








3 Asymptotic Properties of the MD Estimator 

In this section, we establish the asymptotic properties of the MD estimator. For any positive integer k, 
Let ξk = supz∈Z kPk(z)k and Qk = E [Pk(Z)P 0 (Z)], where Z denotes the support of Z. We frst state the k

suÿcient conditions for consistency. 

Assumption 1. (i) {(Yi, Zi)} and {(Xi, Zi)} are independent with i.i.d. observations; (ii) V ar [Y | Z] <i∈I1 i∈I2 

C; (iii) C−1 ≤ λmin(Qk) ≤ λmax(Qk) ≤ C for all k; (iv) there exist βh,k ∈ Rk and rh > 0 such that 

sup |h0(z) − Pk(z)
0βh,k| = sup |h0(z) − h0,k(z)| = O(k−rh ); (8) 

z∈Z z∈Z 

−1 −1(v) maxj=1,2 ξk
2 
j 
log(kj )nj = o(1) and k1n1 + k1 

−1 = o(1). 

Assumption 1 includes mild and standard conditions on nonparametric series estimation of conditional 
mean function (see, e.g. Andrews (1991), Newey (1997) and Chen (2007)). 

Defne h iX 
−1 2 2

Ln(θ) = n wn(Zi) |h0(Zi) − φ(Zi, θ)| and L ∗ (θ) = E wn(Z) |h0(Z) − φ(Z, θ)|n

i∈I 

for any θ ∈ Θ, where wn(·) is defned in Assumption 2(v) below. � � P−1Assumption 2. (i) supθ∈Θ E φ2(Z, θ) < C; (ii) n |φbn2 (Zi, θ) − φ(Zi, θ)|2 = op(1) uniformly overi∈I 

θ; (iii) for any ε > 0, there is ηε > 0 such that h i 
E |h0(Z) − φ(Z, θ)|2 

> ηε for any θ ∈ Θ with ||θ − θ0|| ≥ ε; 

−1/4 −1/4(iv) supθ∈Θ |Ln(θ) − Ln
∗ (θ)| = op(1); (v) supz∈Z |wbn(z) − wn(z)| = Op(δw,n) where δw,n = O(n1 + n2 ) 

and wn(·) is a sequence of non-random functions with C−1 ≤ wn(z) ≤ C for any n and any z ∈ Z. 

Assumption 2(i) imposes uniform fnite second moment condition on the function φ(Z, θ). Assumption 
2(ii) requires that the nonparametric estimator φbn2 (Zi, θ) of φ(Zi, θ) is consistent under the empirical L2 -
norm uniformly over θ ∈ Θ. Assumption 2(iii) is the identifcation condition of θ0. Assumption 2(iv) is 

2a uniform law of large numbers of the function w(Zi) |h0(Zi) − φ(Zi, θ)| indexed by θ. Assumption 2(v) 
requires that wbn(·) is approximated by a sequence of nonrandom function wn(·) uniformly over z. For the 
consistency of the MD estimator, it is suÿcient to have δw,n = o(1) in Assumption 2(v). The rate condition 

−1/4 −1/4
δw,n = O(n1 + n2 ) is needed for deriving the asymptotic normality of the MD estimator. It is clear 
that Assumption 2(v) holds trivially if wbn(·) is the identity function. 

Theorem 1. Under Assumptions 1 and 2, we have θbn = θ0 + op(1). 

For ease of notations, we defne 

∂2∂g(X,θ) g(X,θ)gθ(X, θ) = , gθθ(X, θ) = ,∂θ ∂θ∂θ0 

φθ(Z, θ) = E [ gθ(X, θ)| Z] , φθθ(Z, θ) = E [ gθθ(X, θ)| Z] , 
∂φbn2 (Z,θ) ∂2φbn2 (Z,θ)

(Z, θ) = , (Z, θ) = .φbθ,n2 ∂θ φbθθ,n2 ∂θ∂θ0 

By the consistency of θbn, there exists a positive sequence δn = o(1) such that θbn ∈ Nδn with probability ap-
proaching 1, where Nδn = {θ ∈ Θ : ||θ − θ0|| ≤ δn}. Defne H0,n = E [wn(Z)φθ(Z, θ0)φ0 (Z, θ0)]. Let φθj (z, θ)θ
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denote the j-th component of φθ(Z, θ). 
We next state the suÿcient conditions for asymptotic normality of θbn. 

Assumption 3. The following conditions hold: P−1 2(i) supθ∈Nn 
n kgθθ(Xi, θ)k = Op(1);2 i∈I2 

(ii) λmin(H0,n) > C−1;P −1/2−1(iii) n ||φbθ,n2 (Zi, θ0) − φθ(Zi, θ0)||2 = op(n );i∈I 2h i 
4(iv) E kφθ(Z, θ0)k < ∞;� � � � � � � � � 

2 4(v) E u �Z > C−1 , E ε2�Z > C−1 and E u + ε4�Z < C; 
(vi) supz∈Z |wn(z)φθj (z, θ0) − Pk

0 (z)βwφj ,n,k| = o(1) where βwφj ,n,k ∈ Rk (j = 1, . . . , dθ); 
−1/2 1/2(vii) maxj=1,2(kj n + k−rh n ) = o(1).j j j 

2Assumptions 3(i) holds when kgθθ(x, θ)k < C for any x and any θ in the local neighborhood of θ0. The 
lower bound of the eigenvalue of H0,n in Assumptions 3(ii) ensures the local identifcation of θ0. Assumptions 

−1/43(iii) requires that the convergence rate of φbθ,n2 (Zi, θ0) under the empirical L2-norm is faster than n2 . 
Assumptions 3(iv) imposes fnite second moment on the derivative function φθ(Z, θ0). Assumption 3(v) 
imposes moment conditions on the projection errors u and ε which are useful for deriving the asymptotic 
normality of the MD estimator. Assumption 3(vi) requires that the function wn(z)φθj (z, θ0) can be approx-
imated by the basis functions. Assumption 3(vii) imposes restrictions on the number of basis functions and 
the smoothness of the unknown function h0. � � � � � � 

2Let σu
2 (Z) = E u �Z , σε 

2(Z) = E ε2�Z and φwθ,n = (wn(Zi)φθ(Zi, θ))i∈I . Defne 

Q−1 Q−1 P 0 φ0φwθ,nPn,k1 n1,k1 
Qn1,u n1,k1 n,k1 wθ,n 

Σn1 ≡ 
n2n1 P−1where Qn1,u = n σ2 (Zi)Pk1 (Zi)P 0 (Zi), and 1 i∈I1 u k1 

Q−1 P 0 φ0Qn2,εQ
−1φwθ,nPn,k2 n2,k2 n2,k2 n,k2 wθ,n 

Σn2 ≡ 
n2n2 P−1where Qn2,ε = n σε 

2(Zi)Pk2 (Zi)P 0 (Zi).2 i∈I2 k2 

Theorem 2. Under Assumptions 1, 2 and 3, we have 

−1/2 −1/2
θbn − θ0 = Op(n + n ) (9)1 2 

and moreover 
γ0 (H0,n(Σn1 +Σn2 )

−1H0,n)
1/2(θbn − θ0) →d N(0, 1) (10)n

for any non-random sequence γn ∈ Rdθ with γn0 γn = 1. 

Remark 1. The frst result of Theorem 2, i.e., (9), implies that the convergence rate of the MD estimator 
−1/2 −1/2is of the order max{n , n }.1 2 
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Remark 2. By the Cramer-Wold device and Theorem 2, we know that 

(H0,n(Σn1 +Σn2 )
−1H0,n)

1/2(θbn − θ0) →d N(0dθ , Idθ ), (11) 

which together with the continuous mapping theorem (CMT) implies that, 

(θbn − θ0)
0(H0,n(Σn1 +Σn2 )

−1H0,n)(θbn − θ0) →d χ
2(dθ). (12) 

Moreover, let ι∗ 
j be the dθ × 1 selection vector whose j-th (j = 1, . . . , dθ) component is 1 and rest components 

are 0. Defne 
)−1/2(H0,n(Σn1 +Σn2 )

−1H0,n
γj,n = ι ∗, for j = 1, . . . , dθ. 

(ι∗0 )−1ι∗)1/2 j 
j (H0,n(Σn1 +Σn2 )

−1H0,n j 

It is clear that γ0 γj,n = 1, and by Theorem 2, we have j,n

γ0 (Σn1 +Σn2 )1/2(bj,n(H0,n )−1H0,n θn − θ0) 

θbj,n − θj,0 
= →d N(0, 1) (13)
(ι∗0 )−1ι∗)1/2 

j (H0,n(Σn1 +Σn2 )
−1H0,n j 

= ι∗0 b = ι∗0where θbj,n θn and θj,0 j θ0. Results in (12) and (13) can be used to conduct inference on θj,0 and θ0j 

if the consistent estimators of H0,n, Σn1 and Σn2 are available. 

