











3 Asymptotic Properties of the MD Estimator

In this section, we establish the asymptotic properties of the MD estimator. For any positive integer k,
Let & = sup,ez | Pr(2)]| and Qi = E [Py(Z)P(Z)], where Z denotes the support of Z. We first state the

sufficient conditions for consistency.

Assumption 1. (i) {(Y;, Zi)};cp, and {(Xi, Zi)},cp, are independent with i.i.d. observations; (ii) Var [Y|Z] <
C; (iii) C71 < Anin(Qk) < Amax(Qr) < C for all k; (iv) there exist B x € R and ry, > 0 such that

sup |ho(z) — Pr(2)' Bnk| = sup [ho(2) — hox(2)| = O(E~™); (8)
z€EZ z€Z

(v) max;—i 2 f,%j log(kj)n;1 =o(1) and kyny '+ k7t = o(1).
Assumption 1 includes mild and standard conditions on nonparametric series estimation of conditional

mean function (see, e.g. Andrews (1991), Newey (1997) and Chen (2007)).
Define

icl

-126 ) |ho(Z) = 6(Z:,0) and L3(6) = E [w(2) [ho(2) - 6(Z,0)/"]

for any 6 € ©, where w,(-) is defined in Assumption 2(v) below.

Assumption 2. (i) supgee E [¢?(Z,0)] £ C; (i) ™'Y, |$n2 (Zi,0) — ¢(Zi,0)* = 0,(1) uniformly over
0; (iii) for any € > 0, there is ne > 0 suck that

E [\ho(Z) — ¢>(Z,9)|2} 6 ne for any 6 € © with |10 — Oy| > ¢;

() supgee |Ln(0) — L7, (0)] = 0p(1); (v) sup.cz [Wn(2) — wn(2)] = Op(dw,n) where 8y, = O(ny +n71/4)
and wy(-) is a sequence of non-random functions with C~' < w,(z) < C for any n and any z € Z.

Assumption 2(i) imposes uniform finite second moment condition on the function ¢(Z,6). Assumption
2(ii) requires that the nonparametric estimator anz(Zi, 0) of ¢(Z;,0) is consistent under the empirical Lo-
norm uniformly over § € ©. Assumption 2(iii) is the identification condition of 6. Assumption 2(iv) is
a uniform law of large numbers of the function w(Z;)|ho(Z;) — ¢(Z;,0)|* indexed by 6. Assumption 2(v)
requires that @, (-) is approximated by a sequence of nonrandom function w,,(-) uniformly over z. For the
consistency of the MD estimator, it is sufficient to have d,, , = o(1) in Assumption 2(v). The rate condition

dwn = O(ny YA Ny 1/4 ) is needed for deriving the asymptotic normality of the MD estimator. It is clear
that Assumption 2(v) holds trivially if @, (-) is the identity function.

Theorem 1. Under Assumptions 1 and 2, we have 8, = 6, + op(1).

For ease of notations, we define

(X 9) 39(X 9)7 QOO(X 9) 8899(8)(0’0)’
$0(Z,0) = [ge(X NI Z], ¢ee(Z,0) = E[gee(X,0)| 2],
b, (2,0 ~ 029, (2,0
Gy (2,0) = 2220 G (7.0) = Lon20)

By the consistency of @1, there exists a positive sequence J,, = o(1) such that §n € Ns, with probability ap-
proaching 1, where N5, = {6 € © : ||0 — 6o|| < 0,,}. Define Hy,, = E [w,(Z)p9(Z,00)Py(Z,00)]. Let ¢y, (2,0)



denote the j-th component of ¢¢(Z,6).

We next state the sufficient conditions for asymptotic normality of @1

Assumption 3. The following conditions hold:
(i) sWpgep, N3t Sier, 1900 (Xi,0)|1> = O,(1);
(i3) Amin(Hon) > C71;
(i) 0L S 1 160,n5 (i, 00) — G0(Zs, 00)|2 = 0y (ny %)
(iv) E [||oo ﬂ%ﬂ@w

(v) E[uw|Z] f CP\E[2| Z] £ C7F and E [u* +£*| Z] £ C;
(vi) sup,¢ z |t (2) @0, (2,00) — B (2)Buwe,; nk| = 0o(1) where Bug; nk € RE (5=1,...,dg);

g —1/2 | g 1)2
(vii) max;=1,2(k;n; / +k; ") = o(1).

Assumptions 3(i) holds when ||ggg(z, 8)||> < C for any z and any 6 in the local neighborhood of 6. The
lower bound of the eigenvalue of Hy ,, in Assumptions 3(ii) ensures the local identification of 6. Assumptions
3(iii) requires that the convergence rate of ¢A50,n2 (Z;,6p) under the empirical Lo-norm is faster than n, L4,
Assumptions 3(iv) imposes finite second moment on the derivative function ¢¢(Z,6y). Assumption 3(v)
imposes moment conditions on the projection errors v and £ which are useful for deriving the asymptotic
normality of the MD estimator. Assumption 3(vi) requires that the function wy, ()¢, (2, 0y) can be approx-
imated by the basis functions. Assumption 3(vii) imposes restrictions on the number of basis functions and
the smoothness of the unknown function hg.

Let 02(Z) = E [u?*| Z] ,(ag(Z) =E [%| Z] énd bwon = (wn(Z;)p(Z:,0))icr. Define

-1 -1 / /
> _ ¢w0,npn,k1 ni,k1 th'U«in,kan,kl wb,n
ny —

n2n,

where Q,,, ., = ny " el o%(Z;) Py, (Zi) P}, (Z;), and

-1 -1
. ¢u;0,npn,k2 n2’k2Qn2,eQn27k2P»r/hkzqszﬂa,n

Y, =
2 n2ny
where Qn, « = ny ' 3, ;, 02(Zi) Pr, (Z:) P, (Zi).
Theorem 2. Under Assumptions 1, 2 and 3, we have
00— 00 = Op(ny "/ + ;"7 (9)
and moreover
’Y;L(HO,n(an + Enz)_lHO’n)l/Q(en - 90) —d N(O, 1) (10)

or any non-random sequence 7, € R¥ with v ~, = 1.
g T

Remark 1. The first result of Theorem 2, i.e., (9), implies that the convergence rate of the MD estimator

is of the order max{nl_l/Z, n2_1/2}.



