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STEPUP PROCEDURES FOR CONTROL OF GENERALIZATIONS
OF THE FAMILYWISE ERROR RATE

BY JOSEPH P. ROMANO AND AZEEM M. SHAIKH

Stanford University and Stanford University

Consider the multiple testing problem of testing null hypotheses
H1, . . . ,Hs . A classical approach to dealing with the multiplicity problem
is to restrict attention to procedures that control the familywise error rate
(FWER), the probability of even one false rejection. But if s is large, control
of the FWER is so stringent that the ability of a procedure that controls the
FWER to detect false null hypotheses is limited. It is therefore desirable to
consider other measures of error control. This article considers two general-
izations of the FWER. The first is the k-FWER, in which one is willing to
tolerate k or more false rejections for some fixed k ≥ 1. The second is based
on the false discovery proportion (FDP), defined to be the number of false
rejections divided by the total number of rejections (and defined to be 0 if
there are no rejections). Benjamini and Hochberg [J. Roy. Statist. Soc. Ser. B
57 (1995) 289–300] proposed control of the false discovery rate (FDR), by
which they meant that, for fixed α, E(FDP) ≤ α. Here, we consider control
of the FDP in the sense that, for fixed γ and α, P {FDP > γ } ≤ α. Beginning
with any nondecreasing sequence of constants and p-values for the individual
tests, we derive stepup procedures that control each of these two measures of
error control without imposing any assumptions on the dependence structure
of the p-values. We use our results to point out a few interesting connec-
tions with some closely related stepdown procedures. We then compare and
contrast two FDP-controlling procedures obtained using our results with the
stepup procedure for control of the FDR of Benjamini and Yekutieli [Ann.
Statist. 29 (2001) 1165–1188].

1. Introduction. In this article we consider the problem of simultaneously
testing hypotheses Hi (i = 1, . . . , s). We shall assume that tests based on p-values
p̂1, . . . , p̂s are available for the individual hypotheses and that the question of in-
terest is how to combine these p-values into a simultaneous testing procedure. In
other words, each p̂i is a marginal p-value in the sense that it could be used for
testing Hi ; p-values for testing individual hypotheses are reviewed in Section 3.3
of [11].

A classical approach to handling the multiplicity problem is to restrict atten-
tion to procedures that control the familywise error rate (FWER), defined to be the
probability of one or more false rejections. When evaluating a testing procedure,
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one must consider not only control of false rejections, but also the ability of the
procedure to detect departures from the null hypothesis when they do occur. When
the number of tests s is large, control of the FWER is so stringent that departures
from the null hypothesis have little chance of being detected. As a result, alterna-
tive measures of error control have been considered, which control false rejections
less severely, but in doing so are better able to detect false null hypotheses.

Hommel and Hoffman [8] and Lehmann and Romano [10] considered control
of the k-FWER, the probability of rejecting at least k true null hypotheses. Such
an error rate with k > 1 is appropriate when one is willing to tolerate one or more
false rejections, provided the number of false rejections is controlled. Evidently,
taking k = 1 reduces to the usual FWER. These authors derived both single step
and stepdown methods that guarantee that the k-FWER is bounded above by α.

Lehmann and Romano [10] also considered control of the false discovery pro-
portion (FDP), defined as the total number of false rejections divided by the to-
tal number of rejections (and equal to 0 if there are no rejections). Given a user
specified value γ ∈ [0,1], control of the FDP means we wish to ensure that
P {FDP > γ } is bounded above by α. Setting γ = 0 reduces to the usual FWER.
Lehmann and Romano [10] also provided stepdown procedures for control of the
FDP that hold under either mild or no assumptions on the joint distribution of
the p-values. Romano and Shaikh [13] improved upon these arguments to derive
a stepdown procedure for control of the FDP that is also valid under no restric-
tions on the dependence structure of the p-values, but considerably more powerful
than the method proposed in [10]. In this article, unlike either of these previous
works, we consider stepup procedures. We derive stepup procedures that control
the k-FWER and the FDP under no assumptions on the joint distribution of the
p-values.

A closely related type of error control that has received much attention since it
was first proposed in [1] is control of the false discovery rate (FDR), which de-
mands that E(FDP) is bounded above by α. This original paper imposed the very
strong assumption that the p-values were independent, but Benjamini and Yeku-
tieli [2] have since proposed a stepup method that is valid under no assumptions
on the joint distribution of the p-values. It is of interest to compare control of the
FDP with control of the FDR. Even though ensuring that the FDR is bounded does
not prohibit the FDP from varying, some obvious connections between methods
that control the FDP in the sense that

P {FDP > γ } ≤ α(1)

and methods the control its expected value, the FDR, can be made. Indeed, for any
random variable X on [0,1], we have

E(X) = E(X|X ≤ γ )P {X ≤ γ } + E(X|X > γ )P {X > γ }
≤ γP {X ≤ γ } + P {X > γ },
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which leads to
E(X) − γ

1 − γ
≤ P {X > γ } ≤ E(X)

γ
,(2)

with the last inequality just Markov’s inequality. Applying this to X = FDP, we
see that, if a method controls the FDR at level q , then it controls the FDP in
the sense P {FDP > γ } ≤ q/γ . Conversely, if the FDP is controlled in the sense
of (1), then the FDR is controlled at level γ (1 − α) + α. Therefore, in principle,
a method that controls the FDP in the sense of (1) can be used to control the FDR
and vice versa, as previously noted by van der Laan, Dudoit and Pollard [17]. We
will compare methods for control of the FDP with the method for control of the
FDR proposed by Benjamni and Yekutieli [2] in light of this observation. Note that
setting α = 1/2 restricts the median of the FDP to be no greater than γ .

A growing literature has proposed various procedures which control generalized
error rates. Genovese and Wasserman [4], for example, study asymptotic proce-
dures that control the FDP and the FDR in the framework of a random effects mix-
ture model. These ideas are extended in [4]. Korn, Troendle, McShane and Simon
[9] provide methods that control both the k-FWER and FDP; their results are lim-
ited to a multivariate permutation model. Their results are generalized in [14].
Alternative procedures for control of the k-FWER and FDP are given in [17].

