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Abstract

In this paper we consider the dynamics of spot and futures prices in

the presence of arbitrage. We propose a partially linear error cor-

rection model where the adjustment coefficient is allowed to depend

non-linearly on the lagged price difference. We estimate our model

using data on the DAX index and the DAX futures contract. We

find that the adjustment is indeed nonlinear. The linear alternative

is rejected. The speed of price adjustment is increasing almost mono-

tonically with the magnitude of the price difference.
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1 Introduction

Prices in spot and futures markets are linked through the cost-of-carry relation. In

a frictionless world arbitrage would eliminate any deviations from this relation. In

practice, however, such deviations may and do occur for several reasons. First, the

existence of transactions costs makes it unprofitable to exploit small deviations.

Second, traders with access to private information may prefer to trade in a specific

market. Consequently, prices in this market may reflect information earlier than

prices in the other market. As transaction costs tend to be lower in the futures

market (e.g. Berkmann et al. 2005) informed traders may prefer to trade in this

market and it thus might reflect the information earlier than the spot market.

The opposite may also occur, however. Consider a trader with information on

the value of an individual stock. The trader can trade on that information in the

spot market. In the futures market, on the other hand, he is restricted to trading

a basket of securities (i.e., an index futures contract). Therefore, firm-specific

information may be reflected in the spot market first.

The question of which market impounds new information faster is thus an em-

pirical one, and it has been subject to academic research for about two decades.1

The empirical methods have been considerably refined since the early work of

Kawaller et al. (1987) and others. VAR models were introduced (e.g. Stoll and

Whaley 1990) and soon thereafter replaced by error correction (ECM) models.

A standard ECM implicitly assumes that deviations of prices from their long-run

equilibrium (the pricing errors) are reduced at a speed that is independent of

the magnitude of the price deviation. This is unlikely to be the case, however.

Whenever the deviations are sufficiently large to allow for profitable arbitrage,

the speed of adjustment should increase. Some authors (e.g. Yadav et al. 1994,

Dwyer et al. 1996 and Martens et al. 1998) have employed threshold error correc-

1Given the nature of our empirical analysis we restrict the brief survey of the literature to

papers analyzing the relation between stock price indices and stock index futures contracts.
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tion (TECM) models to address this issue. A TECM assumes a non-continuous

transition function and allows for a discrete number of different speed of adjust-

ment coefficients. If all traders would face identical transaction costs, a TECM

with two different adjustment coefficients (i.e., a no-arbitrage regime and an ar-

bitrage regime) would be a reasonable choice. If, on the other hand, traders are

heterogeneous with respect to the transaction costs they face, a less restrictive

model is warranted. An obvious candidate is a smooth transition error correction

(STECM) model as applied by Taylor et al. (2000), Anderson and Vahid (2001)

and Tse (2001).

A shortcoming of the STECM models is that the transition function must

be exogenously specified, and there is no theory to guide the specification of the

model. The researcher also has to decide for a symmetric transition function or

one that allows for asymmetry. Such asymmetries may arise because short sales

in the spot market are more expensive than short sales in the futures market.

The contribution of our paper is to propose a more flexible modelling frame-

work. We estimate a partially linear ECM where the adjustment process is

modelled non-parametrically. The short-run dynamics are estimated by density-

weighted OLS based on the approach proposed by Fan and Li (1999a). The

non-parametric function modelling the adjustment process is estimated by a

Nadaraya-Watson estimator. The modelling approach that we use was proposed

by Gaul (2005) but has as yet not been applied.

We implement our model using data from the German stock market. Specifi-

cally, we analyze the dynamics of the DAX index and the DAX futures contract.

The results suggest that the speed of adjustment is indeed monotonically increas-

ing in the magnitude of the price deviation. We test our specification against a

standard ECM and clearly reject the latter. Estimates of the parameters govern-

ing the short-run dynamics are similar in the standard ECM and in our model.

These results have several implications. First, they confirm the intuition that

the speed of adjustments of prices to deviations from equilibrium is increasing in
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the magnitude of the deviation. Second, they imply that a standard ECM as well

as a TECM is unable to fully capture the dynamics of the adjustment process.