Remark 2. By the Cramer-Wold device and Theorem 2, we know that
(Hon (S, + ny) " Hon) /200 — 00) —a N(04,, La,), (11)
which together with the continuous mapping theorem (CMT) implies that,
(B — 60)' (Ho.u (S, + En,) ™ Hon) (B — 60) —a X°(do). (12)
Moreover, let . be the dg x 1 selection vector whose j-th (G =1,...,dg) component is 1 and rest components
are 0. Define

(oS ) Ho)
" (L;/(HO,H(ZTH + Enz)ilHO,n)ilb;)

VRL forj=1,...,dy.
It is clear that 'y;-’nvj’n =1, and by Theorem 2, we have

Vi (Hon(Zns + Enz) ™ Hon)'/? (B — 60)
é\jn —0j0
= : : —a N(0,1 13
(L;/(H07n(2n1+2n2)_1H0,n)_1L;)1/2 d ( ) ) ( )

where éjn = L;/é\n and 65,0 = L;’Ho. Results in (12) and (13) can be used to conduct inference on 6; and 6y
if the consistent estimators of Hy ,, Xy, and X,, are available.
4 Optimal Weighting

In this section, we compare the MD estimators through their finite sample variances. The comparison leads
to an optimal weight matrix which gives MD estimator with smallest finite sample variance, as well as
asymptotic variance, among all MD estimators. The following lemma simplifies the finite sample variance-

covariance matrix which facilitates the comparison of the MD estimators.

Lemma 1. Under Assumptions 1(i), 1(iii), 1(v), 2(v) and 3(iv)-3(vi),
H&:L(an + an)HOile = Vnﬁ(l + Op(l))'

where Vo9 = Hy L E [w2(Z) (r(ilozm +n5'02(2)) ¢o(Z,00)d(Z,00)] (fo,i,

If the sequence of the weight function is set to be

wn(Z) = (ni* +ny ") (ny ' on(Z) +ny ' o2(2)) 7Y, (14)

>_ . (15)

The next lemma shows that V" is the smallest asymptotic variance-covariance of the MD estimator.

then the finite sample variance of the MD estimator becomes

2 2

( 2(2) +%<Z>> 0(Z.,00)0(Z. 00)

ni T2

* —
n,0 — E

Theorem 3. For any sequence of weight functions wy(Z), we have Vi, g > Voo for any ny and any ns.



We call the MD estimator whose finite sample variance-covariance matrix equals V" optimal MD estima-
tor. To ensure the optimal MD estimator is feasible, we have to: (i) show that C~! < w}(z) < C for any z €
Z and any nq, ne; and (ii) construct an empirical weight function @} (z) such that sup, ¢z |0} (2) — w} (2)]| =

Op(6uw.n), where §y, , = O(ny ey Mgy 1/4) In the rest of this section, we show that w}(z) is bounded from

above and from below. Construction of the empirical weight function @} () is studied in the next section.

Lemma 2. Under Assumption 3(v), C~t < w}(2) < C for any z € Z and any ni, na.

5 Estimation of the Variance and Optimal Weighting

The estimator of the variance-covariance matrix is constructed by its sample analog. Let u; = Y; — /Hnl (Z)
for any i € I, and &; = g(Zi,an) — anZ(Zi,é\n) for any i € I5. Define

A = _IZ ¢0n2 Zua )¢0,n2(Zi;§n)/,

el
> -1 A -1 r
i o ¢w9,7LPn,k1 ni,ki thUin,kan,kl ¢w0,n
ny n2n1 b)
™ =
i\: - ¢w0,npn,k2 n2 ko an 5Qn2 ko n k2 wh,n
ne — 2 )
n<nq

where Guo.n = (@n(Z:)$0.ns (Zir 0n))ict, Qnyu = 11 ' Sicy, WPk, (Z) P (Zi) and Quy « = 15" e, E2 Py (Z:) P, (Z:).
The variance estimator is defined as

Vo =H NS, +5,,)H, (16)

The following conditions are needed to show the consistency of \7n and the empirical optimal weight function

constructed later in this section.

Assumption 4. (i) supyey, ny' S, I llgo (X, 0)|1* = O,(1); (ii) there exist By € R* and r, > 0 such
that
sup |o3() ~ Pi(z MC (k) (17)

(iii) there exist Bex € R* and r. > 0 such that

SUP‘U — Py(z Beklc (E77e); (18)

(iv) max;—1 5(&x, by *n; 2 + & k™) = 0(1); (v) Ell|ga(X, 00)]]

Assumption 4(i) requires that the sample average of ||go(X;, )| is stochastically bounded uniformly over
the local neighborhood of . Assumptions 4(ii) and 4(iii) implies that the conditional variances o2 (z)
and o2(z) can be approximated by the basis functions Py(z). Assumption 4(iv) imposes restrictions on
the numbers of basis functions and the smoothness of the conditional variance functions. Assumption 4(v)

imposes finite fourth moment on gy (X, 6p).

Theorem 4. Suppose Assumptions 1, 2, 8, 4(i) and 4(iv) hold. If (ky + k2)d2, ,, = o(1), then we have

~ ~ -~

ﬁ;l(znl + ETU) ;1 = HO_,’}L(E"l + Enz)HO_,rlL(l + 0;0(1) (19)



and moreover,
VoHa(Eny + Eny) " Ha) 2 (0, — 00) —a N(0,1), (20)

or any non-random sequence v, € R with /7, = 1.
n

Remark 3. By the consistency of the f]n(im + inl)*lﬁn and CMT,
(H(Zny + Sny) HH)Y2(0, — 09) —a N(0, La,),

which together with the CMT implies that

Wa(80) = (B = 00)' (Ho (S, + Z0,) " H) (0 — 00) =4 X (do)- (21)
Recall that o} is the dp x 1 selection vector whose j-th (G =1,...,dg) component is 1 and rest components

are 0. By the consistency of the ﬁn(inl + inl)_lﬁn, we have
G H (S + ) Hytl = 0 Hy N (S, + Snp ) Hy M5 (1+ 0,(1)
which together with (13) and the CMT implies that

Ojn — 00
\/ U H (S, + Sy) L HL

tj)n(ej@) = —d N(O, 1). (22)

The Student-t statistic in (22) and the Wald-statistic in (21) can be applied to conduct inference on 0;¢ for

j=1,...,dg and joint inference on 0y respectively.

Remark 4. Theorem 4 can be applied to conduct inference on 0y using the identity weighted MD estimator
glm defined as

0 _ -1 N o2
01,n = argminn Z n (Zi) = ¢ny(Z5,0))" (23)
i€l
As the identity weight function satisfies Assumption 2(v) and the condition (ky + k2)8%,,, = o(1) holds

trivially, under Assumptions 1, 2(i)-(iv) and 3, Theorem 2 implies that
01 — 00 = Op(ny /? +ny 7). (24)

The identity weighted MD estimator can be used to construct the empirical weight function which enables us

to construct the optimal MD estimator.