4 Optimal Weighting 

In this section, we compare the MD estimators through their fnite sample variances. The comparison leads 
to an optimal weight matrix which gives MD estimator with smallest fnite sample variance, as well as 
asymptotic variance, among all MD estimators. The following lemma simplifes the fnite sample variance-
covariance matrix which facilitates the comparison of the MD estimators. 

Lemma 1. Under Assumptions 1(i), 1(iii), 1(v), 2(v) and 3(iv)-3(vi), 

H−1 )H−1(Σn1 +Σn2 = Vn,θ(1 + op(1)).0,n 0,n � � � � 
2 −1 −1where Vn,θ = H−1E w (Z) n σ2 (Z) + n σε 

2(Z) φθ(Z, θ0)φ0 (Z, θ0) H
−1 .0,n n 1 u 2 θ 0,n

If the sequence of the weight function is set to be 

∗ −1 −1 −1 −1 w (Z) = (n + n )(n σ2 (Z) + n σε 
2(Z))−1 , (14)n 1 2 1 u 2 

then the fnite sample variance of the MD estimator becomes "� #!−1�−1
σ2 (Z) σε 

2(Z)uV ∗ = E + φθ(Z, θ0)φθ
0 (Z, θ0) . (15)n,θ n1 n2 

The next lemma shows that V ∗ is the smallest asymptotic variance-covariance of the MD estimator. θ 

Theorem 3. For any sequence of weight functions wn(Z), we have Vn,θ ≥ V ∗ for any n1 and any n2.n,θ 
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We call the MD estimator whose fnite sample variance-covariance matrix equals V ∗ optimal MD estima-θ 
∗tor. To ensure the optimal MD estimator is feasible, we have to: (i) show that C−1 < w (z) < C for any z ∈n

∗ ∗ ∗Z and any n1, n2; and (ii) construct an empirical weight function wbn(z) such that supz∈Z |wbn(z) − wn(z)| = 
−1/4 −1/4 ∗), where δw,n = O(n + n ). In the rest of this section, we show that w (z) is bounded from Op(δw,n 1 2 n

∗above and from below. Construction of the empirical weight function wb (·) is studied in the next section. n

Lemma 2. Under Assumption 3(v), C−1 < w ∗ (z) < C for any z ∈ Z and any n1, n2.n

5 Estimation of the Variance and Optimal Weighting 

The estimator of the variance-covariance matrix is constructed by its sample analog. Let ubi = Yi − bhn1 (Zi) 

for any i ∈ I1, and εbi = g(Zi, θbn) − φbn2 (Zi, θbn) for any i ∈ I2. Defne X b −1 b )b b )0Hn = n wbn(Zi)φbθ,n2 (Zi, θn φθ,n2 (Zi, θn , 
i∈I b Q−1 b Q−1 P 0 φb0φwθ,nPn,k1 n1,k1 

Qn1,u n1,k1 n,k1 wθ,n bΣn1 = , 
n2n1 b Q−1 b P 0 φb0 b φwθ,nPn,k2 Qn2,εQ

−1 
n2,k2 n2,k2 n,k2 wθ,n 

Σn2 = , 
n2n2 P Pb b −1 2 −1 ε2where φbwθ,n = ( wbn(Zi)φbθ,n2 (Zi, θn))i∈I , Qn1,u = n1 i∈I1 

ubi Pk1 (Zi)P 0 (Zi) and Qbn2,ε = n2 i∈I2 
bi Pk2 (Zi)P 0 (Zi).k1 k2 

The variance estimator is defned as 

Vbn = Hb−1(Σbn1 +Σ
b
n1 )H

b−1 . (16)n n 

The following conditions are needed to show the consistency of Vbn and the empirical optimal weight function 
constructed later in this section. 

−1 2Assumption 4. (i) supθ∈Nn 
n2 

P 
i∈I2 

kgθ(Xi, θ)k = Op(1); (ii) there exist βu,k ∈ Rk and ru > 0 such 
that � � 

sup �σ2 (z) − Pk(z)
0βu,k

� = O(k−ru ); (17)u
z∈Z 

(iii) there exist βε,k ∈ Rk and rε > 0 such that 

� � 
sup �σε 

2(z) − Pk(z)
0βε,k

� = O(k−rε ); (18) 
z∈Z 

1/2 −1/2 
k−rh 4(iv) maxj=1,2(ξkj k n + ξkj ) = o(1); (v) E[kgθ(X, θ0)k ] ≤ C.j j j 

Assumption 4(i) requires that the sample average of kgθ(Xi, θ)k is stochastically bounded uniformly over 
the local neighborhood of θ0. Assumptions 4(ii) and 4(iii) implies that the conditional variances σ2 (z)u

and σε 
2(z) can be approximated by the basis functions Pk(z). Assumption 4(iv) imposes restrictions on 

the numbers of basis functions and the smoothness of the conditional variance functions. Assumption 4(v) 
imposes fnite fourth moment on gθ(X, θ0). 

Theorem 4. Suppose Assumptions 1, 2, 3, 4(i) and 4(iv) hold. If (k1 + k2)δ2 = o(1), then we have w,n 

Hbn 
−1(Σbn1 +Σ

b
n1 )H

b
n 
−1 = H0

−
,n
1(Σn1 +Σn2 )H0

−
,n
1(1 + op(1) (19) 
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and moreover, 
)−1 b 1 

γn
0 (Hbn(Σbn1 +Σ

b
n1 Hn) 2 (θbn − θ0) →d N(0, 1), (20) 

for any non-random sequence γn ∈ Rdθ with γn0 γn = 1. 

Remark 3. By the consistency of the Hbn(Σbn1 +Σ
b
n1 )

−1Hbn and CMT, 

(Hbn(Σbn1 +Σ
b
n1 )

−1Hb )1/2(θbn − θ0) →d N(0, Idθ ), 

which together with the CMT implies that 

Wn(θ0) = (θbn − θ0)
0(Hbn(Σbn1 +Σ

b
n1 )

−1Hb )(θbn − θ0) →d χ
2(dθ). (21) 

Recall that ι∗ 
j is the dθ × 1 selection vector whose j-th (j = 1, . . . , dθ) component is 1 and rest components 

are 0. By the consistency of the Hbn(Σbn1 +Σ
b
n1 )

−1Hbn, we have 

ι∗0 b (b + b )−1 b ι ∗ = ι∗0 j H
−1 )H−1ι ∗ Hn Σn1 Σn1 Hn (Σn1 +Σn2 j (1 + op(1)j j 0 0 

which together with (13) and the CMT implies that 

θbj,n − θj,0 
tj,n(θj,0) = q →d N(0, 1). (22) 

Hn Σn1 Σn1 Hι∗ι∗0 j 
b (b + b )−1 b

j 

The Student-t statistic in (22) and the Wald-statistic in (21) can be applied to conduct inference on θj,0 for 
j = 1, . . . , dθ and joint inference on θ0 respectively. 

Remark 4. Theorem 4 can be applied to conduct inference on θ0 using the identity weighted MD estimator 
θb1,n defned as X 

−1θb1,n = arg min n (bhn1 (Zi) − φbn2 (Zi, θ))
2 . (23)

θ∈Θ 
i∈I 

As the identity weight function satisfes Assumption 2(v) and the condition (k1 + k2)δ2 = o(1) holdsw,n 

trivially, under Assumptions 1, 2(i)-(iv) and 3, Theorem 2 implies that 

−1/2 −1/2
θb1,n − θ0 = Op(n1 + n2 ). (24) 

The identity weighted MD estimator can be used to construct the empirical weight function which enables us 
to construct the optimal MD estimator. 

Let ubi = Yi − bhn1 (Zi) for any i ∈ I1, and εei = g(Zi, θb1,n) − φbn2 (Zi, θb1,n) for any i ∈ I2. Defne 

∗ −1 −1 −1 −1σ2 σ2 wbn(z) = (n1 + n2 )(n1 bn,u(z) + n2 bn,ε(z))−1 , (25) 
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σ2 σ2where b (z) and bn,ε(z) are the estimators of the conditional variances σ2 (z) and σε 
2(z):n,u u

−1 −1σb2 (z) = n P 0 (z)Q−1 P 0 b and σb2 P 0 (z)Q−1 P 0 b , (26)n,u 1 k1 n1,k1 n1,k1 
U2,n1 n,ε(z) = n2 k2 n2,k2 n2 ,k2 

e2,n2 

b 2 ε2where U2,n1 = (ubi )0 and eb2,n2 = (ei )0 . The optimal MD estimator is defned as i∈I1 i∈I2 X 
−1 ∗ θbn 

∗ = arg min n wbn(Zi)(bhn1 (Zi) − φbn2 (Zi, θ))
2 . (27)

θ∈Θ 
i∈I 

θ∗ ∗To show the optimality of b , it is suÿcient to show that wb (Zi) satisfes the high level conditions inn n

Assumption 2(v). For this purpose, we frst derive the convergence rates of σb2 (z) and σb2 
n,u n,ε(z). 