The paper is organized as follows. In Section 2 we describe our terminology and
the class of stepup procedures. All of our methods assume that marginal p-values
are available for testing each of the individual hypotheses, in the sense described
in (3). Our methods are designed to hold under no dependence assumptions among
the p-values, but do not attempt to estimate the dependence structure (as in van
der Laan, Dudoit and Pollard [17] or Romano and Wolf [14]). Hence, our main
results are exact and nonasymptotic; however, if the individual p-values are only
approximate (as they typically are when using asymptotic approximations or re-
sampling methods), the error control will hold approximately; see Remark 4.2.
Control of the k-FWER and FDP are considered, respectively, in Sections 3 and 4.
Our calculations in these two sections shed some light on the relationship between
stepup and stepdown procedures as well. In Section 5 we use the relationship (2)
to compare methods for controlling the FDP with the method of Benjamini and
Yekutieli [2] for controlling the FDR. Section 6 illustrates the method with two
examples. Section 7 concludes.

2. A class of stepup procedures. A formal description of our setup is as fol-
lows. Suppose data X is available from some model P ∈ �. A general hypothesis
H can be viewed as a subset ω of �. For testing Hi :P ∈ ωi , i = 1, . . . , s, let I (P )

denote the set of true null hypotheses when P is the true probability distribution;
that is, i ∈ I (P ) if and only if P ∈ ωi .

We assume that p-values p̂1, . . . , p̂s are available for testing H1, . . . ,Hs .
Specifically, we mean that p̂i must satisfy

P {p̂i ≤ u} ≤ u for any u ∈ (0,1) and any P ∈ ωi.(3)
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Note that we do not require p̂i to be uniformly distributed on (0,1) if Hi is true, in
order to accomodate discrete situations. In deriving our results, we assume that (3)
holds exactly, but we show in Remark 4.2 below that all of our results also extend
to the case in which the p-values only satisfy (3) approximately.

In general, a p-value p̂i will satisfy (3) if it is obtained from a nested set of
rejection regions. In other words, suppose Si(α) is a rejection region for testing Hi ;
that is,

P {X ∈ Si(α)} ≤ α for all 0 < α < 1,P ∈ ωi(4)

and Si(α) ⊂ Si(α
′) whenever α < α′. Then, the p-value p̂i defined by p̂i =

p̂i(X) = inf{α :X ∈ Si(α)} satisfies (3). Such a construction applies to many para-
metric procedures and also some nonparametric procedures, such as those based
on permutation or randomization tests; see (15.5) in [11].

In this article we consider the following class of stepup procedures. Let

α1 ≤ α2 ≤ · · · ≤ αs(5)

be a nondecreasing sequence of constants. Order the p-values as

p̂(1) ≤ p̂(2) ≤ · · · ≤ p̂(s),

and let H(1), . . . ,H(s) denote the corresponding null hypotheses. If p̂(s) ≤ αs , then
reject all null hypotheses; otherwise, reject hypotheses H(1), . . . ,H(r), where r is
the smallest index satisfying

p̂(s) > αs, . . . , p̂(r+1) > αr+1.(6)

If, for all r , p̂(r) > αr , then reject no hypotheses. That is, a stepup procedure begins
with the least significant p-value and continues accepting hypotheses as long as
their corresponding p-values are large.

We will compare these stepup procedures considered with certain stepdown pro-
cedures. Given constants of the form (5), a stepdown procedure determines which
null hypotheses to reject as follows. If p̂(1) > α1, then reject no null hypotheses;
otherwise, reject hypotheses H(1), . . . ,H(r), where r is the largest index satisfying

p̂(1) ≤ α1, . . . , p̂(r) ≤ αr.(7)

That is, a stepdown procedure begins with the most significant p-value and con-
tinues rejecting hypotheses as long as their corresponding p-values are small.

REMARK 2.1. Consider a stepup and a stepdown procedure based on the same
set of critical values (5). The stepup procedure will always reject at least as many
hypotheses as the stepdown procedure. If both methods satisfy the given measure
of error control, then the stepup procedure is more powerful than the corresponding
stepdown procedure based on the same critical values in the sense that the stepup
procedure will have a greater chance of detecting false null hypotheses.
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3. Control of the k-FWER. In this section we consider control of the
k-FWER, defined formally as

P {reject ≥ k hypotheses Hi with i ∈ I (P )}.(8)

Control of the k-FWER at level α requires that k-FWER ≤ α for all P . We first
establish a result that will aid in constructing stepup methods that control the
k-FWER.

LEMMA 3.1. Consider testing s null hypotheses, with |I | of them true. Let

q̂(1) ≤ · · · ≤ q̂(|I |)
denote the ordered values of the p-values corresponding to true hypotheses. Then,
the stepup procedure based on constants α1 ≤ · · · ≤ αs satisfies

k − FWER ≤ P

{ ⋃
k≤j≤|I |

{
q̂(j) ≤ αs−|I |+j

}}
.(9)

PROOF. Assume that |I | ≥ k, for otherwise there is nothing to prove. Let
p̂(1) ≤ · · · ≤ p̂(s) denote the ordered values of the p-values. For 1 ≤ j ≤ s, let
Aj denote the event in which exactly j hypotheses are rejected by the stepup pro-
cedure; that is,

Aj = {
p̂(s) > αs, . . . , p̂(j+1) > αj , p̂(j) ≤ αj

}
.

Denote by T the event in which at least k true hypotheses are rejected. Consider the
event As ∩ T . Note that As ∩ T ⊆ {p̂(s) ≤ αs} ∩ T ⊆ {q̂(|I |) ≤ αs}. Likewise, note
that As−1 ∩T ⊆ {q̂(|I |−1) ≤ αs−1} if |I |−1 > k and ⊆ {q̂(k) ≤ αs−1} if |I |−1 ≤ k.
In general, we have that

Aj ∩ T ⊆
{{

q̂(j+|I |−s) ≤ αj

}
, if j > s − |I | + k,{

q̂(k) ≤ αj

}
, if j ≤ s − |I | + k.