Let u; =Y; — Bnl(Zi) for any 7 € I, and &; = g(Zi,gl,n) — (/#Enz(Zi, 51,,) for any 7 € I5. Define

@5 (2) = (ny" +ny ") (ny 50, (2) + ny 100 (2)) (25)



where 572 ,(z) and 07 _(2) are the estimators of the conditional variances o2 (z) and o2(2):

Tnu(2) =11 P () Q) U,y and 37 (2) = 05" P, (2)Q ) 1, Pha ey @2ims (26)

ni,k1 n1 k1 nao,ko

where Us ,,, = (u2)}er, and €, = (€2)]c,. The optimal MD estimator is defined as

el

é\:_arggggn126( )(ﬁ (Zi) — ¢nz(Zu‘9)) (27)

To show the optimality of 8%, it is sufficient to show that w}(Z;) satisfies the high level conditions in

n’

Assumption 2(v). For this purpose, we first derive the convergence rates of 77 ,(z) and 77 _(z).

Lemma 3. Under Assumptions 1, 2(i)-(iv), 3 and 4, we have

Sgg\ai,u(z)—ai(ZHC Op(Ery (kP07 2 1 k™) + €2 k2™,
z

and
sup [32 . (2) — 02(2)] = Op(&ry (kg *ny M ? + k37) + €2, (01 + k3 2™)).

z€EZ

Remark 5. Under Assumption 4(iv) and
gkl kliru + §k2 k;TE + 522 nl_l = 0(1)7 (28)

Lemma 8 implies that

z€EZ zEZ

sup ’372”‘(2) — 0‘3(2)‘ C op(1) and sup ’372“5(2) — 0‘?(2’)’ C op(1), (29)

which means that 6. ,(z) and 53 _(z) are consistent estimators of 02(z) and 02(z) under the uniform metric.

Theorem 5. Under (28), Assumptions 1, 2(i)-(iv), 3 and 4, we have

sup |wy, (2) — w*(2)| = Op(‘sw,n)
z€EZ

where 6,5, = max;—1 (&, by 20y 2+ € KT 4 Erky T+ roky e+ €yt

Remark 6. When the power series are used as the basis functions Py(z), we have &, < Ckj. Then the
convergence rate of 6y, n is simplified as
3/2 —1/2 227, 1—ry 1—re —
5”7":j:?,}§(kj/ ny V2RI kT kT k2T

Hence in this case 8., = o(1), if max;—1 o k: n; —l—k‘%nfl =o(1), rp > 1,1y, > 1 and r. > 1. The condition
dwn = O(ny My Ng 1/4) hold when
8/3 _1

max k6 _1 + ks
Jj=1,2

= O(1) and max n} VA o ey ke = O(1). (30)

10



Moreover, (k1 + k2)d%, ,, = o(1) holds under (30) and E3nyt = o(1).

Remark 7. When the splines or trigonometric functions are used as the basis functions Py(z2), we have

&k, < C’kjl-/2. Then the convergence rate of 0., p s simplified as

—1/2 1—2r 1/2—mry 1/2—r. _
/ + kj h,) + kl/ + k2/ +k2n1 1

Hence in this case 0yn = o(1), if maxj—1 2 k3n -_1 +Ek3nTt =o(1), rp > 1/2, ry > 1/2 and r. > 1/2. The

condition 8y, = O(n, Uy 71/4) hold when
mzlngk? P +k8/3 1=0(1) and m?}énl/4k1 rn g 1/4k1 Tu 4 1/4k1 e =0(1). (31)
= i=1,

Moreover, (k1 + k2)d%, ,, = o(1) holds under (31) and k3nyt = o(1).

6 Monte Carlo Simulation

In this section, we study the finite sample performances of the MD estimator and the proposed inference

method. The simulated data is from the following model
Y; = g(Xi,00) + vi, (32)

where Y;, X; and v; are scale random variables, g(X;, 6y) is a function specified in the following

Xiao in Model 1
9(Xi, 00) = 9 . . (33)
log(1+ X76p), in Model 2

where 0y = 1 is the unknown parameter.
To generate the simulated data, we first generate (X7 ;, X3 ;,v;)" from the joint normal distribution with

mean zero and identity variance-covariance matrix. Let
Z;=X3,(1+X32)7"? and X; = Z; + X7 ;log(Z2). (34)

We assume that (Y;, Z;) are observed together and (X;, Z;) are observed together. We generate the first data
set {(Yi, Zi)};c;, with sample size n1, and then independently generate the second data set {(Xi, Zi)};cp,
with sample size no. As both the magnitudes of ni, ny and their relative magnitude are important to
the finite sample properties of the MD estimator, we consider two sampling schemes: equal sampling and
unequal sampling separately. In the equal sampling scheme, we set n; = ny = ng where ng starts from 50
with increment 50 and ends at 1000. In the unequal sampling, we set n; + no = 1000 where ny starts from
100 with increment 50 and ends at 900. For each combination of n; and no, we generate 10000 simulated

samples to evaluate the performances of the MD estimator and the proposed inference procedure.

11



Figure 6.1. Properties of the MD and the Imputation Estimators (n; = ns)
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In addition to the MD estimator, we study two alternative estimators based on data imputation. The

first estimator (which is called the Y-imputed estimator in this section) is defined as

. — -
= Pppp— .
Oxn = arg min ‘EEI i —9(X4,0)) (35)
(2 1

where )/(:Z = n;lP,gz (Z;) ;21 ko > 1, XiPry (Z;) for any i € I is the predicted value of X; in the first data
set based on nonparametric regregsion. The second estimator (which is called the Y-imputed estimator in

this section) is defined as

Oy.n = inn, ' i —9(X,,0))? 36
yn = argminn ; 9(X:,0)) (36)
i€ls

ni,k1

where Y; = nl_lP,g1 (Z)Q ! th Y: P, (Z;) for any i € I is the predicted value of ¥; in the second data

12



set based on nonparametric regression. In the simulation studies, we set k; = ko = 5 and Py, (Z) = P, (Z) =
(1,2Z,7% 73, Z*). The minimization problem in the MD estimation and the nonlinear regressions (in (35)

and (36)) are solved by grid search with © = [0, 2] and equally spaced grid points with grid length 0.001.

Figure 6.2. Properties of the MD and the Imputation Estimators (n; + ns = 1000)
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The finite sample properties of the identity weighted MD estimator (the green dashed line), the optimal
weighted MD estimator (the black solid line), the X-imputed estimator (the blue dotted line) and the Y-
imputed estimator (the red dash-dotted line) are presented in Figures 6.1 and 6.2. In Figure 6.1, we see
that the bias and variance of the two MD estimators converge to zero with the growth of both n; and
ns. The optimal weighted MD estimator has smaller bias and smaller variance, and hence smaller RMSE
than the identity weighted MD estimator. The improvement of the optimal MD estimator over the identity
weighted MD estimator is clearly investigated in model 1. The X-imputed estimator has almost the same
finite sample bias and finite sample variance as the identity weighted MD estimator in the linear model

(i.e., model 1). But it has large and non-convergent finite sample bias in model 2, which indicates that

13



the X-imputed estimator may be inconsistent in general nonlinear models. The Y-imputed estimator has
large and non-convergent finite sample bias in both model 1 and model 2, which shows that it may be an
inconsistent estimator in general. The finite sample performances of the MD estimators and the two imputed
estimators under unequal sampling scheme are presented in Figure 6.2. In this figure, we see that when n,
(or ng) is small, the finite sample bias and variance of the MD estimators are large regardless how big ng (or
ny) is. This means that the main part in the estimation error of the MD estimator is from the component

estimated by the smaller sample, which is implied by Theorem 2.