Lemma 3. Under Assumptions 1, 2(i)-(iv), 3 and 4, we have 

� � �σb2 (z) − σ2 � 1/2 −1/2 
+ k−ru k−2rhsup (z) = Op(ξk1 (k n ) + ξ2 ),n,u u 1 1 1 k1 1 

z∈Z 

and � � 1/2 −1/2 −1 + k−2rhsup �σb2 
ε (z)� = Op(ξk2 (k n + k−rε ) + ξ2 (n )).n,ε(z) − σ2 

2 2 2 k2 1 2 
z∈Z 

Remark 5. Under Assumption 4(iv) and 

k−ru k−rε + ξ2 −1+ ξk2 n = o(1), (28)ξk1 1 2 k2 1 

Lemma 3 implies that 

� � � � 
sup �σb2 (z) − σ2 (z)� = op(1) and sup �σb2 

ε (z)� = op(1), (29)n,u u n,ε(z) − σ2 

z∈Z z∈Z 

σ2 σ2which means that b (z) and bn,ε(z) are consistent estimators of σ2 (z) and σε 
2(z) under the uniform metric. n,u u

Theorem 5. Under (28), Assumptions 1, 2(i)-(iv), 3 and 4, we have 

∗ sup |wb (z) − w ∗ (z)| = Op(δw,n)n
z∈Z 

1/2 −1/2 
k−2rh k−ru k−rε −1where δw,n = maxj=1,2(ξkj kj nj + ξk

2 
j j ) + ξk1 1 + ξk2 2 + ξk

2 
2 
n1 . 

Remark 6. When the power series are used as the basis functions Pk(z), we have ξkj ≤ Ckj . Then the 
convergence rate of δw,n is simplifed as 

3/2 −1/2 
+ k2−2rh + k1−rε + k2 −1δw,n = max(kj nj j ) + k1

1−ru 
2 2 n1 . 

j=1,2

−1 −1Hence in this case δw,n = o(1), if maxj=1,2 kj 
3n + k2

2n = o(1), rh > 1, ru > 1 and rε > 1. The condition j 1 
−1/4 −1/4

δw,n = O(n + n ) hold when 1 2 

−1 8/3 −1 1/4
k2−2rh 1/4

k1−ru 1/4
k1−rεmax kj 

6 nj + k2 n1 = O(1) and max nj j + n1 1 + n2 2 = O(1). (30)
j=1,2 j=1,2 
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−1Moreover, (k1 + k2)δ2 = o(1) holds under (30) and k2 = o(1).w,n 2 n1 

Remark 7. When the splines or trigonometric functions are used as the basis functions Pk(z), we have 
1/2

ξkj ≤ Ckj . Then the convergence rate of δw,n is simplifed as 

−1/2 
+ k1−2rh 1/2−ru 1/2−rε −1 = max(kj n ) + k + k + k2n .δw,n j j 1 2 1

j=1,2

−1 −1Hence in this case δw,n = o(1), if maxj=1,2 kj 
2nj + k2

2n1 = o(1), rh > 1/2, ru > 1/2 and rε > 1/2. The 
−1/4 −1/4condition δw,n = O(n + n ) hold when 1 2 

k4 −1 8/3 −1 1/4
k1−2rh 1/4

k1−ru 1/4
k1−rεmax + k n = O(1) and max n + n + n = O(1). (31)j nj 2 1 j j 1 1 2 2

j=1,2 j=1,2 

−1Moreover, (k1 + k2)δw,n 
2 = o(1) holds under (31) and k22n = o(1).1 

6 Monte Carlo Simulation 

In this section, we study the fnite sample performances of the MD estimator and the proposed inference 
method. The simulated data is from the following model 

Yi = g(Xi, θ0) + vi, (32) 

where Yi, Xi and vi are scale random variables, g(Xi, θ0) is a function specifed in the following ( 
Xiθ0 in Model 1 

g(Xi, θ0) = , (33)
log(1 + X2θ0), in Model 2 i 

where θ0 = 1 is the unknown parameter. 
To generate the simulated data, we frst generate (X1∗ 

,i, X2
∗ 
,i, vi)

0 from the joint normal distribution with 
mean zero and identity variance-covariance matrix. Let 

Zi = X2
∗ 
,i(1 + X2

∗
,i
2 )−1/2 and Xi = Zi + X1

∗ 
,i log(Zi 

2). (34) 

We assume that (Yi, Zi) are observed together and (Xi, Zi) are observed together. We generate the frst data 
set {(Yi, Zi)} with sample size n1, and then independently generate the second data set {(Xi, Zi)}i∈I1 i∈I2 

with sample size n2. As both the magnitudes of n1, n2 and their relative magnitude are important to 
the fnite sample properties of the MD estimator, we consider two sampling schemes: equal sampling and 
unequal sampling separately. In the equal sampling scheme, we set n1 = n2 = n0 where n0 starts from 50 
with increment 50 and ends at 1000. In the unequal sampling, we set n1 + n2 = 1000 where n1 starts from 
100 with increment 50 and ends at 900. For each combination of n1 and n2, we generate 10000 simulated 
samples to evaluate the performances of the MD estimator and the proposed inference procedure. 
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Figure 6.1. Properties of the MD and the Imputation Estimators (n1 = n2) 

In addition to the MD estimator, we study two alternative estimators based on data imputation. The 
frst estimator (which is called the Y -imputed estimator in this section) is defned as X 

−1θbX,n = arg min n (Yi − g(Xbi, θ))
2 (35)1

θ∈Θ 
i∈I1 

b −1P 0 (Zi)Q
−1 P 

where Xi = n XiPk2 (Zi) for any i ∈ I1 is the predicted value of Xi in the frst data 2 k2 n2,k2 i∈I2 

set based on nonparametric regression. The second estimator (which is called the Y -imputed estimator in 
this section) is defned as X b −1 ( bθY,n = arg min n Yi − g(Xi, θ))

2 (36)2
θ∈Θ 

i∈I2 

−1where Ybi = n P 0 (Zi)Q
−1 P 

YiPk1 (Zi) for any i ∈ I2 is the predicted value of Yi in the second data 1 k1 n1,k1 i∈I1 
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set based on nonparametric regression. In the simulation studies, we set k1 = k2 = 5 and Pk1 (Z) = Pk2 (Z) = 

(1, Z, Z2, Z3, Z4). The minimization problem in the MD estimation and the nonlinear regressions (in (35) 
and (36)) are solved by grid search with Θ = [0, 2] and equally spaced grid points with grid length 0.001. 

Figure 6.2. Properties of the MD and the Imputation Estimators (n1 + n2 = 1000) 

The fnite sample properties of the identity weighted MD estimator (the green dashed line), the optimal 
weighted MD estimator (the black solid line), the X-imputed estimator (the blue dotted line) and the Y -
imputed estimator (the red dash-dotted line) are presented in Figures 6.1 and 6.2. In Figure 6.1, we see 
that the bias and variance of the two MD estimators converge to zero with the growth of both n1 and 
n2. The optimal weighted MD estimator has smaller bias and smaller variance, and hence smaller RMSE 
than the identity weighted MD estimator. The improvement of the optimal MD estimator over the identity 
weighted MD estimator is clearly investigated in model 1. The X-imputed estimator has almost the same 
fnite sample bias and fnite sample variance as the identity weighted MD estimator in the linear model 
(i.e., model 1). But it has large and non-convergent fnite sample bias in model 2, which indicates that 
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the X-imputed estimator may be inconsistent in general nonlinear models. The Y -imputed estimator has 
large and non-convergent fnite sample bias in both model 1 and model 2, which shows that it may be an 
inconsistent estimator in general. The fnite sample performances of the MD estimators and the two imputed 
estimators under unequal sampling scheme are presented in Figure 6.2. In this fgure, we see that when n1 

(or n2) is small, the fnite sample bias and variance of the MD estimators are large regardless how big n2 (or 
n1) is. This means that the main part in the estimation error of the MD estimator is from the component 
estimated by the smaller sample, which is implied by Theorem 2. 

