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interest is identified through an instrumental variable but is not assumed to be known up to 
finitely many parameters.  The paper explains the differences between parametric and 
nonparametric estimators that are important for applied research, describes an easily implemented 
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nonparametric methods lead to substantive conclusions that are quite different from those 
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APPLIED NONPARAMETRIC INSTRUMENTAL VARIABLES ESTIMATION 

1.  INTRODUCTION 

 Instrumental variables are widely used in applied econometrics to achieve identification 

and carry out estimation and inference in models that contain endogenous explanatory variables.  

In most applications, the function of interest (e.g., an Engel curve or demand function) is assumed 

to be known up to finitely many parameters (e.g., a linear model), and instrumental variables are 

used identify and estimate these parameters.  However, linear and other finite-dimensional 

parametric models make strong assumptions about the population being modeled that are rarely if 

ever justified by economic theory or other a priori reasoning and can lead to seriously erroneous 

conclusions if they are incorrect.  This paper explores what can be learned when the function of 

interest is identified through an instrumental variable but is not assumed to be known up to 

finitely many parameters.   

Specifically, this paper is about estimating the unknown function g  in the model 

(1.1) ( ) ; ( | ) 0Y g X U E U W w= + = =  

for all w  or, equivalently, 

(1.2) [ ( ) | ] 0E Y g X W w− = = .   

In this model, g  is a function that satisfies regularity conditions but is otherwise unknown, Y  is 

a scalar dependent variable, X  is an explanatory variable or vector that may be correlated with 

U  (that is, X  may be endogenous), W  is an instrument for X , and U  is an unobserved random 

variable.  For example, if Y  is a household’s expenditure share on a good or service and X  is the 

household’s total expenditure, then g  is an Engel curve.  If income from wages and salaries is 

not influenced by household budgeting decisions, then the household head’s total earnings from 

wages and salaries can be used as an instrument, W , for X  (Blundell, Chen, and Kristensen 

2007; Blundell and Horowitz 2007).  The data used to estimate g  are an independent random 

sample of ( , , )Y X W . 

If some explanatory variables are exogenous, it is convenient to use notation that 

distinguishes between endogenous and exogenous explanatory variables.  We write the model as 

(1.3) ( , ) ; ( | , ) 0Y g X Z U E U W w Z z= + = = =  

or 

(1.4) [ ( , ) | , ] 0E Y g X Z W w Z z− = = =    
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for all w  and z .  In this model, X  denotes the explanatory variables that may be endogenous, Z  

denotes the exogenous explanatory variables, and W  is an instrument for X .  The data are an 

independent random sample of ( , , , )Y X W Z . 

 Methods for estimating g  in (1.1)-(1.2) and, to a lesser extent, (1.3)-(1.4) have become 

available recently but have not yet been used much in applied research.  This paper explores the 

usefulness of nonparametric instrumental variables (IV) estimators for applied econometric 

research.  Among other things, the paper: 

 1.  Explains that nonparametric and parametric estimators differ in ways that are 

important for applied research.  Nonparametric estimation is not just a flexible form of parametric 

estimation.   

 2.  Presents an estimator of g  in (1.1)-(1.2) that is as easy to compute as an IV estimator 

of a linear model.  Thus, computational complexity is not a barrier to the use of nonparametric IV 

estimators in applications. 

 3.  Presents empirical examples in which nonparametric methods lead to substantive 

conclusions that are quite different from those obtained using standard, parametric estimators. 