Figure 6.3. Properties of the Confidence Intervals (n; = ns)
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The finite sample properties of the inference procedures based on the identity weighted MD estimator
and the optimal weighted MD estimator are provided in Figures 6.3 and 6.4. In Figure 6.3, we see that the
finite coverage probabilities of the confidence intervals based on the MD estimators converge to the nominal
level 0.9 with both n; and ny increase to 1000. In model 1, the coverage probability of the confidence interval
based on the optimal MD estimator is closer to the nominal level than that based on the identity weighted
MD estimator in all sample sizes we considered. In model 2, the confidence interval based on the optimal MD
estimator is slightly worse than that based on the identity weighted MD estimator when the sample sizes nq
and no are small, and the coverage probabilities of the two confidence intervals are identical and close to the
nominal level when n; and ng are larger than 250. In both model 1 and model 2, the average length of the
confidence interval of the optimal MD estimator is much smaller than that of the confidence interval of the
identity weighted MD estimator, which is because the optimal MD estimator has smaller variance. The finite

sample performances of the confidence intervals based on the MD estimators under unequal sampling scheme
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are presented in Figure 6.4. In this figure, we see that when n; (or ns) is small, the coverage probabilities of
the confidence intervals of the two MD estimators are away from the nominal level. The performance of the
inference based on the identity weighted MD estimator is poor in model 1 when the sample size ns is small
regardless of the size of the other sample n;. From figures 6.3 and 6.4, we also see that the average length of
the confidence intervals of the optimally weighted MD estimators is smaller than the identity weighted MD

estimator.

Figure 6.4. Properties of the Confidence Intervals (n; + ng = 1000)
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7 Conclusion

This paper studies estimation and inference of nonlinear econometric models when the economic variables of
the models are contained in different data sets in pratice. We provide a semiparametric MD estimator based
on conditional moment restrictions with common conditioning variables which are contained in different data
sets. The MD estimator is show to be consistent and has asymptotic normal distribution. We provide the
specific form of optimal weight for the MD estimation, and show that the optimal weighted MD estimator has
the smallest asymptotic variance among all MD estimators. Consistent estimator of the variance-covariance
matrix of the MD estimator, and hence inference procedure of the unknown parameter is also provided. The
finite sample performances of the MD estimator and the inference procedure are investigated in simulation

studies.
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APPENDIX

A Proof of the Main Results in Section 3

Proof. [Proof of Theorem 1] Define the empirical criterion function of the MD estimation problem as

oy [w

el

&

7l1 ) (bnz (Zue) for any 0 € O. (37)

By Assumptions 2(iii) and 2(v),
inf Ly (0) > 38
{6co: ﬁe—eouze} n(6) 2 me.c (38)

where n¢ . = Cn. > 0 is a fixed constant which only depends on e. (38) implies that 6y is uniquely identified

as the minimizer of L} (#). Hence, to prove the consistency of B,., it is sufficient to show that

sup| L (0) = L5,(0)] = 0,(1). (39)
6cO

Note that we can decompose L, (6) as

el

Lo(0)=n"" Zf Py (Z5) = ho(Zi) 2 + |6y (Zi,0) — (Z3,0)] + |ho(Z:) — 6(Z:,0)]%)
207N 00(Z3)(hny (Z3) = ho(20)) (b0 (24, 6) — 6(Z3,6))

el

2071 10(Z2) (6 (23, 0) — $(24,0)) (ho(Zi) — 6(Zi,0))
el

20N 100 (2Z:) (hn, (Zi) — ho(2:)) (ho(Z3) — $(Z:,9). (40)
el

Using Assumption 1(i), one can use Rudelson’s law of large numbers for matrices (see, e.g., Lemma 6.2
in Belloni, et. al. (2015)) to get

Quiey; — Qry = Op(n™ 12, (log(k;)) V) and Qu, 1, — Qi = Op(n; /%€y, (log(k;))1/?) (41)

where Qn i, =n"1 Y, ij(Zl-)P,;j (Zi), Quy e, =717 " Zze] Py, (Z; )Pk (Z;) and the convergence is under
the operator norm of matrix. By (41), Assumptions 1(iii) and 1( ),

C_l S )\min(Qn,kj) S /\max(Qn,kj) S C and C_l S Amin(cgnj,kj) S Arﬂa‘x(an,kj) S C) (42)

with probability approaching 1. Under Assumption 1 and (42), (A.2) in the proof of Theorem 1 in Newey
(1997) implies that

~ 2
Hﬁkhnl — By || = Op(kiny ' + k™). (43)

(
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By the triangle inequality,

nt " i, (Z0) = ho(Z:)
2n_1 Z /ﬁnl (Z ho kg(

2

* fon- Y ho (Zi) — ho(Z:)
el ( iel
Q(ﬂhﬂh - 5h,k1)/Qk1,n(5k1,n1 ﬁh,kl) +2 Sug |h0,k1 (Z) - ho(z)|2
zE

) ’Bkl,nl = Bk

= 0, (knit + k) = 0y(1) <

2
< 2)\max(Qk1,n +2 Sug |h0,k1 (Z) - hO(Z)|2
zE

(44)

where the first equality is by Assumption 1(iv), (42) and (43), the second equality is by Assumption 1(v).

By the triangle inequality and Assumption 2(v),

sup |Wn (2)| < sup [Wn(2) — wn(z)| + sup jwa(2)] < 2C
z€Z z€Z z€EZ

with probability approaching 1. By (44) and (45),

—1 Zu)n 711 ) — hO(Zz) ’ < sup |@n(z)\ Z ‘,/jbnl (ZZ) - ho(ZZ)

el 2€2 el (
B . ..

y (45) and Assumption 2(ii),

¢n2 Zwe) d)(Zive)‘Q

supn” Z wn(Z,

0€©

IN

el (6
2
up [0 (=) supn 3 [6n, (Z:,0) — 6(2 )| = op(1).
z2€EZ icl g
Using (44), (45), Assumption 2(ii) and the Cauchy-Schwarz inequality, we get

sup

sup n‘lzfn(%)(ﬁn Z;) = ho(Z:) (s (Zi, 0) — ¢(Zi’9))‘

icl
< su£|wn )| *1 supn 1 Z
ZEI

By Assumption 1(ii), E [/3(Z)] < C, which together with Assumption 2(i) implies that