Figure 6.3. Properties of the Confdence Intervals (n1 = n2) 

The fnite sample properties of the inference procedures based on the identity weighted MD estimator 
and the optimal weighted MD estimator are provided in Figures 6.3 and 6.4. In Figure 6.3, we see that the 
fnite coverage probabilities of the confdence intervals based on the MD estimators converge to the nominal 
level 0.9 with both n1 and n2 increase to 1000. In model 1, the coverage probability of the confdence interval 
based on the optimal MD estimator is closer to the nominal level than that based on the identity weighted 
MD estimator in all sample sizes we considered. In model 2, the confdence interval based on the optimal MD 
estimator is slightly worse than that based on the identity weighted MD estimator when the sample sizes n1 

and n2 are small, and the coverage probabilities of the two confdence intervals are identical and close to the 
nominal level when n1 and n2 are larger than 250. In both model 1 and model 2, the average length of the 
confdence interval of the optimal MD estimator is much smaller than that of the confdence interval of the 
identity weighted MD estimator, which is because the optimal MD estimator has smaller variance. The fnite 
sample performances of the confdence intervals based on the MD estimators under unequal sampling scheme 
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are presented in Figure 6.4. In this fgure, we see that when n1 (or n2) is small, the coverage probabilities of 
the confdence intervals of the two MD estimators are away from the nominal level. The performance of the 
inference based on the identity weighted MD estimator is poor in model 1 when the sample size n2 is small 
regardless of the size of the other sample n1. From fgures 6.3 and 6.4, we also see that the average length of 
the confdence intervals of the optimally weighted MD estimators is smaller than the identity weighted MD 
estimator. 

Figure 6.4. Properties of the Confdence Intervals (n1 + n2 = 1000) 

7 Conclusion 

This paper studies estimation and inference of nonlinear econometric models when the economic variables of 
the models are contained in di˙erent data sets in pratice. We provide a semiparametric MD estimator based 
on conditional moment restrictions with common conditioning variables which are contained in di˙erent data 
sets. The MD estimator is show to be consistent and has asymptotic normal distribution. We provide the 
specifc form of optimal weight for the MD estimation, and show that the optimal weighted MD estimator has 
the smallest asymptotic variance among all MD estimators. Consistent estimator of the variance-covariance 
matrix of the MD estimator, and hence inference procedure of the unknown parameter is also provided. The 
fnite sample performances of the MD estimator and the inference procedure are investigated in simulation 
studies. 
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APPENDIX 

A Proof of the Main Results in Section 3 

Proof. [Proof of Theorem 1] Defne the empirical criterion function of the MD estimation problem as ����� ��� X 2 
Ln wn

i∈I 

By Assumptions 2(iii) and 2(v), 
inf L ∗ (θ) ≥ ηC,ε (38)n{θ∈Θ: ||θ−θ0||≥ε} 

where ηC,ε = Cηε > 0 is a fxed constant which only depends on ε. (38) implies that θ0 is uniquely identifed 
as the minimizer of L∗ (θ). Hence, to prove the consistency of θbn, it is suÿcient to show that n

bb bhn1 (Zi) − φbn2 
−1 for any θ ∈ Θ. (37)(θ) = n (Zi) (Zi, θ) 

���b (θ) − L ∗ Ln n(θ) 
��� = op(1). (39)sup 

θ∈Θ 

Note that we can decompose Ln(θ) as 

Ln wn

wnb
bb X 

2
(Zi)(|bhn1 (Zi) − h0(Zi)|2 + |φbn2 (Zi, θ) − φ(Zi, θ)|2 + |h0(Zi) − φ(Zi, θ)|−1(θ) = n ) 

i∈I X 
(Zi)(bhn1 (Zi) − h0(Zi))(φbn2 

−1− 2n (Zi, θ) − φ(Zi, θ)) 
i∈I X 

(Zi)(φbn2 
−1− 2n wnb

bwn

i∈I 

Using Assumption 1(i), one can use Rudelson’s law of large numbers for matrices (see, e.g., Lemma 6.2 
in Belloni, et. al. (2015)) to get 

−1/2
Qn,kj − Qkj = Op(n −1/2ξkj (log(kj ))

1/2) and Qnj ,kj − Qkj = Op(nj ξkj (log(kj ))
1/2) (41) 

(Zi, θ) − φ(Zi, θ))(h0(Zi) − φ(Zi, θ)) 
i∈I X 

(Zi)(bhn1 
−1 (Zi) − h0(Zi))(h0(Zi) − φ(Zi, θ)). (40)+ 2n 

P P−1where Qn,kj = n−1 i∈I Pkj (Zi)Pk
0 
j 
(Zi), Qnj ,kj Pkj (Zi)Pk

0 
j 
(Zi) and the convergence is under = n1 i∈Ij 

the operator norm of matrix. By (41), Assumptions 1(iii) and 1(v), 

C−1 ≤ λmin(Qn,kj ) ≤ λmax(Qn,kj ) ≤ C and C−1 ≤ λmin(Qnj ,kj ) ≤ λmax(Qnj ,kj ) ≤ C, (42) 

with probability approaching 1. Under Assumption 1 and (42), (A.2) in the proof of Theorem 1 in Newey 
(1997) implies that bβk1,n1 − βh,k1 

 2 
= Op(k1n −1 

1 + k−2rh 
1 ). (43) 
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By the triangle inequality, 

bhn1 (Zi) − h0(Zi) 
��� ��� 2X 

−1 n 
i∈I 

i∈I i∈I 

��� ��� X X2 
2−1 −1≤ 2n (Zi) − h0,k1 |h0,k1 (Zi) − h0(Zi)|bhn1 (Zi) + 2n 

≤ 2(βbk1,n1 − βh,k1 )
0Qk1,n(β

b
k1,n1 − βh,k1 ) + 2 sup |h0,k1 (z) − h0(z)|2 

z∈Z 

≤ 2λmax(Qk1 ,n) 
bβk1,n1 − βh,k1 

 2 
+ 2 sup |h0,k1 (z) − h0(z)|2 

z∈Z 

−1 + k−2rh= Op(k1n ) = op(1) (44)1 1 

where the frst equality is by Assumption 1(iv), (42) and (43), the second equality is by Assumption 1(v). 
By the triangle inequality and Assumption 2(v), 

sup |wbn(z)| ≤ sup |wbn(z) − wn(z)| + sup |wn(z)| < 2C (45) 
z∈Z z∈Z z∈Z 

with probability approaching 1. By (44) and (45), 

wn

By (45) and Assumption 2(ii), 

���b �2�� ���bhn1 

��� X X 2 
−1 (46)(Zi) − h0(Zi) ≤ sup |wbn(z)|

z∈Z 
(Zi) − h0(Zi)(Zi) bhn1 (1).n = op

i∈I i∈I 

���bφn2 

��� X 2 
−1 bwn

≤ sup |wbn(z)| sup 
z∈Z θ∈Θ 

(Zi, θ) − φ(Zi, θ)(Zi)sup n 
θ∈Θ i∈I ���bφn2 (Zi, θ) − φ(Zi, θ) 

��� X 2 
−1 (47)= op(1).n 

i∈I 

Using (44), (45), Assumption 2(ii) and the Cauchy-Schwarz inequality, we get 

sup 
θ∈Θ 

����� n −1 

����� X 
(Zi)(bhn1 (Zi) − h0(Zi))(φbn2 s���

bs wn (Zi, θ) − φ(Zi, θ)) 
i∈I ��� ���bφn2 

��� X X2 2 
(48)−1 −1≤ sup |wbn(z)|

z∈Z 
(Zi) − h0(Zi) (Zi, θ) − φ(Zi, θ)bhn1 (1).n sup n = op

θ∈Θi∈I i∈I �� 
By Assumption 1(ii), E h20(Z) < C, which together with Assumption 2(i) implies that ih � �� � 

|h0(Z) − φ(Z, θ)|2 
h2 
0(Z) φ2(Z, θ) (49)≤ 2EE + 2 sup E < C. sup 

θ∈Θ θ∈Θ 
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By (49), Assumptions 2.(iv) and 2.(v), X 
−1 sup n |h0(Zi) − φ(Zi, θ)|2 

θ∈Θ i∈I X 
−1 2≤ C sup n wn(Zi) |h0(Zi) − φ(Zi, θ)|

θ∈Θ i∈I ih 
2≤ (C + op(1)) sup E wn(Zi) |h0(Zi) − φ(Zi, θ)|iθ∈Θ h 

2≤ (C + op(1)) sup E |h0(Zi) − φ(Zi, θ)| = Op(1). (50) 
θ∈Θ 

Using (45), (50), Assumptions 2(ii) and (iv), and the Cauchy-Schwarz inequality, we get ����� 
����� X 

(Zi)(φbn2 
−1 wn

≤ sup |wbn(z)| sup 
z∈Z θ∈Θ 

b (Zi, θ) − φ(Zi, θ))(h0(Zi) − φ(Zi, θ))sup n 
θ∈Θ i∈I ss XX ���bφn2 (Zi, θ) − φ(Zi, θ) 