Thus, the k-FWER is bounded above by the probability of the event

⋃
k≤j≤s

Aj ∩ T ⊆
{ ⋃

k≤j≤s−|I |+k

{
q̂(k) ≤ αj

}} ∪
{ ⋃

s−|I |+k<j≤s

{
q̂(j+|I |−s) ≤ αj

}}

⊆ ⋃
s−|I |+k≤j≤s

{
q̂(j+|I |−s) ≤ αj

} ⊆ ⋃
k≤j≤|I |

{
q̂(j) ≤ αs−|I |+j

}
,

where the second inclusion follows from the fact that {q̂(k) ≤ αj } ⊆ {q̂(k) ≤
αs−|I |+k} for j ≤ s − |I | + k. The asserted claim now follows. �

Given a sequence of constants α1 ≤ · · · ≤ αs , we will now use Lemma 3.1 to
construct a stepup procedure that controls the k-FWER. To this end, define

S1 = S1(k, s, |I |) = |I |αs−|I |+k

k
+ |I | ∑

k<j≤|I |

αs−|I |+j − αs−|I |+j−1

j
(10)
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and let

D1 = D1(k, s) = max
k≤|I |≤s

S1(k, s, |I |).(11)

THEOREM 3.1. Let α1 ≤ · · · ≤ αs be given. For testing Hi :P ∈ ωi , i =
1, . . . , s, suppose p̂i satisfies (3). Consider the stepup procedure with critical val-
ues α′

i = ααi/D1(k, s), where D1(k, s) is defined by (11):

(i) Then, k-FWER ≤ α.
(ii) Moreover, for any stepup procedure with critical values of the form α̃i =

ααi/D
′ for some constant D′ that satisfies k-FWER ≤ α, we have for each i that

α′
i ≥ α̃i .

Before proceeding with the proof of Theorem 3.1, we recall the following
lemma from [10], which generalizes an earlier result from [7].

LEMMA 3.2. Suppose p̂1, . . . , p̂t are p-values in the sense that P {p̂i ≤ u} ≤ u

for all i and u in (0,1). Let their ordered values be p̂(1) ≤ · · · ≤ p̂(t). For some
m ≤ t , let

0 = β0 ≤ β1 ≤ β2 ≤ · · · ≤ βm ≤ 1.

(i) Then,

P
{{

p̂(1) ≤ β1
} ∪ {

p̂(2) ≤ β2
} ∪ · · · ∪ {

p̂(m) ≤ βm

}}
(12)

≤ t

m∑
i=1

(βi − βi−1)/i.

(ii) As long as the right-hand side of (12) is ≤ 1, the bound is sharp in the sense
that there exists a joint distribution for the p-values for which the inequality is an
equality.

PROOF OF THEOREM 3.1. (i) Combining Lemmas 3.1 and 3.2, we have that

k − FWER ≤ P

{ ⋃
k≤j≤|I |

{
q̂(j) ≤ α′

s−|I |+j

}}

≤ |I |α
′
s−|I |+k

k
+ |I | ∑

k<j≤|I |

α′
s−|I |+j − α′

s−|I |+j−1

j

= α

D1(k, s)
S1(k, s, |I |) ≤ α.
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(ii) Consider the following joint distribution of p-values. Denote by |I |∗ the
value of |I | maximizing S1(k, s, |I |). Let the p-values of the s − |I |∗ false hy-
potheses be identically equal to 0 (or just < α′

1) and let the p-values of the |I |∗
true hypotheses be constructed according to part (ii) of Lemma 3.2 so that

P

{ ⋃
k≤j≤|I |∗

{
q̂(j) ≤ α̃s−|I |∗+j

}} = α

D′ S1(k, s, |I |∗) = D1

D′ α,

where the second equality uses the fact that α̃i = ααi/D
′. For such a joint dis-

tribution of p-values, the event of rejecting ≥ k true hypotheses is equivalent to
rejecting ≥ s − |I |∗ + k hypotheses in total. So,

k − FWER = P

{ ⋃
k≤j≤|I |∗

{
q̂(j) ≤ α̃s−|I |∗+j

}} = D1

D′ α.

Thus, to ensure control of the k-FWER, it must be the case that D1 ≤ D′. It follows
that, for each i, α′

i ≥ α̃i . �

Theorem 3.1(ii) shows that it is not possible to increase all of the critical values
by any amount without violating control of the k-FWER. In this sense, part (ii) of
the theorem represents a sort of weak optimality result.

Hommel and Hoffman [8] and Lehmann and Romano [10] propose using con-
stants proportional to

αi =




k

s
, if i ≤ k,

k

s + k − i
, if i > k,

(13)

as part of a stepdown procedure to control the k-FWER and showed that such a
procedure using critical values ααi controlled the k-FWER at level α under no
assumptions on the joint distribution of the p-values. We can apply Theorem 3.1
to this choice of αi to construct a stepup procedure that also controls the k-FWER
under no restrictions on the joint distribution of the p-values. Table 1 displays
for several different values of k and s the normalizing constant D1(k, s) of Theo-
rem 3.1. Table 1 shows that the constants must be approximately halved to ensure
control of the k-FWER. For example, in the case s = 1000 and k = 3, the optimiz-
ing value of |I | is 39, yielding D1(3,1000) = 2.1707.

For control of the FWER, Hochberg [5] proposed using the stepup procedure
with critical values given by (13) with k = 1. These same constants were used by
Holm [6] to control the FWER, but as part of a stepdown procedure. Hochberg
argued that his procedure controls the FWER assuming that the p-values are in-
dependent. Sarkar and Chang [16] have shown that Hochberg’s procedure also
controls the FWER for certain forms of positively dependent p-values. So, it fol-
lows from Remark 2.1 that under such assumptions on the joint distribution of
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TABLE 1
Values of D1(k, s) for k-FWER control with αi given by (13) and (19)

k = 1 k = 2 k = 3

s (13) (19) (13) (19) (13) (19)

10 2.11 3.92 2.03 2.57 1.90 2.10
25 2.13 7.99 2.16 4.72 2.15 3.60
50 2.13 14.52 2.16 8.10 2.17 5.91

100 2.13 27.32 2.16 14.63 2.17 10.33
250 2.13 65.25 2.16 33.77 2.17 23.22
500 2.13 128.08 2.16 65.34 2.17 44.36

1000 2.13 253.41 2.16 128.17 2.17 86.35
2000 2.13 503.75 2.16 253.51 2.17 170.01
5000 2.13 1254.20 2.16 628.96 2.17 420.46

the p-values Hochberg’s procedure is more powerful than the one proposed by
Holm. Holm’s procedure, however, controls the FWER under no assumptions on
the joint distribution of the p-values, whereas our results show that this is not true
of Hochberg’s procedure. However, we show that by dividing the constants by
D1(1, s), control of the FWER is restored.