[

77,1 z) hO(

sup E [\hO(Z) — (2, 9)|2} < 2B [h2(Z)] + 2sup E [¢2(Z,0)] C C.
0e® 0cO
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By (49), Assumptions 2.(iv) and 2.(v),

-1
sup n &(Z;, 0
a2 (2 "
< Csupn~ 12 Z;i) |ho(Z ¢(Zia9)|2
0€® el

< (C+op(1)) sup B [ w(Z) |holZ:) — 6(Z:,6) ]

< (C+ 010 sup B [|fio(Z) — 9(Z0,6)[°] = 05 (1),

Using (45), (50), Assumptions 2(ii) and (iv), and the Cauchy-Schwarz inequality, we get

sup
0O

n! Z€n<zi><<$n2<zi,e> —~ 0(2:,9)) (ho(Z:) - as(zi,o))’
el

[

(%)
<51€1£|wn sup n- 1Z|h0 ¢(Zi,9)|2\/n— Z

1
icl el

Similarly, using (45), (44), (50), Assumptions 2(iv) and the Cauchy-Schwarz inequality, we get

sup n=t an(zi)(ﬁm( i) — ho(Zi))(ho(Zi) — ¢(Zi79))| = 0p(1).
€ iel
Collecting the results 1( (40), (46), (47), (48), (51) and (52), we get (

0€© USC] icl

sup L, (0) = supn~* Zf ) 1ho(Zi) — ¢(Zi, 0)” + 0,(1).

By (50) and Assumption 2(v),

el

sSup n_l Z An(Zi) - wn(Zz)) |h0(Z) Zl’e
0cO icl

< sup [Qn(2) —wn(2)|supn 12(1 &(Z:,0)[° é
z€EZ

which together with (53) and Assumption 2(iv),

La(6) = L;(0) :Sggan(G) n(0)] + 0p(1) = 0p(1).

0€cO

This proves (39) and hence the claim of the theorem.

Lemma 4. By Assumptions 1(i), 1(ii), 1(v) and 3(i), we have

sup n~t Z Haoe,ng(zia 9)H2 = Op(1)
icl

06./\[5", (

20

= 2
Pno\Zi, 0) — (b(Zi)H)‘ = op(1).

(51)

(54)



Proof. |Proof of Lemma 4] By definition,

i€l

P00.ns (2,0) = 1y Pry (2)/ > Ckz(zi)gee(Xiv 0).

Let go,, 0,, (Xi,0) denote the (j1, j2)-th component of ggg(X;,0), for any j1 = 1,...,dp and any jo = 1,...,dp.
Let

¢0j10j2,n2 (Z’ 9) = nglpléz (Z) n21 kzP'r/LQ,kzge_]l 0jy,m2 (0)

where go; 0, n,(0) = (90,,0,,(Xi,0))icr, Then by definition,

,1 —1 -1 /
Z 0y, Zia 9) = 905, 05,,n2 (0)/P77'27k2Qn2,k;2Qn,k2Qn27k2Pn27k299j10j27"2 (9)

i€l
)‘maX(Qn,lm) 96;,6;,,n2 (Q)IP"ZJC? (P;LQJCQP"%’“?)_1P7/127k299j191'2’"2 (9)
- )\min(in,kz) T2
>\max Qn kz) —1
< 96, 0;
)\m]n(in,kQ) 16212 7 ]2 l )

which together with (42) (which holds under Assumptions 1(i), 1(iii) and 1(v)), and Assumption 3(i) implies
that

0eNs,, iel IIlil’l(Q'le,k2) 0eNs,, icly

sup n VS B , (Z,0) < Smexl@ua) nzlz(gehmxi,wﬁ=op<1>

for any j;1 =1,...,dp and any jo = 1,...,dg. This finishes the proof. O

Lemma 5. By Assumptions 1(i), 1(ii), 1(iv), 1(v), 3(v) and 3(vii), we have

0 S (o (Z3) = $na(Z6,00))7 = 0p(ny /41y 12,

i€l

Proof. [Proof of Lemma 5| By (44) (which holds under Assumptions 1(i), 1(iii), 1(iv) and 1(v)),

_IZ ¢nz(Z“90))

el
<207 (i, (Zi) — ho(Z0)2 + 2070 (s (Zi,00) — ho(Z:))?
3 el
=201 (Bn,(Zi,00) — ho(Z:))? + Oplkany * + k7 7™). (56)
el

Let E(b,nQ = (Péz,kzpn'z,kz)71P7/L2,k29n2 (00)7 where 9ns (00) ( (le 90))1612 Then

2
= (g’ﬂz (90) - Hﬂz,kz)lpﬂz,kz (Prlzz,kgpnz,kz) 2P7/12,k2 (g 2(90) - Hn2,k2)

<< (gnz (00) - an,kz)/Pn'z-,kz (P7,z27kzpn27k2)7lp7,z27k2 (gnz (90) - Hnmkz)
a na Amin (Qng ko ) ’

H5¢>,n2 — Bhoks

(57)
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where H, x, = (hok,(Zi))icr,- By Assumptions 1(iv),

ngl(an - Hn2,k2)/Pn2,k2 (P”/LQ,kQPTLkaQ)_lP”/LQ,kQ (Hn2 - Hn2,k2)

< n;l(an - an,kz)l(H’ﬂz - an,kz) = O<k;2Th)? (58)
where H,,, = (ho(Z;))jcy,- By Assumptions 1(i), 1(iii) and 3(v),

E [ngl(gnz (00) - Hn2),Pn27k2 (P’r/lg,kgpn21k2)7lp’r/lg,k2 (gn2 (90) - H’n2)| {Zi}iGb]E
= n;ltr (f;zz,kgpnmb)_lp;zz,sz [(gn2 (90) - an)(gnz (90) - H’ﬂz)/| {Zi}iefz} ’ﬂ2,k2)

< sup a?( kgngl = O(k:gnz_l)
z€EZ
which together with the Markov inequality implies that

n2_1(9n2 (00) - HnQ)/Pnz,k’z (Pég,kgpn%kz)il ’fllz,kz (gn2 (90) - an) = Op(k2n2_1) (59)

Combining the results in (57), (58) and (59), and then applying (42), we get

2

HB¢7H2 — Bh ks Op(kany ' + ky>™). (60)

By (42) and (60) (

nt Z by (Zi,00) — ho iy (Z))?

icl
= (B\(Iﬁ,’nz - ﬁh7k2)/Qn7k2 (3@5,712 - /Bh,kz)
~ 2
< )‘maX(Qn,kz) ﬂ¢7n2 - Bh,k'z = Op(k2n2_1 + k2_2rh) (61)
which together with (56) and Assumption 3(vii) proves th( claim of the lemma. O

Lemma 6. Under Assumptions 1(i), 2(v), 8(iv) and 3(vi), we have
n_ld)wa,npn,]ﬁ( rlL,klp’ﬂ,kl)_l 7I1,k1¢2u0,n =FE [w2(2)¢9(27 90)¢,9(Z7 00)} OP(]')‘