��� 2 
= op|h0(Zi) − φ(Zi, θ)|2 

n−1 (51)−1 (1).n
i∈I i∈I 

Similarly, using (45), (44), (50), Assumptions 2(iv) and the Cauchy-Schwarz inequality, we get ����� 
����� = op

X 
(Zi)(bhn1 

−1 (52) 

b

wnb
Collecting the results in (40), (46), (47), (48), (51) and (52), we get 

wn

(Zi) − h0(Zi))(h0(Zi) − φ(Zi, θ)) (1).sup n 
θ∈Θ i∈I 

X 
2−1 (53)(Zi) |h0(Zi) − φ(Zi, θ)|Ln(θ) = sup + op(1).sup n 

θ∈Θ θ∈Θ i∈I 

By (50) and Assumption 2(v), 

sup 
θ∈Θ 

����� n 

����� X 
−1 2

(wbn(Zi) − wn(Zi)) |h0(Zi) − φ(Zi, θ)|
i∈I X 

−1 2≤ sup |wbn(z) − wn(z)| sup n |h0(Zi) − φ(Zi, θ)| = op(1) (54) 
z∈Z θ∈Θ i∈I 

which together with (53) and Assumption 2(iv), 

sup 
���b (θ) − L ∗ Ln n(θ) 

��� = sup 
θ∈Θ θ∈Θ 

|Ln(θ) − L ∗ (θ)| + op(1) = op(1). (55)n

This proves (39) and hence the claim of the theorem. 

Lemma 4. By Assumptions 1(i), 1(iii), 1(v) and 3(i), we have 

−1 
Xbφθθ,n2 

 2 
sup n 

θ∈Nδn i∈I 

(Zi, θ) = Op(1). 
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Proof. [Proof of Lemma 4] By defnition, X 
−1φbθθ,n2 (z, θ) = n Pk2 (z)

0Q−1 Pk2 (Zi)gθθ(Xi, θ).2 n2,k2 

i∈I 

Let gθj1 θj2 
(Xi, θ) denote the (j1, j2)-th component of gθθ(Xi, θ), for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ. 

Let 
−1b (z, θ) = n P 0 (z)Q−1 P 0 (θ),φθj1 θj2 ,n2 2 k2 n2,k2 n2,k2 

gθj1 θj2 ,n2 

where gθj1 θj2 ,n2 (θ) = (gθj1 θj2 
(Xi, θ))

0 
i∈I2 

. Then by defnition, X 
−1 φb2 Q−1 Q−1 P 0 n θj1 θj2 ,n2 

(Zi, θ) = gθj1 θj2 ,n2 (θ)
0Pn2,k2 n2,k2 

Qn,k2 n2,k2 n2,k2 
gθj1 θj2 ,n2 (θ) 

i∈I 

λmax(Qn,k2 ) gθj1 θj2 ,n2 (θ)
0Pn2,k2 (P n

0 
2 ,k2 

Pn2,k2 )
−1P n

0 
2 ,k2 

gθj1 θj2 ,n2 (θ)≤ 
λmin(Qn1,k2 ) n2 Xλmax(Qn,k2 ) −1≤ n2 (gθj1 θj2 

(Xi, θ))
2 

λmin(Qn1,k2 ) i∈I2 

which together with (42) (which holds under Assumptions 1(i), 1(iii) and 1(v)), and Assumption 3(i) implies 
that X X 

−1 λmax(Qn,k2 ) −1 sup n φb2 
θj1 θj2 ,n2 

(Zi, θ) ≤ sup n2 (gθj1 θj2 
(Xi, θ))

2 = Op(1) 
θ∈Nδn 

λmin(Qn1,k2 ) θ∈Nδni∈I i∈I2 

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ. This fnishes the proof. 

Lemma 5. By Assumptions 1(i), 1(iii), 1(iv), 1(v), 3(v) and 3(vii), we have X 
−1 −1/2 −1/2 

n (bhn1 (Zi) − φbn2 (Zi, θ0))
2 = op(n1 + n2 ). 

i∈I 

Proof. [Proof of Lemma 5] By (44) (which holds under Assumptions 1(i), 1(iii), 1(iv) and 1(v)), X 
−1 n (bhn1 (Zi) − φbn2 (Zi, θ0))

2 

i∈I X X 
−1 −1≤ 2n (bhn1 (Zi) − h0(Zi))

2 + 2n (φbn2 (Zi, θ0) − h0(Zi))
2 

i∈I i∈I X 
−1 −1 + k−2rh= 2n (φbn2 (Zi, θ0) − h0(Zi))

2 + Op(k1n1 1 ). (56) 
i∈I 

Let βbφ,n2 = (P 0 Pn2,k2 )
−1P 0 gn2 (θ0), where gn2 (θ0) = (g(Xi, θ0))

0 . Then n2 ,k2 n2,k2 i∈I2  2 b (P 0 )−2P 0
βφ,n2 − βh,k2 

 = (gn2 (θ0) − Hn2,k2 )
0Pn2,k2 Pn2,k2 (gn2 (θ0) − Hn2,k2 )n2,k2 n2,k2 

(gn2 (θ0) − Hn2,k2 )
0Pn2,k2 (P 0 Pn2,k2 )

−1P 0 (gn2 (θ0) − Hn2,k2 )n2 ,k2 n2,k2≤ , (57)
n2λmin(Qn2,k2 ) 
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� 

where Hn2,k2 = (h0,k2 (Zi))
0 . By Assumptions 1(iv), i∈I2 

−1 n (Hn2 − Hn2 ,k2 )
0Pn2,k2 (P 0 Pn2,k2 )

−1P 0 (Hn2 − Hn2,k2 )2 n2,k2 n2,k2 

−1≤ n (Hn2 − Hn2,k2 )
0(Hn2 − Hn2,k2 ) = O(k−2rh ), (58)2 2 

where Hn2 = (h0(Zi))
0 . By Assumptions 1(i), 1(iii) and 3(v), i∈I2 ��� � 

n −1 (P 0 )−1P 0 2 (gn2 (θ0) − Hn2 )
0Pn2 ,k2 n2,k2 

Pn2,k2 n2,k2 
(gn2 (θ0) − Hn2

E ) {Zi}i∈I2 �−1 (Pn
0 
2,k2 

Pn2,k2 )
−1Pn

0 
2,k2 

E [ (gn2 (θ0) − Hn2 )(gn2 (θ0) − Hn2 )
0| {Zi}i∈I2 ] Pn2,k2

tr= n2 

−1 −1≤ sup σε 
2(z)k2n = O(k2n )2 2 

z∈Z 

which together with the Markov inequality implies that 

−1 −1 n2 (gn2 (θ0) − Hn2 )
0Pn2,k2 (Pn

0 
2,k2 

Pn2 ,k2 )
−1Pn

0 
2,k2 
(gn2 (θ0) − Hn2 ) = Op(k2n2 ). (59) 

Combining the results in (57), (58) and (59), and then applying (42), we get bβφ,n2 − βh,k2 

 2 
= Op(k2n −1 

2 + k−2rh 
2 (60)). 

By (42) and (60) X 
−1 n (φbn2 (Zi, θ0) − h0,k2 (Zi))

2 

i∈I 

= ( βbφ,n2 − βh,k2 )
0Qn,k2 (β

b
φ,n2 − βh,k2 ) 

≤ λmax(Qn,k2 ) 
bβφ,n2 − βh,k2 

 2 
= Op(k2n −1 

2 + k−2rh 
2 (61)) 

which together with (56) and Assumption 3(vii) proves the claim of the lemma. 

Lemma 6. Under Assumptions 1(i), 2(v), 3(iv) and 3(vi), we have 

� � 
n (P 0 )−1P 0 φ0−1φwθ,nPn,k1 n,k1 

Pn,k1 n,k1 wθ,n = E w 2 (Z)φθ(Z, θ0)φ
0 
θ(Z, θ0)n + op(1). 

