersections of the marginal cost curve and the KL-minimizing curve θm(δ·). In the
overconfident case, there are 3 Berk–Nash equilibria, aS , aM , and aL, and the Berk–Nash rationalizable
set is [aS , aL]; in the underconfident case, there is a unique Berk–Nash equilibrium, and the Berk–Nash
rationalizable set is the 2-cycle interval [a∞min, a

∞
max].

Limit actions are rationalizable. We consider an agent who learns by Bayesian updating

and chooses myopically optimal actions over time. The agent starts from a full-support prior

µ0 ∈ ∆Θ and, at each discrete time t = 1, 2, . . .:

• holds a belief µt ∈ ∆Θ;

• chooses at ∈ F (µt) from the optimal action correspondence;

• observes consequence yt ∼ Q(· | at);

• updates µt+1 by Bayes’ rule.
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An action a ∈ A is called a limit action of the sequence a∞ = (a1, a2, . . .) if there exists a

subsequence (atk)k such that atk → a as k → ∞. Equivalently, a is a limit action if, for every

open neighborhood U ⊆ A of a, there are infinitely many times t ∈ N such that at ∈ U .

When A is finite, an action is a limit action if and only if it is played infinitely often.

Theorem 1. Almost surely, every limit action of a Bayesian agent is Berk–Nash rational-

izable.

Theorem 1 implies that asymptotic behavior is confined to Berk–Nash rationalizable

actions: any non-rationalizable action cannot be a limit action and, in a finite action set, is

played only finitely often (i.e., is eventually eliminated).

Example (continued). Proving convergence in these environments is far from trivial. In the

overconfident case, when the Berk–Nash equilibrium (BNE) is unique, Heidhues, Kőszegi

and Strack (2018) prove convergence to that equilibrium; in our setting this becomes an

immediate corollary of Theorem 1, since the unique equilibrium is also the unique rationaliz-

able action. With multiple equilibria, their result does not apply; nonetheless, our theorem

delivers asymptotic bounds: in the overconfident case every limit action lies between the

smallest and largest equilibrium. By contrast, Heidhues, Kőszegi and Strack (2021) cover

both over- and underconfidence but analyze a different data-generating process in which the

disturbance enters the production function (noise inside production) and impose Gaussian

priors (more generally, a one-dimensional sufficient statistic). That specification does not

encompass our baseline setting yt = Q(at, θ) + εt, where noise is outside production. The

underconfident case in our example is particularly challenging: the Berk–Nash equilibrium is

unique yet unstable in the sense of Esponda, Pouzo and Yamamoto (2021). Even so, Theo-

rem 1 provides usable bounds: long-run actions must lie within the largest two-cycle, which

contains the equilibrium. More generally, one could appeal to the stochastic-approximation

approach in Esponda, Pouzo and Yamamoto (2021) to obtain bounds, extended to a con-

tinuum of actions by Murooka and Yamamoto (2023), but this route requires characterizing

solutions of the relevant differential inclusions. ♦

Later in Section 3 we analyze a more general environment in which Theorem 1 appears

as a special case. For intuition, we sketch the proof in this single-agent case, where the ideas

are easiest to see. Take the set of limit actions, A, and pick any a ∈ A. From the infinite

history, select a subsequence along which actions converge to the limit action a, and, by

passing to a further subsequence if needed, the posteriors converge to µ and the empirical

action distribution to σ. Because σ is a limit of empirical frequencies, it assigns probability

only to actions that actually recur, so supp(σ) ⊆ A. We slightly extend the argument
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of EP16 (itself an adaptation of Berk, 1966) to conclude that any limiting belief satisfies

µ ∈ ∆Θm(σ) (best-fit parameters for σ). Since actions are optimal along the subsequence

and the best-response correspondence F has a closed graph, limits of optimizers are optimal,

so a ∈ F (µ). Hence, for any a in the set of limit actions A, there exist σ ∈ ∆A and

µ ∈ ∆Θm(σ) with a ∈ F (µ), which shows a ∈ Γ(A). Therefore, A ⊆ Γ(A) (i.e., the set

of limit actions is self-justified under Γ) and, by definition, every limit action is Berk–Nash

rationalizable.

3 Games

In this section we extend the framework to strategic environments with multiple decision

makers. In particular, we study simultaneous-moves games of complete information.

3.1 Setup

There is a finite set of players I. For each i ∈ I, the individual action space is Ai and

the joint action space is A := ×i∈IAi. Player i’s consequences take values in Yi. The true

environment is described by a mapping Qi : A → ∆Yi, which assigns to every action profile

a probability distribution over player i’s consequences. As before, player i does not know

Qi but entertains a parametric model Qi
θi : A → ∆Yi with parameter θi ∈ Θi. An action

profile is an element a = (ai)i∈I ∈ A, and σ ∈ ∆A denotes an action-profile distribution.

The payoff function of player i is πi : Ai×Yi → R, where the distribution of yi ∈ Yi already

incorporates the influence of all players’ actions via Qi.

We impose the following assumptions.8

Assumption (games). (i) Spaces. For each i, the sets Ai and Θi are nonempty compact

subsets of Euclidean spaces; Yi is a Borel subset of a Euclidean space. (ii) Densities and

a.e. continuity. For each i there exists a Borel measure νi on Yi such that, for every a ∈ A,
Qi(· | a) ≪ νi with density qi(· | a), and for every θi ∈ Θi, Qi

θi(· | a) ≪ νi with density

qiθi(· | a); moreover, for νi-a.e. y, the maps a 7→ qi(y | a), (θi, a) 7→ qiθi(y | a), and (ai, y) 7→
πi(ai, y) are continuous. (iii) LR bound, density envelope, and integrability. For each i there

exist measurable M i : Yi → [1,∞) and ri : Yi → [0,∞) such that, for all (θi, a) ∈ Θi × A
8As usual, Lp(Y, ν) denotes the space of all functions f : Y → R such that

∫
|f(y)|p ν(dy) < ∞. All

Euclidean spaces, including A and Θ, are endowed with their Borel σ-algebra. The spaces ∆A and ∆Θ
denote the sets of Borel probability measures on A and Θ, respectively, endowed with the topology of weak
convergence.
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and νi-a.e. y, one has qiθi(y | a)M i(y)−1 ≤ qi(y | a) ≤ qiθi(y | a)M i(y) and qi(y | a) ≤
ri(y), and

∫
Yi M

i(y) ri(y) νi(dy) < ∞. (iv) Payoffs. For νi-a.e. y, (ai, y) 7→ πi(ai, y) is

continuous; moreover, there exists hi
π : Yi → [0,∞) with |πi(ai, y)| ≤ hi

π(y) for all ai and∫
Yi h

i
π(y)M

i(y) ri(y) νi(dy) < ∞.

These assumptions accommodate both discrete and continuous actions and consequences;

ensure that best-fit parameters vary continuously with the action and that optimal actions

vary continuously with beliefs; deliver a uniform law of large numbers; and guarantee that

Bayesian updating never fails, since every realized consequence is admitted by the model.

3.2 Solution concept

Optimal action correspondence. Fix i ∈ I and a (possibly correlated) distribution over

others’ actions β−i ∈ ∆A−i. For θi ∈ Θi, player i’s expected utility is

U i(ai, β−i, θi) :=

∫
A−i

∫
Yi

πi(ai, yi)Qi
θi(dy

i | ai, a−i) β−i(da−i). (6)

Given a belief µi ∈ ∆Θi, the optimal action correspondence is

F i(µi, β−i) := arg max
ai∈Ai

∫
Θi

U i(ai, β−i, θi)µi(dθi).

Kullback–Leibler divergence. For i ∈ I, model θi ∈ Θi and action profile a ∈ A, define

Ki(θi, a) :=

∫
Yi

ln
( qi(yi | a)
qi
θi
(yi | a)

)
qi(yi | a) νi(dyi), θi ∈ Θi.

Let Zi := Si × Ai and Z := ×j∈IZj. For σ ∈ ∆A, define the set of best-fitting models for

player i

Θm,i(σ) := arg min
θi∈Θi

∫
A
Ki(θi, a)σ(da).

Berk–Nash rationalizability. For every A ⊆ A (not necessarily a product set), we define

Γ(A) :=
{
a ∈ A : ∃σ ∈ ∆A s.t. ∀i ∈ I, ∃µi ∈ ∆Θm,i(σ) with ai ∈ F i

(
µi, σ−i

)}
, (7)
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where σ−i ∈ ∆A−i denotes the marginal of σ over A−i.9

In other words, the set Γ(A) consists of all action profiles that may be chosen when

players assign probability one to the set of models that provide the best fit under some

mixed action profile with support in A, and each player best responds to such beliefs.