Third, the form of the non-parametric adjustment function may guide the choice

for a functional form in STECM models.

The remainder of the paper is organized as follows. Section 2 provides a

description of the data set. In section 3 we describe the estimation procedure. In

section 4 we describe a test for linearity. Section 5 is devoted to the presentation

of the results, section 6 concludes.

2 Market Structure and Data

Our analysis uses DAX index level data and bid and ask quotes from the DAX

index futures contract traded on Eurex. The DAX is a value-weighted index cal-

culated from the prices of the 30 largest German stocks. The prices are taken from

Xetra, the most liquid market for German stocks.2 Index values are published

in intervals of 15 seconds. The DAX is a performance index, i.e., the calculation

of the index is based on the presumption that dividends are reinvested. As a

consequence, the expected dividend yield does not enter the cost of carry rela-

tion. Besides an index calculated from the most recent transaction prices the

exchange also calculates an index from the current best ask prices (ADAX) and

an index calculated from the current best bid prices (BDAX). These indices are

value-weighted averages of the inside quotes, and their mean is equivalent to a

value-weighted average of the quote midpoints of the component stocks.

Futures contracts on the DAX are traded on the EUREX. The contracts are

cash-settled and trade on a quarterly cycle. They mature on the third Friday of

the months March, June, September, and December. The DAX futures contract

2The DAX stocks are traded on Xetra, on the floor of the Frankfurt Stock Exchange and

on several regional exchanges. The market share of Xetra amounted to 90% during our sample

period.
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is a highly liquid instrument. In the first quarter of 1999 (our sample period),

more than 1,150,000 transactions were recorded. The open interest at the end of

the quarter was more than 290,000 contracts.

Both Xetra and EUREX are electronic open limit order books. Therefore,

the results of our empirical analysis are unlikely to be affected by differences in

market structure. The trading hours in the two markets are different, though.

Trading in Xetra starts with a call auction held between 8.25 am and 8:30 am.

After the opening auction, continuous trading starts and extends until 5 pm,

interrupted by an intraday auction which takes place between 1:00 pm and 1:02

pm. Trading of the DAX futures contract starts at 9 am and extends until 5 pm.

We obtained all data from Bloomberg. Our sample period is the first quarter

of 1999 and extends over 61 trading days. For this period we obtained the values of

the DAX index and the two quote-based indices ADAX and BDAX at a frequency

of 15 seconds. From the quote-based indices we calculate the midquote index

MQDAXt = ADAXt+BDAXt

2
. We further obtained a time series of all bid and ask

quotes and all transaction prices of the nearby DAX futures contract. We only

use data for the period of simultaneous operation of both markets. We further

discard all observations before 9 am and from 4:55 pm onwards. We also discard

all observations within 5 minutes from the time of the intraday call auction (held

between 1:00 pm and 1:02 pm). After these adjustments the sample consists of

100188 observations.

All estimations are based on quote midpoints. They are preferred to transac-

tion prices because the use of midpoints alleviates the infrequent trading prob-

lem.3 We match each index level observation whith the bid and ask quotes in

3Spot market index levels are calculated using the last available transaction price for each

of the component stocks. As stocks do not trade simultaneously, some of the prices used to

calculate the index are stale. This may induce positive serial correlation in the index returns.

Quote midpoints, on the other hand, are based on tradable bid and ask prices and should be

less affected by the infrequent trading problem. See Shyy et al. (1996) or Theissen (2005).
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the futures market that were in effect at the time the index level information was

published.

The cost-of-carry relation implies that the cash index and the futures contract

are cointegrated. In order to eliminate the time-variation of the cointegrating

relation we discount the futures prices using daily observations on the one-month

interbank rate as published by Deutsche Bundesbank.4

As a prerequisite for our empirical analysis we have to establish that the time

series are I(1) and are cointegrated. Table 1 presents the results of augmented

Dickey-Fuller tests and Phillips-Perron tests applied to pt and ∆pt. pt denotes a

log price series observed at date t and the indices X and F identify observations

relating to the cash market (X, Xetra) and the futures market (F ), respectively.

