LOCAL M-ESTIMATION WITH DISCONTINUOUS CRITERION FOR DEPENDENT AND LIMITED OBSERVATIONS

MYUNG HWAN SEO AND TAISUKE OTSU

Abstract. This paper examines local M-estimators and their asymptotic properties under sets of high-level assumptions, which define three classes of local M-estimators. The conditions are sufficiently general to cover the minimum volume predictive region, the conditional maximum score estimator for a panel data discrete choice model, and many other widely used estimators in statistics and econometrics. Specifically, they allow for a discontinuous criterion function of weakly dependent observations, which is localized by kernel smoothing and contains a nuisance parameter whose dimension may grow to infinity. Furthermore, the localization can occur around parameter values not a fixed point and the observation may take limited values, which leads to set estimators. Our theory produces three different nonparametric cube root rates and enables valid inference for the local M-estimators, building on novel maximal inequalities for weakly dependent data. Our results include the standard cube root asymptotics as a special case. To illustrate the usefulness of our results, we verify our conditions for various examples such as Hough transform estimator with diminishing bandwidth, the dynamic maximum score estimator, and many others.

1. Introduction

There is a class of estimation problems in statistics where a point (or set-valued) estimator is obtained by maximizing a discontinuous and possibly localized criterion function. As a prototype, consider the estimation of a simplified version of the minimum volume predictive region for y given $x = c$ (Polonik and Yao, 2000). Let $\mathbb{I}\{\cdot\}$ be the indicator function, and $K(\cdot)$ be a kernel function, and h_n be a bandwidth. For a prespecified significance level α, the estimator $\hat{\theta} \pm \hat{\nu}$ is obtained by the following M-estimation:

$$\max_{\theta} \sum_{t=1}^{n} \mathbb{I}\{-\hat{\nu} \leq y_t - \theta \leq \hat{\nu}\} K \left(\frac{x_t - c}{h_n} \right),$$

where $\hat{\nu} = \inf \left\{ \nu : \sup_{\theta} \sum_{t=1}^{n} \mathbb{I}\{-\nu \leq y_t - \theta \leq \nu\} K \left(\frac{x_t - c}{h_n} \right) / \sum_{t=1}^{n} K \left(\frac{x_t - c}{h_n} \right) \geq \alpha \right\}$. This estimation exhibits several highly nonregular features such as the discontinuity of the criterion function, local smoothing by the kernel component $K \left(\frac{x_t - c}{h_n} \right)$, and serial dependence in time series data, which have

Key words and phrases. Cube root asymptotics, Maximal inequality, Mixing process, Partial identification, Parameter-dependent localization.

The authors would like to thank Aureo de Paula, Marine Carrasco, Javier Hidalgo, Dennis Kristensen, Benedikt Pötscher, Peter Robinson, Kyungchul Song, Yoon-Jae Whang, and seminar and conference participants at Cambridge, CIREQ in Montreal, CORE in Louvain, CREATES in Aarhus, IHS in Vienna, ISNPS in Cádiz, LSE, Surrey, UCL, Vienna, and York for helpful comments. Financial support from the ERC Consolidator Grant (SAP 615882) is gratefully acknowledged (Otsu).
prevented a full-blown asymptotic analysis of the M-estimator $\hat{\theta}$. Only the consistency is reported in the literature.

This type of M-estimation has numerous applications. Since Chernoff’s (1964) study on estimation of the mode, many papers raised such estimation problems, e.g., the shorth (Andrews et al., 1972), least median of squares (Rousseeuw, 1984), nonparametric monotone density estimation (Prakasa Rao, 1969), and maximum score estimation (Manski, 1975). These classical examples are studied in a seminal work by Kim and Pollard (1990), which explained elegantly how this type of estimation problems induces the so-called cube root phenomena (i.e., the estimators converge at the cube root rate to some non-normal distributions instead of familiar squared root rate to normals) in a unified framework by means of empirical process theory. See also van der Vaart and Wellner (1996) and Kosorok (2008) for a general theory of M-estimation based on empirical process theory. However, these works do not cover the estimation problem in (1) due to their focus on cross-sectional data among others. It should be emphasized that this is not a pathological example. We provide several other relevant examples in Section 3 and supplementary materials, which include well-known Honoré and Kyriazidou’s (2000) estimator for the dynamic panel discrete choice model. Furthermore, we propose a new binary choice model with random coefficients and a localized maximum score estimator in Section 3.2.

This paper covers broader class of M-estimators than the above examples suggest. The baseline scenario above (called local M-estimation due to the localization at $x = c$) is generalized into two directions. First, we accommodate not only variables taking limited values (e.g., interval-valued data) which typically lead to estimation of a set rather than a point, but also nuisance parameters with growing dimension. Set estimation problems due to limited data are also known as partial identification problems in econometrics literature (e.g., Manski and Tamer, 2002). It is also novel to accommodate high-dimensional nuisance parameters in the M-estimation with a discontinuous criterion. Second, we allow for the localization to be dependent on the parameter θ instead of a prespecified value c. For instance, the criterion may take the form of $\sum_{i=1}^{n} I\{|y_{i} - \theta| \leq h_{n}\}$ with $h_{n} \to 0$. Relevant examples include mode estimation (Chernoff, 1964, and Lee, 1989) and the Hough transform estimator in image analysis (Goldenshluger and Zeevi, 2004). Henceforth, we call this case parameter-dependent local M-estimation. Parameter-dependence brings some new feature in our asymptotic analysis but in a different way from a classical example of parameter-dependency on support (e.g., maximum likelihood for Uniform[0, θ]).

The contribution of this paper is to develop general asymptotic theory for such M-estimation with discontinuous and possibly localized criterions. Our theoretical results cover all the examples above and can be used to establish limit laws for point estimators and convergence rates for set estimators. To this end, we develop certain maximal inequalities, which enable us to obtain nonparametric cube root rates of $(nh_{n})^{1/3}$, $(nh_{n}/\log(nh_{n}))^{1/3}$, and $(nh_{n}^{2})^{1/3}$, for local M-estimation, limited variable case, and parameter-dependent case, respectively. These inequalities are extended to establish stochastic equicontinuity of normalized processes of the criterions so that an argmax theorem delivers
limit laws of the M-estimators. It is worth noting that all the conditions are characterized through moment conditions that can be easily verified as illustrated in the examples. Thus, our results can be applied without prior knowledge on empirical process theory. It is often not trivial to verify the entropy conditions such as uniform manageability in Kim and Pollard (1990). Particularly for dependent data, the covering or bracketing numbers often need to be calculated using a norm that hinges on the mixing coefficients and distribution of the data (e.g., the $L_{2,\beta}$-norm in Doukhan, Massart and Rio, 1995).

Another contribution is that we allow for weakly dependent data, which is associated with exponential mixing decay rates of the absolutely regular processes. In some applications, the cube root asymptotics has been extended to time series data, such as Anevski and Hössjer (2006) for monotone density estimation, Zinde-Walsh (2002) for least median of squares, de Jong and Woutersen (2011) for maximum score, and Koo and Seo (2015) for break point estimation under misspecification. However, it is not clear whether they are able to handle a general class of estimation problems in this paper.

The paper is organized as follows. Section 2 develops asymptotic theory for local M-estimation, and Section 3 provides some examples. In Section 4, we generalize the asymptotic theory to the cases of limited variables (Section 4.1) and parameter-dependent localization (Section 4.2). Section 5 concludes. All proofs and some additional examples are contained in the supplementary material.

2. LOCAL M-ESTIMATION WITH DISCONTINUOUS CRITERION

Let us consider the M-estimator $\hat{\theta}$ that maximizes

$$\mathbb{P}_nf_{n,\theta} = \frac{1}{n} \sum_{t=1}^{n} f_{n,\theta}(z_t),$$

where $\{f_{n,\theta} : \theta \in \Theta\}$ is a sequence of criterions indexed by the parameters $\theta \in \Theta \subseteq \mathbb{R}^d$ and $\{z_t\}$ is a strictly stationary sequence of random variables with marginal P. We introduce a set of conditions for $f_{n,\theta}$, which induces a possibly localized counterpart of Kim and Pollard’s (1990) cube root asymptotics. Their cube root asymptotics can be viewed as a special case of ours, where $f_{n,\theta} = f_\theta$ for all n. Let $Pf = \int f dP$ for a function f, $|\cdot|$ be the Euclidean norm of a vector, and $\|\cdot\|_2$ be the $L_2(P)$-norm of a random variable. The class of criterions of our interest is characterized as follows.

Assumption M. For a sequence $\{h_n\}$ of positive numbers with $nh_n \to \infty$, $\{f_{n,\theta} : \theta \in \Theta\}$ satisfies the following conditions.

(i): $\{h_n f_{n,\theta} : \theta \in \Theta\}$ is a class of uniformly bounded functions. Also, $\lim_{n \to \infty} Pf_{n,\theta}$ is uniquely maximized at θ_0 and $Pf_{n,\theta}$ is twice continuously differentiable at θ_0 for all n large enough and admits the expansion

$$P(f_{n,\theta} - f_{n,\theta_0}) = \frac{1}{2}(\theta - \theta_0)'V(\theta - \theta_0) + o(|\theta - \theta_0|^2) + o((nh_n)^{-2/3}),$$

for a negative definite matrix V.

(ii): There exist positive constants C and C' such that
\[|\theta_1 - \theta_2| \leq C h_n^{1/2} \| f_{n, \theta_1} - f_{n, \theta_2} \|_2, \]
for all n large enough and all $\theta_1, \theta_2 \in \{ \theta \in \Theta : |\theta - \theta_0| \leq C' \}$.

(iii): There exists a positive constant C'' such that
\[P \sup_{\theta \in \Theta : |\theta - \theta'| < \varepsilon} h_n |f_{n, \theta} - f_{n, \theta'}|^2 \leq C'' \varepsilon, \tag{3} \]
for all n large enough, $\varepsilon > 0$ small enough, and θ' in a neighborhood of θ_0.

Although we are primarily interested in the case of $h_n \to 0$, we do not exclude the case of $h_n = 1$. When $h_n \to 0$, the sequence $\{h_n\}$ is usually a bandwidth sequence for localization. Although we cover Kim and Pollard’s setup as a special case, our conditions appear somewhat different from theirs. In fact, our conditions consist of directly verifiable moment conditions without resorting to notion of empirical process theory such as uniform manageability.

Assumption M (i) contains boundedness, point identification of θ_0, and a quadratic approximation of $P f_{n, \theta}$ at $\theta = \theta_0$. Boundedness of $\{h_n f_{n, \theta} : \theta \in \Theta\}$ is a major requirement, but is satisfied for all examples in this paper and Kim and Pollard (1990). In the next section, we relax the assumption of point identification of θ_0. When the criterion $f_{n, \theta}$ involves a kernel estimate for a nonparametric component, it typically takes the form of $f_{n, \theta}(z) = \frac{1}{h_n} K \left(\frac{z-\theta}{h_n} \right) m(y, x, \theta)$ for $z = (y, x)$ (see, (1) and examples in Section 3).

Despite of discontinuity of $f_{n, \theta}$, the population criterion $P f_{n, \theta}$ is smooth and approximated by a quadratic function as in (2). This distinguishes our estimation problem from that of a change-point in the regression, which also involves a discontinuous criterion function but the estimator of the change-point is super-consistent, see e.g. Chan (1993), unless the estimating equation is misspecified as in the split point estimator for decision trees (Bühlmann and Yu, 2002, and Banerjee and McKeague, 2007).

Assumption M (ii) is used to relate the $L_2(P)$-norm $\| f_{n, \theta} - f_{n, \theta_0} \|_2$ for the criterions to the Euclidean norm $|\theta - \theta_0|$ for the parameters. This condition, which is implicit in Kim and Pollard (1990, Condition (v)) under independent observations, is often verified in the course of checking the expansion in (2).

Assumption M (iii), an envelope condition for the class $\{f_{n, \theta} - f_{n, \theta'} : |\theta - \theta'| \leq \varepsilon \}$, plays a key role for the cube root asymptotics. It should be noted that for the familiar squared root asymptotics, the upper bound in (3) is of order ε^2 instead of ε. This assumption merges three conditions in Kim and Pollard (1990): their envelope conditions ((vi) and (vii)) and uniform manageability of the class $\{f_{n, \theta} - f_{n, \theta_0} : |\theta - \theta_0| \leq \varepsilon \}$. It is often the case that verifying the envelope condition for arbitrary θ' in a neighborhood of θ_0 is not more demanding than that for θ_0.
We now study the limiting behavior of the M-estimator, which is precisely defined as a random variable \(\hat{\theta} \) satisfying

\[
P_n f_{n, \hat{\theta}} \geq \sup_{\theta \in \Theta} P_n f_{n, \theta} - o_p((nh_n)^{-2/3}).
\]

The first step is to establish weak consistency \(\hat{\theta} \overset{P}{\to} \theta_0 \), which is rather standard and usually shown by establishing the uniform convergence \(\sup_{\theta \in \Theta} |P_n f_{n, \theta} - P f_{n, \theta}| \overset{P}{\to} 0 \). Thus, in this section we simply assume the consistency of \(\hat{\theta} \) (see Section 3 and the supplementary materials for some illustrations).

The next step is to derive the convergence rate of \(\hat{\theta} \). A key ingredient for this step is to obtain the modulus of continuity of the centered empirical process \(\{G_n h_n^{1/2} (f_{n, \theta} - f_{n, \theta_0}) : \theta \in \Theta\} \) by certain maximum inequality, where \(G_n f = \sqrt{n}(P_n f - P f) \) for a function \(f \). If \(f_{n, \theta} \) does not vary with \(n \) and \(\{z_t\} \) is independent, then several maximal inequalities are available in the literature (e.g., Kim and Pollard, 1990, p. 199). If \(f_{n, \theta} \) varies with \(n \) and/or \(\{z_t\} \) is dependent, to best of our knowledge, there is no maximal inequality which can be applied to the class of functions in Assumption M. Our first task is to establish such a maximal inequality.

To proceed, we now characterize the dependence structure of the data. Among several notions of dependence, this paper focuses on an absolutely regular process (see Doukhan, Massart and Rio, 1995, for a detail on empirical process theory of absolutely regular processes.). Let \(\mathcal{F}_{-\infty}^0 \) and \(\mathcal{F}_m^\infty \) be \(\sigma \)-fields of \(\{\ldots, z_{-1}, z_0\} \) and \(\{z_m, z_{m+1}, \ldots\} \), respectively. Define the \(\beta \)-mixing coefficient as

\[
\beta_m = \frac{1}{2} \sup \left\{ \sum_{(i,j) \in I \times J} |P\{A_i \cap B_j\} - P\{A_i\}P\{B_j\}| : (A_i)_{i \in I} \text{ and } (B_j)_{j \in J} \right\},
\]

where the supremum is taken over all the finite partitions \(\{A_i\}_{i \in I} \) and \(\{B_j\}_{j \in J} \) respectively \(\mathcal{F}_{-\infty}^0 \) and \(\mathcal{F}_m^\infty \) measurable. Throughout the paper, we maintain the following assumption on the data \(\{z_t\} \).

Assumption D. \(\{z_t\} \) is a strictly stationary and absolutely regular process with \(\beta \)-mixing coefficients \(\{\beta_m\} \) such that \(\beta_m = O(\rho^m) \) for some \(0 < \rho < 1 \).

This assumption obviously covers the case of independent observations, and says the mixing coefficient \(\beta_m \) should decay at an exponential rate.1 For example, various Markov, GARCH, and stochastic volatility models satisfy this assumption (Carrasco and Chen, 2002).

The maximal inequality for the empirical process \(G_n h_n^{1/2} (f_{n, \theta} - f_{n, \theta_0}) \) is presented as follows.

Lemma M. Under Assumptions M and D, there exist positive constants \(C \) and \(C' \) such that

\[
P \sup_{\theta \in \Theta : |\theta - \theta_0| < \delta} |G_n h_n^{1/2} (f_{n, \theta} - f_{n, \theta_0})| \leq C \delta^{1/2},
\]

for all \(n \) large enough and \(\delta \in [(nh_n)^{-1/2}, C'] \).

This lemma implies the following result.

\[1\text{Indeed, the polynomial decay rates of } \beta_m \text{ are often associated with strong dependence and long memory type behavior in sample statistics. See Chen, Hansen and Carrasco (2010) and references therein. In this case, asymptotic analysis for the M-estimator will become very different.} \]
Lemma 1. Under Assumptions M and D, for each $\varepsilon > 0$, there exist random variables $\{R_n\}$ of order $O_p(1)$ and a positive constant C such that

$$\|P_n(f_{n,\theta} - f_{n,\theta_0}) - P(f_{n,\theta} - f_{n,\theta_0})\| \leq \varepsilon|\theta - \theta_0|^2 + (nh_n)^{-2/3} R_n^2,$$

for all $\theta \in \Theta$ satisfying $(nh_n)^{-1/3} \leq |\theta - \theta_0| \leq C$.

We now derive the convergence rate of $\hat{\theta}$. Suppose $|\hat{\theta} - \theta_0| \geq (nh_n)^{-1/3}$. Then we can take a positive constant c such that

$$o_p((nh_n)^{-2/3}) \leq P_n(f_{n,\hat{\theta}} - f_{n,\theta_0}) \leq P(f_{n,\hat{\theta}} - f_{n,\theta_0}) + \varepsilon|\hat{\theta} - \theta_0|^2 + (nh_n)^{-2/3} R_n^2$$

$$\leq (-c + \varepsilon)|\hat{\theta} - \theta_0|^2 + o(|\hat{\theta} - \theta_0|^2) + O_p((nh_n)^{-2/3}),$$

for each $\varepsilon > 0$, where the first inequality follows from (4), the second inequality follows from Lemma 1, and the third inequality follows from Assumption M (i). Taking ε small enough to satisfy $c - \varepsilon > 0$ yields the convergence rate $|\hat{\theta} - \theta_0| = O_p((nh_n)^{-1/3})$.

Given the convergence rate of $\hat{\theta}$, the final step is to derive the limiting distribution. To this end, we apply a continuous mapping theorem of an argmax element (e.g., Kim and Pollard, 1990, Theorem 2.7). A key ingredient for this argument is to establish weak convergence of the centered and normalized empirical process

$$Z_n(s) = n^{1/6} h_n^{2/3} G_n(f_{n,\theta_0 + s(nh_n)^{-1/3}} - f_{n,\theta_0}),$$

for $|s| \leq K$ with any $K > 0$. Weak convergence of the process Z_n may be characterized by its finite dimensional convergence and tightness (or stochastic equicontinuity). If $f_{n,\theta}$ does not vary with n and $\{z_t\}$ is independent as in Kim and Pollard (1990), a classical central limit theorem combined with the Cramér-Wold device implies finite dimensional convergence, and a maximal inequality on a suitably regularized class of functions guarantees tightness of the process of criterion functions. We adapt this approach to our local M-estimation with possibly dependent observations satisfying Assumption D.

Let $\beta(\cdot)$ be a function such that $\beta(t) = \beta[1]$ if $t \geq 1$ and $\beta(t) = 1$ otherwise, and $\beta^{-1}(\cdot)$ be the càdlàg inverse of $\beta(\cdot)$. Also let $Q_g(u)$ be the inverse function of the tail probability function $x \mapsto P(|g(z_t)| > x)$. For finite dimensional convergence, we adapt Rio’s (1997, Corollary 1) central limit theorem for α-mixing arrays to our setup.

Lemma C. Suppose Assumption D holds true, $Pg_n = 0$, and

$$\sup_n \int_0^1 \beta^{-1}(u) Q_{g_n}(u)^2 du < \infty. \quad (5)$$

Then $\Sigma = \lim_{n \to \infty} \text{Var}(G_n g_n)$ exists and $G_n g_n \overset{d}{\to} N(0, \Sigma)$.