The definition of Berk–Nash rationalizability is the same as in the single-agent case,

except that Γ is now given by this generalized operator.

Definition 2. An action profile a is Berk–Nash rationalizable if there exists A ⊆ A such

that a ∈ A ⊆ Γ(A).

Moreover, an action profile a is a Berk–Nash equilibrium of the game if a ∈ Γ({a}). In

particular, equilibrium profiles are rationalizable, but the converse is not necessarily true.

Existence and characterization. The following result follows from standard arguments

and the facts that Γ is nonempty-valued and maps closed sets into closed sets (see the

Appendix).

Theorem 2 (Existence and characterization of rationalizable set). The set of Berk–Nash

rationalizable signal-action profiles, B ⊆ A, is nonempty, compact, and is the largest fixed

point of Γ. It can be obtained iteratively, as

B =
∞⋂
k=0

Bk with B0 = A and Bk+1 = Γ(Bk).

Proof. See the Appendix.

The theorem gives a simple recipe for computing the rationalizable set. Begin with all

actions and repeatedly apply the operator Γ, removing anything that can’t be justified given

what remains. The actions that survive every round are exactly the BerkNash rationalizable

actions, and this set is compact and nonempty.

9Formally, A−i is the projection of A onto the opponents’ coordinates: A−i := { a−i : ∃ ai with (ai, a−i) ∈
A }. For any probability σ ∈ ∆A, define σ−i as the pushforward under that projection: for any B ⊆ ×j ̸=iAj ,
σ−i(B) = σ({ a ∈ A : a−i ∈ B }). For a product set A = ×j∈IA

j , we have A−i = ×j ̸=iA
j , and σ−i is the

usual marginal on the opponents’ coordinates.
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3.3 Example

There are three players, a manager (player 1) and two workers (players 2 and 3). Each player

chooses effort ai ∈ [0,∞) and receives outcome yi ∈ R. The technology is interdependent:

the manager’s effort affects only their own outcome and is productive if and only if the

workers’ efforts are sufficiently similar, while the workers’ outcomes feature a multiplicative

complementarity with the manager’s effort.

Let α∗ > 0 be the true (baseline) team ability and θ∗ > 0 the true productivity index.

Agents evaluate data through a parametric family that fixes a perceived team ability α > 0

(fixed, not learned) and estimates θ ∈ [0, θ̄], with θ̄ large enough to be non-binding. We

focus on overconfidence about team ability: α > α∗.

The true outcome equations are

y1 =
[
α∗ + a1 1{|a2 − a3| < k}

]
θ∗ + ω1, yi =

[
α∗ + aia1

]
θ∗ + ωi, i ∈ {2, 3},

where ωi ∼ N (0, 1) and ϕ(x) = 1{x < k} for a threshold k > 0. Thus, the true model is

Q1(· | a) = N
(
[α∗+a11{|a2−a3| < k}]θ∗, 1

)
for player 1, and Qi(· | a) = N

(
[α∗+aia1]θ∗, 1

)
for players i ∈ {2, 3}.

The perceived (misspecified) outcome equations are

y1 =
[
α + a1 1{|a2 − a3| < k}

]
θ + ω1, yi =

[
α + aia1

]
θ + ωi, i ∈ {2, 3}.

Thus, the perceived model (with fixed, not learned α and θ ∈ [0, θ̄]) is Qθ,1(· | a) = N
(
[α +

a11{|a2 − a3| < k}]θ, 1
)
for player 1, and Qθ,i(· | a) = N

(
[α + aia1]θ, 1

)
for i ∈ {2, 3}.

Payoffs are πi(a, y
i) = yi−c(ai), where c is differentiable and strictly convex, and satisfies

c(0) = c′(0) = 0, and c′(a) → ∞ as a → ∞. Because marginal returns are bounded, optimal

efforts are also bounded.

For a degenerate action action profile δa with a = (a1, a2, a3), the KL-minimizing param-

eter value is

θm,1(δa) = θ∗
α∗ + a11{|a2 − a3| < k}
α + a11{|a2 − a3| < k}

,

θm,i(δa) = θ∗
α∗ + aia1

α + aia1
, i ∈ {2, 3}.

For an action distribution σ on [0,∞)3, the KL-minimizer θm,i(σ) is a convex combination

of the single-agent minimizers. As in the single-agent case, overconfidence (α > α∗) implies
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underestimation: θm,i(·) < θ∗ for all i.

Since the KL minimizer is unique, each player’s belief degenerates at a single θ, so the

best response is the unique action equating marginal cost to perceived marginal benefit.

Hence, for any A ⊆ [0,∞)3,

Γ(A) =
{
a ∈ [0,∞)3 : ∃σ ∈ ∆A s.t.

a1 = (c′)−1
(
θm,1(σ) Eσ

[
1{|a2 − a3| < k}

])
,

ai = (c′)−1
(
θm,i(σ) Eσ[a

1]
)

for i ∈ {2, 3}

}
.

For simplicity, we begin by providing an outer characterization of Γ without imposing

common-σ consistency. Fix the workers’ coordinates: (a2, a3) ∈ [0,∞)2. For any belief σ on

[0,∞)3 define

ρ(σ) := Eσ

[
1{|a2 − a3| < k}

]
∈ [0, 1], a1(σ) = (c′)−1

(
θm,1(σ) ρ(σ)

)
.

Starting from a1 ∈ [0,∞), the manager’s one-dimensional upper envelope evolves accord-

ing to

M1 = (c′)−1(θ∗), Mt+1 = (c′)−1

(
θ∗

α∗ +Mt

α +Mt

)
for t ≥ 1,

which is monotone decreasing and converges to the unique fixed point M∞ characterized by

c′
(
M∞

)
= θ∗

α∗ +M∞

α +M∞
.

Thus the manager’s eventual image is contained in the interval [0,M∞], and any point below

M∞ is obtained by a belief σ with ρ(σ) < 1, whereas M∞ is reached by taking σ with

ρ(σ) = 1 supported at a1 = M∞.

Next, we fix player 1’s coordinate to [0,M∞] and iterate on players 2 and 3 separately.

Let m1(σ) := Eσ[a
1] ∈ [0,M∞]. Player i ∈ {2, 3} best responds as

ai(σ) = (c′)−1
(
θm,i(σ)m1(σ)

)
.

With a1 ≤ M∞, a first pass gives the upper bound

N1 = (c′)−1
(
θ∗M∞

)
.
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Iterating with a1 ≤ M∞ and ai ≤ Nt yields the one-dimensional map

Nt+1 = (c′)−1

(
θ∗M∞

α∗ +M∞Nt

α +M∞Nt

)
,

which is monotone and converges to the unique fixed point N∞ solving

c′(N∞) = θ∗M∞
α∗ +M∞N∞

α +M∞N∞
.

Hence the workers’ eventual image is [0, N∞]; the lower endpoint is attained by beliefs with

m1(σ) = 0, and the upper endpoint by beliefs is supported only by a1 = M∞ and ai = N∞.

Suppose k is not too large relative to the (endogenous) difference between the actions of

players 2 and 3, in particular suppose k < N∞. Then any belief σ supported on [0,M∞] ×
[0, N∞]2 must satisfy ρ(σ) = 1. In this case only M∞ survives for player 1, and therefore

only N∞ survives for players 2 and 3. We end up with a unique Berk-Nash rationalizable

profile (M∞, N∞, N∞).

Of course, this conclusion does not use the full discipline of Γ. For example, a profile

with a2 = 0 and a3 = N∞ cannot arise: to justify a2 = 0, player 2 would have to believe

that a1 = 0 with probability one, and then player 3 must share the same belief, ruling out

a3 = N∞. In the appendix (Section 7.2), we show that the distance between players 2 and

3’s actions is less than or equal to

k∗ = N∞ − c′−1
(
M∞ θ∗

α∗

α

)
,

which implies that whenever k > k∗ the unique Berk–Nash rationalizable profile is

(M∞, N∞, N∞). In the special case where the players know the true ability (α = α∗),

the bound simplifies to k∗ = 0, so we have that (M∞, N∞, N∞) is the unique Berk–Nash

rationalizable profile for any k > 0.

4 Limit points are rationalizable

Each player i starts from a full-support prior µi
0 ∈ ∆Θi. At each period t = 1, 2, . . .:

• Given posterior µi
t and a forecast (belief) σ̃−i

t ∈ ∆A−i over opponents’ actions, player
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i chooses ait ∈ F i(µi
t, σ̃−i

t ).10

• Consequences realize: for each i, yit ∼ Qi(· | at, sit).