∆ is the difference operator. The results of the stationarity tests clearly suggest

that all series are I(1).

Level First Difference

Augmented DF Phillips / Perron Augmented DF Phillips / Perron

pX 0.5773 0.6395 0.0001 0.0001

pF 0.3964 0.4113 0.0001 0.0001

Table 1: Results of the Unit-Root tests for both time series

In equilibrium spot and futures prices are linked through the cost-of-carry

relation. Consequently, the DAX index level and the discounted futures price

should be equal in equilibrium, and their difference should be stationary. We test

the latter hypothesis using both an augmented Dickey-Fuller test and a Phillips-

Perron test and clearly reject the null of a unit root (p-value 0.0000 and 0.0001,

respectively). This result confirms the theoretical prediciton that spot and futures

4Given the margin requirements in the futures market, the rate for overnight deposits is an

alternative choice. However, the time series of overnight deposit rates exhibits peaks which

may be due to bank reserve requirements. Besides, the term structure at the short end was

essentially flat during the sample period, making the choice of the interest rate less important.
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prices are cointegrated with the cointegrating vector being (1,−1)>. We use this

pre-specified cointegrating vector in our estimation.

3 Estimation procedure

For the reasons exposed in the Introduction, our model is characterized by a

nonparametric function for the pricing error. In particular, we propose to use the

model

∆yt =
k∑

i=1

Γi∆yt−i + F (β>yt−1) + εt, t=1,. . .,T, (1)

where yt denotes a vector process containing the variables pX
t and pF

t . The coin-

tegrating vector is denoted by β and is pre-specified to (1,−1)>. The adjustment

process is described by the unknown nonparametric function F : R → R2 and εt is

a two-dimensional error process. By introducing the 2×2k-matrix Γ := (Γ1 . . . Γk)

and the 2k-dimensional vector ξt−1 :=
(
∆y>t−1 . . . ∆y>t−k

)>
, model (1) can be writ-

ten as

∆yt = Γξt−1 + F (β>yt−1) + εt. (2)

Note that model (2) contains the linear VECM (Engle and Granger, 1987; Jo-

hansen, 1988), the threshold VECM (Hansen and Seo, 2002) and the smooth

transition VECM (van Dijk and Franses, 2000) as special cases.

The estimation procedure described in the following involves two stages. First,

we estimate the matrix Γ, then the function F .

3.1 Estimation of Γ

Taking expectations in (2) conditional on β>yt−1, we have

E(∆yt|β>yt−1) = ΓE(ξt−1|β>yt−1) + F (β>yt−1), (3)

using E(εt|β>yt−1) = 0. Subtracting (3) from (2) leads to

∆yt − E(∆yt|β>yt−1) = Γ(ξt−1 − E(ξt−1|β>yt−1)) + εt, (4)
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which has the following form

∆y∗t = Γξ∗t−1 + εt, (5)

where ∆y∗t := ∆yt − E(∆yt|β>yt−1) and ξ∗t−1 := ξt−1 − E(ξt−1|β>yt−1). If

E(∆yt|β>yt−1) and E(ξt−1|β>yt−1) were known, Γ could be estimated by OLS.

Since E(∆yt|β>yt−1) and E(ξt−1|β>yt−1) are usually unknown, an estimator based

on ∆y∗t and ξ∗t−1 is not feasible. To obtain a feasible estimator, we will use the

nonparametric kernel method, similar to Robinson (1988) and Fan and Li (1999a).

In particular, the conditional means E(∆yt|β>yt−1) and E(ξt−1|β>yt−1) are esti-

mated by the Nadaraya-Watson estimator

Ê(∆yt|β>yt−1) =
1

Th

T∑
j=1

∆yjK

(
β>yt−1 − β>yj−1

h

)
/f̂(β>yt−1),

Ê(ξt−1|β>yt−1) =
1

Th

T∑
j=1

ξj−1K

(
β>yt−1 − β>yj−1

h

)
/f̂(β>yt−1),

where

f̂(β>yt−1) =
1

Th

T∑
j=1

K

(
β>yt−1 − β>yj−1

h

)
(6)

is the kernel density estimator for f(β>yt−1), K(·) is a kernel function and h is a

bandwidth parameter.