The finite dimensional convergence of Z_n follows from Lemma C by setting g_n as any finite dimensional projection of the process $\{g_n, s - Pg_{n,s} : s\}$ with $g_n, s = n^{1/6} h_n^{2/3} (f_{n,\theta_0 + s(nh_n)^{-1/3}} - f_{n,\theta_0})$.

The requirement in (5) is an adaptation of the Lindeberg-type condition in Rio (1997, Corollary 1). The condition (5) excludes polynomial decay of β_m. It should be noted that for criterions satisfying Assumption M, the $(2 + \delta)$-th moments $P|g_{n,s}|^{2+\delta}$ for $\delta > 0$ typically diverge because those criterions usually involve indicator functions. Thus we cannot apply central limit theorems for mixing sequences with higher than second moments. To verify (5), the following lemma is often useful.

Lemma 2. Suppose Assumptions M and D hold true, and there is a positive constant c such that $P\{|g_{n,s}| \geq c\} \leq c(nh_n^{-2})^{-1/3}$ for all n large enough and s. Then (5) holds true.

In our examples, $g_{n,s}$ is zero or close to zero with high probability so that the condition $P\{|g_{n,s}| \geq c\} \leq c(nh_n^{-2})^{-1/3}$ is easily satisfied. See Section 3.1 for an illustration.

To establish tightness of the normalized process Z_n, we show the following maximal inequality.

Lemma M’. Suppose Assumption D holds true. Consider a sequence of classes of functions $G_n = \{g_{n,s} : |s| \leq K\}$ for some $K > 0$ with envelope functions G_n. Suppose there is a positive constant C such that

$$P \sup_{|s| < |s'| < \epsilon} |g_{n,s} - g_{n,s'}|^2 \leq C \epsilon,$$

for all n large enough, $|s'| \leq K$, and $\epsilon > 0$ small enough. Also assume that there exist $0 \leq \kappa < 1/2$ and $C' > 0$ such that $G_n \leq C'n^\kappa$ and $\|G_n\|_2 \leq C'$ for all n large enough. Then for any $\sigma > 0$, there exist $\delta > 0$ and a positive integer N_δ such that

$$P \sup_{|s| < |s'| < \delta} |G_n(g_{n,s} - g_{n,s'})| \leq \sigma,$$

for all $n \geq N_\delta$.

Tightness of the process Z_n follows from Lemma M’ by setting $g_{n,s} = n^{1/6}h_n^{2/3}(f_n,\hat{\theta}_0 + s(nh_n)^{-1/3} - f_n,\theta_0)$. Note that the condition (6) is satisfied by Assumption M (iii).\(^2\) Compared to Lemma M used to derive the convergence rate of $\hat{\theta}$, Lemma M’ is applied only to establish tightness of the process Z_n. Therefore, we do not need an exact decay rate on the right hand side of the maximal inequality.\(^3\)

Based on finite dimensional convergence and tightness of Z_n shown by Lemmas C and M’, respectively, we establish weak convergence of Z_n. Then a continuous mapping theorem of an argmax element (Kim and Pollard, 1990, Theorem 2.7) yields the limiting distribution of the M-estimator $\hat{\theta}$. The main theorem of this section is presented as follows.

Theorem 1. Suppose that Assumptions M and D hold, $\hat{\theta}$ defined in (4) converges in probability to $\theta_0 \in \text{int}\Theta$, and (5) holds with $g_{n,s} - P_{g_{n,s}}$ for each s, where $g_{n,s} = n^{1/6}h_n^{2/3}(f_n,\theta_0 + s(nh_n)^{-1/3} - f_n,\theta_0)$.

\(^2\)The upper bound in (6) can be relaxed to $\epsilon^{1/p}$ for some $1 \leq p < \infty$. However, it is typically satisfied with $p = 1$ for the examples we consider.

\(^3\)In particular, the process Z_n itself does not satisfy Assumption M (ii).
Then
\[(nh_n)^{1/3}(\hat{\theta} - \theta_0) \overset{d}{\to} \arg \max_s Z(s),\]
(7)
where \(Z(s)\) is a Gaussian process with continuous sample paths, expected value \(s'V_s/2\), and covariance kernel \(H(s_1, s_2) = \lim_{n \to \infty} \sum_{t=-n}^{n} \text{Cov}(g_{n,s_1}(z_0), g_{n,s_2}(z_t)) < \infty.\)

This theorem can be considered as an extension of the main theorem of Kim and Pollard (1990) to the cases where the criterion function \(f_{n,\theta}\) can vary with the sample size \(n\) and/or the observations \(\{z_t\}\) can obey a dependent process. To best of our knowledge, the cube root (nonparametric) convergence rate \((nh_n)^{1/3}\) with \(h_n \to 0\) is new in the literature. It is interesting to note that similar to standard nonparametric estimation, \(nh_n\) still plays a role as the “effective sample size.”

2.1. Nuisance parameter and inference. It is often the case that the criterion function contains some nuisance parameters, which can be estimated with rates faster than \((nh_n)^{-1/3}\) (e.g., \(\hat{\nu}\) in (1)). For the rest of this section, let \(\hat{\theta}\) and \(\hat{\theta}\) satisfy
\begin{align*}
\mathbb{P}_n f_{n,\hat{\theta},\hat{\nu}} & \geq \sup_{\theta \in \Theta} \mathbb{P}_n f_{n,\theta,\nu} + o_p((nh_n)^{-2/3}), \\
\mathbb{P}_n f_{n,\hat{\theta},\nu_0} & \geq \sup_{\theta \in \Theta} \mathbb{P}_n f_{n,\theta,\nu_0} + o_p((nh_n)^{-2/3}),
\end{align*}
respectively, where \(\nu_0\) is a vector of nuisance parameters and \(\hat{\nu}\) is its estimator satisfying \(\hat{\nu} - \nu_0 = o_p((nh_n)^{-1/3})\). Theorem 1 is extended as follows.

Theorem 2. Suppose Assumption D holds true. Let \(\{f_{n,\theta,\nu_0} : \theta \in \Theta\}\) satisfy Assumption M and \(\{f_{n,\theta,\nu} : \theta \in \Theta, \nu \in \Lambda\}\) satisfy Assumption M (iii). Suppose there exists some negative definite matrix \(V_1\) such that
\[P(f_{n,\theta,\nu} - f_{n,\theta_0,\nu_0}) = \frac{1}{2}(\theta - \theta_0)'V_1(\theta - \theta_0) + o(|\theta - \theta_0|^2) + O(|\nu - \nu_0|^2) + o((nh_n)^{-2/3}),\]
(8)
for all \(\theta\) and \(\nu\) in neighborhoods of \(\theta_0\) and \(\nu_0\), respectively. Then \(\hat{\theta} = \hat{\theta} + o_p((nh_n)^{-1/3})\). Additionally, if (5) holds with \((g_{n,s} - Pg_{n,s})\) for each \(s\), where \(g_{n,s} = n^{1/6}h_n^{2/3}(f_{n,\theta_0+s(nh_n)^{-1/3},\nu_0} - f_{n,\theta_0,\nu_0})\), then
\[(nh_n)^{1/3}(\hat{\theta} - \theta_0) \overset{d}{\to} \arg \max_s Z(s),\]
where \(Z(s)\) is a Gaussian process with continuous sample paths, expected value \(s'V_s/2\) and covariance kernel \(H(s_1, s_2) = \lim_{n \to \infty} \sum_{t=-n}^{n} \text{Cov}(g_{n,s_1}(z_0), g_{n,s_2}(z_t)) < \infty.\)

Once we show that the M-estimator has a proper limiting distribution, Politis, Romano and Wolf (1999, Theorem 3.3.1) justify the use of subsampling to construct confidence intervals and make inference. Since our mixing condition in Assumption D satisfies the requirement of their theorem, subsampling inference based on \(s\) consecutive observations with \(s/n \to \infty\) is asymptotically valid. See Politis, Romano and Wolf (1999, Section 3.6) for a discussion on data-dependent choices of \(s\). Another candidate to conduct inference based on the M-estimator is the bootstrap. However, even for independent observations, it is known that the naive nonparametric bootstrap is typically invalid.
under the cube root asymptotics (Abrevaya and Huang, 2005, and Sen, Banerjee and Woodroofe, 2010). It is beyond the scope of this paper to investigate bootstrap inference in our setup.

3. Examples

We provide various examples to demonstrate the usefulness of the asymptotic theory in Section 2 as well as to illustrate the way how to verify the regularity conditions. Three examples are studied in this section and additional three examples of dynamic maximum score, dynamic least median of squares, and monotone density estimation are delegated to Supplement for the sake of space.

3.1. Dynamic panel discrete choice. Consider a dynamic panel data model with a binary dependent variable

\[
P\{y_{it} = 1|x_i, \alpha_i \} = F_0(x_i, \alpha_i),
\]

\[
P\{y_{it} = 1|x_i, \alpha_i, y_{i0}, \ldots, y_{it-1} \} = F(x'_{it}\beta_0 + \gamma_0 y_{it-1} + \alpha_i),
\]

for \(i = 1, \ldots, n\) and \(t = 1, 2, 3\), where \(y_{it}\) is binary, \(x_{it}\) is a \(k\)-vector, and both \(F_0\) and \(F\) are unknown functions. We observe \(\{y_{it}, x_{it}\}\) but do not observe \(\alpha_i\). Honoré and Kyriazidou (2000) proposed the conditional maximum score estimator for \((\beta_0, \gamma_0)\),

\[
(\hat{\beta}, \hat{\gamma}) = \arg \max_{\beta, \gamma} \sum_{i=1}^{n} K\left(\frac{x_{i2} - x_{i3}}{b_n}\right)(y_{i2} - y_{i1})\text{sgn}\{(x_{i2} - x_{i1})\beta + (y_{i3} - y_{i0})\gamma\},
\]

(9)

where \(K\) is a kernel function and \(b_n\) is a bandwidth. In this case, nonparametric smoothing is introduced to deal with the unknown link function \(F\). Honoré and Kyriazidou (2000) obtained consistency of this estimator but the convergence rate and limiting distribution are unknown. Since the criterion for the estimator varies with the sample size due to the bandwidth \(b_n\), the cube root asymptotic theory of Kim and Pollard (1990) is not applicable. Here we show that Theorem 1 can be applied to answer these open questions.

Let \(z = (z'_{1n}, z_{2n}, z_{3n})'\) with \(z_1 = x_2 - x_3\), \(z_2 = y_2 - y_1\), and \(z_3 = ((x_2 - x_1)', y_3 - y_0)\). Also define \(x_{21} = x_2 - x_1\). The criterion function of the estimator \(\hat{\theta} = (\hat{\beta}', \hat{\gamma}')\) in (9) is written as

\[
f_{n, \theta}(z) = b_n^{-k}K(b_n^{-1}z_1)z_2\{\text{sgn}(z_3\theta) - \text{sgn}(z_3\theta_0)\}
\]

\[
= e_n(z)(\mathbb{I}\{z_3\theta \geq 0\} - \mathbb{I}\{z_3\theta_0 \geq 0\}),
\]

(10)

and \(e_n(z) = 2b_n^{-k}K(b_n^{-1}z_1)z_2\). Based on Honoré and Kyriazidou (2000, Theorem 4), we impose the following assumptions.

(a): \(\{z_i\}_{i=1}^{n}\) is an iid sample. \(z_1\) has a bounded density which is continuously differentiable at zero. The conditional density of \(z_1|z_2 \neq 0, z_3\) is positive in a neighborhood of zero, and \(P\{z_2 \neq 0|z_3\} > 0\) for almost every \(z_3\). Support of \(x_{21}\) conditional on \(z_1\) in a neighborhood of zero is not contained in any proper linear subspace of \(\mathbb{R}^k\). There exists at least one \(j \in \{1, \ldots, k\}\) such that \(\beta_0^{(j)} \neq 0\) and \(x_{21j}^{(j)} x_{21}^{-1}, z_1\), where \(x_{21j}^{-1} = (x_{21}^{(1)}, \ldots, x_{21}^{(j-1)}, x_{21}^{(j+1)}, x_{21}^{(k)})\),
has everywhere positive conditional density for almost every x_{21}^{j} and almost every z_{1} in a neighborhood of zero. $E[z_{2}|z_{3}, z_{1} = 0]$ is differentiable in z_{3}. $E[z_{2} \text{sgn}((\beta_{0}', \gamma_{0})'z_{3})|z_{1}]$ is continuously differentiable at $z_{1} = 0$. F is strictly increasing.

(b): K is a bounded symmetric density function with $\int s_{j}s_{j'}K(s)ds < \infty$ for any $j, j' \in \{1, \ldots, k\}$. As $n \to \infty$, it holds $nb^{k}/\ln n \to \infty$ and $nb^{k+3} \to 0$.

We verify that $\{f_{n, \theta}\}$ satisfies Assumption M with $h_{n} = b_{n}^{k}$. We first check Assumption M (ii). By the definition of $z_{2} = y_{2} - y_{1}$ (which can take -1, 0, or 1) and change of variables $a = b_{n}^{-1}z_{1}$, we obtain

$$E[e_{n}(z_{2})^{2}|z_{3}] = 4h_{n}^{-1} \int K(a)^{2}p_{1}(b_{n}a|z_{2} \neq 0, z_{3})daP\{z_{2} \neq 0|z_{3}\},$$

almost surely for all n, where p_{1} is the conditional density of z_{1} given $z_{2} \neq 0$ and z_{3}. Thus under (a), $h_{n}E[e_{n}(z_{2})^{2}|z_{3}] > c$ almost surely for some $c > 0$. Pick any θ_{1} and θ_{2}. Note that

$$h_{n}^{1/2}\|f_{n, \theta_{1}} - f_{n, \theta_{2}}\|_{2}^{2} = (P\{h_{n}E[e_{n}(z_{2})^{2}|z_{3}]|\{z_{3}'\theta_{1} \geq 0\} - \{z_{3}'\theta_{2} \geq 0\}\})^{1/2} \geq c^{1/2}P|\{z_{3}'\theta_{1} \geq 0\} - \{z_{3}'\theta_{2} \geq 0\}| \geq c_{1}|\theta_{1} - \theta_{2}|,$$

for some $c_{1} > 0$, where the last inequality follows from the same argument to the maximum score example in Section B.1 of the supplementary material using (a). Similarly, Assumption M (iii) is verified as

$$h_{n}P\sup_{|\theta - \theta_{0}| < \varepsilon}|f_{n, \theta} - f_{n, \theta_{0}}|^{2} \leq C_{1}P\sup_{|\theta - \theta_{0}| < \varepsilon}|\{z_{3}'\theta \geq 0\} - \{z_{3}'\theta_{0} \geq 0\}| \leq C_{2}\varepsilon,$$

for some positive constants C_{1} and C_{2} and all θ in a neighborhood of θ_{0} and n large enough. We now verify Assumption M (i). Since $h_{n}f_{n, \theta}$ is clearly bounded, it is enough to verify (2). A change of variables $a = b_{n}^{-1}z_{1}$ and (b) imply

$$Pf_{n, \theta} = \int K(a)E[z_{2}\{\text{sgn}(z_{3}') - \text{sgn}(z_{3}'\theta_{0})\}|z_{1} = b_{n}a]p_{1}(b_{n}a)da$$

$$= p_{1}(0)E[z_{2}\{\text{sgn}(z_{3}') - \text{sgn}(z_{3}'\theta_{0})\}|z_{1} = 0] + b_{n}^{2}\int K(a)\left.\frac{\partial^{2}E[z_{2}\{\text{sgn}(z_{3}') - \text{sgn}(z_{3}'\theta_{0})\}|z_{1} = t]p_{1}(t)\right|_{t = t_{a}}ada,$$

where t_{a} is a point on the line joining a and 0, and the second equality follows from the dominated convergence and mean value theorems. Since $b_{n}^{2} = o((nb_{n}^{k})^{-2/3})$ by (b), the second term is negligible. Thus, for the condition in (2), it is enough to derive a second order expansion of $E[z_{2}\{\text{sgn}(z_{3}') - \text{sgn}(z_{3}'\theta_{0})\}|z_{1} = 0]$. Let $Z_{0} = \{z_{3} : \{z_{3}'\theta \geq 0\} \neq \{z_{3}'\theta_{0} \geq 0\}\}$. Honoré and Kyriazidou (2000, p. 872) showed that

$$-E[z_{2}\{\text{sgn}(z_{3}') - \text{sgn}(z_{3}'\theta_{0})\}|z_{1} = 0] = 2\int_{Z_{0}}[E[z_{2}|z_{1} = 0, z_{3}]dF_{z_{3}|z_{1}=0} > 0,$$
for all \(\theta \neq \theta_0 \) on the unit sphere and that \(\text{sgn}(E[z_2|z_3, z_1 = 0]) = \text{sgn}(z'_3\theta_0) \). Therefore, by applying the same argument as Kim and Pollard (1990, pp. 214-215), we obtain \(\frac{\partial}{\partial \theta} \mathbb{E}[z_2 \text{sgn}(z'_3\theta)|z_1 = 0]|_{\theta = \theta_0} = 0 \) and
\[
-\frac{\partial^2 \mathbb{E}[z_2 \{\text{sgn}(z'_3\theta) - \text{sgn}(z'_3\theta_0)\}|z_1 = 0]}{\partial \theta \partial \theta'} = \int I\{z'_3\theta_0 = 0\} \kappa(z_3)'\theta_0 z_3 z'_3 p_3(z_3|z_1 = 0) d\mu_{\theta_0},
\]
where \(\kappa(z_3) = \frac{\partial}{\partial z_3} \mathbb{E}[z_2|z_3, z_1 = 0] \), \(p_3 \) is the conditional density of \(z_3 \) given \(z_1 = 0 \), and \(\mu_{\theta_0} \) is the surface measure on the boundary of \(\{z_3 : z'_3\theta_0 \geq 0\} \). Combining these results, the condition in (2) is satisfied with the negative definite matrix
\[
V = -2p_1(0) \int I\{z'_3\theta_0 = 0\} \kappa(z_3)'\theta_0 z_3 z'_3 p_3(z_3|z_1 = 0) d\mu_{\theta_0}.
\] (11)

We now verify the condition of Lemma 2 to apply the central limit theorem in Lemma C. In this example, the normalized criterion is written as
\[
g_{n,s}(z) = n^{1/6} b_n^{2k/3} e_n(z) A_{n,s}(z_3),
\]
where \(e_n(z) = 2b_n^{-k} K(b_n^{-1} z_2) \) and \(A_{n,s}(z_3) = \mathbb{I}\{z'_3(\theta_0 + sn^{-1/3} b_n^{-k/3}) \geq 0\} - \mathbb{I}\{z'_3\theta_0 \geq 0\} \). Since \(|z_2| \leq 1 \) and \(|A_{n,s}(z_3)| \) takes only 0 or 1, it holds
\[
P\{|g_{n,s}| \geq c\} \leq P\left\{|K(b_n^{-1} z_2)| \geq 2^{-1} cn^{-1/6} b_n^{k/3} \mid A_{n,s}(z_3) = 1\right\} P\{|A_{n,s}(z_3)| = 1\}
\leq CE \left[|K(b_n^{-1} z_2)| \mid A_{n,s}(z_3) = 1\right] (nb_n^k)^{-1/3}
\leq C' (nb_n^{2k})^{-1/3},
\]
for some \(C, C' > 0 \), where the second inequality follows from the Markov inequality and the fact that \(P\{|A_{n,s}(z_3)| = 1\} \) is proportional to \((nb_n^{k})^{-1/3} \), and the last inequality follows from a change of variables and boundedness of the conditional density of \(z_1 \) given \(|A_{n,s}(z_3)| = 1 \) (by (a)). Since \(h_n = b_n^k \) in this example, we can apply Lemma 2 to conclude that the condition (5) holds true.