• The action profile at is publicly observed; player i updates µi
t+1 using Bayes’ rule and

the personal history hi
t := (a1:t, s

i
1:t, y

i
1:t).

11

Forecasting opponents’ actions. It remains to specify how player i forms a forecast σ̃−i
t

about opponents’ actions. A forecasting rule for player i is a sequence of Borel-measurable

maps

a1:t−1 7→ Ψi
t(a1:t−1) ∈ ∆A−i

which produce at each period t a probability measure σ̃−i
t := Ψi

t(a1:t−1) over the opponents’

actions, as a function of the publicly observed past actions a1:t−1.

Given a realized sequence of opponents’ actions (a−i
τ )τ≥1, define the empirical action

distribution up to time t by

σ−i
t (B) =

1

t

t∑
τ=1

1B

(
a−i
τ

)
, B ⊆ A−i Borel.

Definition 3 (Pathwise subsequence consistency). A forecasting rule (Ψi
t)t is pathwise sub-

sequence consistent if, for every realized action path (at)t≥1 and every subsequence (tk)k along

which the empirical distribution σtk ⇒ σ ∈ ∆A, the induced forecasts satisfy

σ̃−i
tk

⇒ σ−i for all i ∈ I.

Pathwise subsequence consistency requires that, whenever observed frequencies stabi-

lize along a subsequence, players’ forecasts track those stabilized frequencies. We assume

10Formally, for each i and t, the action ait is drawn from a Borel kernel ϕi
t( · | µi

t, σ̃
−i
t ) on Ai with

ϕi
t

(
F i(µi

t, σ̃
−i
t ) | µi

t, σ̃
−i
t

)
= 1. We impose no further restriction on ϕi

t beyond Borel measurability; it may

vary with t. History affects actions only through (µi
t, σ̃

−i
t ). EP16 also consider forward-looking agents under

a “weak identification” condition that drives experimentation incentives to zero in the long run; the same
idea could be applied here.

11Formally, for any Borel set S ⊆ Θ,

µi
t+1(S) =

∫
S
qiθ(y

i
t | at)µi

t(dθ)∫
Θi qiθ(y

i
t | at)µi

t(dθ)
for Qi(· | at)-a.e. yit.

Assumption (iii) implies qiθ(y
i
t | at) > 0 Qi(· | at)-a.e. yit for all θ ∈ Θi, so the denominator is positive and

Bayes’ rule is well defined.
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throughout that each player’s forecasting rule is pathwise subsequence consistent, and we

refer to this environment as a game with Bayesian players and consistent forecasts.

Example (smoothed empirical forecasts). Fix αi
0 > 0 and a full-support prior νi ∈ ∆A−i.

Define

σ̃−i
t (B) =

αi
0

αi
0 + t− 1

νi(B) +
t− 1

αi
0 + t− 1

σ−i
t−1(B), B ⊆ A−i.

This retains full support for every finite t and puts vanishing weight on the prior as t → ∞.

Proposition 1. Smoothed empirical forecasts satisfy pathwise subsequence consistency.

Proof. See the Appendix.

This example matches the posterior predictive from Bayesian updating under a Dirichlet

(or Dirichlet process) prior and specializes to empirical-frequency forecasting in fictitious

play with a finite number of actions. Beyond Bayesian schemes, other forecasting rules,

such as kernel- or shrinkage-based smoothers, also satisfy pathwise subsequence consistency,

provided their deviation from the current empirical distribution vanishes over time. This

“empirical-play” assumption also mirrors the standard learning-in-games approach used to

justify Nash (and Berk–Nash) equilibrium: it avoids higher-order belief regress, such as player

i forming conjectures about what models other players have, what those players think about

the models of others, and so on. Instead, players simply treat the empirical distribution of

past actions as their forecast.

Probability measures. Let A = ×i∈IAi and Y = ×i∈IYi. Let P (A×Y)N denote the law on

the space of infinite action-consequence sequences (A×Y)N induced by the data-generating

process and the players’ belief, forecasting, and action rules. Write P AN for the marginal on

AN, and for every a∞ ∈ AN := A × A × ..., write P YN|AN(· | a∞) for the conditional of YN

given a∞.12

Asymptotic characterization of beliefs.

Lemma 1 (Asymptotic beliefs). Fix any infinite sequence of actions a∞ ∈ AN. Almost

surely with respect to P YN(· | a∞), the following holds. Suppose there exists a subsequence

(tk)k such that the empirical measures σtk converge weakly to σ. Then, for every player i

12By disintegration, there exists a regular conditional probability (kernel) P YN|AN(· | a∞) such that for all

measurable B ⊆ AN and C ⊆ YN, P (A×Y)N(B × C) =
∫
a∞∈B

P YN(C | a∞) P AN(da∞).
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and every closed set E ⊆ Θi with E ∩Θm,i(σ) = ∅, there exist constants C > 0, ρ > 0, and

an integer K such that, for all k ≥ K,

µi
tk
(E) ≤ C exp{−ρ tk}. (8)

In particular, if the subsequence of posteriors (µi
tk
)k converges to some µi, then µi ∈

∆Θm,i(σ).

Lemma 1 says that along any subsequence where the empirical action distribution con-

verges, the posterior probability assigned to any set of models incompatible with the limiting

action distribution converges to zero.13 Consequently, any limit belief must be supported on

the set of models that best explain the observed limiting behavior. The idea originates in

Berk (1966)’s analysis of misspecified models under i.i.d. data and has since been extended

to dynamic learning settings, including by EP16. Lemma 1 generalizes these results by al-

lowing for a continuum of actions and by working with subsequences rather than requiring

convergence of the empirical action distribution; the argument closely follows existing proofs

and appears in the Supplemental Appendix.

Asymptotic characterization of signal-action profiles. An action profile a ∈ A is a

limit action profile of (at)t ∈ AN if there exists a subsequence (atk)k with atk → a. Equiv-

alently, for every open neighborhood U ⊆ A of a, at ∈ U for infinitely many t. When A is

finite, a is a limit action profile if and only if it occurs infinitely often along the path.

Theorem 3. Consider a game with Bayesian players and consistent forecasts. Almost surely

with respect to PAN, every limit signal-action profile is Berk–Nash rationalizable.

Proof. By disintegration, there exists a full P AN-measure set A⋆ ⊆ AN such that, for each

a∞ ∈ A⋆, Lemma 1 holds for P YN|AN(· | a∞)-a.e.. Fix such a∞ and choose y∞ from its

conditional probability-one set.

Let Z(a∞) denote the set of limit action profiles of a∞. Pick any a ∈ Z(a∞) and

a subsequence (tk) with atk → a. By compactness, pass to a further subsequence (not

relabeled) such that

σtk ⇒ σ ∈ ∆A and µi
tk
⇒ µi ∈ ∆Θi for each i.

13The convergence is exponentially fast, but the speed of convergence is not necessary for the sequel.
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A standard support argument yields σ ∈ ∆Z(a∞). By pathwise subsequence consistency of

forecasts, σ̃−i
tk

⇒ σ−i for each i. By Lemma 1 (applied to a∞ and y∞), µi ∈ ∆Θm,i(σ) for all

i.

Since aitk ∈ F i(µi
tk
, σ̃−i

tk
) for all k and F i has a closed graph (upper hemicontinuous with

closed values), we conclude

ai ∈ F i(µi, σ−i) for each i,

so a ∈ Γ(Z(a∞)). As a ∈ Z(a∞) was arbitrary, every limit action profile is Berk–Nash

rationalizable for all a∞ ∈ A⋆, i.e., P AN-a.s.

Theorem 3 says that, with probability one, every limit (accumulation) point of play

lies in the Berk-Nash rationalizable set. In contrapositive form: if an action profile is not

rationalizable, it cannot arise as a limit point of play except on a probabilityzero set.

5 Relationship to rationalizability

To relate Berk–Nash equilibrium to classical notions of rationalizability (which implicitly

assume players know the game and understand how action profiles map to consequences),

we consider the special case where this is also true in our environment.

Definition 4 (Correct specification and identification).

• Correct specification. For each player i, there exists θi ∈ Θi such that Qi
θi(· | a) =

Qi(· | a) for all a ∈ A.

• Identification. For each i and each σ ∈ ∆A, the set Θm,i(σ) is a singleton (the mini-

mizer may depend on i and on σ).