To avoid the random denominator problem in kernel estimation (i.e. the occur-

rence of small values of the estimated density function), we use density weighted

estimates, similar to Fan and Li (1999a). Thus, we multiply (5) by f(β>yt−1),

the density function of β>yt−1, and obtain

f(β>yt−1)∆y∗t = Γf(β>yt−1)ξ
∗
t−1 + f(β>yt−1)εt. (7)

We replace E(∆yt|β>yt−1), E(ξt−1|β>yt−1) and f(β>yt−1) in (7) by their esti-

mates. This leads to the feasible estimator

Γ̂OLS =

[
T∑

t=1

∆ŷ∗t ξ̂
∗>
t−1f̂(β>yt−1)

2

] [
T∑

t=1

ξ̂∗t−1ξ̂
∗>
t−1f(β>yt−1)

2

]−1

, (8)
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with ∆ŷ∗t := ∆yt − Ê(∆yt|β>yt−1) and ξ̂∗t−1 := ξt−1 − Ê(ξt−1|β>yt−1). Besides

some technical assumptions, we assume that (∆yt, β
>yt−1) is β-mixing, Th2 →∞

and Th8 → 0 for T → ∞. Similar to Fan and Li (1999a), it can be shown that

vec (Γ̂OLS − Γ) is
√

T consistent and asymptotically normally distributed. For a

precise formulation of this statement and its assumptions we refer to Theorem 2

in Gaul (2005).

3.2 Estimation of F

Substituting Γ̂OLS for Γ in model (2), one obtains the nonlinear, nonparametric

model

∆ỹt = F (β>yt−1) + ut, (9)

where ∆ỹt := ∆yt − Γ̂OLSξt−1.

Applying the Nadaraya-Watson estimator to (9), i.e.

F̂ (z) =

∑T
t=1 ∆ỹtK

(
z−β>yt−1

h

)
∑T

t=1 K
(

z−β>yt−1

h

) (10)

we get an estimator for the function F. It is well known that F̂ (·) has the same

asymptotic distribution as if Γ were known. Later, we will use this statement for

constructing pointwise confidence intervals.

3.3 Bandwidth Selection

In empirical applications we have to choose both the kernel function and the band-

width parameter h. Whereas the influence of the kernel function is negligible,

the choice of the bandwidth parameter plays a crucial role. Due to the enor-

mous sample size, standard bandwidth selection procedures like cross-validation,

are no longer applicable as the computational time increases rapidly with the

number of observations. However, we assume that the bandwidth can be de-

composed as h = φσ̂T−0.2, where φ is a scaling parameter being independent of
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the sample size, σ̂ denotes the estimated standard deviation of the independent

variable and T is the sample size. Therefore, we can compute φ by performing

cross-validation on a much smaller fraction of our sample and use it to compute

the optimal bandwidth for the entire sample. The underlying sub-sample was

created by the following procedure. We start by ordering the data with respect

to the pricing error β>yt−1. Next, we divide the domain of the pricing error

into T ∗ := 954 intervals containing approximately 100 observations. Each of

the intervals is approximated by the mean value of the pricing error β>yt−1 and

∆ỹt = ∆yt − Γ̂OLSξt−1. Then, we determine the optimal bandwidth by using four

different criteria, namely cross-validation, the Shibata’s Model Selector, Akaike’s

Information Criterion and Final Prediction Error Criterion. For a detailed dis-

cussion of them, we refer to Haerdle, Mueller, Sperlich and Werwatz (2004). The

lower limit for h for the grid search is set to 0.000228, the upper to 0.003652. The

number of equidistant grid points is chosen to be 50. The analysis is carried out

by using the software package XploRe. The results are given in the table below.