Since the criterion (10) satisfies Assumption M and the Lindeberg-type condition (5), Theorem 1 implies the limiting distribution of Honoré and Kyriazidou’s (2000) estimator as in (7). The matrix \(V \) is given in (11). The covariance kernel \(H \) is obtained in the same manner as Kim and Pollard (1990). That is, decompose \(z_3 \) into \(r'\theta_0 + \tilde{z}_3 \) with \(\tilde{z}_3 \) orthogonal to \(\theta_0 \). Then it holds \(H(s_1, s_2) = L(s_1) + L(s_2) - L(s_1 - s_2) \), where
\[
L(s) = 4p_1(0) \int |\tilde{z}'_3 s| p_3(0, \tilde{z}_3|z_1 = 0) d\tilde{z}_3.
\]

3.2. Random coefficient binary choice. As a new statistical model which can be covered by our asymptotic theory, let us consider the regression model with a random coefficient \(y_t = x'_t \theta(w_t) + u_t \). We observe \(x_t \in \mathbb{R}^d, w_t \in \mathbb{R}^k \), and the sign of \(y_t \). We wish to estimate \(\theta_0 = \theta(c) \) at some given
where $c \in \mathbb{R}^k$. In this setup, we can consider a localized version of the maximum score estimator
\[
\hat{\theta} = \arg\max_{\theta \in S} \sum_{t=1}^{n} K\left(\frac{w_t - c}{b_n}\right) \left[\mathbb{I}\{y_t \geq 0, x_t'\theta \geq 0\} + \mathbb{I}\{y_t < 0, x_t'\theta < 0\}\right],
\]
where S is the surface of the unit sphere in \mathbb{R}^d. We impose the following assumptions. Let $h(x, u) = \mathbb{I}\{x'\theta_0 + u \geq 0\} - \mathbb{I}\{x'\theta_0 + u < 0\}$.

(a): $\{x_t, w_t, u_t\}$ satisfies Assumption D. The density $p(x, w)$ of (x_t, w_t) is continuous at all x and $w = c$. The conditional distribution $x|w = c$ has compact support and continuously differentiable conditional density. The angular component of $x|w = c$, considered as a random variable on S, has a bounded and continuous density, and the density for the orthogonal angle to θ_0 is bounded away from zero.

(b): Assume that $|\theta_0| = 1$, median($u|x, w = c$) = 0, the function $\kappa(x, w) = E[h(x_t, u_t)|x_t = x, w_t = w]$ is continuous at all x and $w = c$, $\kappa(x, c)$ is non-negative for $x'\theta_0 \geq 0$ and non-positive for $x'\theta_0 < 0$ and is continuously differentiable in x, and $P\{x'\theta_0 = 0, \left(\frac{\partial\kappa(x, w)}{\partial x}\right)'\theta_0 p(x, w) > 0|w = c\} > 0$.

(c): K is a bounded symmetric density function with $\int s^2 K(s) ds < \infty$. As $n \to \infty$, it holds $nb_n^{k'} \to \infty$ for some $k' > k$.

Note that the criterion function is written as
\[
f_{n,\theta}(x, w, u) = \frac{1}{h_n} K\left(\frac{w - c}{h_n^{1/k}}\right) h(x, u)\left[\mathbb{I}\{x'\theta \geq 0\} - \mathbb{I}\{x'\theta_0 \geq 0\}\right],
\]
where $h_n = b_n^k$. We can see that $\hat{\theta} = \arg\max_{\theta \in S} \mathbb{P}_n f_{n,\theta}$ and $\theta_0 = \arg\max_{\theta \in S} \lim_{n \to \infty} P f_{n,\theta}$. Existence and uniqueness of θ_0 are guaranteed by the change of variables and (b) (see, Manki, 1985). Also the uniform law of large numbers for an absolutely regular process by Nobel and Dembo (1993, Theorem 1) implies $\sup_{\theta \in S} |\mathbb{P}_n f_{n,\theta} - P f_{n,\theta}| \overset{p}{\to} 0$. Therefore, $\hat{\theta}$ is consistent for θ_0.

We next compute the expected value and covariance kernel of the limit process (i.e., V and H in Theorem 1). Due to strict stationarity (in Assumption D), we can apply the same argument to Kim and Pollard (1990, pp. 214-215) to derive the second derivative
\[
V = \lim_{n \to \infty} \left. \frac{\partial^2 P f_{n,\theta}}{\partial \theta \partial \theta'} \right|_{\theta = \theta_0} = -\int \mathbb{I}\{x'\theta_0 = 0\} \left(\frac{\partial\kappa(x, c)}{\partial x}\right)'\theta_0 p(x, c)xx'd\sigma(x),
\]
where σ is the surface measure on the boundary of the set $\{x : x'\theta_0 \geq 0\}$. The matrix V is negative definite under the last condition of (b). Now pick any s_1 and s_2, and define $q_{n,t} = f_{n,\theta_0+(nh_n)^{-1/3}s_1}(x_t, w_t, u_t) - f_{n,\theta_0+(nh_n)^{-1/3}s_2}(x_t, w_t, u_t)$. The covariance kernel is written as $H(s_1, s_2) =$

4Gautier and Kitamura (2013) studied identification and estimation of the random coefficient binary choice model, where $\theta_1 = \theta(w_1)$ is unobservable. Here we study the model where heterogeneity in the slope is caused by the observables w_t.

12
\(\frac{1}{2} \{ L(s_1, 0) + L(0, s_2) - L(s_1, s_2) \} \), where

\[
L(s_1, s_2) = \lim_{n \to \infty} \left(\frac{1}{n} \ln \mathbb{P}(\mathbb{P}_n q_{n,t}) \right) = \lim_{n \to \infty} \left(\frac{1}{n} \ln \mathbb{P}(q_{n,t}) + \sum_{m=1}^{\infty} \text{Cov}(q_{n,t}, q_{n,t+m}) \right).
\]

The limit of \(\left(\frac{1}{n} \right)^{1/3} \text{Var}(q_{n,t}) \) is obtained in the same manner as Kim and Pollard (1990, p. 215).

For the covariance, the \(\alpha \)-mixing inequality implies

\[
|\text{Cov}(q_{n,t}, q_{n,t+m})| \leq C \beta_m \|q_{n,t}\|_p^2 = O(p^m)O((\varphi_n)^{-\frac{2(1-p)}{p}}),
\]

for some \(C > 0 \) and \(p > 2 \), where the equality follows from the change of variables and Assumption D. Also, by the change of variables \(|\text{Cov}(q_{n,t}, q_{n,t+m})| = |P q_{n,t} q_{n,t+m} - (P q_{n,t})^2| = O((\varphi_n)^{-2/3}) \).

By using these bounds (note: if \(0 < A \leq \min\{B_1, B_2\} \), then \(A \leq B_1 \leq B_2^{1-\ell} \) for any \(\ell \in [0, 1] \)), there exists a positive constant \(C' \) such that

\[
(n \varphi_n)^{1/3} \sum_{m=1}^{\infty} |\text{Cov}(q_{n,t}, q_{n,t+m})| \leq C'(n \varphi_n)^{\frac{1}{3} + \frac{2(p-1)\ell}{3} - \frac{2(p-1)\ell}{p}} \sum_{m=1}^{\infty} \rho^m,
\]

for any \(\ell \in [0, 1] \). Thus, by taking \(\ell \) sufficiently small, we obtain \(\lim_{n \to \infty} (n \varphi_n)^{1/3} \sum_{m=1}^{\infty} \text{Cov}(q_{n,t}, q_{n,t+m}) = 0 \) due to \(n \varphi_n^{k_e} \to \infty \).

We now verify that \(\{ f_{n, \vartheta} : \vartheta \in S \} \) satisfies Assumption M with \(\varphi_n = b_k^n \). Assumption M (i) is already verified. By the change of variables and Jensen’s inequality (also note that \(h(x, s)^2 = 1 \), there exists a positive constant \(C \) such that

\[
h_n^{1/2} \| f_{n, \vartheta_1} - f_{n, \vartheta_2} \|_2 = \sqrt{\int \int K(s)^2 \| I\{ x' \vartheta_1 \geq 0 \} - I\{ x' \vartheta_2 \geq 0 \} \| p(x, c + sb_n) dx ds
\]

\[
\geq C \epsilon \left\| I\{ x' \vartheta_1 \geq 0 \} - I\{ x' \vartheta_2 \geq 0 \} \right\| w = c
\]

\[
= C \epsilon P\{ \| I\{ x' \vartheta_1 \geq 0 \} - I\{ x' \vartheta_2 \geq 0 \} \| w = c \}
\]

for all \(\vartheta_1, \vartheta_2 \in S \) and all \(n \) large enough. Since the right hand side is the conditional probability for a pair of wedge shaped regions with an angle of order \(|\vartheta_1 - \vartheta_2| \), the last condition in (a) implies Assumption M (ii). For Assumption M (iii), pick any \(\epsilon > 0 \) and there exists a positive constant \(C' \) such that

\[
P \sup_{\vartheta \in \Theta : |\vartheta - \vartheta| < \epsilon} h_n |f_{n, \vartheta} - f_{n, \vartheta_0}|^2
\]

\[
= \int \int K(s)^2 \sup_{\vartheta \in \Theta : |\vartheta - \vartheta| < \epsilon} \| I\{ x' \vartheta \geq 0 \} - I\{ x' \vartheta \geq 0 \} \|^2 p(x, c + sb_n) dx ds
\]

\[
\leq C' \epsilon \left[\sup_{\vartheta \in \Theta : |\vartheta - \vartheta| < \epsilon} \| I\{ x' \vartheta \geq 0 \} - I\{ x' \vartheta \geq 0 \} \| w = c \right],
\]

for all \(\vartheta \) in a neighborhood of \(\vartheta_0 \) and \(n \) large enough. Again, the right hand side is the conditional probability for a pair of wedge shaped regions with an angle of order \(\epsilon \). Thus the last condition in
(a) also guarantees Assumption M (iii). Since \(\{f_{n, \theta} : \theta \in S \} \) satisfies Assumption M, Theorem 1 implies the limiting distribution of \((nh_n)^{1/3}(\hat{\theta} - \theta_0) \) for the random coefficient model.

3.3. Minimum volume predictive region. As an illustration of Theorem 2, we now consider the example in (1), the minimum volume predictor for a strictly stationary process proposed by Polonik and Yao (2000). Suppose we are interested in predicting \(y \in \mathbb{R} \) from \(x \in \mathbb{R} \) based on the observations \(\{y_t, x_t\} \). The minimum volume predictor of \(y \) at \(x = c \) in the class \(\mathcal{I} \) of intervals of \(\mathbb{R} \) at level \(\alpha \in [0, 1] \) is defined as

\[
\hat{I} = \arg \min_{S \in \mathcal{I}} \mu(S) \quad \text{s.t.} \quad \hat{P}(S) \geq \alpha,
\]

where \(\mu \) is the Lebesgue measure and \(\hat{P}(S) = \sum_{t=1}^{n} I\{y_t \in S\} K\left(\frac{x - c}{h_n} \right) / \sum_{t=1}^{n} K\left(\frac{x - c}{h_n} \right) \) is the kernel estimator of the conditional probability \(P\{y_t \in S|x_t = c\} \). Since \(\hat{I} \) is an interval, it can be written as \(\hat{I} = [\hat{\theta} - \hat{\nu}, \hat{\theta} + \hat{\nu}] \), where

\[
\hat{\theta} = \arg \max_{\theta} \hat{P}([\theta - \nu, \theta + \nu]), \quad \hat{\nu} = \inf_{\nu} \{\nu : \sup_{\theta} \hat{P}([\theta - \nu, \theta + \nu]) \geq \alpha\}.
\]

To study the asymptotic property of \(\hat{I} \), we impose the following assumptions.

(a): \(\{y_t, x_t\} \) satisfies Assumption D. \(I_0 = [\theta_0 - \nu_0, \theta_0 + \nu_0] \) is the unique shortest interval such that \(P\{y_t \in I_0|x_t = c\} \geq \alpha \). The conditional density \(\gamma_{y|x=c} \) of \(y_t \) given \(x_t = c \) is bounded and strictly positive at \(\theta_0 + \nu_0 \), and its derivative satisfies \(\hat{\gamma}_{y|x=c}(\theta_0 - \nu_0) - \hat{\gamma}_{y|x=c}(\theta_0 + \nu_0) > 0 \).

(b): \(K \) is bounded and symmetric, and satisfies \(\lim_{a \to \infty} |a|K(a) = 0 \). As \(n \to \infty, nh_n \to \infty \) and \(nh_n^4 \to 0 \).

For notational convenience, assume \(\theta_0 = 0 \) and \(\nu_0 = 1 \). We first derive the convergence rate for \(\hat{\nu} \). Note that \(\hat{\nu} = \inf_{\nu} \{\nu : \sup_{\theta} \hat{\gamma}([\theta - \nu, \theta + \nu]) \geq \alpha \hat{\gamma}(c)\} \), where \(\hat{\gamma}(S) = \frac{1}{nh_n} \sum_{t=1}^{n} I\{y_t \in S\} K\left(\frac{x - c}{h_n} \right) \) and \(\hat{\gamma}(c) = \frac{1}{nh_n} \sum_{t=1}^{n} K\left(\frac{x - c}{h_n} \right) \). By applying Lemma M’ and a central limit theorem, we can obtain uniform convergence rate

\[
\max_{\theta, \nu} \left| \hat{\gamma}(c) - \gamma(c) \right|, \sup_{\theta, \nu} \left| \hat{\gamma}([\theta - \nu, \theta + \nu]) - P\{y_t \in [\theta - \nu, \theta + \nu]|x_t = c\} \gamma(c) \right| = O_p((nh_n)^{-1/2} + h_n^2).
\]

Thus the same argument to Kim and Pollard (1990, pp. 207-208) yields \(\hat{\nu} - 1 = O_p((nh_n)^{-1/2} + h_n^2) \).

Let \(\hat{\theta} = \arg \min_{\theta} \hat{\gamma}([\theta - \hat{\nu}, \theta + \hat{\nu}]) \). Consistency follows from uniqueness of \((\theta_0, \nu_0) \) in (a) and the uniform convergence

\[
\sup_{\theta} \left| \hat{\gamma}([\theta - \nu, \theta + \nu]) - P\{y_t \in [\theta - 1, \theta + 1]|x_t = c\} \gamma(c) \right| \overset{P}{\to} 0,
\]

which is obtained by applying Nobel and Dembo (1993, Theorem 1).

Now let \(z = (y, x)' \) and

\[
f_{n, \theta, \nu}(z) = \frac{1}{h_n} K\left(\frac{x - c}{h_n} \right) [I\{y \in [\theta - \nu, \theta + \nu]\} - I\{y \in [-\nu, \nu]\}] .
\]
Note that \(\hat{\theta} = \arg \max_{\theta} \mathbb{P}_n f_{n,\theta, \hat{\theta}} \). We apply Theorem 2 to obtain the convergence rate of \(\hat{\theta} \). For the condition in (8), observe that
\[
P(f_{n,\theta, \nu} - f_{n,0,1}) = P(f_{n,\theta, \nu} - f_{n,0,\nu}) + P(f_{n,0,\nu} - f_{n,0,1})
= -\frac{1}{2} \{ -\bar{\gamma}_{y|x}(1|c) + \bar{\gamma}_{y|x}(-1|c) \} \gamma_x(c) \theta^2 + \{ \bar{\gamma}_{y|x}(1|c) + \bar{\gamma}_{y|x}(-1|c) \} \gamma_x(c) \theta \nu + o(\theta^2 + |\nu - 1|^2) + O(h_n^2).
\]
The condition (8) holds with \(V_1 = \{ \bar{\gamma}_{y|x}(1|c) - \bar{\gamma}_{y|x}(-1|c) \} \gamma_x(c) \). Assumption M (iii) for \(\{ f_{n,\theta, \nu} : \theta \in \mathbb{R}, \nu \in \mathbb{R} \} \) is verified in the same manner as in Section B.2 of the supplementary material. It remains to verify Assumption M (ii) for the class \(\{ f_{n,\theta,1} : \theta \in \mathbb{R} \} \). Pick any \(\theta_1 \) and \(\theta_2 \). Some expansions yield
\[
h_n \| f_{n,\theta_1,1} - f_{n,\theta_2,1} \|^2_2
= \int K(a)^2 \left| \frac{\Gamma_{y|x}(\theta_2 + 1|x = c + ah_n) - \Gamma_{y|x}(\theta_1 + 1|x = c + ah_n)}{+ \Gamma_{y|x}(\theta_2 - 1|x = c + ah_n) - \Gamma_{y|x}(\theta_1 - 1|x = c + ah_n)} \right| \gamma_x(c + ah_n) da
\geq \int K(a)^2 \{ \gamma_{y|x}(\bar{\nu} + 1|x = c + ah_n) + \gamma_{y|x}(\bar{\nu} - 1|x = c + ah_n) \} \gamma_x(c + ah_n) da |\theta_1 - \theta_2|,
\]
where \(\Gamma_{y|x} \) is the conditional distribution function of \(y \) given \(x \), and \(\bar{\nu} \) and \(\bar{\theta} \) are points between \(\theta_1 \) and \(\theta_2 \). By (a), Assumption M (ii) is satisfied. Therefore, we can conclude that \(\nu - \nu_0 = O_p((nh_n)^{-1/2} + h_n^2) \) and \(\hat{\theta} - \theta_0 = O_p((nh_n)^{-1/3} + h_n) \). This result confirms positively the conjecture of Polonik and Yao (2000, Remark 3b) on the exact convergence rate of \(\hat{I} \).

4. Generalizations

In this section, we consider two generalizations of the asymptotic theory in Section 2. The first is to allow for data taking limited values such as interval-valued regressors and the second is to allow for localization on the parameter values.

4.1. Limited variables. We consider the case where some of the variables take limited values. Thus, we relax the assumption of point identification of \(\theta_0 \), the maximizer of the limiting population criterion \(\lim_{n \to \infty} P_{f_{n,\theta}} \), and consider the case where the limiting criterion is maximized at any element of a set \(\Theta \subset \Theta \). The set \(\Theta \) is called the identified set. In order to estimate \(\Theta \), we consider a collection of approximate maximizers of the sample criterion function \(\mathbb{P}_n f_{n,\theta} \), that is
\[
\hat{\Theta} = \{ \theta \in \Theta : \max_{\theta \in \Theta} \mathbb{P}_n f_{n,\theta} - \mathbb{P}_n f_{n,\theta} \leq \hat{c}(nh_n)^{-1/2} \},
\]
i.e., the level set based on the criterion \(f_{n,\theta} \) from the maximum with a cutoff value \(\hat{c}(nh_n)^{-1/2} \). This section studies the convergence rate of \(\hat{\Theta} \) to \(\Theta \) under the Hausdorff distance defined below. We assume that \(\Theta \) is convex. Then the projection \(\pi_{\theta} = \arg \min_{\theta' \in \Theta} |\theta' - \theta| \) of \(\theta \in \Theta \) on \(\Theta \) is uniquely defined. To deal with the partially identified case, we modify Assumption M as follows.

Assumption S. For a sequence \(\{ h_n \} \) of positive numbers satisfying \(nh_n \to \infty \), \(\{ f_{n,\theta} : \theta \in \Theta \} \) satisfies the following conditions.
Lemma MS. Under Assumptions D and S, there exist positive constants C and $C' < 1$ such that

$$P \sup_{\theta \in \Theta, 0 < |\theta - \pi_\theta| < \delta} |G_n h_n^{1/2}(f_{n, \theta} - f_{n, \pi_\theta})| \leq C(\delta \log(1/\delta))^{1/2},$$

for all n large enough and $\delta \in [r_n^{-1/2}, C']$.

Compared to Lemma M, the additional log term on the right hand side is due to the fact that the supremum is taken over the δ-tube (or manifold) instead of the δ-ball, which increases the entropy. This maximal inequality is applied to obtain the following analog of Lemma 1.