Proof. [Proof of Lemma 6] For j = 1,...,dg, let ¢wo, k ,n(2,00) = P(2)Buws; kr> Pwo, kin = (Pwo; k1n(Zis 00))icr

— / / : — / -1 pr
and Guwo. ki n = (g, iy n)j=1,....d,- FOr €ase of notations, we define My, = Py (P, o, Paky) ™ By g, -

By definition,

¢w9,an1,n¢;U9,n = ¢we’k1,an1,n¢;u9,k1,n + ((wa,n - ¢w9,k1,n) M, n (wae}n - (bw@,kl,n)/
+ ((z)w@,n - ¢w0,k1,n) Mk17n¢;U07k1,n + ¢w9,k1,an1,n (¢w9,n - ¢)w9,k1,n)/ . (62)

For any j = 1,...,dp, let ¢uyg, n denote the j-th row of ¢y ,. By the Cauchy-Schwarz inequality, for any

22



j1=1,...,dg and any jo = 1,...,dp,

_ 2
‘n 1(¢w9j1 n ¢w9j,k1,n)Mk1,n(¢w0j2,n - ¢w0j2 k1 n)l}
S n_l(d)weh,n - d)wej,k:l,n)Mkl,n(d)w@jl,n - d)w@j,kh )I

X n71(¢w012,n - ¢w0j2,k1,7z)Mk1,n(¢w0j2,n

- ¢w9j2,k1,n),
2
<n Y fwn(Zi)do,, (Zir00) — buiy, ki (Zis 00)]
el

xS wa(Z:)bo,, (Zi,00) — busy, o (Zis 00)|”
iel

o(1) (63)

where the last equality is by Assumption 3(vi), and the fact that My, , is an idempotent matrix. (63) then
implies that

nil (¢w9,n - ¢w9,k1,n) Mkl,n (waG,n - (bwa,kl,n) = 0(1)

For any j; =1,.. ., dg, by definition we can write

(64)
.,dp and any js =1,

-1 /
n ¢w9j17k1,an1,n¢w0]2 ki,n

o —1p / —1pr /
=n Bwqul,kpn}klpn,kl (Pn klpn,k1> Pn,lc1 ¢w9j2,k1

=07 buoy, ko (Zis 00)bus,, ke (Zis 00)

iel

= _12 ¢931 Zz,eo)ngm(Zon)

el

0 (wsy, ki (Zis00) — wa(Zi) o, (Zi,00))buwo,, kr.n(Zi, bo)
el

-t Z Z:i)90;, (Ziy 00)(Pwo,, k1 (Ziy 00) — wn(Zi) o, (Zi, 00))- (65)
el

By Assumptions 1(i), 2(v), 3(iv) and the Markov inequality, we have

nt Y wi(Zi)e,, (Zi,00)de,, (Zi,00) — E [wh(Z:) oo, (Zi, 00) e, (Zi, 60)]
el

Op(n=172), (66)

where under Assumptions 2(v) and 3(iv)

|E [w(Zi)¢o,, (Zi, 00)dbe,, (Zi, 60)]| < C.

(67)
By Assumption 3(vi),

wn(Zl)qsem(Z“eO))
2 (
s, 0 6o, (2. 00) — ()6, (2,001 ) = o),
J=1,....dg ze2Z

! Z((bwejl,kl,n(ziy o) — wn(Zi)po,;, (Zi, 00))(Pwo;, ky.n(Zis 00) —
<< iel
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which implies that

0 (Buwo, ki n(Zis 00) — wn(Zi) o, (Zi,00)) buwn,, k1. (Zis 00)

el
=n"" fﬁweﬁkl,n(zu 00) — wn(Zi)9a;, (Zi, 00))wn(Zi)bo,, (Zi, 00) + 0p(1). (69)
1€l

By the Cauchy-Schwarz inequality,

2
-t ¢w0 k1, n Zza ( )¢011 (Zme()))wn( )¢012 (Zme())
i€l
z( |<z>w9 dern(Zi,00) — wa(Zi) o, (Zi,00) 0™ty o2 oé (Zi,60) = 0p(1) (70)
iel
where the equality is by Assumption 3(vi), (66) and (67). Combining the results in (69) and (70), we get
n! Zfﬁw%m(zi, 00) — wn (Zi) e, (Zi,00)) butyy . (Zir B0) = 0p(1)- (71)
il
Similarly, we can show that
n! Z( )0, (Zi,00)(Duwo, k. (Zir 00) — wa(Zi)bo,, (Zi,00)) = 0p(1). (72)
el
Collecting the results in (65), (66), (71) and (72), we have
0 Gty ke Miy 0@, o = E [wi(Zi) e, (Ziy 00) 0, (Zi, 00)] Cop(l) (73)
for any j; = 1,...,dp and any jo = 1,...,dy, which implies that
0 w0 k0 My 1Pt iy = B (Wi (Zi)bo(Zi, 00) 0y (Zi, 00)] (Lop(l)- (74)
By the Cauchy-Schwarz inequality, for any j; = 1,...,dg and any js = 1,...,dy,
2
(¢w9]~1 n ¢w0j1,kl,n)Mkl’nqh;quz,kl,n
n
1 (¢'w9j1 n o ¢'w9j1 k1 ,n)Mkl ,n(d)wOjl ,n ¢w9j1 N ,n)/ (bweh N ,anl 7n¢;u9j2 Jk1,m
= X = op(1) (75)
n n
where the equality is by (63), (67) and (73). (75) then implies that
n_l (¢w0,n - ¢w9,k¢17’ﬂ) Mk1,n¢iu9,k:17n = 017(1) (76)
and similarly
n_1¢w0,k1,an1,n (¢w0,n - ¢w0,k1,n)/ - Op(1)~ (77)
Combining the results in (62), (64), (74), (76) and (77), we immediately get the claimed result. O
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Proof. [Proof of Theorem 2| By the definition of 5,“ we have the following first order condition

i€l

n! Z( i) Zi) — ¢n2 (Zi, 0, n))@0,n5(Zi, 0n) = 0. (78)
Applying the first order expansion to (78), we get

=0y 00(Z0) (hny (Z:) = G (Zis 00))do,ns (Zis B0)

el
-1 Z 9n2 iagn)ae,ng(ziaan)/(é\n - 00)
el
0 on(Z3) (hay (Z) = by (Zi, 0n)) B00.1m0 (Zi,00) (O — 00), (79)
iel

where 5n is between é\n and 0y and it may differ across rows.