Bandwidth selection procedure XDAX FDAX

Cross Validation 0.000597 0.000708

Shibata’s Model Selector 0.000228 0.000708

Akaike’s Information Criterion 0.000228 0.000708

Final Prediction Error 0.000533 0.000708

Table 2: Results of bandwidth selection

The table shows that both Shibata’s Model Selector and Akaike’s Informa-

tion Criterion yield the corner solution for the XDAX series. Taking this into

account and observing that the remaining two procedures lead to similar results,

we choose hX ∗ = 0.000533 for the XDAX series according to Final Prediction

Error Criterion. For the FDAX series, all methods yield the same result. Hence,

we choose hF ∗ = 0.000708. Let us denote the estimated standard deviation of the

pricing error for the sub-sample by σ̂∗. Knowing σ̂∗ = 0.001332 and T ∗ = 954, φ
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can be computed according to

φ =
h∗(T ∗)0.2

σ̂∗
.

This leads to φX = 1.578 and φF = 2.096. It is well known that optimal smoothing

causes a centering problem in the limiting distribution. Hence, we choose the

bandwidth h proportional to T−0.21 being a slightly deviation from the optimal

bandwidth. Denoting the estimated standard deviation of the original pricing

error series for the entire sample by σ̂, we compute the bandwidth according to

h = φσ̂T−0.21.

Using σ̂ = 0.001333 and T = 100188, we obtain hX = φXσ̂T−0.21 = 0.0001874 and

hF = φFσ̂T−0.21 = 0.0002489.

4 Test for linearity

The linear vector error correction model

∆yt = Γξt−1 + αβ>yt−1 + εt (11)

may be considered the baseline model in cointegration analysis. We now provide

a statistical test to examine the hypothesis whether model (11) is as accurate a

description of the data as model (1). Formally, we are interested in testing the

hypotheses

H0 : E(∆yt|ξt−1, β
>y) = Γξt−1 + αβ>yt−1 for some Γ and α against

H1 : E(∆yt|ξt−1, β
>yt−1) = Γξt−1 + F (β>yt−1) with P (F (β>yt−1) = αβ>yt−1) <

1) for any α ∈ R2.

To motivate an appropriate test statistic, we consider (2) with Γ = 0. Denote

ut := ∆yt −αβ>yt−1 the residuals under H0. Following Zheng (1996) and Li and
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Wang (1998), our test is based on E
[
u>t E[ut|β>yt−1]f(β>yt−1)

]
. Then under H0,

it follows

E
[
u>t E[ut|β>yt−1]f(β>yt−1)

]
= 0, (12)

since E[ut|β>yt−1] = 0. Under H1, we have E[ut|β>yt−1] = F (β>yt−1)−αβ>yt−1.

Using the law of iterated expectations, we get under H1

E
[
u>t E[ut|β>yt−1]f(β>yt−1)

]
= E[E(u>t E(ut|β>yt−1)f(β>yt−1)|β>yt−1)]

= E[E(ut|β>yt−1)
>E(ut|β>yt−1)f(β>yt−1)]

= E[(F (β>yt−1)− αβ>yt−1)
>(F (β>yt−1)− αβ>yt−1)f(β>yt−1)]

> 0. (13)

Due to (12) and (13) it is obvious to use the sample analogue of

E
[
u>t E[ut|β>yt−1]f(β>yt−1)

]
as the test statistic. The outer expected value is

replaced by its mean, the inner expected value by the Nadaraya-Watson estimator

Ê(ut|β>yt−1) =
1

(T − 1)h

T∑
j=1j 6=t

K

(
β>yt−1 − β>yj−1

h

)
uj/f̂(β>yt−1), (14)

the density function f(·) by the kernel density estimator (6) and the residuals ut

by the empirical residuals under the null hypothesis, i.e. ũt = ∆yt − α̂β>yt−1.

Taking the lagged dependent values into account we substitute for ũt the residuals

ût = ∆yt− Γ̂OLSξt−1− α̂β>yt−1, where Γ̂OLS is given by (8) and α̂ is the estimator

of the adjustment speed under the null hypothesis. Thus, the test statistic is of

the form

IT :=
1

T (T − 1)h

T∑
t=1

T∑
j=1j 6=t

K

(
β>yt−1 − β>yj−1

h

)
û>t ûj.