Lemma 3. Under Assumptions D and S, for each $\varepsilon > 0$, there exist random variables $\{R_n\}$ of order $O_p(1)$ and a positive constant C such that

$$|P_n(f_{\theta} - f_{\pi_\theta}) - P(f_{\theta} - f_{\pi_\theta})| \leq \varepsilon |\theta - \pi_\theta|^2 + r_n^{-2/3} R_n^2,$$

for all $\theta \in \Theta : r_n^{-1/3} \leq |\theta - \pi_\theta| \leq C$.

We now establish the convergence rate of the set estimator $\hat{\Theta}$ to Θ_f. Let $\rho(A, B) = \sup_{a \in A} \inf_{b \in B} |a - b|$ and $H(A, B) = \max\{\rho(A, B), \rho(B, A)\}$ be the Hausdorff distance of sets $A, B \subset \mathbb{R}^d$. Based on Lemmas MS and 3, the asymptotic property of the set estimator $\hat{\Theta}$ is obtained as follows.
Theorem 3. Suppose Assumption D holds true. Let \(\{f_{n,\theta} : \theta \in \Theta\} \) satisfy Assumption S, and \(\{h_n^{-1/2} f_{n,\theta} : \theta \in \Theta_I\} \) be a P-Donsker class. Assume \(H(\hat{\theta}, \Theta_I) \xrightarrow{p} 0 \) and \(\hat{c} = o_p((nh_n)^{1/2}) \). Then
\[
\rho(\hat{\theta}, \Theta_I) = O_p(\hat{c}^{1/2}(nh_n)^{-1/4} + r_n^{-1/3}).
\]
Furthermore, if \(\hat{c} \to \infty \), then \(P\{\Theta_I \subset \hat{\Theta}\} \to 1 \) and
\[
H(\hat{\theta}, \Theta_I) = O_p(\hat{c}^{1/2}(nh_n)^{-1/4}).
\]

Note that \(\rho \) is asymmetric in its arguments. The first part of this theorem says \(\rho(\hat{\theta}, \Theta_I) = O_p(\hat{c}^{1/2}(nh_n)^{-1/4} + r_n^{-1/3}) \). On the other hand, in the second part, we show \(P\{\Theta_I \subset \hat{\Theta}\} \to 1 \) (i.e., \(\rho(\Theta_I, \hat{\Theta}) \) can converge to zero at an arbitrary rate) as far as \(\hat{c} \to \infty \). For example, we may set at \(\hat{c} = \log(nh_n) \). These results are combined to imply the convergence rate \(H(\hat{\theta}, \Theta_I) = O_p(\hat{c}^{1/2}(nh_n)^{-1/4}) \) under the Hausdorff distance. The cube root term of order \(r_n^{-1/3} \) in the rate of \(\rho(\hat{\theta}, \Theta_I) \) is dominated by the term of order \(\hat{c}^{1/2}(nh_n)^{-1/4} \).

We next consider the case where the criterion function contains nuisance parameters. In particular, we allow that the dimension \(k_n \) of the nuisance parameters \(\nu \) can grow as the sample size increases. For instance, the nuisance parameters might be coefficients in sieve estimation. It is important to allow the growing dimension of \(\nu \) to cover Manski and Tamer’s (2002) set estimator, where the criterion contains some nonparametric estimate and its transform by the indicator. The rest of this subsection considers the set estimator
\[
\hat{\Theta} = \{\theta \in \Theta : \max_{\theta \in \Theta} \|f_{n,\theta,\nu} - P_n f_{n,\theta,\nu}\| \leq \hat{c}(nh_n)^{-1/2}\},
\]
with some preliminary estimator \(\hat{\nu} \) and cutoff value \(\hat{c} \).

To derive the convergence rate of \(\hat{\Theta} \), we establish a maximal inequality over a sequence of sets of functions that are indexed by parameters with increasing dimension. Let \(g_{n,s} = h_n^{-1/2}(f_{n,\theta,\nu} - f_{n,\theta,\nu_0}) \) with \(s = (\theta', \nu')' \), and consider a sequence of classes of functions \(G_n = \{g_{n,s} : |\theta - \pi_\theta| \leq K_1, |\nu - \nu_0| \leq a_n K_2\} \) for some \(K_1, K_2 > 0 \) with the envelope function \(G_n = \sup_{G_n} |g_{n,s}| \). The maximal inequality in Lemma MS is modified as follows.

Lemma MS’. Suppose Assumption D holds true. Suppose there exists a positive constant \(C \) such that
\[
P \sup_{\theta \in \Theta} \sup_{|\nu - \nu_0| \leq \varepsilon} \|g_{n,s}\|^2 \leq C\sqrt{k_n \varepsilon},
\]
\[
\sup_{\theta \in \Theta} \sup_{|\nu - \nu_0| \leq \varepsilon} \{\|\nu - \nu_0\| - C \|g_{n,s}\|^2\} \leq 0
\]
for all \(n \) large enough and all \(\varepsilon \) small enough. Also assume that there exist \(0 \leq \kappa < 1/4 \) and \(C' > 0 \) such that \(G_n \leq C'n^\kappa \) and \(\|G_n\|^2 \leq C' \) for all \(n \) large enough. Then there exists \(K_3 > 0 \) such that
\[
P \sup_{g_{n,s} \in G_n} |G_{n,g_{n,s}}| \leq K_3 \alpha_n^{1/2} k_n^{3/4} \sqrt{\log k_n \alpha_n^{-1}},
\]
for all \(n \) large enough.
The increasing dimension k_n of the nuisance parameter ν affects the upper bound via two routes. First, it increases the size of envelope by the factor of $\sqrt{k_n}$, which in turn increases the entropy of the space. Second, it also demands us to consider an inflated class of functions to apply the more fundamental maximal inequality by Doukhan, Massart and Rio (1995), which relies on the so-called $\| \cdot \|_{2,\beta}$ norm. Note that the envelope condition in (13) allows for step functions containing some nonparametric estimates.

Based on this lemma, the convergence rate of the set estimator $\hat{\Theta}$ is characterized as follows.

Theorem 4. Suppose Assumption D holds true. Let $\{f_{n,\theta,\nu_0} : \theta \in \Theta \}$ satisfy Assumption S and $\{h_n^{1/2} f_{n,\theta,\nu_0} : \theta \in \Theta \}$ be a P-Donsker class. Assume $\rho(\hat{\Theta}, \Theta_I) \overset{p}{\to} 0$, $\hat{c} = a_p((nh_n)^{1/2})$, $k_n \to \infty$, $|\hat{\nu} - \nu_0| = o_p(a_n)$ for some $\{a_n\}$ such that $h_n/a_n \to \infty$. Furthermore, there exist some $\varepsilon > 0$ and neighborhoods $\{\Theta : |\theta - \pi_\Theta| < \varepsilon\}$ and $\{\nu : |\nu - \nu_0| \leq \varepsilon\}$, where $h_n^{1/2}(f_{n,\theta,\nu} - f_{n,\theta,\nu_0})$ satisfies the conditions (13) and (14) in Lemma MS’ and

$$P(f_{n,\theta,\nu} - f_{n,\theta,\nu_0}) - P(f_{n,\pi_\Theta,\nu} - f_{n,\pi_\Theta,\nu_0}) = o(|\theta - \pi_\Theta|^2) + O(|\nu - \nu_0|^2 + r_n^{-2/3}). \tag{15}$$

Then

$$\rho(\hat{\Theta}, \Theta_I) = O_p(\hat{c}^{1/2}(nh_n)^{-1/4} + r_n^{-1/3} + (nh_na_n^{-1})^{-1/4}(\log k_n)^{1/2} + o(a_n)). \tag{16}$$

Furthermore, if $\hat{c} \to \infty$, then $P(\Theta_I \subset \hat{\Theta}) \to 1$ and

$$H(\hat{\Theta}, \Theta_I) = O_p(\hat{c}^{1/2}(nh_n)^{-1/4} + (nh_n)^{-1/4}a_n^{1/4}k_n^{3/8}\log^{1/4} n) + o(a_n). \tag{17}$$

Compared to Theorem 3, we have two extra terms in the convergence rate of $H(\hat{\Theta}, \Theta_I)$ due to (nonparametric) estimation of ν_0. However, they can be shown to be dominated by the first term under standard conditions. Suppose that $k_n^4 \log k_n/n \to 0$ and the preliminary estimator $\hat{\nu}$ satisfies $\hat{\nu} - \nu_0 = o_p(n^{-1/2}(k_n \log k_n)^{1/2})$, which is often the case as in sieve estimation (see, e.g., Chen, 2007). Then, $a_n = n^{-1/2}(k_n \log k_n)^{1/2}$ and $a_n^{1/4} k_n^{3/8} \to 0$. Now set $\hat{c} = \log n$, which makes the first term dominates the second and the last terms.

4.1.1. Example: Binary choice with interval regressor. As an illustration of partially identified models, we consider a binary choice model with an interval regressor studied by Manski and Tamer (2002). More precisely, let $y = \mathbb{I}\{x'\theta_0 + w + u \geq 0\}$, where x is a vector of observable regressors, w is an unobservable regressor, and u is an unobservable error term satisfying $P\{u \leq 0|x, w\} = \alpha$ (we set $\alpha = .5$ to simplify the notation). Instead of w, we observe the interval $[w_l, w_u]$ such that $P\{w_l \leq w \leq w_u\} = 1$. Here we normalize that the coefficient of w to determine y equals one. In this setup, the parameter θ_0 is partially identified and its identified set is written as (Manski and Tamer 2002, Proposition 2)

$$\Theta_I = \{\theta \in \Theta : P\{x'\theta + w_u \leq 0 < x'\theta_0 + w_l \text{ or } x'\theta_0 + w_u \leq 0 < x'\theta + w_l\} = 0\}.$$

5Alternatively ν_0 can be estimated by some high-dimensional method (e.g. Belloni, Chen, Chernozhukov and Hansen, 2012), which also typically guarantees $a_n = o(n^{-1/4})$.

18
Let $\tilde{x} = (x', w_l, w_u)'$ and $q_\nu(\tilde{x})$ be an estimator for $P\{y = 1|\tilde{x}\}$ with the estimated parameters ν. Suppose $P\{y = 1|\tilde{x}\} = q_{\nu_0}(\tilde{x})$. By exploring the maximum score approach, Manski and Tamer (2002) developed the set estimator for Θ_I, that is
\[\hat{\Theta} = \{\theta \in \Theta : \max_{\theta \in \Theta} S_n(\theta) - S_n(\theta) \leq \epsilon_n\}, \]
where
\[S_n(\theta) = P_n(y - .5)|\{q_\nu(\tilde{x}) > .5\} \text{sgn}(x'\theta + w_u) + I\{q_\nu(\tilde{x}) \leq .5\} \text{sgn}(x'\theta + w_l)|. \]
Manski and Tamer (2002) established the consistency of $\hat{\Theta}$ to Θ_I under the Hausdorff distance. To establish the consistency, they assumed the cutoff value ϵ_n is bounded from below by the (almost sure) decay rate of $\sup_{\theta \in \Theta} |S_n(\theta) - S(\theta)|$, where $S(\theta)$ is the limiting object of $S_n(\theta)$. As Manski and Tamer (2002, Footnote 3) argued, characterization of the decay rate is a complex task because $S_n(\theta)$ is a step function and $\{q_\nu(\tilde{x}) > .5\}$ is a step function transform of the nonparametric estimate of $P\{y = 1|\tilde{x}\}$. Therefore, it has been an open question. Obtaining the lower bound rate of ϵ_n important because we wish to minimize the volume of the estimator $\hat{\Theta}$ without losing the asymptotic validity. By applying Theorem 4, we can explicitly characterize the decay rate for the lower bound of ϵ_n and establish the convergence rate of this estimator.

A little algebra shows that the set estimator in (18) is written as
\[\hat{\Theta} = \{\theta \in \Theta : \max_{\theta \in \Theta} P_n f_{\theta, \nu} - P_n f_{\theta, \nu} \leq \hat{c}n^{-1/2}\}, \]
where $z = (x', w, w_l, w_u, u)'$, $h(x, w, u) = I\{x'\theta_0 + w + u \geq 0\} - I\{x'\theta_0 + w + u < 0\}$, and
\[f_{\theta, \nu}(z) = h(x, w, u)[I\{x'\theta + w_u \geq 0, q_\nu(\tilde{x}) > .5\} - I\{x'\theta + w_l < 0, q_\nu(\tilde{x}) \leq .5\}]. \]
We impose the following assumptions. Let $\partial \Theta_I$ be the boundary of Θ_I, $\kappa_u(\tilde{x}) = (2q_{\nu_0}(\tilde{x}) - 1)I\{q_{\nu_0}(\tilde{x}) > .5\}$, and $\kappa_l(\tilde{x}) = (1 - 2q_{\nu_0}(\tilde{x}))I\{q_{\nu_0}(\tilde{x}) \leq .5\}$.

(a): $\{x_t, w_t, w_{lt}, w_u, u_t\}$ satisfies Assumption D. $x|w_u$ has a bounded and continuous conditional density $p(\cdot|w_u)$ for almost every w_u. There exists an element x_j of x whose conditional density $p(x_j|w_u)$ is bounded away from zero over the support of w_u. The same condition holds for $x|w_l$. The conditional densities of $w_u|w_l, x$ and $w_l|w_u, x$ are bounded. $q_\nu(\cdot)$ is continuously differentiable at ν_0 a.s. and the derivative is bounded for almost every \tilde{x}.

(b): For each $\theta \in \partial \Theta_I$, $\kappa_u(\tilde{x})$ is non-negative for $x'\theta + w_u \geq 0$, $\kappa_l(\tilde{x})$ is non-positive for $x'\theta + w_l \leq 0$, $\kappa_u(\tilde{x})$ and $\kappa_l(\tilde{x})$ are continuously differentiable, and it holds
\[P\{x'\theta + w_u = 0, q_{\nu_0}(\tilde{x}) > .5, (\theta'\partial \kappa_u(\tilde{x})/\partial x)p(x|w_l, w_u) > 0\} > 0, \]
\[P\{x'\theta + w_l = 0, q_{\nu_0}(\tilde{x}) \leq .5, (\theta'\partial \kappa_l(\tilde{x})/\partial x)p(x|w_l, w_u) > 0\} > 0. \]

(c): There exist some $\epsilon, C > 0$ such that for any $|\nu - \nu_0| < \epsilon$, $|q_\nu(\tilde{x}) - q_{\nu_0}(\tilde{x})| \leq C|\nu - \nu_0|\sqrt{\kappa_n}$.

To apply Theorem 4, we verify that $\{f_{\theta, \nu_0} : \theta \in \Theta\}$ satisfy Assumption S with $h_n = 1$. We first check Assumption S (i). This class is clearly bounded. From Manski and Tamer (2002, Lemma 1
and Corollary (a), \(P_{f_{\theta, \nu_0}} \) is maximized at any \(\theta \in \Theta_I \) and \(\Theta_I \) is a bounded convex set. By applying the argument in Kim and Pollard (1990, pp. 214-215), the second directional derivative at \(\theta \in \partial \Theta_I \) with the orthogonal direction outward from \(\Theta_I \) is

\[
-2P \int \{x' \theta = -w_u\} \theta' \frac{\partial K_u(x)}{\partial x} p(x|w_l, w_u)(x')^2 d\sigma_u - 2P \int \{x' \theta = -w_l\} \theta' \frac{\partial K_u(x)}{\partial x} p(x|w_l, w_u)(x')^2 d\sigma_l,
\]

where \(\sigma_u \) and \(\sigma_l \) are the surface measures on the boundaries of the sets \(\{x : x' \pi_\theta + w_u \geq 0\} \) and \(\{x : x' \pi_\theta + w_l \geq 0\} \), respectively. Since this matrix is negative definite by (b), Assumption S (i) is verified. We next check Assumption S (ii). By (21)

\[
\sup_{\theta \in \Theta, \theta < |\theta - \pi_\theta| < \varepsilon} \{P_{f_{\theta, \nu_0}} - f_{\pi_\theta, \nu_0}\}^2 \geq \sqrt{2} \min \left\{ P \{x' \theta \geq -w_u \geq x' \pi_\theta \text{ or } x' \theta < -w_l \leq x' \pi_\theta\} \|q_{\nu_0}(\tilde{x}) > 0.5\}, \right\},
\]

for any \(\theta \in \Theta \). Since the right hand side is the minimum of probabilities for pairs of wedge shaped regions with angles of order \(|\theta - \pi_\theta| \), (a) implies Assumption S (ii). We now check Assumption S (iii). By \(h(x, w, u)^2 = 1 \), the triangle inequality, and \(\|\{q_{\nu_0}(\tilde{x}) > 0.5\}\| \leq 1 \), we obtain

\[
P \sup_{\theta \in \Theta, \theta < |\theta - \pi_\theta| < \varepsilon} \|f_{\theta, \nu_0} - f_{\pi_\theta, \nu_0}\|^2 \leq P \sup_{\theta \in \Theta, \theta < |\theta - \pi_\theta| < \varepsilon} \{P \{x' \theta \geq -w_u \geq x' \pi_\theta \text{ or } x' \theta < -w_l \leq x' \pi_\theta\}
\]

\[
+ P \sup_{\theta \in \Theta, \theta < |\theta - \pi_\theta| < \varepsilon} \{P \{x' \theta \geq -w_l \geq x' \pi_\theta \text{ or } x' \theta < -w_l \leq x' \pi_\theta\}\}, (20)
\]

for any \(\varepsilon > 0 \). Again, the right hand side is the sum of the probabilities for pairs of wedge shaped regions with angles of order \(\varepsilon \). Thus, (a) also guarantees Assumption S (iii).

Next, we verify (13) and (14). Let \(I_\nu(\tilde{x}) = \{q_\nu(\tilde{x}) > 0.5 \geq q_{\nu_0}(\tilde{x}) \text{ or } q_\nu(\tilde{x}) \leq .5 < q_{\nu_0}(\tilde{x})\} \) and note that \(|f_{\theta, \nu} - f_{\pi_\theta, \nu_0}|^2 \leq \{x' \theta \geq -w_u \geq x' \pi_\theta \text{ or } x' \theta < -w_l \leq x' \pi_\theta\} I_\nu(\tilde{x}) \leq I_\nu(\tilde{x}) \). Furthermore,

\[
P \sup_{|\nu - \nu_0| < \varepsilon} \|q_\nu(\tilde{x}) > 0.5 \geq q_{\nu_0}(\tilde{x})\} = P \sup_{|\nu - \nu_0| < \varepsilon} \|q_\nu(\tilde{x}) - q_{\nu_0}(\tilde{x}) > .5 - q_{\nu_0}(\tilde{x}) \geq 0\}
\]

\[
\leq CP \sup_{|\nu - \nu_0| < \varepsilon} \|q_\nu(\tilde{x}) - q_{\nu_0}(\tilde{x})\|
\]

\[
\leq C\sqrt{k_\eta \varepsilon},
\]

where the first inequality is due to the boundedness of the conditional density of \(q_{\nu_0}(\tilde{x}) \) and the second to Condition (c). This verifies (13) and (14) is verified in the same manner as Assumption S (ii) in the preceding paragraph.