Proposition 2. Consider a game that is correctly specified and identified. Then for every

A ⊆ A,
Γ(A) = {a ∈ A : ∃σ ∈ ∆A s.t. ∀i, ai ∈ BRi(σ−i)}, (9)

where BRi(σ−i) := argmaxai∈Ai

∫
A−i

∫
Yi π

i(ai, yi)Qi(dyi | ai, a−i)σ−i(da−i).

Proof. Correct specification says that for each i there exists θi,θ
∗
with Qi

i,θ∗ = Qi; in particu-

lar, θi,θ
∗ ∈ Θm,i(σ) for all σ. Identification says the minimizer is unique, so Θm,i(σ) = {θi,θ∗}
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for all σ, so the belief is degenerate at θi,θ
∗
and therefore F i(δθi,θ∗ , σ

−i) = BRi(σ−i). The

result then follows from the definition of Γ in (7).

Bernheim–Pearce operator. By contrast, the Bernheim–Pearce (correlated) operator

ΓBP is defined for all product sets A = ×i∈IA
i as

ΓBP(A) :=
{
a ∈ A : ∀i, ∃σ−i ∈ ∆A−i s.t. ai ∈ BRi(σ−i)

}
.

For both Γ and ΓBP , the rationalizable set is the largest fixed point of the corresponding

operator.14 Our operator Γ differs in that it requires a single σ ∈ ∆A whose marginals σ−i

simultaneously justify all players’ best replies. This reflects learning from a shared history,

which disciplines conjectures to be mutually consistent.

Theorem 4. In correctly specified and identified games, the Berk–Nash rationalizable set is

contained in the (correlated) rationalizable set. In two-player games, the two sets coincide.

Proof. First, for any product set A we have Γ(A) ⊆ ΓBP(A) (because a common σ ∈ ∆A

yields marginals σ−i that justify each ai). Since ΓBP maps product sets to product sets,

Γk
BP(A) is a product set for every k. Proceeding by induction on k (so that Γk(A) ⊆ Γk

BP(A)),
and using monotonicity of Γ together with the inclusion on product sets, for each k ≥ 0:

Γk+1(A) = Γ
(
Γk(A)

)
⊆ Γ

(
Γk
BP(A)

)
⊆ ΓBP

(
Γk
BP(A)

)
= Γk+1

BP (A),

where the first inclusion uses Γ’s monotonicity and the inductive hypothesis, and the second

uses that Γk
BP(A) is a product set and Γ(·) ⊆ ΓBP(·) on product sets. Taking intersections

over k gives ⋂
k≥0

Γk(A) ⊆
⋂
k≥0

Γk
BP(A),

so the Berk–Nash rationalizable set is contained in the Bernheim–Pearce (correlated) ratio-

nalizable set.

Equality for two players. For |I| = 2 and any product set A = A1 ×A2, take a ∈ ΓBP(A)

with conjectures σ−1 ∈ ∆(A2) and σ−2 ∈ ∆(A1). The product measure σ̄ := σ−2⊗σ−1 ∈ ∆A

has marginals σ̄−i = σ−i, so ai ∈ BRi(σ̄−i) for i = 1, 2, hence a ∈ Γ(A). Therefore

ΓBP(A) ⊆ Γ(A), and the two fixed-point sets coincide.

14For ΓBP, this is correlated rationalizability (Brandenburger and Dekel (1987)).

22



Our operator Γ enforces a single, mutually consistent forecast over joint play; ΓBP allows

player-by-player conjectures that need not come from a common joint distribution. With two

players, any pair of marginal conjectures can be combined into a joint product distribution,

so the restriction is without bite and the sets coincide. With three or more players, players’

separate conjectures may be mutually inconsistent, so requiring a common joint forecast can

only shrink the set, yielding containment.

Example (Berk–Nash vs. BP rationalizability). This example shows that Berk–Nash ratio-

nalizability can be a strict subset of BP rationalizability.15

Consider the 3-player game of Section 3.3. In the correctly specified case (α = α∗), for

any k > 0 we argued there is a unique Berk–Nash rationalizable outcome. Because the

model is correctly specified and identified, one can reach this conclusion far more simply by

iterating Γ in (9). Indeed, players 2 and 3 face the same beliefs and therefore best-respond

symmetrically, so a2 = a3. With this restriction, player 1’s best response is uniquely pinned

down at

M∗ = (c′)−1(θ∗),

and then players 2 and 3 best respond at

N∗ = (c′)−1(θ∗M∗).

Hence (M∗, N∗, N∗) is the unique Berk-Nash rationalizable profile (and therefore the unique

Nash equilibrium).

By contrast, if k < N∗, the set of BP-rationalizable profiles is the whole box

[0,M∗]× [0, N∗]× [0, N∗].

The reason is that BP allows each player to justify a best response with potentially different

beliefs. For instance, player 1 can choose a1 = 0 rationalized by the belief that (a2, a3) =

(0, N∗); player 2 can choose a2 = 0 rationalized by the belief that a1 = 0; player 3 can

choose a3 = N∗ rationalized by the belief that a1 = M∗; and player 1 can choose a1 = M∗

rationalized by the belief that (a2, a3) = (N∗, N∗). ♦
15In the appendix we present a game with a finite number of actions in which every action profile is

BP-rationalizable but only a single one is Berk–Nash rationalizable.
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6 Extensions

6.1 Rationalizable distributions

We defined rationalizability over actions. There is an equivalent definition in terms of dis-

tributions over actions, and this alternative definition captures the limit points of empirical-

action distributions.

Distribution-level operator. For a set of action-profile distributions Σ ⊆ ∆A, define

Φ(Σ) :=
{
σ ∈ ∆A : ∀a ∈ supp σ, ∃σa ∈ Σ s.t. ∀i, ∃µi

a ∈ ∆Θm,i(σa) with ai ∈ F i(µa, σ
−i
a )
}
.

In other words, Φ(Σ) comprises those action-profile distributions whose every support

action is justified by best-fitting beliefs formed relative to some reference distribution in Σ.

Analogously to the action-based notion, we define Berk–Nash rationalizability for distri-

butions as follows:

Definition 5. A distribution σ ∈ ∆A is Berk–Nash rationalizable if there exists a set of

action-profile distributions Σ ⊆ ∆A such that σ ∈ Σ ⊆ Φ(Σ).

Moreover, an action-profile distribution σ is a generalized Berk–Nash equilibrium of the

game if σ ∈ Γ({σ}). A generalized Berk–Nash equilibrium extends the baseline notion in

two ways (see also Esponda, Pouzo and Yamamoto (2021) and Murooka and Yamamoto

(2023)): (i) it allows cross-player correlation in play (distinct from Aumann’s (1974) corre-

lated equilibrium because only the marginals, not players’ conditional strategies, matter),

and (ii) it permits different action profiles to be supported by different beliefs. EP16 define a

stricter version of Berk–Nash equilibrium that rules out both features, justified via Harsanyi-

style independent (see Section 6.2). As usual, equilibrium profiles are rationalizable, but the

converse is not necessarily true.

Versions of Theorems 2 and 3 hold for this case. In particular, the set of Berk–Nash

rationalizable distributions is the largest fixed point of Φ and can be obtained by iterating

Φ starting from Σ0 = ∆A. Moreover, every limit empirical distribution of action profiles is

Berk–Nash rationalizable. The proofs are entirely analogous to those for Γ.

Let B ⊆ A and M ⊆ ∆A denote the set of Berk–Nash rationalizable actions and distri-

butions, respectively. The following result shows the equivalence of the two approaches.
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Proposition 3 (Equivalence of action and distributional approaches).

M = ∆B.

Proof. Step 1: Φ(∆B) ⊆ ∆B: Take σ ∈ Φ(∆B). By definition of Φ, for every a ∈ supp σ

there exist σa ∈ ∆B and, for each player i, a belief µi
a ∈ ∆Θm,i(σa) such that ai ∈ F i(µi

a, σ
−i
a ).

By the definition of Γ, this implies a ∈ Γ(B) = B. Hence supp σ ⊆ B, i.e., σ ∈ ∆B.

Step 2: ∆B ⊆ Φ(∆B): Take σ ∈ ∆B and let a ∈ supp σ. Since a ∈ B = Γ(B), there
exist σa ∈ ∆B and, for each i, µi

a ∈ ∆Θm,i(σa) with ai ∈ F i(µi
a, σ

−i
a ). Thus the existential

requirement in the definition of Φ is met for each support action a, implying σ ∈ Φ(∆B).

Combining both inclusions yields Φ(∆B) = ∆B. Since M is the largest Φ-fixed set,

necessarily M = ∆B.