To derive the asymptotic distribution, it is important to note that IT is a degen-

erate, second-order U-statistic. Combining the ideas of Fan and Li (1999b) and

Li and Wang (1998), it can be shown that IT is asymptotically normal distributed
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by applying a central limit theorem for U-statistics of β-mixing processes. Fur-

thermore,

σ̂2 :=
2

T (T − 1)h

T∑
t=1

T∑
j=1j 6=t

K2

(
zt−1 − zj−1

h

)
(û>t ûj)

2

is a consistent estimator for σ2, the asymptotic variance of Th1/2IT . It is well

known that the convergence speed to the normal distribution is quite low. There-

fore, bootstrap methods are suggested to approximate the finite sample distri-

bution, see e.g. Li and Wang (1998). Due to the enormous sample size it seems

reasonable to rely on the asymptotic approximation given through the asymptotic

distribution.

5 Results

We present the results in two steps. The starting point is the linear benchmark

case. We then proceed to the partially linear model and also present the results

for the test of linearity described in the previous section.

5.1 Linear error correction model

The following table shows the estimation results of the linear error correction

model

rF
t = µF +

20∑
i=1

γF
1ir

F
t−i +

20∑
i=1

γX
1i r

X
t−i + αF (pX

t−1 − pF
t−1) + εF

t

rX
t = µX +

20∑
i=1

γX
2i r

X
t−i +

20∑
i=1

γF
2ir

F
t−i + αX(pX

t−1 − pF
t−1) + εX

t ,

where p denotes the log prices and r denotes a log return. The index X identifies

variables and coefficients relating to the spot market (X, Xetra), the index F

identifies variables (adjusted by a discount factor according to the cost-of-carry

relation) and coefficients relating to the futures market. The cointegrating vector
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is pre-specified to (1,−1)>. The model is estimated by OLS with 20 lags, but to

save space we present only the coefficients for lags 1-4. The model is estimated

based on quote midpoints and 100188 observations.

XDAX FDAX

Estimates t-statistic Estimates t-statistic

Constant 3.385E-6 4.98 -4.427E-6 -3.77

EC -0.0087 -16.62 0.0047 5.16

XDAX(-1) -0.0963 -30.20 0.0588 10.68

XDAX(-2) -0.0773 -24.02 0.0534 9.61

XDAX(-3) -0.0632 -19.57 0.0573 10.28

XDAX(-4) -0.0522 -16.15 0.0489 8.76

FDAX(-1) 0.2107 110.38 0.0358 10.85

FDAX(-2) 0.1573 77.85 -0.0166 -4.75

FDAX(-3) 0.1215 58.39 -0.0173 -4.83

FDAX(-4) 0.0989 46.75 -0.0079 -2.17

Table 3: Estimation results of the linear ECM

Considering the short-run dynamics first, we find that the DAX returns de-

pend negatively on their own lagged values but depend positively on lagged fu-

tures returns. Returns in the futures markets exhibit a similar pattern. There is

one exception, however, as the coefficient on the first lag of the futures returns is

positive and significant. The results of F-tests (not shown in the table) indicate

that there is bivariate Granger causality.

The coefficients on the error correction term have the expected signs (negative

for the spot market and positive for the futures market) and are both highly

significant. The estimates can be used to construct the common factor weights

θX = αF

αF−αX ; θF =
(
1− θX

)
= −αX

αF−αX
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The common factor weights measure the contributions of the two markets

to the process of price discovery. The measure builds on Gonzalo and Granger

(1995) and is discussed in more detail in Booth et a. (2002), deB Harris et al.

(2002) and Theissen (2002). In our linear error correction model the common

factor weights are 0.3507 for the spot market and 0.6493 for the futures market.

The futures market thus dominates in the process of price discovery. This result

is consistent with previous findings.

5.2 Partially linear error correction model

The following table shows the estimation results of the partially linear error

correction model

rF
t =

20∑
i=1

γF
1ir

F
t−i +

20∑
i=1

γX
1i r

X
t−i + F (pX

t−1 − pF
t−1) + εF

t

rX
t =

20∑
i=1

γX
2i r

X
t−i +

20∑
i=1

γF
2ir

F
t−i + F (pX

t−1 − pF
t−1) + εX

t ,

where the notation is as in the linear model. We estimate the model by the

procedure described in section 3. Again, we use 20 lags, but only the coefficients

for lags 1-4 are shown. The cointegrating vector is pre-specified to (1,−1)>.