Finally, for (15), note that

\[
|P(f_{\theta, \nu} - f_{\theta, \nu_0}) - P(f_{\pi_\theta, \nu} - f_{\pi_\theta, \nu_0})|
\]

\[
\leq P\{x' \theta \geq -w_u \geq x' \pi_\theta \text{ or } x' \theta < -w_l \leq x' \pi_\theta\} I_\nu(\tilde{x})
\]

\[
+ P\{x' \theta \geq -w_l \geq x' \pi_\theta \text{ or } x' \theta < -w_l \leq x' \pi_\theta\} I_\nu(\tilde{x}), (21)
\]
for each $\theta \in \{\theta \in \Theta : |\theta - \pi_0| < \varepsilon\}$ and ν in a neighborhood of ν_0. For the first term of (21), the law of iterated expectation and an expansion of $q_{\nu}(\tilde{x})$ around ν_0 based on (a) imply

$$P(x' \theta \geq -u \geq x' \pi_0 \text{ or } x' \theta < -u < x' \pi_0) I_{\nu}(\tilde{x})$$

$$\leq P(x' \theta \geq -u \geq x' \pi_0 \text{ or } x' \theta < -u < x' \pi_0) A(w_u, x)|v - \nu_0|,$$

for some bounded function A. The second term of (21) is bounded in the same manner. Therefore, $|P(f_{\theta, \nu} - f_{\tilde{\theta}, \nu_0}) - P(f_{\pi_0, \nu} - f_{\tilde{\theta}, \nu_0})| = O(|\theta - \pi_0||v - \nu_0|)$ and (15) is verified. Since all conditions of Theorem 4 are verified, we conclude that the convergence rate of Manski and Tamer’s (2002) set estimator $\hat{\Theta}$ in (18) is characterized by (16) and (17).

Manski and Tamer (2002) proved the consistency of $\hat{\Theta}$ to Θ_I in terms of the Hausdorff distance. We provide a sharper lower bound on the their tuning parameter ϵ_n, which is in our notation $\hat{c} n^{-1/2}$ with $\hat{c} \rightarrow \infty$. For example, if we set $\hat{c} = \log n$, then the convergence rate becomes $H(\hat{\Theta}, \Theta_I) = O_p(n^{-1/4}(\log n)^{1/2})$. We basically verify the high level assumption of Chernozhukov, Hong and Tamer (2007, Condition C.2) in the cube root context. However, we mention that in the above setup, the criterion contains nuisance parameters with increasing dimension and the result in Chernozhukov, Hong and Tamer (2007) is not directly applicable.

Furthermore, our result enables us to construct the confidence set by the subsampling as described by Chernozhukov, Hong and Tamer (2007). Specifically, the maximal inequality in Lemma MS’ and the assumption that $\{h_n^{1/2} f_{n, \theta, \nu_0} : \theta \in \Theta_I\}$ is P-Donsker are sufficient to verify their Conditions C.4 and C.5.

4.2. Parameter-dependent local M-estimation. We consider a setup where localization of the criterion depends on the parameter values. A leading example is the mode estimation. Chernoff (1964) studied the asymptotic property of the mode estimator that maximizes $(nh)^{-1} \sum_{t=1}^{n} I\{|y_t - \beta| \leq h\}$ with respect to β for some fixed h, which was extended to the regression case by Lee (1989). Lee (1989) established consistency of the mode regression estimator and conjectured the cube root convergence rate. To estimate β consistently for a broader family of distributions, however, we need to treat h as a bandwidth parameter and let $h \rightarrow 0$ as in Yao, Lindsay and Li (2012) for example.

This parameter dependent localization alters Assumption M (iii). That is, it increases the size (in terms of the L_2-norm) of the envelope of the class $\{h^{-1}(I\{|y_t - \beta| \leq h\} - I\{|y_t - \beta_0| \leq h\}) : |\beta - \beta_0| \leq \varepsilon\}$. To deal with such situations, we modify Assumption M (iii) as follows.

Assumption M (iii’). There exists a positive constant C'' such that

$$P \sup_{\theta \in \Theta : |\theta - \theta'| \leq \varepsilon} h_n^2 |f_{n, \theta} - f_{n, \theta'}|^2 \leq C'' \varepsilon,$$

for all n large enough, $\varepsilon > 0$ small enough, and θ' in a neighborhood of θ_0.

Under this assumption, Lemma M in Section 2 is modified as follows.
Lemma M1. Under Assumption M (i), (ii), and (iii'), there exist positive constants C and C' such that
\[P \sup_{|\theta - \theta_0| < \delta} |G_n h_n^{1/2}(f_{n,\theta} - f_{n,\theta_0})| \leq C h_n^{-1/2} \delta^{1/2}, \]
for all n large enough and $\delta \in [(nh_n^2)^{-1/2}, C']$.

Parameter dependency arises in different contexts as well and may well lead to different types of non-standard distributions. For instance, the maximum likelihood estimator for Uniform$[0, \theta]$ yields super consistency (see, Hirano and Porter, 2003, for a general discussion). This contrast is similar to the difference between estimation of a change point in regression analysis and mode regression.

Once we have obtained Lemma 4.2, the remaining steps are similar to those in Section 2 by replacing \(h_n \) with \(h_n^2 \). Here we present the final result without nuisance parameter ν for the sake of expositional simplicity.

Theorem 5. Let \(\{f_{n,\theta} : \theta \in \Theta\} \) satisfies Assumption M (i), (ii), and (iii'). Additionally, if (5) holds with \((g_{n,s} - Pg_{n,s}) \) for each s, where \(g_{n,s} = n^{1/6}h_n^{4/3}(f_{n,\theta_0 + s(nh_n^2)^{-1/3}} - f_{n,\theta_0}) \), then
\[(nh_n^2)^{1/3}(\hat{\theta} - \theta_0) \xrightarrow{d} \arg \max_s Z(s), \]
where $Z(s)$ is a Gaussian process with continuous sample paths, expected value $s'V s/2$ and covariance kernel $H(s_1, s_2) = \lim_{n \to \infty} \sum_{t=-n}^{n} \text{Cov}(g_{n,s_1}(z_0), g_{n,s_2}(z_t)) < \infty$.

4.2.1. Example: Hough transform estimator. In the statistics literature on computer vision algorithm, Goldenshluger and Zeevi (2004) investigated the so-called Hough transform estimator for the regression model
\[\hat{\beta} = \arg \max_{\beta} \sum_{t=1}^{n} I\{|y_t - x_t' \beta| \leq h|x_t|\}, \tag{22} \]
where $x_t = (1, \tilde{x}_t)'$ for a scalar \tilde{x}_t and h is a fixed tuning constant. Goldenshluger and Zeevi (2004) derived the cube root asymptotics for $\hat{\beta}$ with fixed h, and discussed carefully about the practical choice of h. However, for this estimator, h plays a role of the bandwidth and the analysis for the case of $h_n \to 0$ is a substantial open question (see, Goldenshluger and Zeevi, 2004, pp. 1915-6).

Here we focus on the Hough transform estimator in (22) with $h = h_n \to 0$ and study its asymptotic property. The estimators by Chernoff (1964) and Lee (1989) with varying h can be analyzed in the same manner.

Let us impose the following assumptions.

(a): \(\{x_t, u_t\} \) satisfies Assumption D. x_t and u_t are independent. $P|x_t|^3 < \infty$, $P x_t x_t'$ is positive definite, and the distribution of x_t puts zero mass on each hyperplane. The density γ of u_t is bounded, continuously differentiable in a neighborhood of zero, symmetric around zero, and strictly unimodal at zero.

(b): As $n \to \infty$, $h_n \to 0$ and $nh_n^5 \to \infty$.

22
Let \(z = (x, u) \). Note that \(\hat{\theta} = \beta - \beta_0 \) is written as \(\theta = \arg \max_\theta \mathbb{P}_n f_{n, \theta} \), where
\[
f_{n, \theta}(z) = h_n^{-1} \mathbb{I}\{|u - x'\theta| \leq h_n|x|\}.
\]
The consistency of \(\hat{\theta} \) follows from the uniform convergence \(\sup_\theta |\mathbb{P}_n f_{n, \theta} - P f_{n, \theta}| \stackrel{P}{\rightarrow} 0 \) by applying Nobel and Dembo (1993, Theorem 1).

In order to apply Theorem 5, we verify that \(\{f_{n, \theta}\} \) satisfies Assumption M (i), (ii), and (iii'). Obviously \(h_n f_{n, \theta} \) is bounded. Since \(\lim_{n \rightarrow \infty} P f_{n, \theta} = 2P \gamma(x'\theta)|x| \) and \(\gamma \) is uniquely maximized at zero (by (a)), \(\lim_{n \rightarrow \infty} P f_{n, \theta} \) is uniquely maximized at \(\theta = 0 \). Since \(\gamma \) is continuously differentiable in a neighborhood of zero, \(P f_{n, \theta} \) is twice continuously differentiable at \(\theta = 0 \) for all \(n \) large enough.

Let \(\Gamma \) be the distribution function of \(\gamma \). An expansion yields
\[
P(f_{n, \theta} - f_{n, 0}) = h_n^{-1} P\{\Gamma(x'\theta + h_n|x|) - \Gamma(h_n|x|)\} - h_n^{-1} P\{\Gamma(x'\theta - h_n|x|) - \Gamma(-h_n|x|)\}
\]
\[
= \hat{\gamma}(0)\theta' P(|x| x') \theta + o(\theta^2),
\]
i.e., the condition in (2) holds with \(V = \hat{\gamma}(0) P(|x|x') \). Note that \(\hat{\gamma}(0) < 0 \) by (a). Therefore, Assumption M (i) is satisfied.

For Assumption M (ii), pick any \(\theta_1 \) and \(\theta_2 \) and note that
\[
h_n \|f_{n, \theta_1} - f_{n, \theta_2}\|_2^2 = 2P\{\gamma(x'\theta_1) + \gamma(x'\theta_2)\}|x|
\]
\[
-2h_n^{-1} P\{x'\theta_1 - h_n|x| < u < x'\theta_2 + h_n|x|, \quad -2h_n|x| < x'(\theta_2 - \theta_1) < 0\}
\]
\[
-2h_n^{-1} P\{x'\theta_2 - h_n|x| < u < x'\theta_1 + h_n|x|, \quad -2h_n|x| < x'(\theta_1 - \theta_2) < 0\}.
\]
Since the second and third terms converge to zero (by a change of variable), Assumption M (ii) holds true.

We now check Assumption M (iii'). Observe that
\[
P \sup_{\theta \in \Theta; ||\theta| - \bar{\theta}| < \varepsilon} h_n^2 |f_{n, \theta} - f_{n, \theta_0}|^2 \leq P \sup_{\theta \in \Theta; ||\theta| - \bar{\theta}| < \varepsilon} \mathbb{I}\{|u - x'\theta| \leq h_n|x|, \ |u - x'\bar{\theta}| > h_n|x|\}
\]
\[
+ P \sup_{\theta \in \Theta; ||\theta| - \bar{\theta}| < \varepsilon} \mathbb{I}\{|u - x'\theta| \leq h_n|x|, \ |u - x'\bar{\theta}| > h_n|x|\},
\]
for all \(\bar{\theta} \) in a neighborhood of 0. Since the same argument applies to the second term, we focus on the first term (say, \(T \)). If \(\varepsilon \leq 2h_n \), then an expansion around \(\varepsilon = 0 \) implies
\[
T \leq P\{(h_n - \varepsilon)|x| \leq u \leq h_n|x|\} = P\gamma(h_n|x|)|x|\varepsilon + o(\varepsilon).
\]
Also, if \(\varepsilon > 2h_n \), then an expansion around \(h_n = 0 \) implies
\[
T \leq P\{-h_n|x| \leq u \leq h_n|x|\} \leq P\gamma(0)|x|\varepsilon + o(h_n).
\]
Therefore, Assumption M (iii') is satisfied.

Finally, the covariance kernel is obtained by a similar way as Section 3.1. Let \(r_n = (nh_n^2)^{1/3} \) be the convergence rate in this example. The covariance kernel is written by \(H(s_1, s_2) = \frac{1}{2}\{L(s_1, 0) + L(0, s_2) - L(s_1, s_2)\} \), where \(L(s_1, s_2) = \lim_{n \rightarrow \infty} \text{Var}(r_n^2 \mathbb{P}_n g_{n,t}) \) with \(g_{n,t} = f_{n,s_1/r_n} - f_{n,s_2/r_n} \). An
expansion implies \(n^{-1} \text{Var}(r_n^2 g_{n,t}) \to 2\gamma(0) P|x'(s_1 - s_2)|\). We can also see that the covariance term
\[n^{-1} \sum_{m=1}^{\infty} \text{Cov}(r_n^2 g_{n,t}, r_n^2 g_{n,t+m}) \] is negligible. Therefore, by Theorem 5, the limiting distribution of the Hough transform estimator with the bandwidth \(h_n \) is obtained as
\[(nh_n^2)^{1/3}(\hat{\beta} - \beta_0) \overset{d}{\to} \arg \max_s Z(s), \]
where \(Z(s) \) is a Gaussian process with continuous sample paths, expected value \(\hat{\gamma}(0)s'P(|x|xx')s/2 \), and covariance kernel \(H(s_1, s_2) = 2\gamma(0)P|x'(s_1 - s_2)| \).

5. Conclusion

This paper developed general asymptotic theory, which encompasses a wide class of highly non-regular M-estimation problems. Many of these problems have been left without a proper inference method for a long time. It is worthwhile to emphasize that our theory validates inference based on subsampling for this important class of estimators, including the confidence set construction for set valued parameters in the Manski and Tamer’s (2002) binary choice model with an interval regressor. An interesting future research is to develop valid bootstrap methods for these estimators. Naive applications of the standard bootstrap resampling lead to inconsistent inference as shown by Abrevaya and Huang (2005) and Sen, Banerjee and Woodroofe (2010) among others.

Supplemental material. This paper has an on-line supplemental material, which contains all the proofs of the theorems and lemmas and additional examples.

References

Department of Economics, London School of Economics, Houghton Street, London, WC2A 2AE, UK.

E-mail address: m.seo@lse.ac.uk

Department of Economics, London School of Economics, Houghton Street, London, WC2A 2AE, UK.

E-mail address: t.otsu@lse.ac.uk
SUPPLEMENT TO “LOCAL M-ESTIMATION WITH DISCONTINUOUS CRITERION FOR DEPENDENT AND INCOMPLETE OBSERVATIONS”

MYUNG HWAN SEO AND TAISUKE OTSU

Abstract. In Section A, we present the proofs of Lemmas and Theorems in the paper. Section B provides additional examples on the dynamic maximum score estimator (Section B.1), dynamic least median of squares (Section B.2), and monotone density estimation for dependent observations (Section B.3).

Appendix A. Proofs of theorems and lemmas

A.1. Notation. We employ the same notation in the paper. Recall that $Q_g(u)$ is the inverse function of the tail probability function $x \mapsto P\{|g(z_t)| > x\},^1$ and that $\{\beta_m\}$ is the β-mixing coefficients used in Assumption D. Let $\beta(\cdot)$ be a function such that $\beta(t) = \beta[0]$ if $t \geq 1$ and $\beta(t) = 1$ otherwise, and $\beta^{-1}(\cdot)$ be the càdlàg inverse of $\beta(\cdot)$. The L_2, P-norm is defined as

$$\|g\|_{2, \beta} = \sqrt{\int_0^1 \beta^{-1}(u)Q_g(u)^2 du}. \quad (1)$$

A.2. Proof of Lemma M. Pick any $C' > 0$ and then pick any n satisfying $(nh_n)^{-1/2} \leq C'$ and any $\delta \in [(nh_n)^{-1/2}, C']$. Throughout the proof, positive constants $C_j (j = 1, 2, \ldots)$ are independent of n and δ.

First, we introduce some notation. Consider the sets defined by different norms:

$$G^1_{n, \delta} = \left\{ h_{n, \theta}^1(f_n, \theta - f_n, \theta_0) : |\theta - \theta_0| < \delta \text{ for } \theta \in \Theta \right\},$$

$$G^2_{n, \delta} = \left\{ h_{n, \theta}^1(f_n, \theta - f_n, \theta_0) : \left\| h_{n, \theta}^1(f_n, \theta - f_n, \theta_0) \right\|_2 < \delta \text{ for } \theta \in \Theta \right\},$$

$$G^\beta_{n, \delta} = \left\{ h_{n, \theta}^1(f_n, \theta - f_n, \theta_0) : \left\| h_{n, \theta}^1(f_n, \theta - f_n, \theta_0) \right\|_{2, \beta} < \delta \text{ for } \theta \in \Theta \right\}.$$

For any $g \in G^1_{n, \delta}$, g is bounded (by Assumption M (i)) and so is Q_g. Thus we can always find a function \hat{g} such that $\|g\|_2^2 \leq \|\hat{g}\|_2^2 \leq 2\|g\|_2^2$ and

$$Q_{\hat{g}}(u) = \sum_{j=1}^m a_j \{ (j - 1)/m \leq u < j/m \}, \quad (2)$$

satisfying $Q_g \leq Q_{\hat{g}}$, for some positive integer m and sequence of positive constants $\{a_j\}$.

^1The function $Q_g(u)$, called the quantile function in Doukhan, Massart and Rio (1995), is different from a familiar function $u \mapsto \inf\{x : u \leq P\{|g(z_t)| \leq x\}\}$ to define quantiles.
Next, based on the above notation, we derive the set inclusion relationships
\[
G_{n,\delta}^2 \subset G_{n,\delta}^1 \subset G_{n,C_1\delta}, \quad G_{n,\delta}^1 \subset G_{n,C_2^{1/2}},
\]
for some positive constants C_1 and C_2. The relation $G_{n,\delta}^2 \subset G_{n,\delta}$ follows from $\|\cdot\|_2 \leq \|\cdot\|_{2,\beta}$ (Doukhan, Massart and Rio, 1995, Lemma 1). The relation $G_{n,\delta}^2 \subset G_{n,C_1\delta}$ follows from Assumption M (ii). Pick any $g \in G_1^2$. The relation $G_{n,\delta}^1 \subset G_{n,C_2^{1/2}}$ follows by
\[
\|g\|_{2,\beta}^2 \leq \sum_{j=1}^m a_j^2 \left\{ \int_{(j-1)/m}^{j/m} \beta^{-1}(u) du \right\} \leq \left\{ \sup_{0 < a \leq 1} a \int_0^{1/a} \beta^{-1}(u) du \right\} 2 \|g\|_2^2 \leq C_2^2 \delta,
\]
for some positive constant C_2, where the first inequality follows from $Q_{a} \leq Q_{\hat{a}}$, the second inequality follows from monotonicity of $\beta^{-1}(u)$ and $\int_0^1 Q_{\hat{a}}(u)^2 du = \frac{1}{m} \sum_{j=1}^m a_j^2$, the third inequality follows by $\int_0^1 Q_{\hat{a}}(u)^2 du = \|\hat{a}\|_2^2 \leq 2 \|g\|_2^2$, and the last inequality follows from $\sup_{0 < a \leq 1} a \int_0^{1/a} \beta^{-1}(u) du < \infty$ (by Assumption D) and Assumption M (iii).

Third, based on (3), we derive some relationships for the bracketing numbers. Let $N_0(\nu, G, \|\cdot\|)$ be the bracketing number for a class of functions G with radius $\nu > 0$ and norm $\|\cdot\|$. Note that
\[
N_0(\nu, G_{n,\delta}^2, \|\cdot\|_{2,\beta}) \leq N_0(\nu, G_{n,C_1\delta}, \|\cdot\|_2) \leq C_3 \left(\frac{\delta}{\nu} \right)^{2d},
\]
for some positive constant C_3, where the first inequality follows from $G_{n,\delta}^2 \subset G_{n,C_1\delta}$ (by (3)) and $\|\cdot\|_2 \leq \|\cdot\|_{2,\beta}$ (Doukhan, Massart and Rio, 1995, Lemma 1), and the second inequality follows from the argument to derive Andrews (1993, eq. (4.7)) based on Assumption M (iii) (called the L_2-continuity assumption in Andrews, 1993). Therefore, by the indefinite integral formula $\int \log x dx = \text{const.} + x \log x - 1$, there exists a positive constant C_4 such that
\[
\varphi_n(\delta) = \int_0^\delta \sqrt{\log N_0(\nu, G_{n,\delta}^2, \|\cdot\|_{2,\beta})} d\nu \leq C_4 \delta.
\]

Finally, based on the entropy condition (5), we apply the maximal inequality of Doukhan, Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant C_5 such that
\[
P \sup_{g \in G_{n,\delta}^2} |G_n g| \leq C_5 [1 + \delta^{-1} q_{G_n}(\min\{1, v_n(\delta)\})] \varphi_n(\delta),
\]
where $q_{G_n}(\nu) = \sup_{u \leq \nu} Q_{G_n}(u) \sqrt{\int_0^u \beta^{-1}(\bar{u}) d\bar{u}}$ with the envelope function G_n of $G_{n,\delta}$, and $v_n(\delta)$ is the unique solution of
\[
\int_0^{v_n(\delta)} \beta^{-1}(\bar{u}) d\bar{u} = \frac{\varphi_n(\delta)^2}{n \delta^2}.
\]
Since $\varphi_n(\delta) \leq C_4\delta$ from (5), it holds $v_n(\delta) \leq C_5n^{-1}$ for some positive constant C_5. Now take some n_0 such that $v_{n_0}(\delta) \leq 1$, and then pick again any $n \geq n_0$ and $\delta \in [(nh_n)^{-1/2}, C']$. We have

$$q_{G_n,\delta}(\min\{1, v_n(\delta)\}) \leq C_6Q_{G_n,\delta}(v_n(\delta))\sqrt{v_n(\delta)} \leq C_7(nh_n)^{-1/2},$$

for some positive constants C_6 and C_7. Therefore, combining (5)-(7), we obtain

$$P \sup_{g \in G_n^\delta} |G_n g| \leq C_8\delta^{1/2},$$

for some positive constant C_8. The conclusion follows from the second relation in (3).