6.2 Mixed-strategy rationalizability

It is well known that fictitious play can converge to correlated distributions, and the same

possibility arises in our setting. To rule out correlation across players, we follow Fudenberg

and Kreps (1993) and introduce Harsanyi–style payoff perturbations independent across

players and time. However, even with these perturbations, the common-σ restriction that

defines Berk–Nash rationalizability remains. This underscores that common-belief restric-

tions stemming from a shared history and correlation in strategies induced by a shared

history are distinct phenomena.

Payoff perturbations Given a (possibly correlated) distribution over opponents’ actions

β−i ∈ ∆A−i and a belief µi ∈ ∆Θi, the baseline expected utility of player for action ai is

U i(ai, β−i, µi) defined in Section 3, equation (6). For the payoff shocks, let εi be an Ai → R
random function with law Pεi supported on the set C(Ai) of real-valued continuous functions,

independent across players. Under suitable assumptions, the realized action satisfies

ai ∈ argmax
x∈Ai

{
U i(x, β−i, µi) + εi(x)

}
a.s.,

and the induced intended mixed strategy (choice kernel) on Borel sets B ⊆ Ai is well defined

as follows:

κi(B | µi, β−i) := Pεi

(
argmax

x∈Ai
{U i(x, β−i, µi) + εi(x)} ∈ B

)
, (10)
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so κi(· | µi, β−i) ∈ ∆Ai.

In addition, by joint continuity of U i, the choice kernel is continuous: If (µi
n, β

−i
n ) →

(µi, β−i) in ∆Θi ×∆A−i, then

κi(· | µi
n, β

−i
n ) ⇒ κi(· | µi, β−i) in ∆Ai.

For instance, in the special case of a finite number of actions, this follows from assuming

Pεi has a continuous density on RAi
, and the choice kernel becomes, for each ai ∈ Ai

κi({ai} | µi, β−i) = Pεi
(
U i(ai, β−i, µi) + εiai ≥ U i(bi, β−i, µi) + εibi for all b

i ∈ Ai
)
.

With Type-I extreme value shocks, this is the familiar multinomial logit.

Berk–Nash rationalizability for mixed strategies. We work on ×i∈I∆Ai. We refer

to σi ∈ ∆Ai as player i’s mixed strategy and to σ = (σi)i∈I as the mixed strategy profile. We

abuse notation by also writing σ (resp. σ−i) for the associated product measure ⊗i∈Iσ
i ∈ ∆A

(resp. ⊗j ̸=iσ
j ∈ ∆A−i) when the meaning is clear from context.

For any Σ ⊆ ×i∈I∆Ai, define

ΦM(Σ) :=
{
σ ∈ ×i∈I∆Ai : ∃ σ̂ ∈ Σ s.t. ∀i ∈ I ∃µi ∈ ∆Θm,i(σ̂) with σi = κi

(
·
∣∣ µi, σ̂−i

) }
.

Thus, a mixed strategy belongs to Φ∗(Σ) exactly when there exists a common mixed

strategy profile σ̂ in Σ such that, for every player i, the i-th marginal σi is the random-

utility best response κi(· | µi, σ̂−i) for some best-fitting belief µi ∈ ∆Θm,i(σ̂).

Definition 6. A mixed strategy profile σ = (σi)i∈I is Berk–Nash rationalizable if there exists

Σ ⊆ ×i∈I∆Ai such that σ ∈ Σ ⊆ ΦM(Σ).

Moreover, a mixed strategy profile σ = (σi)i∈I is a Berk–Nash equilibrium (see EP16) of

the game if σ ∈ ΦM({σ}). In particular, mixed-strategy equilibrium profiles are rationaliz-

able, but the converse is not necessarily true.

The existence and characterization argument in Theorem 2 applies naturally to this set-

ting: the set of Berk–Nash rationalizabile mixed-strategy profiles is nonempty and compact,

and it can be obtained by repeated iteration of ΦM starting from the largest set ×i∈I∆Ai.

The argument of Theorem 3 also applies naturally here to the intended strategy profile
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κ = (κi)i∈I defined in (10). Define an intended mixed strategy profile a ∈ A as a limit

intended mixed strategy profile of (κt)t if there exists a subsequence (κtk)k with κtk → a.

Equivalently, for every open neighborhood U ⊆ ×i∈I∆Ai of κ, κt ∈ U for infinitely many t.

Theorem 5. Consider a game with independent payoff perturbations. Almost surely, every

limit intended mixed-strategy profile is a Berk–Nash rationalizable mixed-strategy profile.

Proof. See the Appendix.

Finally, we consider the special case of a correctly specified and identified game. By the

usual argument, these assumptions imply that we can replace the belief µi in the definition

of ΦM with a degenerate belief at the truth, so that players best respond to correct beliefs.

Proposition 4. Consider a game with independent payoff perturbations that is correctly

specified and identified. Then for every Σ ⊆ ×i∈I∆Ai,

ΦM(Σ) :=
{

σ ∈ ×i∈I∆Ai : ∃ σ̂ ∈ Σ such that ∀i, σi = bri
(
·
∣∣ σ̂−i

) }
, (11)

where bri is player i’s correct best response probabilistic function.16

We can contrast our operator to Bernheim and Pearce’s original definition of (indepen-

dent) rationalizability applied to mixed strategies. The BP-operator ΦBP is, for any product

set Σ = ×i∈IΣ
i ⊆ ×i∈I∆Ai,

ΦBP (×i∈IΣ
i) :=

{
σ ∈ ×i∈I∆Ai : ∀i, ∃ σ̂−i ∈ ×j ̸=iΣ

j s.t. σi = bri
(
·
∣∣ σ̂−i

) }
.

Independent payoff perturbations eliminate correlated strategies (and hence correlated

conjectures about others’ play), pushing outcomes to product form. Nevertheless, the com-

mon history still ties players’ conjectures to a single reference profile: BP permits player-

specific opponent references drawn independently from ×j ̸=iΣ
j, whereas ΦM requires one

σ̂ ∈ Σ to underlie all conjectures simultaneously. This couples the coordinates and generally

yields a smaller, non-product image (the restriction is vacuous only with two players).

Theorem 6. In correctly specified and identified games with independent payoff perturba-

tions, the Berk–Nash rationalizable set is contained in the (independent) rationalizable set.

In two-player games, the two sets coincide.

16Formally, for correct beliefs define U i(ai, σ−i) :=
∫
A−i

∫
Yi π

i(ai, yi)Qi(dyi | ai, a−i)σ−i(da−i).

Given payoff perturbations εi, the stochastic best response is the probability kernel bri(B | σ−i) :=
Pεi
(
argmaxx∈Ai{U i(x, σ−i) + εi(x)} ∈ B

)
for all Borel B ⊆ Ai.

27



6.3 Player-specific histories

We relax the common-history assumption by allowing each player to maintain a personal,

possibly selective, subsample of periods. Formally, for each player i there is an increasing

sequence of time indices (τ in)n≥1 ⊂ N with τ in → ∞. Whenever a period τ = τ in lies in i’s

subsample, she observes the entire action profile aτ from that period and her own realized

consequence yiτ . Let N
i
t := max{n : τ in ≤ t} denote the number of retained periods up to t,

and assume N i
t → ∞.

Player i’s personal empirical distribution over action profiles is

σ̂ i
t ∈ ∆A, σ̂ i

t (B) =
1

N i
t

N i
t∑

n=1

1B(aτ in) for Borel B ⊆ A.

Forecasts are assumed to be pathwise subsequence consistent with respect to the player’s

own empirical distribution: along any realized path and any subsequence (tk) for which

σ̂ i
tk
⇒ σ̂i, we have σ̃−i

tk
⇒ (σ̂i)−i.

With player-specific histories, the rationalizability operator permits each player to anchor

beliefs on (potentially) different empirical limits:

ΓW (A) :=
{
a ∈ A : ∀i ∈ I, ∃σi ∈ ∆A and µi ∈ ∆Θm,i(σi) such that ai ∈ F i

(
µi, (σi)−i

)}
.

Definition 7 (Berk–Nash weak rationalizability). An action profile a is weakly Berk–Nash

rationalizable if there exists A ⊆ A such that a ∈ A ⊆ ΓW (A).

Theorem 7. In a game with Bayesian players and consistent forecasts relative to their own

empirical subsamples, almost surely every limit action profile is weakly Berk–Nash rational-

izable.