XDAX FDAX

Estimates t-statistic Estimates t-statistic

XDAX(-1) -0.0873 -33.07 0.0389 6.88

XDAX(-2) -0.0693 -25.90 0.0475 8.28

XDAX(-3) -0.0564 -20.96 0.0491 8.50

XDAX(-4) -0.0435 -16.00 0.0449 7.71

FDAX(-1) 0.1571 96.12 0.0558 15.93

FDAX(-2) 0.1351 80.46 0.0020 0.55

FDAX(-3) 0.1063 62.11 -0.0053 -1.44

FDAX(-4) 0.0882 51.02 -0.0028 -0.76

Table 4: Estimation results of the partially linear ECM (h = 2σ̂T−0.2)
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Applying the test for linearity developed in section 4, we obtain a test statistic

of 22.036 with a p-value of 0.000. We thus clearly reject the linear benchmark

model in favor of our non-parametric specification. For the test we choose the

bandwidth parameter to be h = 2σ̂T−0.2.

The results for the short-run dynamics are similar to those in the linear model.

The spot market returns depend positively on their own lagged values and nega-

tively on the lagged futures returns. Futures returns, on the other hand, depend

positively on the lagged spot market returns. They also depend positively on

their first lag. Coefficients for higher lags are insignificant.

Figure 1 presents the results for the adjustment process. The figure plots

the value of the adjustment function F against the pricing error β>yt−1. It also

depicts the 95% confidence intervals. The upper panel shows the results for the

futures market, the lower panel those for the spot market.The adjustment process

is estimated very precisely, as evidenced by the narrow confidence intervals. In

the outer regions (i.e., when pricing errors are large) estimation is less precise.

This is a natural consequence of the low number of observations in these regions.

The speed of adjustment is almost monotonically related to the magnitude

of the pricing error. This shape of the adjustment function is clearly at odds

with a threshold error correction model. Adjustment is slow for small pricing

errors, as is evidenced by the small slope of the adjustment function. When the

pricing error becomes larger, the speed of adjustment increases sharply. This is

consistent with arbitrage activities.

There is an asymmetry with respect to the level of the pricing error that

triggers arbitrage. When the pricing error is negative (i.e., when the adjusted

futures price is larger than the spot price) the trigger level is about -0.001. When

the pricing error is positive, on the other hand, the trigger level is approximately

0.003. This pattern is explained by slight, but systematic deviations of prices from

the cost-of-carry relation. On average, the difference between the discounted

futures price and the DAX index is -2.8 index points. This pattern has been
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documented in previous research (e.g. Bühler and Kempf 1995), and the most

likely explanation is differential tax treatment of dividends in the spot and the

futures market (see McDonald 2001 for a detailed discussion).

6 Conclusion

The present paper extends the literature on the joint dynamics of prices in spot

and futures markets. It extends the previous literature by modelling the price-

adjustment process non-parametrically using the methodology developed in Gaul

(2005).

We apply our partially linear error correction model to data for the German

blue chip index DAX and the DAX futures contract traded on the EUREX.

We find that the adjustment process is indeed nonlinear. The linear benchmark

case is rejected at all reasonable levels of significance. Consistent with economic

intuition, the speed of adjustment is almost monotonically increasing in the mag-

nitude of the pricing error (the deviation between discounted futures price and

spot price). This pattern is inconsistent with a simple threshold error correction

model. It is consistent with a smooth transition model, and in fact the shape of

the adjustment process in our non-parametric model may guide the choice of the

transition function in future empirical research.
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A, Hendry D, Hylleberg S, Teräsvirta T, Tjostheim D, Wurtz A (eds). Cambridge

University Press: Cambridge. 203-227.

Yadav P K, Pope P F, Paudyal K. 1994. Threshold autoregressive modelling

in finance: The price differences of equivalent assets. Mathematical Finance 4:

18



205-221.

Zheng J X. 1996. A consistent test of functional form via nonparametric

estimation techniques. Journal of Econometrics 75: 263-289.

19
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