A.3. Proof of Lemma 1. Pick any $C > 0$ and $\varepsilon > 0$. Define $A_n = \{\theta \in \Theta : (nh_n)^{-1/3} \leq |\theta - \theta_0| \leq C\}$ and

$$R_n^2 = (nh_n)^{2/3} \sup_{\theta \in A_n} \{|P_n(f_{n,\theta} - f_{n,\theta_0}) - P(f_{n,\theta} - f_{n,\theta_0})| \geq \varepsilon|\theta - \theta_0|^2\}.$$

It is enough to show $R_n = O_p(1)$. Letting $A_{n,j} = \{\theta \in \Theta : (j-1)(nh_n)^{-1/3} \leq |\theta - \theta_0| < j(nh_n)^{-1/3}\}$, there exists a positive constant C' such that

$$P\{R_n > m\} \leq P \left\{ \sup_{\theta \in A_n} |P_n(f_{n,\theta} - f_{n,\theta_0}) - P(f_{n,\theta} - f_{n,\theta_0})| > \varepsilon|\theta - \theta_0|^2 + (nh_n)^{-2/3}m^2 \text{ for some } \theta \in A_n \right\} \leq \sum_{j=1}^{\infty} P \left\{ (nh_n)^{2/3} |P_n(f_{n,\theta} - f_{n,\theta_0}) - P(f_{n,\theta} - f_{n,\theta_0})| > \varepsilon(j-1)^2 + m^2 \text{ for some } \theta \in A_{n,j} \right\} \leq \sum_{j=1}^{\infty} \varepsilon(j-1)^2 + m^2,$$

for all $m > 0$, where the last inequality is due to the Markov inequality and Lemma M. Since the above sum is finite for all $m > 0$, the conclusion follows.

A.4. Proof of Lemma C. First of all, any β-mixing process is α-mixing with the mixing coefficient $\alpha_m \leq \beta_m/2$. Thus it is sufficient to check Conditions (a) and (b) of Rio (1997, Corollary 1). Condition (a) is verified under eq. (3) of the paper by Rio (1997, Proposition 1), which guarantees $\text{Var}(G_n g_n) \leq \int_0^1 \beta^{-1}(u)Q_{g_n}(u^2)du$ for all n. Since $\text{Var}(G_n g_n)$ is bounded (by eq. (3) of the paper) and $\{z_t\}$ is strictly stationary under Assumption D, Condition (b) of Rio (1997, Corollary 1) can be written as

$$\int_0^1 \beta^{-1}(u)Q_{g_n}(u^2)\inf_n \{n^{-1/2}\beta^{-1}(u)Q_{g_n}(u), 1\}du \to 0,$$

as $n \to \infty$. Pick any $u \in (0,1)$. Since $\beta^{-1}(u)Q_{g_n}(u^2)$ is non-increasing in $u \in (0,1)$, the condition in eq. (3) of the paper implies $\beta^{-1}(u)Q_{g_n}(u^2) < C < \infty$ for all n. Therefore, for each $u \in (0,1)$, it holds $n^{-1/2}\beta^{-1}(u)Q_{g_n}(u) \to 0$ as $n \to \infty$. Then the dominated convergence theorem based on eq. (3) of the paper implies Condition (b).
A.5. **Proof of Lemma 2.** By Assumption M (i), it holds \(|g_{n,s}| \leq 2C(nh_n^{-2})^{1/6}\) for all \(n\) and \(s\), which implies \(Q_{g_{n,s}}(u)^2 \leq 16C^2(nh_n^{-2})^{1/3}\) for all \(n\), \(s\), and \(u \in (0,1)\). By the condition of this lemma, it holds \(Q_{g_{n,s}}(u) \leq c\) for all \(n\) large enough and \(u > c(nh_n^{-2})^{-1/3}\). By the triangle inequality and the definition of \(Q_g\),

\[
P\{|g_{n,s} - P g_{n,s}| \geq Q_{g_{n,s}}(u) + |P g_{n,s}|\} \leq P\{|g_{n,s} \geq Q_{g_{n,s}}(u)\} = P\{|g_{n,s} - P g_{n,s} > Q_{g_{n,s}}(u)\},
\]

which implies \(Q_{g_{n,s},P g_{n,s}}(u) \leq Q_{g_{n,s}}(u) + |P g_{n,s}|\). Thus, for all \(n\) large enough, \(s\), and \(u > c(nh_n^{-2})^{-1/3}\), it holds

\[
Q_{g_{n,s},P g_{n,s}}(u)^2 \leq c^2 + |P g_{n,s}|^2 + 2c|P g_{n,s}|.
\]

Combining these bounds, eq. (3) of the paper is verified as

\[
\int_0^1 \beta^{-1}(u)Q_{g_{n,s},P g_{n,s}}(u)^2\,du \leq 16C^2(nh_n^{-2})^{1/3} \int_0^{c(nh_n^{-2})^{-1/3}} \beta^{-1}(u)\,du + \{c^2 + (P g_{n,s})^2 + 2c|P g_{n,s}|\} \int_0^1 \beta^{-1}(u)\,du < \infty,
\]

for all \(n\) large enough, where the second inequality follows by Assumptions M (i) and D (which guarantees \(\sup_n (nh_n^{-2})^{1/3} \int_0^{c(nh_n^{-2})^{-1/3}} \beta^{-1}(u)\,du < \infty\), and \(\int_0^1 \beta^{-1}(u)\,du < \infty\).

A.6. **Proof of Lemma M'.** Pick any \(K > 0\) and \(\sigma > 0\). Let \(g_{n,s,s'} = g_{n,s} - g_{n,s'}\),

\[
\mathcal{G}^K_n = \{g_{n,s,s'} : |s| \leq K, |s'| \leq K\},
\]

\[
\mathcal{G}^{\delta}_n = \{g_{n,s,s'} \in \mathcal{G}^K_n : |s - s'| < \delta\},
\]

\[
\mathcal{G}^{\beta\delta}_n = \{g_{n,s,s'} \in \mathcal{G}^K_n : \|g_{n,s,s'}\|_{2,\beta} < \delta\}.
\]

Since \(g_{n,s}\) satisfies the condition in eq. (4) of the paper, there exists a positive constant \(C_1\) such that \(\mathcal{G}^{\delta}_n \subset \{g_{n,s,s'} : \|g_{n,s,s'}\|_{2} < C_1\delta^{1/2}\}\) for all \(n\) large enough and all \(\delta > 0\) small enough. Also, by the same argument to derive (4), there exists a positive constant \(C_2\) such that \(\|g_{n,s,s'}\|_{2,\beta} \leq C_2\|g_{n,s,s'}\|_{2}\) for all \(n\) large enough, \(|s| \leq K\), and \(|s'| \leq K\). The constant \(C_2\) depends only on the mixing sequence \(\{\beta_n\}\). Combining these results, we obtain the set inclusion relationship

\[
\mathcal{G}^{\delta}_n \subset \mathcal{G}^{\beta\delta}_n C_1 C_2^{1/2},
\]

for all \(n\) large enough and all \(\delta > 0\) small enough.

Also note that the bracketing numbers satisfy

\[
N_\|\nu, \mathcal{G}^{\beta\delta}_n, \|\|_{2,\beta} \leq N_\|\nu, \mathcal{G}^K_n, \|\|_{2} \leq C_3 \nu^{-d/2},
\]

where the first inequality follows from \(\mathcal{G}^{\beta\delta}_n \subset \mathcal{G}^K_n\) (by the definitions) and \(\|\|_2 \leq \|\|_{2,\beta}\) (Doukhan, Massart and Rio, 1995, Lemma 1), and the second inequality follows from the argument to derive Andrews (1993, eq. (4.7)) based on eq. (4) of the paper (called the \(L_2\)-continuity assumption in
Andrews, 1993). Thus, there is a function \(\varphi(\eta) \) such that \(\varphi(\eta) \to 0 \) as \(\eta \to 0 \) and

\[
\varphi_n(\eta) = \int_0^\eta \sqrt{\log N(\nu, G^\beta_{\eta})} d\nu \leq \varphi(\eta),
\]

for all \(n \) large enough and all \(\eta > 0 \) small enough.

Based on the above entropy condition, we can apply the maximal inequality of Doukhan, Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant \(C_3 \) depending only on the mixing sequence \(\{\beta_n\} \) such that

\[
P \sup_{g \in \mathcal{G}_{n, \eta}^\beta} |G_ng| \leq C_4[1 + \eta^{-1} q_{G_n}(\min\{1, v_n(\eta)\})] \varphi(\eta),
\]

for all \(n \) large enough and all \(\eta > 0 \) small enough, where \(q_{2G_n}(\nu) = \sup_{\nu \leq 0} Q_{2G_n}(\nu) \sqrt{\int_0^{\eta} \beta^{-1}(\tilde{u}) d\tilde{u}} \) with the envelope function \(2G_n \) of \(\mathcal{G}_{n, \eta}^\beta \) (note: by the definition of \(\mathcal{G}_{n, \eta}^\beta \), the envelope \(2G_n \) does not depend on \(\eta \)), and \(v_n(\eta) \) is the unique solution of

\[
\frac{v_n(\eta)^2}{\int_0^{v_n(\eta)} \beta^{-1}(\tilde{u}) d\tilde{u}} = \frac{\varphi_n^2(\eta)}{n\eta^2}.
\]

Now pick any \(\eta > 0 \) small enough so that \(2C_4 \varphi(\eta) < \sigma \). Since \(\varphi_n(\eta) \leq \varphi(\eta) \), there is a positive constant \(C_5 \) such that \(v_n(\eta) \leq C_5 \varphi_n(\eta) \eta \) for all \(n \) large enough and \(\eta > 0 \) small enough. Since \(G_n \leq C' n^\kappa \) by the definition of \(\mathcal{G}_{n, \eta}^\beta \), there exists a positive constant \(C_6 \) such that \(q_{2G_n}(\min\{1, v_n(\eta)\}) \leq C_6 \sqrt{\varphi(\eta)} \eta^{-1} n^{\kappa - 1/2} \) with \(0 < \kappa < 1/2 \) for all \(n \) large enough. Therefore, by setting \(\eta = C_1 C_2 \delta^{1/2} \), we obtain

\[
P \sup_{g \in \mathcal{G}_{n, C_1 C_2 \delta^{1/2}}^\beta} |G_ng| \leq \sigma,
\]

for all \(n \) large enough. The conclusion follows by (9).

A.7. Proof of Theorem 1. As discussed in the main body, Lemma 1 yields the convergence rate of the estimator. This enables us to consider the centered and normalized process \(Z_n(s) \), which can be defined on arbitrary compact parameter space. Based on finite dimensional convergence and tightness of \(Z_n \) shown by Lemmas C and M', respectively, we establish weak convergence of \(Z_n \). Then a continuous mapping theorem of an argmax element (Kim and Pollard, 1990, Theorem 2.7) yields the limiting distribution of the M-estimator \(\hat{\theta} \).

A.8. Proof of Theorem 2. To ease notation, let \(\theta_0 = \nu_0 = 0 \). First, we show that \(\hat{\theta} = O_p((n\eta_{n})^{-1/3}) \). Since \(\{f_{n, \theta, \nu}\} \) satisfies Assumption M (iii), we can apply Lemma M' with \(g_{n, s} = n^{1/6} h_n^{2/3} (f_{n, \theta, c(n\eta_n)^{-1/3}} - f_{n, \theta, 0}) \) for \(s = (\theta', c')' \), which implies

\[
\sup_{|\theta| \leq \varepsilon, |c| \leq \varepsilon} n^{1/6} h_n^{2/3} G_n(f_{n, \theta, c(n\eta_n)^{-1/3}} - f_{n, \theta, 0}) = O_p(1),
\]

for all \(\varepsilon > 0 \). Also from eq. (6) of the paper and \(\hat{\nu} = o_p((n\eta_n)^{-1/3}) \), we have

\[
P(f_{n, \theta, \hat{\nu}} - f_{n, \theta, 0}) - P(f_{n, 0, \nu} - f_{n, 0, 0}) \leq 2 c|\theta|^2 + O_p((n\eta_n)^{-2/3}),
\]
for all θ in a neighborhood of θ_0 and all $\epsilon > 0$. Combining (10), (11), and Lemma 1,

$$\mathbb{P}_n(f_{n,\theta,0} - f_{n,0,\tilde{\nu}}) = n^{-1/2}\{\mathbb{G}_n(f_{n,\theta,0} - f_{n,\theta,0}) + \mathbb{G}_n(f_{n,\theta,0} - f_{n,0,\tilde{\nu}}) - \mathbb{G}_n(f_{n,0,\tilde{\nu}} - f_{n,0,0})\}$$

$$+ P(f_{n,\theta,0} - f_{n,\theta,0}) + P(f_{n,\theta,0} - f_{n,0,0}) - P(f_{n,0,\tilde{\nu}} - f_{n,0,0})$$

$$\leq P(f_{n,\theta,0} - f_{n,0,0}) + 2\epsilon|\theta|^2 + O_p((nh_n)^{-2/3})$$

$$\leq \frac{1}{2}\theta'V_1\theta + 3\epsilon|\theta|^2 + O_p((nh_n)^{-2/3}),$$

for all θ in a neighborhood of θ_0 and all $\epsilon > 0$, where the last inequality follows from eq. (6) of the paper. From $\mathbb{P}_n(f_{n,\theta,0} - f_{n,0,\tilde{\nu}}) \geq o_p((nh_n)^{-2/3})$, negative definiteness of V_1, and $\tilde{\nu} = o_p((nh_n)^{-1/3})$, we can find $c > 0$ such that

$$o_p((nh_n)^{-2/3}) \leq -c|\hat{\theta}|^2 + |\hat{\theta}|o_p((nh_n)^{-1/3}) + O_p((nh_n)^{-2/3}),$$

which implies $|\hat{\theta}| = O_p((nh_n)^{-1/3})$.

Next, we show that $\hat{\theta} - \bar{\theta} = o_p((nh_n)^{-1/3})$. By reparametrization,

$$(nh_n)^{1/3}\hat{\theta} = \arg \max_s (\mathbb{P}_n - P)(f_{n,s(nh_n)^{-1/3},\hat{\theta}} - f_{n,0,0}) + P(f_{n,s(nh_n)^{-1/3},\hat{\theta}} - f_{n,0,0}) + o_p(1).$$

By Lemma M' (replace θ with (θ, ν)) and $\tilde{\nu} = o_p((nh_n)^{-1/3})$,

$$(\mathbb{P}_n - P)(f_{n,s(nh_n)^{-1/3},\hat{\theta}} - f_{n,0,0}) - (\mathbb{P}_n - P)(f_{n,s(nh_n)^{-1/3},0} - f_{n,0,0}) = o_p((nh_n)^{-2/3}),$$

uniformly in s. Also eq. (6) of the paper implies $P(f_{n,s(nh_n)^{-1/3},\hat{\theta}} - f_{n,0,0}) - P(f_{n,s(nh_n)^{-1/3},0} - f_{n,0,0}) = o_p((nh_n)^{-2/3})$ uniformly in s. Given $\hat{\theta} - \bar{\theta} = o_p((nh_n)^{-1/3})$, an application of Theorem 1 to the class $\{f_{n,\theta,\nu_0} : \theta \in \Theta\}$ implies the limiting distribution of $\hat{\theta}$.

A.9. Proof of Lemma MS. First, we introduce some notation. Let

$$\mathcal{G}_{n,\delta}^3 = \{h_n^{1/2}(f_{n,\theta} - f_{n,\pi_\theta}) : \|h_n^{1/2}(f_{n,\theta} - f_{n,\pi_\theta})\|_{2,\beta} < \delta \text{ for } \theta \in \Theta\},$$

$$\mathcal{G}_{n,\delta}^1 = \{h_n^{1/2}(f_{n,\theta} - f_{n,\pi_\theta}) : |\theta - \pi_\theta| < \delta \text{ for } \theta \in \Theta\},$$

$$\mathcal{G}_{n,\delta}^2 = \{h_n^{1/2}(f_{n,\theta} - f_{n,\pi_\theta}) : \|h_n^{1/2}(f_{n,\theta} - f_{n,\pi_\theta})\|_2 < \delta \text{ for } \theta \in \Theta\}.$$

For any $g \in \mathcal{G}_{n,\delta}^3$, g is bounded (Assumption S (i)) and so is Q_g. Thus we can always find a function \hat{g} such that $\|g\|_2^2 \leq \|\hat{g}\|_2^2 \leq 2\|g\|_2^2$ and

$$Q_{\hat{g}}(u) = \sum_{j=1}^{m} a_j\{j-1)/m \leq u < j/m\},$$

satisfying $Q_g \leq Q_{\hat{g}}$, for some positive integer m and sequence of positive constants $\{a_j\}$. Let $r_n = nh_n/\log(nh_n)$. Pick any $C' > 0$ and then pick any n satisfying $r_n^{-1/2} \leq C'$ and any $\delta \in [r_n^{-1/2}, C']$. Throughout the proof, positive constants C_j ($j = 1, 2, \ldots$) are independent of n and δ. 6
Next, based on the above notation, we derive some set inclusion relationships. Let $M = \frac{1}{2} \sup_{0 < x \leq 1} x^{-1} \int_0^x \beta^{-1}(u) du$. For any $g \in \mathcal{G}_\delta^1$, it holds
\[
\|g\|_2^2 \leq \int_0^1 \beta^{-1}(u)Q_g(u)^2 du \leq \frac{1}{m} \sum_{j=1}^m a_j^2 \left\{ m \int_{(j-1)/m}^{j/m} \beta^{-1}(u) du \right\}
\leq \left\{ m \int_0^{1/m} \beta^{-1}(u) du \right\} \int_0^1 Q_g(u)^2 du
\leq M \|g\|_2^2,
\]
where the first inequality is due to Doukhan, Massart and Rio (1995, Lemma 1), the second inequality follows from $Q_g \leq Q_{\hat{g}}$, the third inequality follows from monotonicity of $\beta^{-1}(u)$, and the last inequality follows by $\|\hat{g}\|_2^2 \leq 2 \|g\|_2^2$. Therefore,
\[
\|f_{n,\theta} - f_{n,\pi_\theta}\|_2 \leq \|f_{n,\theta} - f_{n,\pi_\theta}\|_{2,\beta} \leq M^{1/2} \|f_{n,\theta} - f_{n,\pi_\theta}\|_2,
\]
for each $\theta \in \{\theta : |\theta - \pi_\theta| < \delta\}$, where the first inequality follows from Doukhan, Massart and Rio (1995, Lemma 1) and the second inequality follows from (12). Based on this, we can deduce the inclusion relationships: there exist positive constants C_1 and C_2 such that
\[
\mathcal{G}_{n,\delta}^1 \subseteq \mathcal{G}_{n,C_1,\delta^{1/2}}^2 \subseteq \mathcal{G}_{n,M^{1/2}C_1,\delta^{1/2},2,\beta}^\beta \quad \text{and} \quad \mathcal{G}_{n,\delta}^\beta \subseteq \mathcal{G}_{n,\delta}^2 \subseteq \mathcal{G}_{n,C_2,\delta}^1,
\]
where the relation $\mathcal{G}_{n,\delta}^1 \subseteq \mathcal{G}_{n,C_1,\delta^{1/2}}^2$ follows from Assumption S (iii) and the relation $\mathcal{G}_{n,\delta}^2 \subseteq \mathcal{G}_{n,C_2,\delta}^1$ follows from Assumption S (ii).