REMARK 3.1. The notion of control that we consider demands that
k-FWER ≤ α for all P . This is sometimes referred to as strong control of k-FWER
in order to distinguish it from a weaker (and not particularly useful for multiple
testing) notion of control known as weak control of the k-FWER, where it is only
required that the k-FWER ≤ α for all P satisfying |I | = |I (P )| = s, that is, when
all hypotheses are true. The distinction between weak and strong control general-
izes in an obvious way to measures of error control other than the k-FWER. It is
interesting to note that to guarantee even weak control of the k-FWER, the con-
stants ααi , where αi is defined by (13), must be approximately halved (at least for
large s). To see this, first note that when |I | = s, the k-FWER is equivalent to the
probability of rejecting ≥ k hypotheses altogether; that is,

P

{ ⋃
k≤j≤s

{
p̂(j) ≤ ααj

}}
.(14)

Using Lemma 3.2, we know there exists a joint distribution of the p-values for
which (14) is equal to

α

(
1 + s

∑
k<j≤s

αj − αj−1

j

)

= α

(
1 + k

∑
k≤i<s

s

(s + k − i)i(i + 1)

)
(15)
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= α

(
1 + k

∑
k≤i<s

1

i(i + 1)
+ k

∑
k≤i<s

i − k

(s + k − i)i(i + 1)

)

= α

(
2 − k

s
+ k

∑
k≤i<s

i − k

(s + k − i)i(i + 1)

)
.

But, it is easy to see that, as s → ∞, we have that (15) → 2α. It follows that,
at least for large values of s, the constants ααi must be approximately halved to
ensure weak control of the k-FWER. In fact, the expression (15) is strictly larger
than the limiting value 2α, and so the constants must be divided by something
slightly greater than two. In order to guarantee strong control, the constants must
be divided by something that is only slightly larger than two. In the case k = 1,
this value is 2.1314.

REMARK 3.2. More generally, suppose |I | is not neccesarily = s and denote
the ordered values of the true p-values by q̂(1) ≤ · · · ≤ q̂(|I |). Then, following the
argument given in the proof of Theorem 3.1(ii), we have that

k − FWER = P

{ ⋃
k≤j≤|I |

{
q̂(j) ≤ ααs−|I |+j

}}
.(16)

Again, Lemma 3.2 asserts that there exists a joint distribution of true p-values for
which (16) is equal to

α

(
1 + |I | ∑

k<j≤|I |

αs−|I |+j − αs−|I |+j−1

j

)
.(17)

Note that

αs−|I |+j = k

|I | + k − j
,

so we may use the analysis of Remark 3.1 with the role of s replaced by |I | to
conclude that (17) is equal to

α

(
2 − k

|I |
)

+ O

(
k

log |I |
|I |

)
.(18)

If |I | is large, then it is sufficient to halve the constants ααi to control the k-FWER
approximately. The expression (18) implies further that if we index both k and
|I | by the number of hypotheses s and allow s → ∞, then the stepup procedure
with critical values ααi/2 provides strong control of the k-FWER, provided that
k

log |I |
|I | → 0. Division by two can be thought of as the price to pay for using a

stepup versus stepdown procedure (based on the same set of critical values). It is
perhaps surprising that the value of 2 is independent of the choice of k.
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Finner and Roters [3] compared stepup and stepdown procedures for control
of the FWER assuming that the p-values were exchangeable. Under the setup of
their paper, their results suggest that stepup procedures are more powerful than
stepdown procedures because one can use very nearly the same critical values for
both procedures to control the FWER. However, in our comparisons, we assume
nothing about the joint distribution of p-values and find that in such a setting the
stepup procedure requires smaller critical values (by roughly a half ) to provide
control of the FWER, and more generally of the k-FWER.

We may also apply Theorem 3.1 to the sequence of constants given by

αi = i

s
.(19)

The normalizing constant D1(k, s) for this choice of αi is also displayed in Table 1.
In light of part (ii) of Theorem 3.1, we should not expect either of the sequences
of critical values generated by applying Theorem 3.1 to (13) and (19) to be uni-
formly larger (and thus unambiguously more powerful) than the other. In order to
illustrate this fact, we plot the two sequences of constants for the case in which
k = 2, s = 100 and α = 0.05. Panel (a) of Figure 1 displays the constants based
on (13), whereas panel (b) displays the constants based on (19). Panel (c) depicts
the ratio of the constants in panel (a) with the constants in panel (b). The dashed
horizontal line in panel (c) is of height 1, allowing us to see graphically when the
constants from panel (a) are greater than the constants from panel (b) and vice
versa. We find that, for high and low values of i, the constants based on (13) are
larger than the constants based on (19). For intermediate values of i, where the con-
stants based on (13) are smaller than the constants based on (19), the differences
between the constants are quite small in absolute terms, whereas, for other values
of i, the differences between the constants are fairly substantial. This suggests that
the procedure based on (13) may be preferable to the one based on (19).

4. Control of the FDP. The number k of false rejections that one is will-
ing to tolerate will often increase with the number of hypotheses rejected. This
leads to consideration of not the number of false rejections (sometimes called false
discoveries), but rather the proportion of false discoveries. Formally, let the false
discovery proportion (FDP) be defined by

FDP =



Number of false rejections

Total number of rejections
, if the denominator is > 0,

0, if there are no rejections.
(20)

FDP is therefore the proportion of rejected hypotheses that are rejected erro-
neously. When none of the hypotheses are rejected, both numerator and denom-
inator of that proportion are 0; since, in particular, there are no false rejections, the
FDP is then defined to be 0. We now establish a general result that will aid us in
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FIG. 1. Stepup constants for k-FWER control with k = 2, s = 100 and α = 0.05.

constructing stepup procedures that control the FDP in the sense of (1). In what
follows, we will sometimes use m(j) as shorthand for �γj + 1, where �x is the
greatest integer ≤ x, and the notation x ∨ y in place of max{x, y}.

LEMMA 4.1. Consider testing s null hypotheses, with |I | of them true. Let
q̂(1) ≤ · · · ≤ q̂(|I |) denote the ordered p-values corresponding to true hypotheses.
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Then, the stepup procedure based on constants α1 ≤ · · · ≤ αs satisfies

P {FDP > γ }
(21)

≤ P

{ ⋃
|I |−s+1≤k≤|I |,|I |≥m(s−|I |+k)

{
q̂(k∨m(s−|I |+k)) ≤ αs−|I |+k

}}
.