 Some characteristics of nonparametric IV methods may be unattractive to applied 

researchers.  One of these is that nonparametric IV estimators can be very imprecise.  This is not 

a defect of the estimators.  Rather, it reflects the fact that the data often contain little information 

about g  when it is identified through instrumental variables.  When this happens, applied 

researchers may prefer to add “information” in the form of a priori assumptions about the 

functional form of g  in order to increase the precision of the estimates.  For example, g  may be 

assumed to be a linear or quadratic function.  However, the improvement in apparent precision 

obtained from a parametric model carries the risk of misleading inference if the model is 

misspecified.  There is no assurance that a parametric model that is chosen for analytic or 

computational convenience or because of frequent use in the literature contains the true g  or 

even a good approximation to it.  Moreover, neither economic theory nor econometric procedures 

can lead one reliably to a correct parametric specification.  Depending on the substantive meaning 

of g  (e.g., a demand function), economic theory may provide information about its shape (e.g., 

convex, concave, monotonic) or smoothness, but theory rarely if ever provides a parametric 

model.  The risk of specification error cannot be eliminated through specification testing.  Failure 

to reject a parametric model in a specification test does not necessarily imply that the model is 

correctly specified.  In fact, a specification test may accept several parametric models that yield 

different substantive conclusions.  Nonparametric estimation reveals the information that is 
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available from the data as opposed to functional form assumptions.  It enables one to assess the 

importance of functional form assumptions in drawing substantive conclusions from a parametric 

model.  Even if an applied researcher ultimately decides to use a parametric model, he or she 

should be aware of the conclusions that are justified under the weak assumptions of 

nonparametric estimation and of how these conclusions may differ from those obtained from the 

parametric model.   

 Another possible obstacle to the use of nonparametric IV in applications is that certain 

methodological problems are not yet solved.  Some of these problems are outlined later in this 

paper.  It is likely that the problems will be solved in the near future and will not present serious 

long-run obstacles to applied nonparametric IV estimation. 

1.1  Summary of Recent Literature 

 Nonparametric estimation of g  in (1.1)-(1.2) when X  and W  are continuously 

distributed has been the object of much recent research.  Several estimators are now available, 

and much is known about the properties of some of them.  The available estimators include 

kernel-based estimators (Darolles, Florens and Renault 2006; Hall and Horowitz 2005) and series 

or sieve estimators (Newey and Powell 2003; Blundell, Chen, and Kristensen 2007).  The 

estimator of Hall and Horowitz (2005) also applies to model (1.3)-(1.4).  The estimators Hall and 

Horowitz (2005) and Blundell, Chen, and Kristensen (2007) converge in probability at the fastest 

possible rates under their assumptions (Hall and Horowitz 2005; Chen and Reiss 2007), so these 

estimators are the best possible in that sense.  Horowitz (2007) has given conditions under which 

the Hall-Horowitz (2005) estimator is asymptotically normally distributed.  Horowitz and Lee 

(2009) show how to obtain uniform confidence bands for g  in (1.1)-(1.2).  Horowitz (2006) 

shows how to test a parametric specification for g  (e.g., the hypothesis that g  is a linear 

function) against a nonparametric alternative, and Blundell and Horowitz (2007) show how to test 

the hypothesis that X  is exogenous.  Horowitz (2009a) shows how to test the hypothesis that a 

function g  satisfying (1.1)-(1.2) exists.   

 There are also estimators for a quantile version of (1.1)-(1.2) with continuously 

distributed X  and W  (Chen and Pouzo 2008; Chernozhukov, Imbens, and Newey 2007; 

Horowitz and Lee 2007).  In the quantile model, the conditional moment restriction 

( | ) 0E U W w= =  is replaced by a conditional quantile restriction.  The resulting model is 

(1.5) ( ) ; ( 0 | )Y g X U P U W w q= + ≤ = =  
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for some q  such that 0 1q< < .  Horowitz and Lee (2007) show that this model subsumes the 

non-separable model 

(1.6) ( , )Y g X U= , 

where U  is independent of the instrument, W .  Chernozhukov and Hansen (2005) and 

Chernozhukov, Imbens, and Newey (2007) give conditions under which g  is identified in (1.5) 

or (1.6). 

 When X  and W  are discretely distributed, as happens in many applications, g  is not 

identified except in special cases.  However, informative bounds on g  may be identified, even if 

g  is not identified.  Manski and Pepper (2000) and Chesher (2004, 2005) give conditions under 

which informative identified bounds are available.   