Third, based on the above set inclusion relationships, we derive some relationships for the bracketing numbers. Let $N_\| (\nu, \mathcal{G}, \|\cdot\|)$ be the bracketing number for a class of functions \mathcal{G} with radius $\nu > 0$ and norm $\|\cdot\|$. By (13) and the second relation in (14),
\[
N_\| (\nu, \mathcal{G}_{n,\delta}^\beta, \|\cdot\|_{2,\beta}) \leq N_\| (\nu, \mathcal{G}_{n,C_2,\delta}^1, \|\cdot\|_2) \leq C_3 \frac{\delta}{\nu^{2d}},
\]
for some positive constant C_3. Note that the upper bound here is different from the point identified case. Therefore, for some positive constant C_4, it holds
\[
\varphi_n(\delta) = \int_0^\delta \sqrt{\log N_\| (\nu, \mathcal{G}_{n,\delta}^\beta, \|\cdot\|_{2,\beta})} d\nu \leq C_4 \delta \log \delta^{-1}.
\]

Finally, based on the above entropy condition, we apply the maximal inequality of Doukhan, Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant C_5 depending only on the mixing sequence $\{\beta_m\}$ such that
\[
P \sup_{g \in \mathcal{G}_{n,\delta}^\beta} |\mathbb{G}_n g| \leq C_5 [1 + \delta^{-1} q_{G_{n,\delta}}(\min\{1, v_n(\delta)\})] \varphi_n(\delta),
\]
where $q_{G_n,\delta}(v) = \sup_{u \leq v} Q_{G_n,\delta}(u) \sqrt{\int_0^{u} \beta^{-1}(\tilde{u})d\tilde{u}}$ with the envelope function G_n,δ of \mathcal{G}_n,δ (note: \mathcal{G}_n,δ is a class of bounded functions) and $v_n(\delta)$ is the unique solution of

$$\frac{v_n(\delta)^2}{\int_{v_n(\delta)}^{\varphi_n(\delta)} \beta^{-1}(\tilde{u})d\tilde{u}} = \frac{\varphi_n(\delta)^2}{n\delta^2}.$$

Since $\varphi_n(\delta) \leq C_4 \delta \log \delta^{-1}$ from (15), it holds $v_n(\delta) \leq C_5 n^{-1}(\log \delta^{-1})^2 \leq C_5 n^{-1}\{\log(nh_n)^{1/2}\}^2$ for some positive constant C_5. Now take some n_0 such that $v_{n_0}(\delta) \leq 1$, and then pick again any $n \geq n_0$ and $\delta \in [r_n^{-1/2}, C']$. We have

$$q_{G_n,\delta}(\min\{1, v_n(\delta)\}) \leq C_6 \sqrt{v_n(\delta)Q_{G_n,\delta}(v_n(\delta))} \leq C_7 n^{-1/2} \log(nh_n)^{1/2},$$

for some positive constants C_6 and C_7. Therefore, combining (15)-(7), the conclusion follows by

$$P \sup_{g \in \mathcal{G}_n,\delta} |G_n,g| \leq P \sup_{g \in \mathcal{G}_n,\delta,M^{1/2}C_1^{1/2}} |G_n,g| \leq C_8(\delta \log \delta^{-1})^{1/2},$$

where the first inequality follows from the first relation in (14).

A.10. **Proof of Lemma 3.** Pick any $C > 0$ and $\epsilon > 0$. Then define $A_n = \{\theta \in \Theta \setminus \Theta_f : r_n^{-1/3} \leq |\theta - \pi_{\theta}| \leq C\}$ and

$$R_n^2 = r_n^{2/3} \sup_{\theta \in A_n} \{|P_n(f_n,\theta - f_n,\pi_{\theta}) - P(f_n,\theta - f_n,\pi_{\theta})| - \epsilon |\theta - \pi_{\theta}|^2\}.$$

It is enough to show $R_n = O_p(1)$. Letting $A_{n,j} = \{\theta \in \Theta : (j-1)r_n^{-1/3} \leq |\theta - \pi_{\theta}| < jr_n^{-1/3}\}$, there exists a positive constant C' such that

$$P\{R_n > m\} \leq P\left\{|P_n(f_n,\theta - f_n,\pi_{\theta}) - P(f_n,\theta - f_n,\pi_{\theta})| > \epsilon |\theta - \pi_{\theta}|^2 + r_n^{-2/3}m^2 \text{ for some } \theta \in A_n\right\}$$

$$\leq \sum_{j=1}^{\infty} P\left\{r_n^{2/3} |P_n(f_n,\theta - f_n,\pi_{\theta}) - P(f_n,\theta - f_n,\pi_{\theta})| > \epsilon (j-1)^2 + m^2 \text{ for some } \theta \in A_{n,j}\right\}$$

$$\leq \sum_{j=1}^{\infty} \frac{C'}{\epsilon (j-1)^2 + m^2},$$

for all $m > 0$, where the last inequality is due to the Markov inequality and Lemma MS. Since the above sum is finite for all $m > 0$, the conclusion follows.

A.11. **Proof of Theorem 3.** Pick any $\vartheta \in \hat{\Theta}$. By the definition of $\hat{\Theta}$,

$$P_n(f_n,\theta - f_n,\pi_{\theta}) \geq \max_{\theta \in \Theta} P_n f_n,\theta - (nh_n)^{-1/2} \hat{c} - P_n f_n,\pi_{\theta} \geq -(nh_n)^{-1/2} \hat{c}.$$

Now, suppose $H(\vartheta, \Theta_f) = |\vartheta - \pi_{\theta}| > r_n^{-1/3}$. By Lemma 3 and Assumption S (i),

$$P_n(f_n,\theta - f_n,\pi_{\theta}) \leq P(f_n,\theta - f_n,\pi_{\theta}) + \epsilon |\vartheta - \pi_{\theta}|^2 + r_n^{-2/3}R_n^2$$

$$\leq (-c + \epsilon)|\vartheta - \pi_{\theta}|^2 + o(|\vartheta - \pi_{\theta}|^2) + O_p(r_n^{-2/3}),$$

where $\epsilon > 0$ is a positive constant. Therefore, we have

$$P_n(f_n,\theta - f_n,\pi_{\theta}) \leq (-c + \epsilon)|\vartheta - \pi_{\theta}|^2 + o(|\vartheta - \pi_{\theta}|^2) + O_p(r_n^{-2/3}),$$

for all $\vartheta \in \hat{\Theta}$ and $\epsilon > 0$. This completes the proof.
for any $\varepsilon > 0$. Note that c, ε, and R_n do not depend on ϑ. By taking ε small enough, the convergence rate of $\rho(\hat{\Theta}, \Theta_I)$ is obtained as

$$
\rho(\hat{\Theta}, \Theta_I) = \sup_{\vartheta \in \Theta} |\vartheta - \pi_{\vartheta}| \leq O_p(\varepsilon^{1/2}(n\varepsilon)^{-1/4} + \varepsilon^{-1/3}).
$$

Furthermore, for the maximizer $\hat{\vartheta}$ of $P_n f_{n, \vartheta}$, then it holds $P_n (f_{n, \hat{\vartheta}} - f_{n, \pi_{\vartheta}}) \geq 0$ and this implies $\hat{\vartheta} - \pi_{\vartheta} = O_p(\varepsilon^{-1/3})$.

For the convergence rate of $\rho(\Theta_I, \Theta)$, we show $P(\Theta_I \subset \hat{\Theta}) \to 1$ for $\varepsilon \to \infty$, which implies that $\rho(\Theta_I, \hat{\Theta})$ can converge at arbitrarily fast rate. To see this, note that

$$
(n\varepsilon)^{1/2} \max_{\vartheta \in \Theta_I} |(\max_{\vartheta \in \Theta} P_n f_{n, \vartheta} - P_n f_{n, \vartheta})|
\leq |G_n(f_{n, \hat{\vartheta}} - f_{n, \pi_{\vartheta}})| + \varepsilon^{1/2} |P(f_{n, \hat{\vartheta}} - f_{n, \pi_{\vartheta}})| + 2(n\varepsilon)^{1/2} \max_{\vartheta \in \Theta_I} |P_n f_{n, \vartheta} - P f_{n, \vartheta}|
= 2\varepsilon^{1/2} \max_{\vartheta \in \Theta_I} G_n f_{n, \vartheta} + o_p(1),
$$

where the inequality follows from the triangle inequality and the equality follows from Lemmas MS and 3, Assumption S (i), and the rate $\hat{\vartheta} - \pi_{\vartheta} = O_p(\varepsilon^{-1/3})$ obtained above. Therefore, since $\{h^{1/2}_n f_{n, \vartheta, \Theta} \in \Theta_I\}$ is P-Donsker (Assumption S (i)), it follows $P(\Theta_I \subset \hat{\Theta}) \to 1$ if $\varepsilon \to \infty$.

A.12. Proof of Lemma MS’. To ease notation, let $\nu_0 = 0$. $G_n = \{g_{n,s} = f_{n,\vartheta,\nu} - f_{n,\vartheta,0} : |\vartheta - \pi_{\vartheta}| \leq K_1, |\nu| \leq \alpha_nK_2, s = (\theta', \nu')\}$

First, we introduce some notation. Let

$$
G_{n,\delta}^1 = \{g_{n,s} : \|g_{n,s}\|_{2,\beta} < \delta\},
G_{n,\delta}^2 = \{g_{n,s} : |\vartheta - \pi_{\vartheta}| < K_1 \text{ and } |\nu| \leq \delta\},
G_{n,\delta}^3 = \{g_{n,s} : \|g_{n,s}\|_2 < \delta\}.
$$

Since $g_{n,s}$ satisfies eq. (12) of the paper, there exists a positive constant C_1 such that $G_{n,\delta}^1 \subset G_n : \|g_{n,s}\|_2 < C_{1,kn}^{1/4} \beta^{1/2}$ for all n large enough and all $\delta > 0$ small enough. Also, by the same argument to derive (4), there exists a positive constant C_2 such that $\|g_{n,s}\|_{2,\beta} \leq C_2 \|g_{n,s}\|_2$ for all n large enough. The constant C_2 depends only on the mixing sequence $\{\beta_m\}$. Combining these results, we obtain the set inclusion relationship

$$
G_{n,\delta}^1 \subset G_{n,C_1k\delta^{1/2}}^{1/4} \beta^{1/2}.
$$

for all n large enough and all $\delta > 0$ small enough. On the other hand, for any δ' small enough, there exists some C_3 such that

$$
G_{n,\delta'}^3 \subset G_{n,\delta'}^{2} \subset G_{n,C_3\delta'}^1,
$$

due to the fact that $\|\cdot\|_2 \leq \|\cdot\|_{2,\beta}$ (Doukhan, Massart and Rio, 1995, Lemma 1) and eq. (13) of the paper. And, the bracketing numbers satisfy

$$
N_{\|\cdot\|}(\nu, G_{n,\delta}^3, \|\cdot\|_{2,\beta}) \leq N_{\|\cdot\|}(\nu, G_{n,\delta}^1, \|\cdot\|_2).
$$
Furthermore, the bracketing number \(N_0(\nu, G, \Theta) \) can be bounded by the covering number of the parameter space, say, \(N_0(\nu, [-K_1, K_1] \times [-C_3 \theta', C_3 \theta']^k) \) following the argument in Andrews (1993, eq. (4.7)) based on eq. (12) of the paper.

Now we set \(\delta = a_n K_2 \) so that \(G_n, \delta = G_n \). Also set \(\delta' = C_1 C_2 K_{1}^{1/4} \delta^{1/2} \) and compute \(N_0(\nu, [-K_1, K_1] \times [-K_2^{1/2} a_n^{1/4}, K_2^{1/2} a_n^{1/4}]^k) \), where \(K_2 = C_1 C_2 K_1^{1/2} \). By direct calculation, this covering number is bounded\(^2\) by \((2K_1)^d \left(\frac{\sqrt{d+2n}}{2v} \right)^{d+k_n} (2K_2^{1/2} a_n^{1/4})^k\). Building on this, we compute the quantities in the maximal inequality in (6). First,

\[
\varphi_n(\delta') = \int_{0}^{\delta'} \sqrt{\log N_0(\nu, G_n, \delta', \| \cdot \|_2, \beta)} d\nu \\
\leq \int_{0}^{K_2^{1/2} a_n^{1/4}} C_3 \sqrt{k_n (\log k_n^{3/2} a_n^{-1}) - \log \nu} d\nu \\
\leq K_3 a_n^{1/2} k_n^{3/4} \sqrt{\log k_n a_n^{-1}},
\]

for some \(C_3 \) and \(K_3 \), where the last inequality follows from the indefinite integral formula \(\int \log x dx = \text{const.} + x(\log x - 1) \). Second, as in the discussion following (6), \(v_n(\delta') \leq \varphi_n(\delta')^{2} / (n \delta'^{2}) \leq k_n \log k_n a_n^{-1} / n \), which can be made smaller than 1 for large \(n \). Then, \(q_{G_n, \delta'}(\min\{1, v_n(\delta')\}) \leq C_4 n^{c} \sqrt{k_n(\delta')} \), and then \(\delta'^{-1} q_{G_n, \delta'}(\min\{1, v_n(\delta')\}) \leq C_5 \) for \(\delta' = K_2^{1/2} a_n^{1/4} \). Putting these together, we can bound the right hand side of (6) by \(C_6 a_n^{1/2} k_n^{3/4} \sqrt{\log k_n a_n^{-1}} \) for some \(C_6 \).

A.13. **Proof of Theorem 4.** To ease notation, let \(\nu_0 = 0 \). From eq. (14) of the paper, we have

\[
P(f_n, \theta, \tilde{\nu} - f_n, \pi_0, \tilde{\nu}) = o(|\theta - \pi_0|^2) + O(|\tilde{\nu}|^2) + O_p(r_n^{-2/3}),
\]

for all \(\theta \) in a neighborhood of \(\Theta_T \) and all \(\epsilon > 0 \). Combining Lemma MS’, eq. (14) of the paper, and Assumption S (i), and Lemma 3,

\[
\mathbb{P}_n(f_n, \theta, \tilde{\nu} - f_n, \pi_0, \tilde{\nu}) = n^{-1/2} \left\{ G_n(f_n, \theta, \tilde{\nu} - f_n, \pi_0) - G_n(f_n, \pi_0, \tilde{\nu} - f_n, \pi_0) + G_n(f_n, \theta, 0 - f_n, \pi_0) \right\} \\
+ P(f_n, \theta, \tilde{\nu} - f_n, \pi_0, \tilde{\nu} - f_n, \pi_0) + P(f_n, \pi_0, \tilde{\nu} - f_n, \pi_0) \\
\leq O_p((nh_n a_n^{-1})^{-1/2} k_n^{3/4} \log^{1/2} n) + \epsilon |\theta - \pi_0|^2 + O_p(r_n^{-2/3}) \\
- c |\theta - \pi_0|^2 + \epsilon |\theta - \pi_0|^2 + O_p(|\tilde{\nu}|^2) + O_p(r_n^{-2/3}),
\]

for all \(\theta \) in a neighborhood of \(\Theta_T \) and all \(\epsilon > 0 \), where the inequality follows from eq. (6) of the paper. Here, \(\sqrt{\log k_n a_n^{-1}} \) in Lemma MS’ is bounded by \(\sqrt{\log n} \) up to a constant.

Let \(\hat{\theta} = \arg\max_{\theta \in \Theta} \mathbb{P}_n f_n, \theta, \tilde{\nu} \). If \(|\hat{\theta} - \pi_0| > a_n + r_n^{-1/3} \), then \(\mathbb{P}_n(f_n, \theta, \tilde{\nu} - f_n, \pi_0, \tilde{\nu}) \geq 0 \) and thus by (19),

\[
|\hat{\theta} - \pi_0| \leq o(a_n) + O_p(r_n^{-1/3}) + O_p((nh_n a_n^{-1})^{-1/4} k_n^{3/8} \log^{1/4} n).
\]

\(^2\)The circumradius of the unit \(s \)-dimensional hypercube is \(\sqrt{s}/2 \). Or \(\sqrt{\sum_{i=1}^{s} a_i^2}/2 \) for the hypercube of side lengths \((a_1, \ldots, a_s) \).
And for any $\theta' \in \Theta$, if $|\theta' - \pi_{\theta'}| > a_n + r_n^{-1/3}$, then

$$-(nh_n)^{-1/2} \hat{c} \leq \max_{\theta \in \Theta} \mathbb{P}_n f_n, \theta, \hat{v} - \mathbb{P}_n f_n, \pi_{\theta'}, \hat{v} - c_n^{-1} \hat{c} \leq \mathbb{P}_n f_n, \theta', \hat{v} - \mathbb{P}_n f_n, \pi_{\theta'}, \hat{v},$$

and thus by (19),

$$|\theta' - \pi_{\theta'}| \leq o(a_n) + O_p(r_n^{-1/3}) + O_p((nh_n a_n)^{-1/4} k_n^{3/8} \log^{1/4} n) + (nh_n)^{-1/4} \hat{c}^{1/2}.$$

It remains to show that $P(\Theta_I \subset \hat{\Theta}) \to 1$ for $\hat{c} \to \infty$. Proceeding as in (16), we get

$$(nh_n)^{1/2} \max_{\theta' \in \Theta_I} |(\max_{\theta \in \Theta} \mathbb{P}_n f_n, \theta, \hat{v} - \mathbb{P}_n f_n, \theta', \hat{v})|$$

$$\leq |h_n^{1/2} G_n (f_n, \hat{\theta}, \hat{v} - f_n, \pi_{\hat{\theta}}, \hat{v})| + (nh_n)^{1/2} |P(f_n, \hat{\theta}, \hat{v} - f_n, \pi_{\hat{\theta}}, \hat{v})| + 2(nh_n)^{1/2} |\max_{\theta' \in \Theta_I} (\mathbb{P}_n f_n, \theta', \hat{v} - P f_n, \theta', \hat{v})|$$

$$= 2 |\max_{\theta' \in \Theta_I} h_n^{1/2} G_n f_n, \theta', \hat{v}| + o_p(1),$$

where the first term after the inequality being $o_p(1)$ is due to Lemmas 3 and MS’, and the second term is to (18) and Assumption S (i) together with the rate for $\hat{\theta}$ in (20). Finally, due to Lemma MS’ and the class $\{h_n^{1/2} f_n, \theta \in \Theta_I\}$ being a P-Donsker, we conclude $\Pr\{\Theta_I \subset \hat{\Theta}\} \to 1$.

A.14. **Proof of Lemma M1.** The proof is similar to that of Lemma M except that for some positive constant C''', we have

$$G_{\hat{\theta}}^{1} \subset G_{C'''} h_n^{-1/2} \delta^{1/2} \subset G_{C''' h_n^{-1/2} \delta^{1/2}}^{\beta},$$

which reflects the component $“h_n^{1/2}”$ in Assumption M (iii’) instead of $“h_n”$ in Assumption M (iii). As a consequence of this change, the upper bound in the maximal inequality becomes $C h_n^{-1/2} \delta^{1/2}$ instead of $C \delta^{1/2}$. All the other parts remain the same.