PROOF. Let Aj be the event in which exactly j hypotheses are rejected by the
stepup procedure; that is,

Aj = {
p̂(s) > αs, . . . , p̂(j+1) > αj , p̂(j) ≤ αj

}
.

Let Tj be the event in which at least m(j) true hypotheses are rejected. Then,

As ∩ Ts ⊆ {
p̂(s) ≤ αs

} ∩ Ts

{⊆ {q̂(|I |) ≤ αs}, if |I | ≥ m(s),

= ∅, otherwise.

Likewise, for the event As−1 ∩ Ts−1, we have that

As−1 ∩ Ts−1 ⊆ {
p̂(s−1) ≤ αs−1

} ∩ Ts−1


⊆ {
q̂(|I |−1) ≤ αs−1

}
, if |I | − 1 ≥ m(s − 1),

⊆ {
q̂(|I |) ≤ αs−1

}
, if |I | = m(s − 1),

= ∅, otherwise.

It follows that

As−1 ∩ Ts−1 ⊆ {
p̂(s−1) ≤ αs−1

} ∩ Ts−1{⊆ {
q̂((|I |−1)∨m(s−1)) ≤ αs−1

}
, if |I | ≥ m(s − 1),

= ∅, otherwise.

Following a similar line of reasoning, we have in general that

As−j ∩ Ts−j ⊆ {
p̂(s−j) ≤ αs−j

} ∩ Ts−j{⊆ {
q̂((|I |−j)∨m(s−j)) ≤ αs−j

}
, if |I | ≥ m(s − j),

= ∅, otherwise.

Thus,

{FDP > γ } ⊆ ⋃
0≤j≤s−1,|I |≥m(s−j)

{
q̂((|I |−j)∨m(s−j)) ≤ αs−j

}

= ⋃
|I |−s+1≤k≤|I |,|I |≥m(s−|I |+k)

{
q̂(k∨m(s−|I |+k)) ≤ αs−|I |+k

}
,

from which the asserted claim follows. �
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Given a sequence of constants α1 ≤ · · · ≤ αs , we will now use Lemma 4.1 to
construct a stepup procedure that satisfies (1). To this end, define

S2 = S2(γ, s, |I |)
(22)

= |I |α1 + |I | ∑
|I |−s+1<k≤|I |,|I |≥m(s−|I |+k)

αs−|I |+k − αs−|I |+k−1

k ∨ m(s − |I | + k)

and let

D2 = D2(γ, s) = max
1≤|I |≤s

S2(γ, s, |I |).(23)

THEOREM 4.1. Let α1 ≤ · · · ≤ αs be given. For testing Hi :P ∈ ωi , i =
1, . . . , s, suppose p̂i satisfies (3). Consider the stepup procedure with critical val-
ues α′′

i = ααi/D2(γ, s), where D2(γ, s) is defined by (23).

(i) Then, P {FDP > γ } ≤ α; that is, (1) is satisfied.
(ii) Moreover, for any stepup procedure with critical values of the form α̃i =

ααi/D
′ for some constant D′ that satisfies (1), we have for each i that α′′

i ≥ α̃i .

PROOF. (i) Combining Lemmas 4.1 and 3.2, we have that

P {FDP > γ } ≤ P

{ ⋃
|I |−s+1≤k≤|I |,|I |≥m(s−|I |+k)

{
q̂(k∨m(s−|I |+k)) ≤ α′′

s−|I |+k

}}

≤ |I |α′′
1 + |I | ∑

|I |−s+1<k≤|I |,|I |≥m(s−|I |+k)

α′′
s−|I |+k − α′′

s−|I |+k−1

k ∨ m(s − |I | + k)

= α

D2(γ, s)
S2(γ, s, |I |) ≤ α.

(ii) Consider the following joint distribution of p-values. Denote by |I |∗ the
value of |I | maximizing S2(γ, s, |I |). Let the distribution of the p-values cor-
responding to the |I |∗ true hypotheses be constructed according to part (ii) of
Lemma 3.2 so that

P

{ ⋃
|I |∗−s+1≤k≤|I |∗,|I |∗≥m(s−|I |∗+k)

{
q̂(k∨m(s−|I |∗+k)) ≤ α̃s−|I |∗+k

}}

= α

D′ S2(k, s, |I |∗) = D2

D′ α,

where the second equality uses the fact that α̃i = ααi/D
′. We will now construct

the joint distribution of the p-values corresponding to the s −|I |∗ false hypotheses
conditional on the values of the true p-values so that FDP > γ whenever (21)
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occurs. For the time being, suppose that |I |∗ is such that |I |∗ ≥ m(s). Thus, (21)
can be written more simply as

P {FDP > γ } ≤ P

{ ⋃
|I |∗−s+1≤k≤|I |∗

{
q̂(k∨m(s−|I |∗+k)) ≤ α′′

s−|I |∗+k

}}
.

Define k∗ to be the smallest index k > 0 such that k ≥ m(s − |I |∗ + k). Consider
the event⋃

|I |∗≥k≥k∗

{
q̂(k∨m(s−|I |∗+k)) ≤ αs−|I |∗+k

} = ⋃
|I |∗≥k≥k∗

{
q̂(k) ≤ αs−|I |∗+k

}
.(24)

Whenever the event (24) occurs, let all false p-values be identically equal to 0.
By assumption, k ≥ m(s − |I |∗ + k) and k > 0, so note that whenever this event
occurs, we have that FDP > γ .

Now suppose that the event (24) does not occur. Note that this rules out the
possibility of any event of the form{

q̂(k∨m(s−|I |∗+k)) ≤ αs−|I |∗+k

}
for k < k∗ and k ∨m(s − |I |∗ + k) = k∗. So, let k∗∗ be the largest k < k∗ such that
k ∨ m(s − |I |∗ + k) = k∗ − 1 and consider the event{

q̂(k∗−1) ≤ αs−|I |∗+k∗∗
}
.(25)

Whenever the event (25) occurs but (24) does not, let s − |I |∗ + k∗∗ − k∗ + 1 of
the false p-values be identically equal to 0 and let the remaining k∗ − k∗∗ − 1
false p-values fall between αs−|I |∗+k∗∗ and αs−|I |∗+k∗ . Again, by construction,
whenever (24) does not occur but (25) does occur, we have FDP > γ .