For any j =1,...,dy, by the mean value expansion and the Cauchy-Schwarz inequality,

forntol o

which together with the triangle inequality and Lemma 4 implies that

96./\/'5n

]fej,m(zi,éj,n) ~ Go,s(Zis00)| < sup

iel

Y (Boyna(Zis i) = Boy s (Z6200))* < sup n—le%ﬁ,nxzi,e)HzHéj,n—eoHZ=op<1>. (80)
i€l
By Assumption 3(iii) and (80),

nY 00,0 (Zi05.0) — o, (24, 00))°
il
<2071 Y (90,0 (Zibj0) = 00,0 (Zi,00))° + 207 (B, 00 (Zis 60) — b0,(Z0,60))° = 0p(1). (81)
il icl
By Assumption 3(iv) and the Markov inequality,
n~t Z bo,(Zi,00))* = Op(1), (82)
il
which together with (81) implies that
_1 Z 0],712 Zw 9 ) O;D(l) (83)

el

forany j =1,...,dg. For any j3 = 1,...,dp and any jo = 1,...,dy, we can use the triangle inequality and
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the Cauchy-Schwarz inequality, Assumptions 2(v), (81), (82) and (83) to deduce that

‘n—1Zfnwi)aeh,nz(&,@l,n)q%jz,m( 030y n) lzwn i) b0, (Z:,00)de,, (Zi,00)

i
Jos
L

o~ ~ o~ ~

- wn(Zi))Qbé‘jl ,n2 (Zia ajl,n)¢9jz N2 (Zia ejz,n)

6 %o, i (Zis Ojy.m) — b0, (Zi,eo))fgeh,nz(zi, bo
</ )9
13

0, (Zl’ 90)(¢ 0, ,m2 (Zi’ 5]‘2,71) - ¢9j2 (Zi7 90))‘ = Qp(l)' (84)
Under Assumptions ) and 3(iv), we can the Markov inequality tC deduce that
n~! Z( i)bo,, (Zi,00)00,, (Zi,00) = E [wa(Z;)o,, (Zi,00)00,, (Zi,00)] + 0p(1) (85)
iel
for any j3 = 1,...,dp and any j, = 1,...,dy. Collecting the results in (84) and (85), we get
126 ¢0 ns ( Zwa )¢0,n2(Zi7§n)/ = Ho + op(1). (86)
el

By the second order Taylor expansion and the triangle inequality and the Cauchy-Schwarz inequality,
S [0(ZisOm) — (2 0)|

el
2y {mzi, 00) 1% 1160 — GQF

1=y
270 sup Z( 0(Ze, )12 17 — 60]|* = 0p(1) (87)
on iel

where the equality is by (82), Lemma 4 and ||5jn — 6ol| = 0p(1) for any j =1,...,dy. (87) together with
Assumptions 2(ii) then implies that
—1 < a 2
n Z ‘¢n2(Zi, 0j.n) — o(Zs, 90)‘

i€l

207 S G (20 3) — 602,80 20 Y (6020 80) — 0Z0b)| op1)  (89)

i€l ( icl (
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for any j =1,...,dg. By the Cauchy-Schwarz inequality,

.....

.....

,,,,,

i€l
X \/nl z; Enl(ZZ-) — ho(Z; ) + nlnagde n-! 2;\1%2 Z“QJ n) — ¢(Zi790)‘2 = 0p(1) (89)
i€ ’ i€
where the last equality is by (44), (45), Lemma 4 and (88). <
By definition,
n! ZI Z)(h (Z:) = 612 (Zi, 00)) 90,02 (Zi, 00)
i€
=0 o (Zi) (hny (Zi) = 0, (Z3,60)) b6 (Zi 60)
- Z — wn(2:)) (ks (Z5) = $na(Zi: 00)) 0,2 (Zis 60)
i€
- Z; Zi) = 6ny(Z:,00)) (60.ns (Zi, 00) — d0(Zi, 00)). (90)
1€

By Assumptions 3(iv) and 3(v), and the Markov inequality

i€l icl icl

nty Cae,nxzi,eow <Y |60.ns (Zis 00) — d0(Zi, 00)|12 + 2071 D ||90(Zi, 00)||* = Op(1). (91)

By the triangle inequality and the Cauchy-Schwarz inequality, (91), Lemma 5, Assumptions 2(v) and 3(vii),

n~! Z An(ZZ) - w’ﬂ(ZZ))(Bn1 (ZZ) - $n2 (Zi7 90))8@,712 (Zi; 90)

( i€l
~ 2
sup () — wn(2)] 171 D (o, (20) = (22, 60) \/n 1XH¢9,n2(zi,oo>H
el

z€ i€l (

= op(ny? 4 ;1/2)\/v<—12Hq%m(zi,eo)H — op(ny 2+, /7). (92)
iel

By the triangle inequality and the Cauchy-Schwarz inequality, Lemma 5, Assumptions 2(v), 3(iii) and 3(vii),

n! Zf i) Z;) = bn(Zi,00))(G0.ns (Zi, 00) — ¢e(Zi,30))H

i€l

iel /
(sup|wn |\/—1Z n1(Z3) = 6ny (Zi, 00)) \/—12\\¢9n2 (2\00) — 60l Z..00) I
= op(ny /? 407", ( (93)
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Combining the results in (90), (92) and (93), we get

0 0 (Z0) (i, (Z) = Gy (Zi,00))P0.ns (Zi, 00)

iel
=0 Y 020 (hy (Z) = B (Z3, 00))b0(Zi, 00) + 0p(ny /2 43 ' /?)
iel
=" fon(Zi) (hn, (Z) = ho(Zi)$6(Zi, 00)
iel
0" on(Zi)(bna (Zi, 00) — ho(Z:))d0(Zi, 00) + 0p(ny /* + 15 "/%). (94)
el
By the definition of iALm (Z;), we can write
nN on(Zi) (i (2:) = ho(Z:)(Zi, 00)
iel
¢w0,nPn,k1 (Pr/u,klpnl,lﬁ) 1Pn1 k1 Um
o n
n ¢w9,7LPn,k1 (P;Lhklpnhkl; P7/11 k1 (H’fll - thkl) + ¢w6,n(H7;l_ H’ﬂ,kl). (95)

where Hy, = (ho(Z:))icr, Hny = (ho(Zi))ier,> Uni = (Wi)icr,s Huer = (howy (Zi))iers Huy o = (hoky (Z0))ier,
and ¢uo,n = (Wi (Z;)de(Z;, 00))iel- By the Cauchy-Schwarz inequality,

2
ste,nPn,kl (Pf’lyll,klp'n/l,k]) 1P7/7,1 k1 (Hn1 - Hn1,k1) /
TL2

d)wG,nPn,k; P7IL k ;1)9 n
< ;LQ = . (Hn1 - Hn1-k1)/Pn1,k1 (Prlzl,klpnl,lﬁ) 2P/1 k1 (Hn1 - Hnl,kl)
< )\max(Qn,kl) ¢U’97"P"7k1 (Pn klp ) PrlL,kl ;Ue,n
o )\min(thkl) n
% (Hnl - Hnl,k1)/Pn1J€1 (P7ll,17k1P'ﬂ17kl) 1P7111 k1 (Hnl - Hﬂl,kl)

ni
2

SUp,cz wn(z) )‘max(Qk, _ 2 _op

R Y
min 1,m1 el el

where the last equality is by (42), (82), Assumptions 1(iv) and 2(v). By the triangle inequality,