Proof. The proof is essentially identical to the proof of Theorem 3, so we only provide a

sketch. Fix a realized path and a limit action profile a from the set of limit action profiles

Z. For each player i, pass to a subsequence (tk) along which σ̂ i
tk

⇒ σi and µi
tk

⇒ µi. By

pathwise subsequence consistency (relative to σ̂ i), σ̃−i
tk

⇒ (σi)−i. The usual Berk argument

applied player by player yields µi ∈ ∆Θm,i(σi). Closed-graph properties of F i then give

ai ∈ F i(µi, (σi)−i) for each i, so a ∈ ΓW (Z), completing the adaptation.
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Correct specification and identification. Under correct specification and identifica-

tion, beliefs collapse to that truth and ΓW (A) becomes

ΓW (A) =
{
a ∈ A : ∀i ∈ I, ∃σi ∈ ∆A s.t. ai ∈ BRi

(
(σi)−i

)}
.

This operator coincides with the Bernheim–Pearce (correlated) operator. In ΓBP, one

rationalizes a by, for each i, choosing any conjecture σ−i ∈ ∆A−i with ai ∈ BRi(σ−i). Given

such a marginal, one can extend it to some σi ∈ ∆A whose (−i)-marginal is σ−i; hence

ΓW (A) = ΓBP(A).

Theorem 8. In correctly specified and identified games, the Berk–Nash weakly rationalizable

set coincides with the (correlated) rationalizable set.

In the special case of correctly specified and identified games, players only need to forecast

opponents’ actions. Milgrom and Roberts (1991) define adaptive forecasts—beliefs that

assign vanishing probability to action profiles that do not persist—and show that, under such

forecasts, play converges to the set of (correlated) BP-rationalizable profiles. Our forecasting

rule (placing vanishing probability on profiles not observed along the player’s subsequence)

is a special case of adaptive forecasts. Hence, in correctly specified and identified settings,

their result implies convergence to the BP-rationalizable set. Equivalently, this conclusion

follows here by combining Theorems 7 and 8.

6.4 Other solution concepts

Aumann’s (1974) correlated equilibrium has two defining features: (i) it permits correlated

play; and (ii) it imposes conditional best responses—whenever an action is used with positive

probability, it must be optimal given the conditional distribution of opponents actions in

those instances. Its learning foundations come from calibrated best responses (Foster and

Vohra 1997), conditional universal consistency (Fudenberg and Levine 1999), and regret

matching (Hart and Mas-Colell 2000), all of which implement this conditional best-response

logic. By contrast, in our solution concept only the first feature is present: correlation may

arise from common history, but players best respond to the marginal distribution of others’

play rather than to conditional distributions. A natural extension is to allow conditional

forecasts and best responses within our framework.

Following Basu and Weibull (1991), a set of action profiles A is closed under rational

behavior (curb) if it is closed under Γ, i.e., Γ(A) ⊆ A, where Γ is the best-response operator
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(and, more generally, may be taken to be the Berk–Nash operator used in our paper). A

minimal curb set is a curb set that contains no proper curb subset; equivalently, these are

the minimal fixed points of Γ. In contrast, (Berk-Nash) rationalizability calls a set A self-

justified if A ⊆ Γ(A). The union of all self-justified sets is the set of rationalizable action

profiles, and it is characterized as the largest fixed point of Γ. As noted by Basu and Weibull

(1991), minimal curb sets (minimal fixed points) and the rationalizable set (largest fixed

point) are opposite ends of a spectrum. Our limiting results exclude actions outside the

rationalizable set but do not rule out actions that are rationalizable yet not contained in

any minimal curb set. An open question is to identify conditions—on the dynamics and on

game primitives—under which our conclusions can be strengthened to imply convergence to

minimal curb sets or to some other set that may be strictly contained in the rationalizable

set.

7 Appendix

Lemma 2. 1. For each i ∈ I, the best-response correspondence F i(µi, σ−i) ⊆ Ai is

nonempty, compact-valued, and upper hemicontinuous in (µi, σ−i).

2. For each i ∈ I, the set of KL minimizers Θm,i(σ) ⊆ Θi is nonempty, compact-valued,

and upper hemicontinuous in σ.

Proof. (i) Fix i and define

Ū i(ai, θi, a−i) :=

∫
Yi

πi(ai, yi) qiθi(y
i | ai, a−i) νi(dyi).

By Assumption 3.1(ii) the integrand is νi-a.e. continuous in (ai, θi, a−i). By Assump-

tion 3.1(iv) and the LR bound in Assumption 3.1(iii), |πi(ai, yi)| ≤ hi
π(y

i) and qiθi ≤ M i qi ≤
M iri, hence |πiqiθi | ≤ hi

πM
iri with

∫
hi
πM

iri dνi < ∞. Thus Ū i is jointly continuous and

uniformly bounded. For (µi, σ−i) ∈ ∆(Θi)×∆(A−i) set

V i(ai, µi, σ−i) :=

∫
Θi

∫
A−i

Ū i(ai, θi, a−i)σ−i(da−i)µi(dθi).

Because Ū i is bounded and continuous, (ai, µi, σ−i) 7→ V i(ai, µi, σ−i) is continuous under

the weak topologies on ∆(Θi) and ∆(A−i). Since Ai is nonempty and compact (Assump-
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tion 3.1(i)), Weierstrass yields nonemptiness and compactness of

F i(µi, σ−i) := arg max
ai∈Ai

V i(ai, µi, σ−i).

By Berges Maximum Theorem, (µi, σ−i) 7→ F i(µi, σ−i) is upper hemicontinuous.

(ii) By Assumption 3.1(iii), for νi-a.e. and all (θi, a), |gi(θi, y, a)| =
∣∣ log(qi/qiθi)∣∣ ≤

logM i ≤ M i and qi ≤ ri, with
∫
M iri dνi < ∞. Hence

|Ki(θi, a)| =
∣∣∣ ∫ qi log

qi

qi
θi
dνi
∣∣∣ ≤ ∫ M iri dνi < ∞,

uniformly in (θi, a). Let (θin, an) → (θi, a). By Assumption 3.1(ii), qi(· | an) → qi(· | a) and
qiθin(· | an) → qiθi(· | a) a.e. If qiθi > 0 then continuity of (u, v) 7→ u log(u/v) on {u ≥ 0, v > 0}
gives qi(· | an) log

(
qi(· | an)/qiθin(· | an)

)
→ qi(· | a) log

(
qi(· | a)/qiθi(· | a)

)
a.e. If qiθi = 0,

then by the LR bound qi = 0 as well and | log(qi(· | an)/qiθin(· | an))| ≤ logM i ≤ M i while

qi(· | an) → 0, hence the product converges to 0. Moreover,

∣∣qi(· | an) log(qi(· | an)/qiθin(· | an))∣∣ ≤ M iri ∈ L1(νi),

so by the Dominated Convergence Theorem Ki(θin, an) → Ki(θi, a). Thus (θi, a) 7→ Ki(θi, a)

is bounded and continuous. Consequently (θi, σ) 7→ Ki(θi, σ) is continuous on the compact

set Θi×∆A (weak topology on ∆A). For each σ, Θi is compact and θi 7→ Ki(θi, σ) is contin-

uous, so Θm,i(σ) := argminθi∈Θi Ki(θi, σ) is nonempty and compact. Upper hemicontinuity

of σ 7→ Θm,i(σ) follows from Berge’s Maximum Theorem.

Lemma 3. (i) Γ is nonempty valued; (ii) For any closed A ⊆ A, the set Γ(A) is closed.

Proof. (i) Nonemptiness follows from the nonemptiness of Θm and F (Lemma 2 (1),(2)).

(ii) Let (an)n in Γ(A) with an → a. For each n, there exists σn ∈ ∆A such that for every

i ∈ I there is µi
n ∈ ∆Θm,i(σn) with ain ∈ F i(µi

n, σ
−i
n ). Since A is closed in a compact set A, it

is also compact, so ∆A is also compact. Therefore (passing to a subsequence if necessary),

σn ⇒ σ ∈ ∆A. Because taking opponents’ marginals is the pushforward by the (continuous)

projection, weak convergence is preserved: for each i, σ−i
n ⇒ σ−i. By Lemma 2(ii), the

correspondence Θm,i is upper hemicontinuous and compact-valued, so along a subsequence

we may assume µi
n → µi ∈ ∆Θm,i(σ). By Lemma 2(i), the best-response correspondence F i

is upper hemicontinuous, so taking limits gives ai ∈ F i(µi, σ−i). Since this holds for all i ∈ I,

we conclude a ∈ Γ(A). Thus Γ(A) is closed.
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7.1 Proof of Theorem 2

Let P(A) denote the power set of A, and consider the partially ordered set (P(A),⊆). Define

the set of sets self-justified under Γ as C := {A ⊆ A : A ⊆ Γ(A)}. Then the set of Berk–

Nash rationalizable actions is given by B′ := ∪B∈CB, which is the supremum of C. Since Γ is

monotone, Tarski’s fixed point theorem implies that B′ is the largest fixed point of Γ. The

iterative characterization follows from Kleene’s fixed point theorem, i.e., B = B′.