1.2  The Control Function Model 

 The control function model is an alternative formulation of the nonparametric IV 

estimation problem that is non-nested with the formulation of Sections 1.1-1.2.  In the control 

function model, 

(1.7) ( )Y g X U= +  

and 

(1.8) ( )X h W V= + , 

where g  and h  are unknown functions, 

(1.9) ( | ) 0E V W w= =  

for all w , and 

(1.10) ( | , ) ( | )E U X x V v E U V v= = = =  

for all x  and v .  Assuming that the mean of X  conditional on W  exists, (1.8) and (1.9) can 

always be made to hold by setting ( ) ( | )h w E X W w= = .  Identification in the control function 

approach comes from (1.10).  It follows from (1.7) and (1.10) that 

(1.11) ( | , ) ( ) ( )E Y X x V v g x k v= = = + , 

where g  and k  are unknown functions.  If V  were observable, g  could be estimated by using 

any of a variety of estimators for nonparametric additive models.  See, for example, Horowitz 

(2009b, Ch. 3).  Although V  is not observable, it can be estimated consistently by the residuals 

from nonparametric estimation of h  in (1.8).  The estimated V  can be used in place of the true 

one for purposes of estimating g  from (1.11).  Newey, Powell, and Vella (1999) present an 

estimator and give conditions under which it is consistent and achieves the optimal nonparametric 
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rate of convergence.  Further discussion of the control function approach is available in Pinkse 

(2000) and Blundell and Powell (2003). 

 Models (1.1)-(1.2) and (1.7)-(1.10) are non-nested.  It is possible for (1.2) to be satisfied 

but not (1.10) and for (1.10) to be satisfied but not (1.2).  Therefore, neither model is more 

general than the other.  Blundell and Powell (2003) and Heckman and Vytlacil (2007) discuss the 

relative merits of the two models in various settings.  At present, there is no statistical procedure 

for distinguishing empirically between the two models.  This paper is concerned mainly with 

estimation of g  in models (1.1)-(1.2) and (1.3)-(1.4).  A version of the control function approach 

will be discussed in Section 6.1 in connection with models in which X  and W  are discrete.  In 

other respects, the control function approach will not be discussed further. 

 The remainder of the paper is organized as follows.  Section 2 deals with the question of 

whether there is any important difference between a nonparametric estimator of g  and a 

sufficiently flexible parametric one.  Section 3 summarizes the theory of nonparametric 

estimation of g  when X  and W  are continuous random variables.  Section 4 presents a 

nonparametric estimator that is easy to compute.  Section 5 presents empirical examples that 

illustrate the methods and conclusions of Sections 2-4.  Section 6 discusses identification and, 

when possible, estimation of g  when X  and W  are discrete random variables.  Section 7 

presents concluding comments.  The exposition in this paper is informal.  The emphasis is on 

conveying ideas and important results, not on technical details.  Proofs and other details of 

mathematical rigor are available in the cited reference material. 

2.  THE DIFFERENCE BETWEEN PARAMETRIC AND NONPARAMETRIC METHODS 

 If g  in (1.1) were known up to a finite-dimensional parameter θ , (that is, ( ) ( , )g x G x θ=  

for all x , some known function G  and some finite-dimensional θ ), then 1/ 2n− -consistent, 

asymptotically  normal estimators of θ  and g  could be obtained by using the generalized 

method of moments (GMM) (Hansen 1982).  When g  is unknown, one can consider 

approximating it by a finite-dimensional parametric model, ( , )G x θ , for some suitable G .   

It is easy to find functions G  that yield good approximations.  Engel curves, demand 

functions, and many other functions that are important in economics are likely to be smooth.  

They are not likely to be wiggly or discontinuous.  A smooth function on a compact interval can 

be approximated arbitrarily well by a polynomial of sufficiently high degree.  Thus, for example, 

if X  is a scalar random variable with compact support, we can write 
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0 1

1

(2.1) ( ) ...