Proof. [Proof of Lemma 6] For j = 1, . . . , dθ, let φwθj ,k1,n(z, θ0) = P 0 (z)βwφj ,k1 , φwθj ,k1,n = (φwθj ,k1,n(Zi, θ0))i∈Ik

and φwθ,k1,n = (φ
0 )0 . For ease of notations, we defne Mk1,n = Pn,k1 (P 0 Pn,k1 )

−1P 0 .wθj ,k1,n j=1,...,dθ n,k1 n,k1 

By defnition, 

0
φ0 φ0φwθ,nMk1,n wθ,n = φwθ,k1,nMk1,n wθ,k1,n + (φwθ,n − φwθ,k1,n) Mk1 ,n (φwθ,n − φwθ,k1,n)

0
φ0+ (φwθ,n − φwθ,k1,n) Mk1,n wθ,k1,n + φwθ,k1,nMk1,n (φwθ,n − φwθ,k1,n) . (62) 

For any j = 1, . . . , dθ, let φwθj ,n denote the j-th row of φwθ,n. By the Cauchy-Schwarz inequality, for any 
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j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, �� ��2 
)0 n −1(φwθj1 ,n − φwθj ,k1,n)Mk1,n(φwθj2 ,n − φwθj2 ,k1 ,n

≤ n −1(φwθj1 ,n − φwθj ,k1,n)Mk1,n(φwθj1 ,n − φwθj ,k1,n)
0 

−1(φwθj2 

−1≤ n 
X ,n )0− φwθj2 ,k1,n)Mk1,n(φwθj2 ,n − φwθj2 ,k1 ,n× n �� ��2 

wn(Zi)φθj1 
(Zi, θ0) − φwθj1 ,k1 (Zi, θ0) 

i∈I ��X ��2−1 (63)wn(Zi)φθj2 
(Zi, θ0) − φwθj2 ,k1 (Zi, θ0) = o(1)× n 

i∈I 

where the last equality is by Assumption 3(vi), and the fact that Mk1 ,n is an idempotent matrix. (63) then 
implies that 

n −1 (φwθ,n − φwθ,k1,n) Mk1,n (φwθ,n − φwθ,k1,n) = o(1). (64) 

For any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, by defnition we can write 

n −1φwθj1 ,k1,nMk1,nφwθ
0 

j2 ,k1,n 

−1β0 = n Pn,k1 (P 0 Pn,k1 )
−1P 0 φ0 wφj1 ,k

P 0 n,k1 n,k1 wθj2n,k1 X ,k1,n 

−1 = n φwθj1 ,k1,n(Zi, θ0)φwθj2 ,k1,n(Zi, θ0) 
i∈I X 

−1 2 = n w (Zi)φθj1 
(Zi, θ0)φθj2 

(Zi, θ0)n

i∈I X 
−1+ n (φwθj1 ,k1,n(Zi, θ0) − wn(Zi)φθj1 

(Zi, θ0))φwθj2 ,k1,n(Zi, θ0) 
i∈I X 

−1+ n wn(Zi)φθj1 
(Zi, θ0)(φwθj2 ,k1 (Zi, θ0) − wn(Zi)φθj2 

(Zi, θ0)). (65) 
i∈I 

By Assumptions 1(i), 2(v), 3(iv) and the Markov inequality, we have X � �−1 −1/2), 2 2 
n (66)(Zi)φθj1 

(Zi, θ0)φθj2 
(Zi, θ0) − E (Zi)φθj1 

(Zi, θ0)φθj2 
(Zi, θ0) = Op(nn w wn

i∈I 

where under Assumptions 2(v) and 3(iv) 

�� �� < C. 
� �
2 (67)E (Zi)φθj1 

(Zi, θ0)φθj2 
(Zi, θ0)wn

By Assumption 3(vi), ����� X 
−1 n (φwθj1 ,k1,n(Zi, θ0) − wn(Zi)φθj1 

(Zi, θ0))(φwθj2 ,k1,n(Zi, θ0) − wn(Zi)φθj2 
(Zi, θ0)) 

i∈I 

����� � �2 

≤ max sup |φwθj ,k1,n(z, θ0) − wn(z)φθj (z, θ0)| = o(1), (68)
j=1,...,dθ z∈Z 
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which implies that 

−1 
X 
(φwθj ,k1,n(Zi, θ0) − wn(Zi)φθj1 

(Zi, θ0))φwθj2 ,k1,n(Zi, θ0)n 
i∈I 

−1 
X 

= n 
i∈I 

(φwθj ,k1,n(Zi, θ0) − wn(Zi)φθj1 
(Zi, θ0))wn(Zi)φθj2 

(Zi, θ0) + op(1). (69) 

By the Cauchy-Schwarz inequality, ����� X 
−1 n (φwθj ,k1,n(Zi, θ0) − wn(Zi)φθj1 

(Zi, θ0))wn(Zi)φθj2 
(Zi, θ0)

i∈I 

����� 
2 

≤ n −1 
X��φwθj ,k1,n(Zi, θ0) − wn(Zi)φθj1 

(Zi, θ0) 
��2 
n 

X 
−1 2 wn(Zi)φ

2 
θj2 
(Zi, θ0) = op(1) (70) 

i∈I i∈I 

where the equality is by Assumption 3(vi), (66) and (67). Combining the results in (69) and (70), we get X 
−1 n (φwθj ,k1,n(Zi, θ0) − wn(Zi)φθj1 

(Zi, θ0))φwθj2 ,k1,n(Zi, θ0) = op(1). (71) 
i∈I 

Similarly, we can show that X 
−1 n wn(Zi)φθj1 

(Zi, θ0)(φwθj2 ,k1,n(Zi, θ0) − wn(Zi)φθj2 
(Zi, θ0)) = op(1). (72) 

i∈I 

Collecting the results in (65), (66), (71) and (72), we have 

� � 
n −1φwθj1 ,k1,nMk1,nφwθ

0 
j2 ,k1,n = E 2 

n (73)(Zi)φθj1 
(Zi, θ0)φθj2 

(Zi, θ0) + op(1)w 

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, which implies that 

� � 
n φ0−1φwθ,k1,nMk1,n wθ,k1,n = E w 2 (Zi)φθ(Zi, θ0)φ

0 
θ(Zi, θ0)n (74)+ op(1). 

By the Cauchy-Schwarz inequality, for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, ����� φ0(φwθj1 ,n − φwθj1 ,k1 ,n)Mk1,n wθj2 ,k1,n 

n 

����� 
2 

≤ 
)0 φ0(φwθj1 ,n − φwθj1 ,k1,n)Mk1,n(φwθj1 ,n − φwθj1 ,k1,n
φwθj2 ,k1,nMk1,n wθj2 ,k1,n 

n n 
= op(1) (75) 

where the equality is by (63), (67) and (73). (75) then implies that 

n φ0−1 (φwθ,n − φwθ,k1,n) Mk1,n (1)wθ,k1,n = op (76) 

and similarly 
0 

n −1φwθ,k1,nMk1,n (φwθ,n − φwθ,k1,n) = op(1). 

Combining the results in (62), (64), (74), (76) and (77), we immediately get the claimed result. 

(77) 
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Proof. [Proof of Theorem 2] By the defnition of θbn, we have the following frst order condition X 
−1 n wn(Zi)(bhn1 (Zi) − φbn2 (Zi, θbn))φbθ,n2 (Zi, θbn) = 0. (78) 

i∈I 

Applying the frst order expansion to (78), we get X 
−10 = n wbn(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 (Zi, θ0) 

i∈I X 
−1+ n wbn(Zi)φbθ,n2 (Zi, θen)φbθ,n2 (Zi, θen)0(θbn − θ0) 

i∈I X 
−1 e e+ n wbn(Zi)(bhn1 (Zi) − φbn2 (Zi, θn))φbθθ,n2 (Zi, θn)(θbn − θ0), (79) 

i∈I 

ewhere θn is between θbn and θ0 and it may di˙er across rows. 
For any j = 1, . . . , dθ, by the mean value expansion and the Cauchy-Schwarz inequality, � �    � �    �φbθj ,n2 (Zi, θej,n) − φbθj ,n2 (Zi, θ0)� ≤ sup φbθj θ,n2 (Zi, θ)θej,n − θ0 

θ∈Nδn 

which together with the triangle inequality and Lemma 4 implies that 

X X 2  2 
−1 −1     

n (φbθj ,n2 (Zi, θej,n) − φbθj ,n2 (Zi, θ0))
2 ≤ sup n φbθj θ,n2 (Zi, θ) θej,n − θ0 = op(1). (80) 

θ∈Nδni∈I i∈I 

By Assumption 3(iii) and (80), X 
−1 n (φbθj ,n2 (Zi, θej,n) − φθj (Zi, θ0))

2 

i∈I X X 
−1 −1e≤ 2n (φbθj ,n2 (Ziθj,n) − φbθj ,n2 (Zi, θ0))

2 + 2n (φbθj ,n2 (Zi, θ0) − φθj (Zi, θ0))
2 = op(1). (81) 

i∈I i∈I 

By Assumption 3(iv) and the Markov inequality, X 
−1 n (φθj (Zi, θ0))

2 = Op(1), (82) 
i∈I 

which together with (81) implies that X 
−1 n (φbθj ,n2 (Zi, θen))2 = Op(1) (83) 

i∈I 

for any j = 1, . . . , dθ. For any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ, we can use the triangle inequality and 
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the Cauchy-Schwarz inequality, Assumptions 2(v), (81), (82) and (83) to deduce that 