We may continue arguing along these lines by replacing the role of k∗ with k∗∗
to construct a joint distribution of false p-values conditional on the true p-values
such that, whenever (21) occurs, we have that FDP > γ . But we have assumed so
far that |I |∗ ≥ m(s). To generalize the argument to the case in which |I |∗ < m(s),
note that the event (21) is always of the form⋃

1≤k≤|I |∗
{
q̂(k) ≤ αl(k)

}

for some strictly increasing sequence of positive integers l(1) < · · · < l(|I |∗).
Thus, the smallest l(|I |∗) can be is |I |∗. Let (s − |I |∗) − (s − l(|I |∗)) = l(|I |∗) −
|I |∗ ≥ 0 of the false p-values be identically equal to 1. Since these hypotheses
will always be accepted by the stepup procedure, we can restrict attention to the
situation in which there are s − l(|I |∗) + |I |∗ hypotheses altogether, s − l(|I |∗) of
which are false. But for this situation, our assumption on the number of true hy-
potheses holds, so we may use the construction above to determine the distribution
of remaining false p-values.
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So, for such a joint distribution of p-values, we have that

P {FDP > γ } = P

{ ⋃
|I |∗−s+1≤k≤|I |∗,|I |∗≥m(s−|I |∗+k)

{
q̂(k∨m(s−|I |∗+k)) ≤ α̃s−|I |∗+k

}}

= D2

D′ α.

Thus, to ensure control the FDP, it must be the case that D2 ≤ D′. It follows that,
for each i, α′′

i ≥ α̃i . �

Lehmann and Romano [10] develop a stepdown procedure that controls the
FDP in the sense of (1) by reasoning as follows. Denote by F the number of
false rejections. At step i, having rejected i − 1 hypotheses, we want to guarantee
F/i ≤ γ , that is, F ≤ �γ i. So, if k = �γ i + 1, then F ≥ k should have proba-
bility no greater than α; that is, we must control the number of false rejections to
be ≤ k. This leads them to consider using the stepdown constants (13) for control
of the k-FWER with this particular choice of k (which now depends on i). That is,

αi = �γ i + 1

s + �γ i + 1 − i
.(26)

Lehmann and Romano [10] provide two results that show that the stepdown pro-
cedure with critical values ααi with this choice of αi satisfies (1). Unfortunately,
some assumption on joint dependence structure of the p-values is required. How-
ever, they show that if one considers a stepdown procedure with critical values
ααi/C�γ s+1, where

Cj =
j∑

i=1

1

i
,

then the FDP is controlled in the sense of (1) without any assumptions on the
dependence structure of the p-values.

Romano and Shaikh [13] show that this procedure is more conservative than
necessary to control the FDP. Specifically, they show that the stepdown procedure
with critical values obtained by replacing C�γ s+1 with a smaller quantity D3(γ, s)

also provides control of the FDP without any assumptions on the joint distribution
of the p-values. This change leads to a considerable improvement, resulting in
critical values typically 50 percent larger.

We can apply Theorem 4.1 to αi defined by (26) to construct a stepup proce-
dure that controls the FDP in the sense of (1). The normalizing constant D2(γ, s)

is computed for several different values of γ and s in Table 2. The column la-
beled “D2, (26)” refers to the value of D2 when the constants (26) are used. For
the purposes of comparison, we also display D3(γ, s). For large values of s, the
normalizing constant D2(γ, s) is strictly smaller than C�γ s+1, but it is always
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TABLE 2
Stepup constants for FDP control with αi given by (26) and (19)

γ = 0.05 γ = 0.1

s D2, (26) D2, (19) D3, (26) D2, (26) D2, (19) D3, (26)

10 2.11 3.91 1.00 2.11 3.91 1.00
25 2.40 7.99 1.43 2.68 7.78 1.50
50 2.70 14.12 1.50 2.99 10.96 1.75

100 2.96 20.32 1.73 3.37 15.09 2.04
250 3.41 31.04 2.12 3.93 21.21 2.52
500 3.80 40.33 2.50 4.39 26.33 2.95

1000 4.24 50.40 2.92 4.89 31.75 3.42
2000 4.72 61.05 3.38 5.41 37.37 3.92
5000 5.39 75.80 4.044 6.14 45.06 4.62

larger than D3(γ, s). Thus, it follows from Remark 2.1, that, for large values of s,
the stepup procedure is more powerful than the stepdown procedure proposed by
Lehmann and Romano [11], whereas a clear ranking of the procedure relative to
the stepdown procedure proposed by Romano and Shaikh [13] is not possible.

As before with the k-FWER, we may also apply Theorem 4.1 to the sequence
of constants defined by (19). The normalizing constant D2(γ, s) for this choice of
αi is also displayed in Table 2. Again, the optimality result stated in part (ii) of
Theorem 4.1 suggests that we should not expect either of the sequences of critical
values generated by applying Theorem 4.1 to (26) and (19) to be uniformly larger
(and thus unambiguously more powerful) than the other. We plot the two sequences
of constants for the special case in which γ = 0.1, s = 100 and α = 0.05. Panel
(a) of Figure 2 displays the constants based on (26), whereas panel (b) displays the
constants based on (19). Panel (c) depicts the ratio of the constants in panel (a) with
the constants in panel (b). The dashed horizontal line in panel (c) is of height 1,
allowing us to see graphically when the constants from panel (a) are greater than
the constants from panel (b) and vice versa. We find that, for high and low values
of i, the constants based on (26) are larger than the constants based on (19). But, as
with the comparison of the k-FWER controlling procedures, we find that the dif-
ferences are comparatively small when the ones based on (26) are smaller than the
constants based on (19) and fairly large otherwise. Thus, we believe the procedure
based on (26) is likely to be preferred to the one based on (19).