( , ),

K
Kg x x x

G x

θ θ θ

θ

≈ + + +

≡
 

where 0K >  is an integer, 0θ ,…, Kθ  are constants, and 0( ,..., )Kθ θ θ ′= .  The approximation 

error can be made arbitrarily small by making K  sufficiently large.  Alternatively, one can use a 

set of basis functions { : 1,2,...}j jψ = , such as trigonometric functions, orthogonal polynomials, 

or splines in place of powers of x .  In this case, 

1 1

2

(2.2) ( ) ( ) ... ( )

( , ).

K Kg x x x

G x

θψ θ ψ

θ

≈ + +

=
. 

Again, the approximation error can be made arbitrarily small by making K  sufficiently large.  

The parameter vector θ  in either (2.1) or (2.2) can be estimated by GMM based on the 

approximate moment condition [ ( , ) | )] 0E G X W wθ = = .  The parameter estimates are 1/ 2n− -

consistent and asymptotically normal.  As will be discussed further in Section 3, nonparametric 

series estimators of g  are based on estimating θ  in 2G  for some set of basis functions { }jψ .  

Therefore, it is possible for parametric and nonparametric estimates to be identical.  This makes it 

reasonable to ask whether there is any practical difference between a nonparametric estimator and 

a sufficiently flexible parametric one. 

 The answer is that parametric and nonparametric estimators lead to different inference 

(confidence intervals and hypothesis tests).  This is because inference based on a parametric 

model treats the model as if it were exact, whereas nonparametric estimation treats it as an 

approximation that depends on the size of the sample.  Specifically, in nonparametric estimation, 

the “size” of the model (e.g., K  in (2.2)) is larger with large samples than with small ones.  

Consequently, the approximation error is smaller with large samples than with small ones.  In 

contrast, the size (or dimension) of a parametric model is fixed and independent of the sample.  

Although it is possible to find a parametric model that coincides with a nonparametric model, a 

given parametric model coincides with a nonparametric model only for a narrow range of sample 

sizes.  This makes inference based on parametric and nonparametric models different because the 

two models are different except when the sample size is in a small range that depends on the 

details of the estimation problem.  As an analogy, it may be useful to consider the difference 

between estimates based on random and arbitrary samples.  One can always find an arbitrary 

sample that coincides with a random sample, but a given arbitrary sample is unlikely to coincide 

with a random one.  Therefore, estimates obtained from a given arbitrary sample and a random 
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sample are different except in the unlikely event that the two coincide.  The dependence of a 

nonparametric model on the sample size makes it important to have a good way of choosing the 

size of the model (e.g., K  in (2.2)).  Section 4.2 outlines a method for doing this in 

nonparametric IV estimation based on a series approximation.  

Because parametric estimation ignores approximation error and the dependence of the 

approximating model on the sample size, a parametric estimate tends to give a misleading 

indication of estimation precision unless the parametric model is really correct.  Parametric 

methods typically indicate that the estimates are more precise than they really are.  Often the 

assumptions of a highly restrictive parametric model are much more “informative” than the data 

are.  Consequently, conclusions that are supported by the parametric model may not be supported 

by nonparametric methods.  This is illustrated by empirical examples that are presented in 

Sections 5 and 6. 

3.  NONPARAMETRIC IV ESTIMATION WHEN X  AND W  ARE CONTINUOUSLY 

DISTRIBUTED 

 This section summarizes the theory of nonparametric IV estimation and explains why 

nonparametric IV estimation presents problems that are not present in parametric IV estimation.  

The discussion is concerned with estimating g  in model (1.1)-(1.2) when X  and W  are 

continuously distributed scalars.  Allowing X and W  to be vectors complicates the notation but 

does not change the essential ideas or results, though it may reduce estimation precision owing to 

curse-of-dimensionality effects.  It is assumed that the support of ( , )X W  is contained in 2[0,1] .  

This assumption can always be satisfied by, if necessary, carrying out monotone increasing 

transformations of X  and W .  For example, one can replace X  and W  by ( )XΦ  and ( )WΦ , 

where Φ  is the normal distribution function.   