Monotonicity of Γ ensures that the sequence {Bk} is nested. Moreover, by Lemma 3

in the appendix, Γ is nonempty-valued and maps closed sets to closed sets. So, starting

from the feasible set B0 = A, each iterate Bk is nonempty and closed (hence, compact).

The infinite intersection of nested, nonempty compact sets is nonempty, so B =
⋂

k≥0B
k is

nonempty and compact.

7.2 Example in Section 3.3

We provide a tighter characterization of the iteration of Γ and prove the statement in the

text about the threshold k∗.

Fix the box [0,M ] × [0, N ]2. For any belief σ supported in this box with Eσ[a
1] = µ ∈

[0,M ], and for i ∈ {2, 3}, set X := a1ai. The KL-minimizer is

θm,i(σ) = θ∗
Eσ

[
(α +X)(α∗ +X)

]
Eσ

[
(α +X)2

] = θ∗
αα∗ + (α + α∗)µX + νX

α2 + 2αµX + νX
,

where µX := Eσ[X] and νX := Eσ[X
2]. Under only the support and mean constraints,

0 ≤ µX ≤ Nµ, 0 ≤ νX ≤ N2 Eσ

[
(a1)2

]
≤ N2 µM,

with the lower bounds attained by ai ≡ 0, a1 ≡ µ, and the upper bounds by ai ≡ N and a

twopoint distribution for a1 ∈ {0,M} with mean µ. Since θm,i(σ) is increasing in (µX , νX)

for α > α∗,

θm,i(σ) ∈

[
θ∗
α∗

α
, θ∗

αα∗ + (α + α∗)Nµ+N2µM

α2 + 2αNµ+N2µM

]
.

The worker best response is ai(σ) = (c′)−1
(
µ θm,i(σ)

)
, hence

ai(σ) ∈
[
(c′)−1

(
µ θ∗ α

∗

α

)
, (c′)−1

(
µ θ∗ αα

∗+(α+α∗)Nµ+N2µM
α2+2αNµ+N2µM

)]
.
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Define diff(µ) := U(µ)− L(µ), where

L(µ) = (c′)−1
(
µ θ∗ α

∗

α

)
, U(µ) = (c′)−1

(
µ θ∗

αα∗ + (α + α∗)Nµ+N2µM

α2 + 2αNµ+N2µM

)
.

We show below that diff(·) is nondecreasing. It follows that

k∗ = sup
µ∈[0,M ]

diff(µ) = (c′)−1
(
M θ∗ α

∗+NM
α+NM

)
− (c′)−1

(
M θ∗ α

∗

α

)
,

and in the text we use M = M∞ and N = N∞.

Proof that diff(·) is nondecreasing: Let

L(µ) = (c′)−1
(
ℓ(µ)

)
, ℓ(µ) = µ θ∗ α

∗

α
, U(µ) = (c′)−1

(
u(µ)

)
, u(µ) = µ θ∗r(µ),

with

r(µ) =
αα∗ + (α + α∗)Nµ+N2M µ

α2 + 2αNµ+N2M µ
.

Define the inner gap

g(µ) := u(µ)− ℓ(µ) = θ∗µ
(
r(µ)− α∗

α

)
.

A direct calculation yields

r′(µ) =
N α(α− α∗)(α +NM)(
α2 + 2αNµ+N2Mµ

)2 > 0 (α > α∗),

hence g′(µ) ≥ 0, with equality only at µ = 0. Thus u(µ)− ℓ(µ) is increasing on (0,M ]. Since

(c′)−1 is increasing, the desired result follows.

Proof of Proposition 1

Suppose σtk ⇒ σ on A. The continuous mapping theorem applied to the projection onto

A−i gives σ−i
tk

⇒ σ−i and hence also σ−i
tk−1 ⇒ σ−i. Let wt :=

αi
0

αi
0+t−1

→ 0 and note that

σ̃−i
t = wtν

i + (1− wt)σ
−i
t−1. For any bounded continuous f : A−i → R,∫

f dσ̃−i
tk

= wtk

∫
f dνi + (1− wtk)

∫
f dσ−i

tk−1 −→
∫

f dσ−i,

because wtk → 0 and
∫
f dσ−i

tk−1 →
∫
f dσ−i. Thus σ̃−i

tk
⇒ σ−i.

33



References

Aumann, Robert J. 1974. “Subjectivity and correlation in randomized strategies.” Journal

of mathematical Economics, 1(1): 67–96.

Ba, Cuimin, and Alice Gindin. 2023. “A multi-agent model of misspecified learning with

overconfidence.” Games and Economic Behavior, 142: 315–338.

Basu, Kaushik, and Jörgen W Weibull. 1991. “Strategy subsets closed under rational

behavior.” Economics Letters, 36(2): 141–146.

Berk, Robert H. 1966. “Limiting behavior of posterior distributions when the model is

incorrect.” The Annals of Mathematical Statistics, 37(1): 51–58.

Bernheim, B Douglas. 1984. “Rationalizable strategic behavior.” Econometrica: Journal

of the Econometric Society, 1007–1028.

Bohren, J Aislinn. 2016. “Informational herding with model misspecification.” Journal of

Economic Theory, 163: 222–247.

Bohren, J Aislinn, and Daniel N Hauser. 2021. “Learning with heterogeneous misspec-

ified models: Characterization and robustness.” Econometrica, 89(6): 3025–3077.

Brandenburger, Adam, and Eddie Dekel. 1987. “Rationalizability and correlated equi-

libria.” Econometrica: Journal of the Econometric Society, 1391–1402.

Chauvin, Kyle. 2023. “A misattribution theory of discrimination.” working paper.

Eliaz, Kfir, and Ran Spiegler. 2020. “A model of competing narratives.” American

Economic Review, 110(12): 3786–3816.

Esponda, Ignacio. 2008. “Behavioral equilibrium in economies with adverse selection.”

American Economic Review, 98(4): 1269–1291.

Esponda, Ignacio, and Demian Pouzo. 2016. “Berk–Nash equilibrium: A framework

for modeling agents with misspecified models.” Econometrica, 84(3): 1093–1130.

Esponda, Ignacio, and Demian Pouzo. 2025. “Berk–Nash Rationalizability in Games

with Asymmetric Information.” Working paper.

34



Esponda, Ignacio, Demian Pouzo, and Yuichi Yamamoto. 2021. “Asymptotic be-

havior of Bayesian learners with misspecified models.” Journal of Economic Theory,

195: 105260.

Eyster, Erik, and Matthew Rabin. 2005. “Cursed equilibrium.” Econometrica,

73(5): 1623–1672.

Foster, Dean P, and Rakesh V Vohra. 1997. “Calibrated learning and correlated equi-

librium.” Games and Economic Behavior, 21(589): 40–55.

Frick, Mira, Ryota Iijima, and Yuhta Ishii. 2020. “Misinterpreting others and the

fragility of social learning.” Econometrica, 88(6): 2281–2328.

Frick, Mira, Ryota Iijima, and Yuhta Ishii. 2022. “Dispersed behavior and perceptions

in assortative societies.” American Economic Review, 112(9): 3063–3105.

Frick, Mira, Ryota Iijima, and Yuhta Ishii. 2023. “Belief convergence under misspeci-

fied learning: A martingale approach.” The Review of Economic Studies, 90(2): 781–814.

Frick, Mira, Ryota Iijima, and Yuhta Ishii. 2024. “Welfare comparisons for biased

learning.” American Economic Review, 114(6): 1612–1649.

Fudenberg, Drew, and David K Levine. 1999. “Conditional universal consistency.”

Games and Economic Behavior, 29(1-2): 104–130.

Fudenberg, Drew, and David M Kreps. 1993. “Learning mixed equilibria.” Games and

economic behavior, 5(3): 320–367.

Fudenberg, Drew, Giacomo Lanzani, and Philipp Strack. 2021. “Limit points of

endogenous misspecified learning.” Econometrica, 89(3): 1065–1098.

Fudenberg, Drew, Giacomo Lanzani, and Philipp Strack. 2024. “Selective-Memory

Equilibrium.” Journal of Political Economy, 132(12): 3978–4020.