REMARK 4.1. Benjamini and Yekutieli [2] propose using the constants
ααi/Cs for αi given in (19) as part of a stepup procedure to control the FDR
and show that such a procedure controls the FDR for all possible distributions of
p-values. Since FDR = FWER when |I | = s, we have that these critical values
also control the FWER when |I | = s. But, the results in Table 1 show that these
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FIG. 2. Stepup constants for FDP control with γ = 0.1, s = 100 and α = 0.05.

constants do not control the FWER in general since D1(1, s) > Cs for this choice
of αi . More surprising, however, is that this observation continues to be true even
if one assumes that the p-values are independent. To see this, consider the case
in which s is even and |I | = s/2 + 1. Suppose that all of the false p-values are
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identically equal to 0, and the true p-values, whose ordered values are denoted
q̂(1) ≤ · · · ≤ q̂(|I |), are each ∼ U(0,1). Thus,

FWER = P

{ ⋃
1≤j≤s/2+1

{
q̂(j) ≤ α

Cs

αs/2−1+j

}}

≥ P

{
q̂(1) ≤ α

Cs

αs/2

}
= 1 −

(
1 − α

2Cs

)s/2+1

→ 1.

Thus, the stepup procedure with critical values ααi/Cs does not control the FWER,
even under independence.

REMARK 4.2. In many situations the true individual p-values do not sat-
isfy (3) exactly. However, suppose the p-values p̂

(n)
i are now indexed by n (typi-

cally the sample size), and assume

lim
n→∞P

{
p̂

(n)
i ≤ u

} ≤ u for any u,P ∈ ωi.(27)

For example, if the p-values are determined by an asymptotic method such as
the bootstrap, then it is typically the case that p̂

(n)
i converges in distribution to

the uniform distribution on (0,1) if Hi is true. If we use a stepup procedure that
controls the FDP for nominal values of α and γ whenever p-values satisfy (3)
exactly, then we can claim limiting control if we use a stepup procedure based on
p-values which only satisfy (27). Specifically, we claim that asymptotic control
holds; that is,

lim sup
n→∞

P
{
FDP

(
p̂(n)) > γ

} ≤ α,(28)

where the event {FDP(p̂(n)) > γ } that the FDP is not controlled now shows the
dependence on n in that we are applying the procedure to the approximate vec-
tor of p-values p̂(n) = (p̂

(n)
1 , . . . , p̂

(n)
s ). To see why, let q̂(n) = (q̂

(n)
1 , . . . , q̂

(n)
|I | )

denote the p-values corresponding to the true hypotheses, with ordered values
q̂

(n)
(1) ≤ · · · ≤ q

(n)
(|I |). Then, by Lemma 4.1,

P
{
FDP

(
p̂(n)) > γ

} ≤ P

{⋃
k

q̂
(n)
(k) ≤ βk

}

for some nondecreasing βk . We can write the right-hand side as P {q̂(n) ∈ C},
where C is a closed set. (Note that the event that the FDP is not controlled, viewed
as a set in s-dimensional space, is not a closed set; there is no contradiction since
the set C corresponds to a larger set where the FDP is not controlled.) But, q(n) is a
tight sequence in |I |-dimensional Euclidean space (since it is supported on a fixed
compact set, the |I |-fold product of [0,1]). So, taking any subsequence {nj }, there
exists a further subsequence {njl

} along which q̂(n) converges in distribution to
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a random vector q̂ = (q̂1, . . . , q̂|I |) (which could depend on the subsubsequence).
Moreover, the assumption (27) implies (3) holds for each q̂i . Let the ordered values
of q̂ be denoted q̂(1) ≤ · · · ≤ q̂(|I |). By the Portmanteau theorem, it follows that

lim sup
njl

→∞
P

{
q̂(njl

) ∈ C
} ≤ P {q ∈ C} = P

{⋃
k

q̂(k) ≤ βk

}
.

But, the right-hand side here is bounded above by α, by Theorem 4.1. Since the
bound α holds along any subsequence, the result is proved. A similar remark holds
for control of the k-FWER when using p-values that only satisfy (27) instead
of (3).

5. Comparisons of FDP and FDR control. In the previous section we have
put forward two stepup procedures [one based on (26) and another based on (19)]
that control the FDP in the sense of (1) under no assumptions on the dependence
structure of the p-values. In this section we will use the crude inequalities given
in (2) to compare these two FDP-controlling procedures with the FDR-controlling
stepup procedure of Benjamini and Yekutieli [2].

From the second inequality in (2), control of the FDR at level γα implies control
of the FDP in the sense of (1). Since the Benjamini and Yekutieli stepup procedure
with constants αi/(sCs) controls the FDR at level α, the constants given by

α′
i = γαi

sCs

(29)

control the FDP under no assumptions on the joint distribution of the p-values.
We will first compare these critical values with the critical values of the form
ααi/D2(γ, s) derived by applying Theorem 4.1 to αi defined by (26). Note that
the ratio of the critical values ααi/D2(γ, s) to α′

i is only a function of γ and s.
Table 3 displays for several different values of γ and s the minimum and maximum
values of this ratio. For all values of γ and s in the table, the minimum value of the
ratio > 1. In fact, the value of ααi/D2(γ, s) is often at least twice as large as the
corresponding value of α′

i . The procedure based on the constants (26) is therefore
unambiguously more powerful than the procedure based on the constants (29). By
examining the maximum value of the ratio, we see that the value of ααi/D2(γ, s)

may be more than 15 times as large as the corresponding value of α′
i .

We may replace the critical values based on (26) with those based on (19) and
perform the same comparison. In this case, the ratio of ααi/D2(γ, s) to α′

i is sim-
ply Cs/(γD2(γ, s)) and does not depend on i. Table 3 also displays the value of
this ratio for several values of γ and s. We find that the critical values ααi/D2(γ, s)

are always at least twice as large as the critical values α′
i ; thus, as before, the pro-

cedure based on the constants (19) is more powerful than the procedure based on
the constants (29).