3.1  Identification 

 We begin by deriving a mapping from the population distribution of ( , , )Y X W  to g .  

This mapping identifies g  and provides the starting point for estimation of g .  

 Let |X Wf  denote the probability density function of X  conditional on W .  Let XWf  and 

Wf , respectively, denote the probability density functions of ( , )X W  and W .  Note that 

| /X W XW Wf f f= .  Model (1.1)-(1.2) can be written 
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1
|0

1

0

( | ) [ ( ) | ]

( ) ( , )

( , )
(3.1) ( ) .

( )

X W

XW

W

E Y W w E g X W w

g x f x w dx

f x w
g x dx

f w

= = =

=

=

∫

∫

 

Therefore, 

(3.2) 
1

0
( | ) ( ) ( ) ( , )W XWE Y W w f w g x f x w dx= = ∫  

and 

(3.3) 
1

0
( | ) ( , ) ( ) ( ) ( , ) ( , )XW W XW XWE Y W w f z w f w g x f x w f z w dx= = ∫  

for any [0,1]z∈ .  Define 

 
1

0
( , ) ( , ) ( , )XW XWt x z f x w f z w dw= ∫  

Then integrating with respect to w  on both sides of (3.3) yields 

(3.4) 
1

0
[ ( , )] ( ) ( , )XWE Yf z W g x t x z dx= ∫  

for any [0,1]z∈ , where the expectation on the left-hand side is over the distribution of ( , )Y W .  

Equation (3.4) shows that g  is the solution to an integral equation.  The integral equation is 

called a Fredholm equation of the first kind in honor of the Swedish mathematician Erik Ivar 

Fredholm.   

Now define the operator (that is, mapping from one set of functions to another) T  by 

 
1

0
( )( ) ( ) ( , )Th z h x t x z dx= ∫ . 

Define ( ) [ ( , )]XWr z E Yf z W= .  Then (3.4) is equivalent to the operator equation 

(3.5) ( ) ( )( )r z Tg z= . 

It may be useful to think of T  as the infinite-dimensional generalization of a matrix and (3.5) as 

the infinite-dimensional generalization of a system of simultaneous equations.  Assume that T  is 

non-singular or one-to-one.1  That is, if 0Th = , then 0h =  almost everywhere.  Then T  has an 

inverse, and the solution to (3.5) is 

                                                      
1  Blundell, Chen, and Kristensen (2007) give examples of distributions that satisfy the non-
singularity condition.  There has been little research on what can be learned about g  when X  
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(3.6) 1( ) ( )( )g x T r x−= . 

Equation (3.6) is the desired mapping from the population distribution of ( , , )Y X W  to g .  

Equation (3.6) identifies g  and can be used to form estimators of g . 

3.2  Background from Functional Analysis 

 The properties of estimators of g  depend on those of T .2  Stating the relevant properties 

of T  requires the use of concepts and results from functional analysis.  These are infinite-

dimensional analogs of similar concepts and results for finite-dimensional vectors and matrices 

and will be stated briefly here.  Mathematical details can be found in textbooks on functional 

analysis, such as Conway (1990) and Liusternik and Sobolev (1961). 

Define the function space 2[0,1]L  as the set of functions that are square integrable on 

[0,1] .  That is, 

 { }1 2
2 0
[0,1] : ( )L h h x dx= < ∞∫ . 

Define the norm, h  of any function 2[0,1]h L∈  by  

 
1/ 21 2

0
( )h h x dx⎡ ⎤= ⎢ ⎥⎣ ⎦∫ . 

For any functions 1 2 2, [0,1]h h L∈ , define the inner product 

 
1

1 2 1 20
, ( ) ( )h h h x h x dx= ∫ . 

Let { , : 1,2,...}j j jλ φ =  denote the eigenvalues and eigenvectors of T .  These are the solutions to 

the equation 

 ; 1,2,...j j jT jφ λ φ= =  

and are analogous to the eigenvalues and eigenvectors of a real, symmetric matrix.  T  is always 

positive semidefinite or definite and is assumed to be non-singular, so 0jλ >  for all 1,2,...j =   

Sort the eigenvalues and eigenvectors so that 1 2 ... 0λ λ≥ ≥ > .   