-1

nt Y fon(Zi) (ho,k, (Zi) = ho(Z:))de(Zi, o)

icl
<<§up |w, (2)|n Z (ho i, ( hO(Zi))%(%a o)l
€z

iel

< Csupz |ho(27)l— hi, (2)] Z (@(Zm%) = Op(k;y™), (97)

icl

where the last equality is by (82), Assumptions 1(iv) and 2(v). Combining the results in (95), (96) and (97),
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we get
0 fon(Z0) (hny (2) — ho(Z3))bo(Zi, 60)
el

J P 1 P’rlz P, 1,1
_ SutnPua ( P ) SN P (2) 4 0, (k7). (98)
i€l

By the definition of ¢, (Z;,6), we can write

el

‘126 ) (Gna (Zi,80) — ho(Z:))do(Zi,60)

Puwd,n P ks (Pp, oy Prs o) ™
_ Fwon” n.ks no,ka” M2,R2 Z'Eisz

n
i€l

+ ¢w9,npn,k2 (Pr/u,kzpnz,k2)71(Hn2 - Hn2,k2) + ¢w9,n<Hn - Hn,k)z)

n n

(99)

where Hp, 1, = (hok,(Zi))ier, and Hy g, = (hor,(Zi))icr- Using similar arguments in showing (96) and
(97), we get

¢w9,npn,k (Prll k Pn K )_1(Hn - Hn N ) —_r ¢w0,n(Hn - Hn,k ) —r
2 2,K2 ; 2 2 227 Op(k2 h,) and - 2/ _ Op(k2 h)7
which together with (99) implies that
Tty fon i) (6na (Zi,00) — ho(Z:))de(Zi, o)
i€l
_ oot B Totd) _ $np(2) + 0,057, (100)

n :
i€ly

By Assumption 3(v), C™'Qn, k, <11 Y if g, 0o(Zi)Pry (Zi) Py, (Zi)' < CQn, iy, which together with (42)
implies that
C_l < )\min(in,u) S )\max(in,u) < 07 (101)

with probability approaching 1. Similarly, we can show that

Cil S Amin(QHQ,s) S Amax(Qng,s) S C (102)

with probability approaching 1.
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Under the i.i.d. assumption,

2
P, P’ Pn -t
¢w0,n n,kl( ni,k1 17k1) Z _Fik1 (Zz) {Zi}iel (

n

i€l
o ¢w€,npn,k1 (P;zl,kl nl,kl) 1Qn1, ( ni, klp’ﬂh ) 1P7Iz k1 L)O,n
= o e —
C)\max(in,u) ¢1U97"Pn7klpvll7k1 :w07n
N >‘r2nin(Qk1JL1) n?n,
< )\max(in,u))\max(Qn,kl) ¢w9 nP’ﬂ k1 (Pn k1P ) P’f:, N ;1)0 n
nl)‘?nin(inJﬁ)

Amax(CBn u) max Qn k _
< 2 1 1), -1 E (Z:i,00)|” = , 103
o jgg |wn(z>| nlA?nlIl(Qn17 1) icl ”QS@ v p( ' ) ( )

where the last equality is by (101), (42), (82), Assumptions 2(v) and 3(iv). Combined with the Markov
inequality, (103) implies that

Pt PraPoss] Sy (7)< 0,0 (10)
i€l
Similarly, we can show that
Prtalbiellin e 5 <1Pk2<zi> = 0,(n; ). (105)
i€ls

By (86) and (89),

nt ZG QJ)@ n2 Zﬂ 9 )Qj)e n2( an) + (hm(Zi) - $n2 (Zivgn))(g@@,nz (Zia gn)) = HO,n + Op(1)7 (106)

iel

which together with (79) implies that

[HO,H + OP( )} (0 - 90 nt Z( 1 ) (an (Zla 00))¢9 n2 (ZMQO) (107)
el
By (94), (98) and (100), and Assumption 3(vii),
Yy fn Z;) = 6y (Zi,00)) 60.ns (Zi, 00)
el
¢w0nPnk:1(P7/L kPnl kl)_l Z
= Debn b Pu ()
n ieh(
wnPnzp/ Pn22_1 _ _
B ZGP i (Z0) + 0yl /2 45 (108)
icly

which together with (104) and (105) implies that

_ Z |: n1 1 ¢n2 (Zz7 00):| aa,ng (21700) = Op(n;1/2 + ’I’L;l/2). (109)

zel
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Then by (110), we can write

n

(Ho,n(Zn, + an)_lHO,n)lm(é\n —th) = Z(“” + Op(n;1/2 + n;1/2). (116)

i=1

Let F;, be the sigma field generated by {win,...,win,{Zi}ticr} for i =1,...,n. Then under Assumption
1(i), E[vwin| Fi—1,n] = 0 which means that {7/, w; »}I; is a martingale difference array. We next use the

Martingale CLT to show the claim. There are two sufficient conditions to verify:
ZE [(’Y;zwi,n)Ql ]:z',n} Cp 1; and (117)
i=1
Z [(Vhwin) 2 I {[vpwin| > €}| Fin] f+p OVe > 0. (118)
i=1
For ease of notations, we define D,, = (Hp »(2,, + an)_lHo,n)lmHO__}l. By definition, we have

ZE [(P)/;zwz,n>2| fl,n] = Z’Y;LE [Wi,nwé’n} -E,n] n
i=1 =

—1 -1 / /
Dn¢11/97”Pn7k1 ni,k1 Q"lvUin,klpfn,kl wb, nD

2 n
n°ni
, D7L¢w0,nPn,k2Q;zl’szng,sQ,,—Lzl)kZPAkz w0 nD/
n<no
= 1 Dn(Zn;, +Eny) Dyt = 170 = 1 (119)

which proves (117). By the monotonicity of expectation,
ZE [('Y;Lwi,n)QI{h;zwi,ﬂ > 5}| ]:i,n] (

E [(’Y;Lwi,n)ﬂ fz,n}

62
=1
1 Dnd)we,npn,lenl klpkl (Z ) _F
=3 ‘ n4n411 in
i€l

/
VnDnwaO,nPn,kz na, k2pk2
< ninj

Hon = Ewn(Zi)po(Zi, 00)dp(Zi, 00)] < C. (121)

1
+ 3 Y E
i€ly

Jg (120)
|

By Assumptions 2(v) and 3(iv),

By (66) in the proof of Lemma 6,

nil(bwa,nqs;u@,n =F [wi(ZZ)QSg(ZZ, 00)¢,9(Zia 00)] COP(1)7 (122)
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