It is also possible to utilize the FDP-controlling constants to control the FDR,
by application of (2). Now, using (29) results in larger critical values than those
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TABLE 3
Minimum and maximum values of ratios of Benjamini–Yekutieli constants and constants based on

(26) and (19) when both are used to control the FDP

γ = 0.05 γ = 0.1

s min (26) max (26) (19) min (26) max (26) (19)

10 9.25 27.76 14.96 4.63 13.88 7.48
25 4.71 31.86 9.55 2.33 14.26 4.91
50 2.75 33.40 6.37 1.99 15.05 4.10

100 2.25 35.02 5.11 1.86 15.41 3.44
250 2.03 35.80 3.93 1.75 15.53 2.88
500 1.95 35.72 3.368 1.68 15.46 2.58

1000 1.88 35.30 2.97 1.62 15.30 2.36
2000 1.81 34.67 2.68 1.58 15.10 2.19
5000 1.73 33.74 2.40 1.52 14.82 2.02

resulting from application of Theorem 4.1. Detailed numerical comparisons are
available from the authors. These results, though based on the crude inequalities
in (2), suggest that it is perhaps worthwhile to consider the sort of control desired
when choosing critical values. Indeed, the previous comparisons are somewhat
unfair in that the FDR-controlling procedures were not designed to control the
FDP, and vice versa.

However, we consider one final comparison in which the FDP-controlling con-
stants are utilized to control the median of the FDP at level γ by setting α = 1/2.
We may compare these critical values with the Benjamini–Yekutieli critical values
given by α′′

i = γ i/sCs , which control the FDR at level γ . First, we consider the
constants based on (26). Table 4 displays the minimum and maximum values of
the ratio of these critical values to the critical values α′′

i for several different values
of γ and s. We find that, for moderate values of s, the critical values based on (26)
are uniformly larger than the critical values α′′

i , but, for large values of s, the critcal
values α′′

i are larger for some values of i. To examine whether these differences are
of any practical significance, we plot in Figure 3 the two sequences of constants
for the case in which s = 1000 and γ = 0.1. Panel (a) displays the critical values
based on (26), whereas panel (b) displays the critical values α′′

i . Panel (c) displays
the ratio of the constants in panel (a) with the constants in panel (b). The dashed
horizontal line in panel (c) is of height 1. It is clear that, except for some small val-
ues of i, the constants of panel (a) are often dramatically larger than the constants
of panel (b). More importantly, at such values of i, the differences between the two
sequences of critical values are quite small. Thus, for most practical purposes, the
stepup procedure based on the constants in panel (a) seems preferable to the one
based on the constants in panel (b).

We now consider the same comparison with the critical values based on (26)
replaced by the critical values based on (19). For this choice of αi , the value of
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TABLE 4
Minimum and maximum values of ratios of Benjamini–Yekutieli constants when used to control the

FDR and constants based on (26) and (19) when used to control the median of the FDP

γ = 0.05 γ = 0.1

s min (26) max (26) (19) min (26) max (26) (19)

10 4.63 13.88 7.48 2.31 6.94 3.74
25 2.36 15.93 4.78 1.17 7.13 2.45
50 1.37 16.70 3.18 1.00 7.52 2.05

100 1.12 17.51 2.55 0.93 7.71 1.72
250 1.02 17.90 1.97 0.88 7.77 1.44
500 0.98 17.86 1.68 0.84 7.73 1.29

1000 0.94 17.65 1.49 0.81 7.65 1.18
2000 0.91 17.34 1.34 0.79 7.55 1.09
5000 0.87 16.87 1.20 0.76 7.411 1.01

the ratio of the constants derived from Theorem 4.1 to the constants α′′
i no longer

depends on i. Table 4 displays the values of this ratio for several values of γ and s.
Here, we find that the critical values based on (19) used to control the median
of the FDP are always uniformly larger, and therefore more powerful, than the
FDR-controlling critical values α′′

i , though, for large values of s, the two sequences
of critical values are nearly indistinguishable.

6. Empirical applications.

EXAMPLE 6.1 (Benjamini–Hochberg application). We revisit the study of
treatments for myocarial infarction analyzed in Benjamini and Hochberg [1], Sec-
tion 3.2. For the 15 reported p-values, the Benjamini–Hochberg FDR control-
ling procedure at level 0.05 rejects 4 hypotheses. But, this procedure does not
work for all possible joint distribution of p-values. The more generally applicable
Benjamini–Yekutieli procedure rejects only 3 hypotheses. In contrast, our proce-
dure for controlling the median of the FDP at level 0.05 still rejects 4 hypotheses.

EXAMPLE 6.2 (Comparing strategies to a benchmark). The problem consid-
ered is to determine which, if any, of several financial strategies outperforms a
given benchmark. The data set is similar to that in Romano and Wolf [15]. We
consider all s = 210 hedge funds in the Center for International Securities and
Derivatives Markets (CISDM) database that have a complete return history from
01/1994 to 12/2003. All returns are net of management and incentive fees. The
benchmark is the risk free rate of return. Performance is measured monthly, so
each fund has a return history of 120 values. It is well known that returns of hedge
funds exhibit nontrivial serial correlations and the distribution of (Studentized) dif-
ferences in log returns between a particular strategy and a benchmark must take
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FIG. 3. Stepup constants with median of FDP ≤ γ and FDR ≤ γ for s = 1000 and γ = 0.1.

into account such dependence. Individual or marginal p-values were calculated
according to the Studentized circular block bootstrap, as reviewed in [15].

For k-FWER control at level α = 0.1 our stepup procedure rejects 10, 20 or 24
hypotheses according to k = 1, k = 5 or k = 10. For control of the FDR, the
Benjamini–Yekutieli procedure rejects 0, 16 or 23 according to whether γ = 0.01,
γ = 0.05 or γ = 0.1, respectively. For control of the median of the FDP, our pro-
cedure rejects 20, 22 or 24 hypotheses according to the same values of γ = 0.01,
γ = 0.05 or γ = 0.1.
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7. Conclusion. In this article we have described stepup procedures for test-
ing multiple hypotheses that control either the k-FWER or the FDP without any
restrictions on the joint distribution of the p-values. For each of these two mea-
sures of error control, we have also shown that the procedures constructed using
our results satisfy a sort of weak optimality in that the critical values cannot all be
made larger without violating the measure of error control. Our results have also
revealed that control of the k-FWER or FDP using a stepup procedure assuming
nothing about the joint distribution of p-values requires smaller critical values than
a stepdown procedure satisfying the same measure of error control. Finally, we
have compared two FDP-controlling procedures obtained using our results with
the stepup procedure for control of the FDR of Benjamini and Yekutieli [2], which
is also valid under no assumptions on the joint distribution of the p-values. These
comparisons suggest that it is indeed important to consider the sort of error control
desired with constructing multiple testing procedures.

Acknowledgment. Thanks to Michael Wolf for computation of the p-values
in Example 6.2.
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