                                                                                                                                                              
and W  are continuously distributed and T  is singular.  Section 6 reviews research on what can 
be learned about g  when X  and W  are discrete and the discrete analog of T  is singular.  
2  The investigation of properties of estimators of g  can also be based on (3.1) or (3.2).  The 
conclusions are the same as those obtained using (3.4)-(3.6), and the necessary mathematical 
tools are simpler with (3.4)-(3.6).  If X  is exogenous and W X= , then 

( , ) ( ) ( )XW Wf x w f w x wδ= − , where δ  is the Dirac delta function.  The delta function in XWf  
changes the properties of T , and the results of Sections 3-4 of this paper no longer apply.  
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Assume that 

 
1 1 2
0 0

( , )XWf x w dxdw < ∞∫ ∫ . 

Then eigenvalues and eigenvectors of T  have the following properties: 

 1.  Zero is a limit point of the eigenvalues.  Therefore, there are infinitely many jλ ’s 

within any neighborhood of zero.  Zero is the only limit point of the eigenvalues. 

 2.  The eigenvectors are orthonormal.  That is , 1j kφ φ =  if j k=  and 0 otherwise. 

 3.  The eigenvectors are a basis for 2[0,1]L .  That is, any function 2[0,1]h L∈  has the 

series representation 

 
1

( ) ( )j j
j

h x h xφ
∞

=

=∑ , 

where ,j jh h φ= .  Moreover, 

 2 2

1
j

j
h h

∞

=

=∑ . 

 4.  For any 2[0,1]h L∈ , 

 
1

( )( ) ( )j j j
j

Th x h xλ φ
∞

=

=∑ . 

In addition, if 
2

1

j

jj

h
λ

∞

=

⎛ ⎞
< ∞⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , 

then 

 1

1
( )( ) ( )j

j
jj

h
T h x xφ

λ

∞
−

=

=∑ . 

Because of property 3, we can write 

 
1

( ) ( )j j
j

r z r zφ
∞

=

=∑  

and 

 
1

( ) ( )j j
j

g x g xφ
∞

=

=∑ , 
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where ,j jr r φ=  and ,j jg g φ=  for each j .  The coefficients jr  and jg  are called 

generalized Fourier coefficients of r  and g , respectively.  Because of property 4, 

(3.7) 1

1
( )( ) ( )j

j
jj

r
T r x xφ

λ

∞
−

=

=∑  

if 

(3.8) 
2

1

j

jj

r
λ

∞

=

⎛ ⎞
< ∞⎜ ⎟⎜ ⎟

⎝ ⎠
∑ . 

Combining (3.6) and (3.7) yields the result that 

(3.9) 
1

( ) ( )j
j

jj

r
g x xφ

λ

∞

=

=∑  

if (3.8) holds.  Equation (3.9) provides a representation of g  that can be used to investigate the 

properties of estimators.   

3.3  The Ill-Posed Inverse Problem 

 The key fact about (3.9) that makes nonparametric IV different from parametric IV is that 

because 0jλ →  as j →∞ , g  is not a continuous functional of r .  To see this, let 1r  and 2r  be 

functions in 2[0,1]L  with the representations 

 1 1
1

( ) ( )j j
j

r x r xφ
∞

=

=∑  

and 

 2 2
1

( ) ( )j j
j

r x r xφ
∞

=

=∑ . 

Define 

 1
1

1
( ) ( )j

j
jj

r
g x xφ

λ

∞

=

=∑  

and 

 2
2

1
( ) ( )j

j
jj

r
g x xφ

λ

∞

=

=∑ . 