XX 
n −1 (Zi)φbθj1 ,n2 (Zi, )bφθj2 ,n2 (Zi, 

−1) − n wn

����� 
�����wn θj1,n θj2,n

i∈I i∈I 

eeb (Zi)φθj1 
(Zi, θ0)φθj2 

(Zi, θ0)����� 
����� X 

(Zi))φbθj1 
)bφθj2 ,n2 (Zi, 

−1 θj1,n

) − φθj1 

e θj2,n

(Zi, θ0) 

e≤ (wbn(Zi) − wn (Zi, )n ,n2 

i∈I����� 
����� X 

(Zi)(φbθj1 
(Zi, θ0))φbθj2 

−1 θj1,n

−1 wn(Zi)φθj1 
(Zi, θ0)(φbθj2 

e(Zi,+ n wn ,n2 ,n2 

i∈I����� 
����� X 

(84)θj2,n
i∈I 

Under Assumptions 1(i), 2(v) and 3(iv), we can the Markov inequality to deduce that 

e ) − φθj2
(Zi, (Zi, θ0)) (1).+ n = op,n2 

��X 
−1 (Zi)φθj1 

(Zi, θ0)φθj2 
(Zi, θ0) = E wn(Zi)φθj1 

(Zi, θ0)φθj2 
(Zi, θ0) + op(1) (85)n wn

i∈I 

for any j1 = 1, . . . , dθ and any j2 = 1, . . . , dθ. Collecting the results in (84) and (85), we get X 
(Zi)φbθ,n2 )bφθ,n2 

−1 )0 = H0 + op(1). (86)eewn θn θn
i∈I 

By the second order Taylor expansion and the triangle inequality and the Cauchy-Schwarz inequality, 

b (Zi, (Zi,n 

��� ��� X 2 
−1 eθj,n) − φ(Zi, θ0) 

−1 2≤ 2n kφθ(Zi, θ0)k ||θej,n − θ0||2 

i∈I 

φ(Zi,n 
i∈I X 

X 

e

−1 2
+2−1 sup n kφθθ(Zi, θ)k ||θej,n − θ0||4 = op(1) (87) 

θ∈Nδn i∈I 

where the equality is by (82), Lemma 4 and ||θej,n − θ0|| = op(1) for any j = 1, . . . , dθ. (87) together with 
Assumptions 2(ii) then implies that 

θj,n) − φ(Zi, θ0) 

��� ���θj,n) − φ(Zi, θ0) 
X 2 bφn2 

−1 

e
e

(Zi, θj,n) − φ(Zi, 

(Zi,n 
i∈I ��� ��� ��� ��� X X2 2 bφn2 

−1 −1 (88)eθn
i∈I i∈I 

≤ 2n ) + 2n φ(Zi, = op(1) 
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for any j = 1, . . . , dθ. By the Cauchy-Schwarz inequality, 

n −1 (Zi)(bhn1 (Zi) − φbn2 (Zi, ))φbθθ,n2 (Zi, ) 

 
 θn

(bhn1 (Zi) − φbn2 

e θn

(Zi, 

ewn

≤ sup |wbn(z)|
z 

b
i∈I ss   XX 2 bφθθ,n2 

−1 −1θj,n))2 
j=1,...,dθ j=1,...,dθ 

e eθj,n) 
θn

θj,n) − φ(Zi, θ0)e

wn

e

−1+ n wn(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))(φbθ,n2 (Zi, θ0) − φθ(Zi, θ0)). (90) 
i∈I 

By Assumptions 3(iv) and 3(v), and the Markov inequality 

b

���

(Zi,max n max n
i∈I i∈I s   X 2 bφθθ,n2 

−1≤ 2 sup |wbn(z)| max n
j=1,...,dθz 

(Zi, ) 
i∈I s ��� ��� ��� X X2 2 bφn2 (89)−1 −1(Zi) − h0(Zi)bhn1 (Zi, (1)× +n max n = op

j=1,...,dθ 
i∈I i∈I 

where the last equality is by (44), (45), Lemma 4 and (88). 
By defnition, X 

(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 
−1 (Zi, θ0)n 

i∈I X 
−1 = n wn(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φθ(Zi, θ0) 

i∈I X 
−1+ n (wbn(Zi) − wn(Zi))(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 (Zi, θ0) 

i∈I X 

XXX 
−1 −1 −1 n ||φbθ,n2 (Zi, θ0)||2 ≤ 2n ||φbθ,n2 (Zi, θ0) − φθ(Zi, θ0)||2 + 2n kφθ(Zi, θ0)k2 

= Op(1). (91) 
i∈I i∈I i∈I 

By the triangle inequality and the Cauchy-Schwarz inequality, (91), Lemma 5, Assumptions 2(v) and 3(vii),  X 
−1 n (wbn(Zi) − wn(Zi))(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 (Zi, θ0) 

i∈I 

 ss XX  (Zi, θ0) 
 2 

(bhn1 (Zi) − φbn2 
−1(Zi, θ0))2 n bφθ,n2 

−1≤ sup |wbn(z) − wn(z)|
z∈Z 

n
i∈I i∈I s Xbφθ,n2 (Zi, θ0) 

 2 
= op(n −1/2 −1/2 −1/2 −1/2 (92)−1= op(n ) ).+ n + nn1 2 1 2 

i∈I 

By the triangle inequality and the Cauchy-Schwarz inequality, Lemma 5, Assumptions 2(v), 3(iii) and 3(vii),  
 X 

−1 n wn(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))(φbθ,n2 (Zi, θ0) − φθ(Zi, θ0)) 
i∈I ss bφθ,n2 

 XX 2 
(bhn1 (Zi) − φbn2

≤ sup |wn(z)|
z∈Z 

n−1 −1(Zi, θ0))2 n (Zi, θ0) − φθ(Zi, θ0) 
i∈I i∈I 

−1/2 −1/2 
= op(n + n ). (93)1 2 
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Combining the results in (90), (92) and (93), we get X 
n −1 (Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 (Zi, θ0) 

i∈I 

wnbX 
−1 −1/2 −1/2 

= n wn(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φθ(Zi, θ0) + op(n1 + n2 ) 
i∈I X 

−1 = n wn(Zi)(bhn1 (Zi) − h0(Zi))φθ(Zi, θ0) 
i∈I X 

−1 −1/2 −1/2− n wn(Zi)(φbn2 (Zi, θ0) − h0(Zi))φθ(Zi, θ0) + op(n + n ). (94)1 2 
i∈I 

By the defnition of bhn1 (Zi), we can write X 
−1 n wn(Zi)(bhn1 (Zi) − h0(Zi))φθ(Zi, θ0) 

i∈I 

(P 0 )−1P 0φwθ,nPn,k1 n1,k1 
Pn1,k1 n1,k1 

Un1 
= 

n 
(P 0 )−1P 0φwθ,nPn,k1 n1,k1 

Pn1,k1 n1,k1 
(Hn1 − Hn1,k1 ) φwθ,n(Hn − Hn,k1 )+ + . (95)

n n 

where Hn = (h0(Zi))
0 
i∈I , Hn1 = (h0(Zi))

0 , Un1 = (ui)
0 , Hn,k1 = (h0,k1 (Zi))

0 
i∈I , Hn1,k1 = (h0,k1 (Zi))

0 
i∈I1 i∈I1 i∈I1 

and φwθ,n = (wn(Zi)φθ(Zi, θ0))i∈I . By the Cauchy-Schwarz inequality, ��� )−1P 0φwθ,nPn,k1 (P n
0 
1,k1 

Pn1,k1 n1,k1 
(Hn1 − Hn1 ,k1 ) 

��� 2 

n2 

P 0 φ0φwθ,nPn,k1 n,k1 wθ,n ≤ 
n2 

(Hn1 − Hn1,k1 )
0Pn1,k1 (P 0 Pn1,k1 )

−2P 0 (Hn1 − Hn1,k1 )n1,k1 n1,k1 

λmax(Qn,k1 
φwθ,nPn,k1 n,k1 

Pn,k1 n,k1 wθ,n ) (P 0 )−1P 0 φ0 
≤ 

λmin(Qn1,k1 ) n 

(Hn1 − Hn1,k1 )
0Pn1,k1 (P 0 Pn1,k1 )

−1P 0 (Hn1 − Hn1,k1 )n1,k1 n1,k1× 
n1����sup w (z) )z∈Z n λmax(Qk1 ,n −1 2 −1 2≤ n kφθ(Zi, θ0)k × n1 |h0,k1 (Zi) − h0(Zi)| = Op(k1 

−2rh ), (96)
λmin(Qk1 ,n1 ) i∈I i∈I1 

where the last equality is by (42), (82), Assumptions 1(iv) and 2(v). By the triangle inequality, 