Fudenberg, Drew, Gleb Romanyuk, and Philipp Strack. 2017. “Active learning with

a misspecified prior.” Theoretical Economics, 12(3): 1155–1189.

Hart, Sergiu, and Andreu Mas-Colell. 2000. “A simple adaptive procedure leading to

correlated equilibrium.” Econometrica, 68(5): 1127–1150.
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Supplemental Appendix

S1 Proof of Lemma 1

In this Supplemental Appendix, we provide the proof of Lemma 1 for completeness. As

remarked in the text, this proof is a straightforward extension of existing ones (e.g. Esponda,

Pouzo and Yamamoto (2021)) to a continuum of actions and convergent subsequences instead

of sequences.

The result holds for each player i. Henceforth, we drop the i superscript from the notation

and focus on an individual player.

Define

Lt(a
∞, y∞)(θ) := t−1

t∑
τ=1

ln
q(yτ | aτ )
qθ(yτ | aτ )

.

We will use the following fact:

Uniform SLLN. For any a∞, there exists Ya∞ with P(Ya∞ | a∞) = 1 such that, for any

y∞ ∈ Ya∞ and for every ε > 0 there exists T 1
ε (a

∞, y∞) such that for all t ≥ T 1
ε (a

∞, y∞),

sup
θ∈Θ

|Lt(a
∞, y∞)(θ)−

∫
K(θ, a)σt(a

∞)(da)| < ε. (S1)

See Section S1.1 for a proof of this result.

From this point on, we fix any a∞ and consider any y∞ ∈ Ya∞ . For simplicity, we drop

(a∞, y∞) from the notation. Let (σtk)k be a subsequence converging to σ and let E ⊆ Θ be

a closed set disjoint from Θm(σ). We rely on the following two results:

Approximate (σtk)k with its limit σ. Since K is continuous and Θ is compact, then for

every ε > 0, there exists T 2
ε such that, for all k such that tk ≥ T 2

ε ,

sup
θ∈Θ

|
∫

K(θ, a)σtk(da)−
∫

K(θ, a)σ(da)| < ε.

E is well separated. Since K is continuous and E is closed in a compact set (hence,

compact), there exists δ > 0 such that for all θ ∈ E,∫
K(θ, a)σ(da) ≥ K∗(σ) + δ,

1



where K∗(σ) := minθ∈Θ
∫
K(θ, a)σ(da).

We now prove (8) in Lemma 1. For any ξ > 0, note that

µtk(E) =

∫
E
e−tLtk

(θ)µ0(dθ)∫
Θ
e−tLtk

(θ)µ0(dθ)
≤

∫
E
e−tkLtk

(θ)µ0(dθ)∫
Θξ(σ)

e−tkLtk
(θ)µ0(dθ)

,

where Θξ(σ) := {θ ∈ Θ :
∫
K(θ, a)σ(da) ≤ K∗(σ) + ξ}.

Consider first the numerator. From UniformSLLN, the approximation of (σtk)k with its

limit σ, and well separation of E, it follows that, for all k such that tk ≥ max{T 1
ε , T

2
ε },

Ltk(θ) ≥ K∗(σ) + δ − 2ε for all θ ∈ E, and so∫
E

e−tkLtk
(θ)µ0(dθ) ≤ µ0(E)e−tk(K

∗(σ)+δ−2ε). (S2)

Next, consider the denominator. From UniformSLLN and the approximation of (σtk)k

with its limit σ, it follows that, for all k such that tk ≥ max{T 1
ε , T

2
ε }, Ltk(θ) ≤ K∗(σ)+ξ+2ε

for all θ ∈ Θξ(σ), and so∫
Θξ(σ)

e−tkLtk
(θ)µ0(dθ) ≥ µ0(Θξ(σ))e

−tk(K
∗(σ)+ξ+2ε). (S3)

Combining (S2) and (S3) and setting ε = ξ < δ/10, we obtain that for all k such that

tk ≥ max{T 1
ε , T

2
ε },

µtk(E) ≤ µ0(E)

µ0(Θξ(σ))
e−tk(δ/2).

Since Θ is compact and θ 7→
∫
K(θ, a)σ(da) is continuous, a minimizer θ∗ ∈ Θ exists and

satisfies θ∗ ∈ Θξ(σ). By continuity, there exists an open ball around θ∗ contained in Θξ(σ).

Since µ0 has full support, this ball has positive measure, so µ0(Θξ(σ)) > 0. Equation (8) in

the statement of Lemma 1 then follows by setting ρ = δ/2 > 0 and C = µ0(E)/µ0(Θξ(σ)).

Since µ0(E) ≥ 0 and µ0(Θξ(σ)) > 0, it follows that C ≥ 0 and C < ∞.

Suppose, in addition, that (µtk)k converges to µ. By equation (8), for any closed E

such that E ∩ Θm(σ) = ∅, lim infk→∞ µtk(E) = 0. By the Pormanteau lemma, µ(E) ≤
lim infk→∞ µtk(E) = 0. Now consider any θ ∈ Θ\Θm(σ). There exists an open neighborhood

Uθ with closure Ūθ such that Ūθ ∩Θm(σ) = ∅. Since Ūθ is closed, µ(Ūθ) = 0, and so θ is not

in the support of µ. Thus, supp µ ⊆ Θm(σ).

2



S1.1 Uniform

Esponda, Pouzo and Yamamoto (2021) (henceforth, EPY 2021) proves the uniform SLLN

(equation S1) for the case of a finite number of actions (see their Lemma 2). The proof for

the case where Ai is a compact subset of Euclidean space is essentially identical, but we need

to establish the following two claims uniformly for all actions.

Claim (uniform L2 bound for g). Fix i, θ ∈ Θi, and ε > 0. Then

sup
a∈A

∫
Yi

sup
θ′∈O(θ,ε)

[
gi(θ′, y, a)

]2
Qi(dy | a) < ∞.

Proof. For any a,∫
sup

θ′∈O(θ,ε)

[
gi(θ′, y, a)

]2
Qi(dy | a) =

∫
sup
θ′

∣∣∣log qi(y | a)
qiθ′(y | a)

∣∣∣2 qi(y | a) νi(dy).

By the LR bound, supθ′

∣∣log(qi/qiθ′)∣∣ ≤ logM i ≤ M i a.e., hence

≤
∫ (

logM i(y)
)2

qi(y | a) νi(dy) ≤ 2

∫
M i(y) qi(y | a) νi(dy),

where we used (log t)2 ≤ 2t for t ≥ 1. By the density envelope, qi(· | a) ≤ ri a.e., so

≤ 2

∫
M i(y) ri(y) νi(dy),

which is finite by Assumption 3.1(iii) and independent of a. Taking the supremum over

a ∈ A gives the claim.

Claim (uniform oscillation bound, eq. (12) in EPY 2021). Fix i, θ ∈ Θi, and ε > 0.

Then there exists δ(θ, ε) > 0 such that

sup
a∈A

EQi(·|a)

[
sup

θ′∈O(θ,δ(θ,ε))

∣∣gi(θ′, Y, a)− gi(θ, Y, a)
∣∣ ] < 0.25 ε.

Proof. Let Hr(y) := sup∥θ′−θ∥≤r, a∈A
∣∣gi(θ′, y, a) − gi(θ, y, a)

∣∣. By a.e.-continuity on the

compact set Θi ×A (Assumption 3.1(ii)), Hr(y) ↓ 0 for νi-a.e. y as r ↓ 0. By the LR bound

(Assumption 3.1(iii)), Hr(y) ≤ 2|gi(θ, y, a)| ≤ 2 logM i(y) ≤ 2M i(y) a.e., and by the density

3



envelope Qi(dy | a) = qi(y | a)νi(dy) ≤ ri(y)νi(dy). Hence, for every a,

EQi(·|a)

[
sup

θ′∈O(θ,r)

|gi(θ′, Y, a)− gi(θ, Y, a)|
]
≤
∫

Hr(y) q
i(y | a) νi(dy) ≤

∫
Hr(y) r

i(y) νi(dy).

Since Hr → 0 a.e. and Hr(·) ri(·) ≤ 2M i(·) ri(·) with
∫
2M iri dνi < ∞ (Assumption 3.1(iii)),

the Dominated Convergence Theorem yields
∫
Hrr

i dνi → 0 as r ↓ 0. Thus

sup
a∈A

EQi(·|a)

[
sup

θ′∈O(θ,r)

|gi(θ′, Y, a)− gi(θ, Y, a)|
]
≤
∫

Hrr
i dνi −−→

r↓0
0.

Choose δ(θ, ε) > 0 so that the right-hand side is < 0.25 ε.
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