A.15. **Proof of Theorem 5.** The proof is similar to that of Theorem 1 given Lemma M1.
APPENDIX B. ADDITIONAL EXAMPLES

B.1. Dynamic maximum score. As a further application of Theorem 1, consider the maximum score estimator (Manski, 1975) for the regression model \(y_t = x'_t \theta_0 + u_t \), that is

\[
\hat{\theta} = \arg \max_{\theta \in S} \frac{1}{n} \sum_{t=1}^{n} \left[\mathbb{I}\{y_t \geq 0, x'_t \theta \geq 0\} + \mathbb{I}\{y_t < 0, x'_t \theta < 0\} \right],
\]

where \(S \) is the surface of the unit sphere in \(\mathbb{R}^d \). Since \(\hat{\theta} \) is determined only up to scalar multiples, we standardize it to be unit length. A key insight of this estimator is to explore a median or quantile restriction in disturbances of latent variable models to construct a population criterion that identifies structural parameters of interest.

We impose the following assumptions. Let \(S \) satisfy Assumption D, which allows dependent observations, all assumptions are similar to the ones in Kim and Pollard (1990, Section 6.4). First, note that the criterion function is written as

\[
f_\theta(x, u) = h(x, u)[\mathbb{I}\{x'_\theta \geq 0\} - \mathbb{I}\{x'_\theta \geq 0\}].
\]

We can see that \(\hat{\theta} = \arg \max_{\theta \in S} \mathbb{P}_n f_\theta \) and \(\theta_0 = \arg \max_{\theta \in S} \mathbb{P} f_\theta \). Existence and uniqueness of \(\theta_0 \) are guaranteed by (b) (see, Manski, 1985). Also the uniform law of large numbers for an absolutely regular process by Nobel and Dembo (1993, Theorem 1) implies \(\sup_{\theta \in S} \| \mathbb{P}_n f_\theta - \mathbb{P} f_\theta \|_2 \to 0 \). Therefore, \(\hat{\theta} \) is consistent for \(\theta_0 \).

We now verify that \(\{ f_\theta : \theta \in S \} \) satisfy Assumption M with \(h_n = 1 \). Assumption M (i) is already verified. By Jensen’s inequality,

\[
\| f_{\theta_1} - f_{\theta_2} \|_2 = \sqrt{\mathbb{E}[\mathbb{I}\{x'_\theta \geq 0\} - \mathbb{I}\{x'_\theta \geq 0\}]} \geq \mathbb{P}\{x'_\theta \geq 0 \geq x'_\theta \geq 0 \},
\]

for any \(\theta_1, \theta_2 \in S \). Since the right hand side is the probability for a pair of wedge shaped regions with an angle of order \(|\theta_1 - \theta_2| \), the last condition in (a) implies Assumption M (ii). For Assumption M (iii), pick any \(\varepsilon > 0 \) and observe that

\[
P \sup_{\theta \in \Theta : |\theta - \theta_0| < \varepsilon} | f_\theta - f_{\theta_0} |^2 = P \sup_{\theta \in \Theta : |\theta - \theta_0| < \varepsilon} \mathbb{I}\{x'_\theta \geq 0 \geq x'_\theta \geq 0 \},
\]

for all \(\theta \) in a neighborhood of \(\theta_0 \). Again, the right hand side is the probability for a pair of wedge shaped regions with an angle of order \(\varepsilon \). Thus the last condition in (a) also guarantees Assumption
M (iii). This yields the convergence rate of $n^{-1/3}$ for $\hat{\theta}$ and the stochastic equicontinuity of the empirical process of the rescaled and centered functions $g_{n,s} = n^{1/6}(f_{\theta_0 + s'n^{-1/3}} - f_{\theta_0})$. For its finite dimensional convergence, we can check the Lindeberg condition in Lemma C (i.e., eq. (5) in the paper) by Lemma 2 as in Section B.2, see (22) below.

We next compute the expected value and covariance kernel of the limit process (i.e., V and H in Theorem 1). Due to strict stationarity (in Assumption D), we can apply the same argument to Kim and Pollard (1990, pp. 214-215) to derive the second derivative

$$V = \left. \frac{\partial^2 f_\theta}{\partial \theta \partial \theta} \right|_{\theta = \theta_0} = - \int \mathbb{I}\{x'\theta_0 = 0\} \dot{\kappa}(x'\theta_0)p(x)x'\sigma,$$

where σ is the surface measure on the boundary of the set $\{x : x'\theta_0 \geq 0\}$. The matrix V is negative definite under the last condition of (b). Now pick any s_1 and s_2, and define $q_{n,t} = f_{\theta_0 + n^{-1/3}s_3}(x_t, u_t) - f_{\theta_0 + n^{-1/3}s_2}(x_t, u_t)$. The covariance kernel is written as $H(s_1, s_2) = \frac{1}{2}\{L(s_1, 0) + L(0, s_2) - L(s_1, s_2)\}$, where

$$L(s_1, s_2) = \lim_{n \to \infty} n^{4/3}\text{Var}(\mathbb{P}_n q_{n,t}) = \lim_{n \to \infty} n^{1/3}\{\text{Var}(q_{n,t}) + \sum_{m=1}^{\infty} \text{Cov}(q_{n,t}, q_{n,t+m})\}.$$

The limit of $n^{1/3}\text{Var}(q_{n,t})$ is given in Kim and Pollard (1990, p. 215). For Cov$(q_{n,t}, q_{n,t+m})$, we note that $q_{n,t}$ takes only three values, -1, 0, or 1. The definition of β_m and Assumption D imply

$$|P\{q_{n,t} = j, q_{n,t+m} = k\} - P\{q_{n,t} = j\}P\{q_{n,t+m} = k\}| \leq n^{-2/3}\beta_m,$$

for all $n, m \geq 1$ and $j, k = -1, 0, 1$, i.e., $\{q_{n,t}\}$ is a β-mixing array and its mixing coefficients are bounded by $n^{-2/3}\beta_m$. Then, $\{q_{n,t}\}$ is an α-mixing array whose mixing coefficients are bounded by $2n^{-2/3}\beta_m$ as well. By applying the α-mixing inequality, the covariance is bounded as

$$\text{Cov}(q_{n,t}, q_{n,t+m}) \leq Cn^{-2/3}\beta_m \|q_{n,t}\|^2_p,$$

for some $C > 0$ and $p > 2$. Note that

$$\|q_{n,t}\|^2_p \leq \left|P\{x'(\theta_0 + s_1 n^{-1/3}) > 0\} - P\{x'(\theta_0 + s_2 n^{-1/3}) > 0\}\right|^{2/p} = O(n^{-2/3p}).$$

Combining these results, we get $n^{1/3}\sum_{m=1}^{\infty} \text{Cov}(q_{n,t}, q_{n,t+m}) \to 0$ as $n \to \infty$. Therefore, the covariance kernel H is same as the independent case in Kim and Pollard (1990, p. 215).

Since $\{f_\theta : \theta \in S\}$ satisfies Assumption M, Theorem 1 implies that even if the data obey a dependence process specified in Assumption D, the maximum score estimator possesses the same limiting distribution as the independent sampling case.

B.2. Dynamic least median of squares. As another application of Theorem 2, consider the least median of squares estimator for the regression model $y_t = x_t'\beta_0 + u_t$, that is

$$\hat{\beta} = \arg \min_{\beta} \text{median}\{(y_1 - x_1'\beta)^2, \ldots, (y_m - x_m'\beta)^2\}.$$

We impose the following assumptions.
(a): \{x_t, u_t\} satisfies Assumption D. \{x_t\} and \{u_t\} are independent. \(P|x_t|^2 < \infty, P_{x_t x_t'}\) is positive definite, and the distribution of \(x_t\) puts zero mass on each hyperplane.

(b): The density \(\gamma\) of \(u_t\) is bounded, differentiable, and symmetric around zero, and decreases away from zero. \(|u_t|\) has the unique median \(\nu_0\) and \(\dot{\gamma}(\nu_0) < 0\), where \(\dot{\gamma}\) is the first derivative of \(\gamma\).

Except for Assumption D, which allows dependent observations, all assumptions are similar to the ones in Kim and Pollard (1990, Section 6.3).

It is known that \(\hat{\theta} = \hat{\beta} - \beta_0\) is written as \(\hat{\theta} = \arg\max_{\theta} \mathbb{P}_n f_{\theta, \nu}\), where

\[
f_{\theta, \nu}(x, u) = \mathbb{I}\{x'\theta - \nu \leq u \leq x'\theta + \nu\},
\]

and \(\nu = \inf\{\nu : \sup_{\theta} \mathbb{P}_n f_{\theta, \nu} \geq \frac{1}{2}\}\). Let \(\nu_0 = 1\) to simplify the notation. Since \(\{f_{\theta, \nu} : \theta \in \mathbb{R}^d, \nu \in \mathbb{R}\}\) is a VC subgraph class, Arcones and Yu (1994, Theorem 1) implies the uniform convergence \(\sup_{\theta, \nu} |\mathbb{P}_n f_{\theta, \nu} - P f_{\theta, \nu}| = O_p(n^{-1/2})\). Thus, the same argument to Kim and Pollard (1990, pp. 207-208) yields the convergence rate \(\nu - 1 = O_p(n^{-1/2})\).

Now, we verify the conditions in Theorem 2. By expansions, the condition in eq. (8) of the paper is verified as

\[
P(f_{\theta, \nu} - f_{0,1}) = P|\{\Gamma(x'\theta + \nu) - \Gamma(\nu)\} - \{\Gamma(x'\theta - \nu) - \Gamma(-\nu)\}| + P|\{\Gamma(\nu) - \Gamma(1)\} - \{\Gamma(-\nu) - \Gamma(-1)\}| = \dot{\gamma}(1)\theta' P x x' \theta + o(\|\theta\|^2 + |\nu - 1|^2).
\]

(21)

To check Assumption M (iii) for \(\{f_{\theta, \nu} : \theta \in \mathbb{R}^d, \nu \in \mathbb{R}\}\), pick any \(\varepsilon > 0\) and decompose

\[
P \sup_{(\theta, \nu) : |(\theta, \nu) - (\theta', \nu')| < \varepsilon} |f_{\theta, \nu} - f_{(\theta', \nu')}|^2 \leq P \sup_{(\theta, \nu) : |(\theta, \nu) - (\theta', \nu')| < \varepsilon} |f_{\theta, \nu} - f_{(\theta', \nu')}|^2 + P \sup_{\theta : |\theta - \theta'| < \varepsilon} |f_{\theta, \nu} - f_{\theta', \nu'}|^2,
\]

for \((\theta', \nu')\) in a neighborhood of \((0, \ldots, 0, 1)\). By similar arguments to (21), these terms are of order \(|\nu - \nu'|^2\) and \(|\theta - \theta'|^2\), respectively, which are bounded by \(C\varepsilon\) with some \(C > 0\).

We now verify that \(\{f_{\theta, 1} : \theta \in \mathbb{R}^d\}\) satisfies Assumption M with \(h_n = 1\). By (b), \(P f_{\theta, 1}\) is uniquely maximized at \(\theta_0 = 0\). So Assumption M (i) is satisfied. Since Assumption M (iii) is already shown, it remains to verify Assumption M (ii). Some expansions (using symmetry of \(\gamma(\cdot)\)) yield

\[
\|f_{\theta_1, 1} - f_{\theta_2, 1}\|_2 = P|\Gamma(x'\theta_1 + 1) - \Gamma(x'\theta_2 + 1) + \Gamma(x'\theta_1 - 1) - \Gamma(x'\theta_2 - 1)| \geq (\theta_2 - \theta_1)' P \dot{\gamma}(-1) x x' (\theta_2 - \theta_1) + o(|\theta_2 - \theta_1|^2),
\]

i.e., Assumption M (ii) is satisfied under (b). Therefore, \(\{f_{\theta, 1} : \theta \in \mathbb{R}^d\}\) satisfies Assumption M.
We finally derive the finite dimensional convergence through Lemma 2. Let \(g_{n,t}(z_t) = n^{1/6}(\mathbb{I}\{|x'_t(\theta_0 + sn^{-1/3}) - u_t| \leq 1\} - \mathbb{I}\{|x'_t\theta_0 - u_t| \leq 1\}) \). Then for any \(c > 0 \),

\[
P\{|g_{n,s}(z_t)| > c\}
\leq P\{x'_t(\theta_0 + sn^{-1/3}) \leq u_t - 1 \leq x'_t\theta_0 + 1 \leq x'_t(\theta_0 + sn^{-1/3})\} + P\{x'_t\theta_0 \leq u_t - 1 \leq x'_t(\theta_0 + sn^{-1/3})\} + P\{x'_t\theta_0 \leq u_t + 1 \leq x'_t(\theta_0 + sn^{-1/3})\}
\]

However, each of these terms are bounded by \(O(n^{-1/3}E|x'_t|) \) due to the boundedness of the density of \(u_t \), the independence between \(x_t \) and \(u_t \), and the law of iterated expectations that \(P\{h(x_t, u_t) \in A\} = EP\{h(x_t, u_t) \in A|x_t\} \) for any \(h \) and \(A \). Thus, by Lemma 2, the central limit theorem in Lemma C applies.

It remains to characterize the covariance kernel \(H(s_1, s_2) \) for any \(s_1 \) and \(s_2 \). Define \(q_{n,t} = f_{\theta_0 + n^{-1/3}s_1}(x_t, u_t) - f_{\theta_0 + n^{-1/3}s_2}(x_t, u_t) \). Then, the standard algebra yields that

\[
H(s_1, s_2) = \frac{1}{2} \{L(s_1, 0) + L(0, s_2) - L(s_1, s_2)\},
\]

where \(L(s_1, s_2) = \lim_{n \to \infty} n^{1/3}\text{Var}(P_{n,q_{n,t}}) = \lim_{n \to \infty} n^{1/3}\sum_{m=1}^{\infty} \text{Cov}(\{q_{n,t}\}, q_{n,t+m}) \}. The limit of \(n^{1/3}\text{Var}(q_{n,t}) \) is given by \(2\gamma(1)P|x'(s_2 - s_1)| \) by direct algebra as in Kim and Pollard (1990, p. 213). For the covariance \(\text{Cov}(q_{n,t}, q_{n,t+m}) \), note that \(q_{n,t} \) can take only three values, \(-1, 0, \) or \(1 \). By the definition of \(\beta_m \), Assumption D implies

\[
|P\{q_{n,t} = j, q_{n,t+m} = k\} - P\{q_{n,t} = j\}P\{q_{n,t+m} = k\}| \leq n^{-2/3}\beta_m,
\]

for all \(n, m \geq 1 \) and \(j, k = -1, 0, 1 \), i.e., \(\{q_{n,t}\} \) is a \(\beta \)-mixing array whose mixing coefficients are bounded by \(n^{-2/3}\beta_m \). In turn, this implies that \(\{q_{n,t}\} \) is an \(\alpha \)-mixing array whose mixing coefficients are bounded by \(2n^{-2/3}\beta_m \). Thus, by applying the \(\alpha \)-mixing inequality, the covariance is bounded as

\[
\text{Cov}(q_{n,t}, q_{n,t+m}) \leq Cn^{-2/3}\beta_m \|q_{n,t}\|_p^2,
\]

for some \(C > 0 \) and \(p > 2 \). Note that proceeding as in the bound for (22) we can show that

\[
\|q_{n,t}\|_p^2 = O(n^{-2/3}) \). Combining these results, \(n^{1/3}\sum_{m=1}^{\infty} \text{Cov}(q_{n,t}, q_{n,t+m}) \to 0 \) as \(n \to \infty \).

Therefore, by Theorem 2, we conclude that \(n^{1/3}(\beta - \beta_0) \) converges in distribution to the argmax of \(Z(s) \), which is a Gaussian process with expected value \(\gamma(1)s'Pxx's \) and the covariance kernel \(H \), for which \(L(s_1, s_2) = 2\gamma(1)P|x'|s_1 - s_2|\).

B.3. Monotone density. Preliminary results (Lemmas M, M', C, and 1) to show Theorem 1 may be applied to establish weak convergence of certain processes. As an example, consider estimation of a decreasing marginal density function of \(z_t \) with support \([0, \infty)\). We impose Assumption D for \(\{z_t\} \). The nonparametric maximum likelihood estimator \(\hat{\gamma}(c) \) of the density \(\gamma(c) \) at a fixed \(c > 0 \) is given by the left derivative of the concave majorant of the empirical distribution function \(\hat{\Gamma} \). It is known that \(n^{1/3}(\hat{\gamma}(c) - \gamma(c)) \) can be written as the left derivative of the concave majorant of the process \(W_{n}(s) = n^{2/3}(\hat{\Gamma}(c + sn^{-1/3}) - \hat{\Gamma}(c) - \gamma(c)sn^{-1/3}) \) (Prakasa Rao, 1969). Let \(f_0(z) = \mathbb{I}\{z \leq c + \theta\} \)
and Γ be the distribution function of γ. Decompose

$$W_n(s) = n^{1/6} G_n (f_{sn^{-1/3}} - f_0) + n^{2/3} \{ \Gamma(c + sn^{-1/3}) - \Gamma(c) - \gamma(c)n^{-1/3} \}.$$

A Taylor expansion implies convergence of the second term to $\frac{1}{2} \gamma(c)s^2 < 0$. For the first term $Z_n(s) = n^{1/6} G_n (f_{sn^{-1/3}} - f_0)$, we can apply Lemmas C and M' to establish the weak convergence. Lemma C (setting g_n as any finite dimensional projection of the process $\{ n^{1/6}(f_{sn^{-1/3}} - f_0) : s \}$) implies finite dimensional convergence of Z_n to projections of a centered Gaussian process with the covariance kernel

$$H(s_1, s_2) = \lim_{n \to \infty} n^{1/3} \sum_{t=-n}^{n} \{ \Gamma_0(c + s_1 n^{-1/3}, c + s_2 n^{-1/3}) - \Gamma(c + s_1 n^{-1/3})\Gamma(c + s_2 n^{-1/3}) \},$$

where Γ_0 is the joint distribution function of (z_0, z_t). For tightness of Z_n, we apply Lemma M' by setting $g_{n,s} = n^{1/6}(f_{sn^{-1/3}} - f_0)$. The envelope condition is clearly satisfied. The condition in eq. (6) of the paper is verified as

$$P \sup_{s:|s-s'|<\varepsilon} |g_{n,s} - g_{n,s'}|^2 = n^{1/3} P \sup_{s:|s-s'|<\varepsilon} \left| \{ z \le c + sn^{-1/3} \} - \{ z \le c + s' n^{-1/3} \} \right|$$

$$\le n^{1/3} \max \{ \Gamma(c + sn^{-1/3}) - \Gamma(c + (s - \varepsilon)n^{-1/3}), \Gamma(c + (s + \varepsilon)n^{-1/3}) - \Gamma(c + sn^{-1/3}) \}$$

$$\le \gamma(0) \varepsilon.$$

Therefore, by applying Lemmas C and M', W_n weakly converges to Z, a Gaussian process with expected value $\frac{1}{2} \gamma(c)s^2$ and covariance kernel H.

The remaining part follows by the same argument to Kim and Pollard (1990, pp. 216-218) (by replacing their Lemma 4.1 with our Lemma 1). Then we can conclude that $n^{1/3}(\hat{\gamma}(c) - \gamma(c))$ converges in distribution to the derivative of the concave majorant of Z evaluated at 0.

References

Department of Economics, London School of Economics, Houghton Street, London, WC2A 2AE, UK.

E-mail address: m.seo@lse.ac.uk

Department of Economics, London School of Economics, Houghton Street, London, WC2A 2AE, UK.

E-mail address: t.otsu@lse.ac.uk