2 XX 

 X 
−1 n wn(Zi)(h0,k1 (Zi) − h0(Zi))φθ(Zi, θ0) 

i∈I 

 X 
−1≤ sup |wn(z)| n k(h0,k1 (Zi) − h0(Zi))φθ(Zi, θ0)k 

z∈Z 
i∈I 

sup |h0(z) − hk1 (z)|z 
X 

≤ C kφθ(Zi, θ0)k = Op(k
−rh ), (97)1 n 

i∈I 

where the last equality is by (82), Assumptions 1(iv) and 2(v). Combining the results in (95), (96) and (97), 

28 



we get X 
−1 n wn(Zi)(bhn1 (Zi) − h0(Zi))φθ(Zi, θ0) 

i∈I 

(P 0 )−1 Xφwθ,nPn,k1 n1,k1 
Pn1,k1 

= uiPk1 (Zi) + Op(k1 
−rh ). (98)

n 
i∈I1 

By the defnition of φbn2 (Zi, θ0), we can write X 
−1 n wn(Zi)(φbn2 (Zi, θ0) − h0(Zi))φθ(Zi, θ0) 

i∈I 

(P 0 )−1 Xφwθ,nPn,k2 n2,k2 
Pn2,k2 

= εiPk2 (Zi) 
n 

i∈I2 

φwθ,nPn,k2 (P n
0 
2 ,k2 

Pn2,k2 )
−1(Hn2 − Hn2,k2 ) φwθ,n(Hn − Hn,k2 )+ + (99)

n n 

where Hn2,k2 = (h0,k2 (Zi))
0 and Hn,k2 = (h0,k2 (Zi))i∈I . Using similar arguments in showing (96) and i∈I2 

(97), we get 

φwθ,nPn,k2 (P n
0 
2,k2 

Pn2,k2 )
−1(Hn2 − Hn2,k2 ) φwθ,n(Hn − Hn,k2 ) = Op(k

−rh ) and = Op(k
−rh ),2 2 n n 

which together with (99) implies that X 
−1 n wn(Zi)(φbn2 (Zi, θ0) − h0(Zi))φθ(Zi, θ0) 

i∈I 

(P 0 )−1 Xφwθ,nPn,k2 n2,k2 
Pn2,k2 

= εiPk2 (Zi) + Op(k2 
−rh ). (100)

n 
i∈I2 P 

By Assumption 3(v), C−1Qn1,k1 ≤ n1 σu
2 (Zi)Pk1 (Zi)Pk1 (Zi)

0 ≤ CQn1,k1 , which together with (42) i∈I1 

implies that 
C−1 < λmin(Qn1,u) ≤ λmax(Qn1,u) < C, (101) 

with probability approaching 1. Similarly, we can show that 

C−1 ≤ λmin(Qn2,ε) ≤ λmax(Qn2,ε) ≤ C (102) 

with probability approaching 1. 
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Under the i.i.d. assumption, ⎡ ⎤ 
2 

(P 0 )−1φwθ,nPn,k1 n1 ,k1 
Pn1,k1 

X ⎣ ⎦E 

����� n 
i∈I1 

uiPk1 (Zi) 

����� 
������ {Zi}i∈I 

(P 0 (P 0 )−1P 0 φ0φwθ,nPn,k1 Pn1,k1 )
−1Qn1,u Pn1,k1n1,k1 n1,k1 n,k1 wθ,n 

= 
n2n −1 

1 

P 0 φ0Cλmax(Qn1,u) φwθ,nPn,k1 n,k1 wθ,n ≤ 
λ2 (Qk1,n1 ) n2n1min

(P 0 )−1P 0 φ0λmax(Qn1 ,u)λmax(Qn,k1 ) φwθ,nPn,k1 n,k1 
Pn,k1 n,k1 wθ,n ≤ 

n1λ2 (Qn1 ,k1 ) nmin X�� �� λmax(Qn1,u)λmax(Qn,k1 ) −1 2 −12 ), (103)≤ sup kφθ(Zi, θ0)k(z) = Op(nw n 1 n1λ2 
min(Qn1,k1 )

n
z∈Z 

i∈I 

where the last equality is by (101), (42), (82), Assumptions 2(v) and 3(iv). Combined with the Markov 
inequality, (103) implies that 

(P 0 )−1φwθ,nPn,k1 n1,k1 
Pn1,k1 

X −1/2 
1 (104)uiPk1 (Zi) = Op(n ). 

n 
i∈I1 

Similarly, we can show that 

(P 0 )−1φwθ,nPn,k2 n2,k2 
Pn2,k2 

X −1/2 
2 (105)εiPk2 (Zi) = Op(n ). 

e

n 
i∈I2 

By (86) and (89), 

θn
X 

(Zi)(φbθ,n2 )φb0 θ,n2 
) + (bhn1 (Zi) − φbn2 ))φbθθ,n2 

−1 (106)ewn θn
i∈I 

which together with (79) implies that 

b eeθn θn

(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 

(Zi, (Zi, (Zi, (Zi, )) = H0,n + op(1),n 

X 
[H0,n + op(1)] (θbn 

−1 (107)bwn

(Zi)(bhn1 (Zi) − φbn2 (Zi, θ0))φbθ,n2 

− θ0) = −n (Zi, θ0). 
i∈I 

By (94), (98) and (100), and Assumption 3(vii), X 
−1 bwn

i∈I 

(P 0 )−1φwθ,nPn,k1 n1,k1 
Pn1 ,k1 

(Zi, θ0)n 

= 
X 

uiPk1 (Zi) 
n 

i∈I1 

(P 0 )−1φwθ,nPn,k2 n2,k2 
Pn2,k2 

X −1/2 −1/2 
+ n ) (108)1 2− εiPk2 (Zi) + op(n 

n 
i∈I2 

which together with (104) and (105) implies that ihX1 bbhn1 φθ,n2 n 
i∈I 
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(Zi) − φbn2 

−1/2 −1/2
). (109)(Zi, θ0) (Zi, θ0) = Op(n + n1 2 





Then by (110), we can write 

n
−1/2 −1/2

(H0,n(Σn1 +Σn2 )
−1H0,n)

1/2(θbn − θ0) = ωi,n + op(n1 + n2 ). (116) 
i=1 

Let Fi,n be the sigma feld generated by {ω1,n, . . . , ωi,n, {Zi}i∈I } for i = 1, . . . , n. Then under Assumption 
1(i), E [ γ0 ωi,n| Fi−1,n] = 0 which means that {γ0 ωi,n}n is a martingale di˙erence array. We next use the n n i=1 

Martingale CLT to show the claim. There are two suÿcient conditions to verify: 

n

X 

X ��� � 
(γ0 nωi,n)

2 Fi,n →p 1; and (117)E 
i=1 

n

i=1 

X 
E 

� �� � 
(γn
0 ωi,n)

2I {|γn0 (118)ωi,n| > ε} Fi,n →p 0∀ε > 0. 

)1/2H−1For ease of notations, we defne Dn = (H0,n(Σn1 +Σn2 )
−1H0,n 0.n. By defnition, we have 

n nXX �� ��� � � � 
(γ0 nωi,n)

2 = γ0 nE ωi,nω
0 
i,nFi,n Fi,n γnE 

i=1 i=1 

Q−1 Q−1 P 0 φ0 D0Dnφwθ,nPn,k1 n1,k1 
Qn1 ,u n1,k1 n,k1 wθ,n n 

= γ0 n γn 
n2n1 

Q−1 P 0 φ0 D0Dnφwθ,nPn,k2 Qn2,εQ
−1 

n2,k2 n2,k2 n,k2 wθ,n n 
+ γ0 n γn 

n2n2 

= γ0 Dn(Σn1 +Σn2 )D
0 γn = γ0 γn = 1 (119)n n n

which proves (117). By the monotonicity of expectation, 

Xn ��� � 
(γn
0 ωi,n)

2I {|γn0 ωi,n| > ε} Fi,nE 
i=1 Xn

ε2 
i=1 

��� �1 
(γ0 nωi,n)

4≤ Fi,nE ������� 
⎡ ⎤��� ��� 4 

γ0 Q−1 
nDnφwθ,nPn,k1 n1,k1 

Pk1 (Zi)ui1 X ⎢⎣ ⎥⎦Fi,n = E 
n4n4 

1ε2 
i∈I1 ������� 

⎡ ⎤��� ��� 4 
γ0 Q−1 
nDnφwθ,nPn,k2 n2,k2 

Pk2 (Zi)εiX1 ⎢⎣ ⎥⎦ . (120)Fi,n+ E 
n4n4 

2ε2 
i∈I2 

By Assumptions 2(v) and 3(iv), 

H0,n = E [wn(Zi)φθ(Zi, θ0)φ
0 
θ(Zi, θ0)] ≤ C. (121) 

By (66) in the proof of Lemma 6, 

� � 
n −1φwθ,nφ

0 
wθ,n = E 2 (Zi)φθ(Zi, θ0)φ

0 
θ(Zi, θ0)n + op(1), (122)w 
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