Then 
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1/ 2

2 2
2 1 1 2

1
( )j j

j
r r r r

∞

=

⎡ ⎤
⎢ ⎥− = −
⎢ ⎥⎣ ⎦
∑ , 

and 

 

1/ 22 2
1 2

2 1 2
1

j j

jj

r r
g g

λ

∞

=

⎡ ⎤⎛ ⎞−
⎢ ⎥⎜ ⎟− =

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑ . 

Given any 0ε > , no matter how small, and any 0M > , no matter how large, it is possible to 

choose the 1 jr ’s and 2 jr ’s such that 1 2r r ε− <  and 1 2g g M− > .  Therefore, an arbitrarily 

small change in r  in (3.5) can produce an arbitrarily large change in g .  This phenomenon is 

called the ill-posed inverse problem.  The ill-posed inverse problem also arises in deconvolution 

and nonparametric density estimation (Härdle and Linton 1994, Horowitz 2009b).  

 The ill-posed inverse problem has important consequences for how much information the 

data contain about g  and how accurately g  can be estimated.  To see why, denote the data by 

{ , , : 1,..., }i i iY X W i n= , where n  is the sample size.  Suppose that XWf  and, therefore, T  and the 

jλ ’s, are known.  Then the jr ’s are the only unknown quantities on the right-hand side of (3.8).  

It follows from (3.4) and ,j jr r φ=  that 

 
1

0
( , ) ( ) ; 1,2,...j XW jr E Y f z W z dz jφ⎡ ⎤= =⎢ ⎥⎣ ⎦∫ . 

Therefore, jr  is a population moment and can be estimated 1/ 2n−  consistently by the sample 

analog 

 
11
0

1
ˆ ( , ) ( ) ; 1,2,...

n

j i XW i j
i

r n Y f z W z dz jφ−

=

= =∑ ∫  

The generalized Fourier coefficients of g  are estimated consistently and without bias by 

 
ˆ

ˆ j
j

j

r
g

λ
= . 

Because 0jλ →  as n →∞ , random sampling errors in ˆjr  can have large effects on ˆ jg  when j  

is large.  Indeed, 2ˆ ˆ( ) ( ) /j j jVar g Var r λ= →∞  as j →∞ , except in special cases.  As a 

consequence, except in special cases, only low-order generalized Fourier coefficients of g  can be 

estimated with useful precision with samples of practical size.  Thus, the ill-posed inverse 

problem limits what can be learned about g . 
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 The following example illustrates the problem. 

 Example 3.1:  The ill-posed inverse problem.   

 Let ( )g x x= .  Let 

(3.10) 1/ 2

1
( , ) ( ) ( ); 0 , 1XW j j j

j
f x w x w x wλ φ φ

∞

=

= ≤ ≤∑ , 

where 1( ) 1zφ = , ( ) 2 cos[( 1) ]j z j zφ π= −  for 2j ≥ , 1 1λ = , and 40.2( 1)j jλ −= −  for 2j ≥ .  

With this XWf , the marginal distributions of X  and W  are uniform on [0,1] , but X  and W  are 

not independent of one another.  The generalized Fourier coefficients of g  are 1 0.5g =  and 

 1 42[( 1) 1][ ( 1)] ; 2j
jg j jπ− −= − − − ≥ . 

The reduced form model is 

 

1

[ ( ) | ]

[ ( ) | ] ,j j
j

Y E g X W V

g E X W Vφ
∞

=

= +

= +∑

 

where V  is a random variable satisfying ( | ) 0E V W w= = .  Now 

 

1

0

1

0

( , )
[ ( ) | ] ( )

( )

( ) ( , ) ,

XW
j j

W

j XW

f x W
E X W x dx

f W

x f x W dx

φ φ

φ

=

=

∫

∫
 

where the last line uses the fact that the marginal distribution of W  is [0,1]U .  By (3.10),  

 
1 1/ 2
0

( ) ( , ) ( )j XW j jx f x W dx Wφ λ φ=∫ . 

Therefore, the reduced-form model can be written 

 
1

( )j j
j

Y c W Vφ
∞

=

= +∑ , 

where 1/ 2
j j jc g λ= .   

 Now let ~ (0,0.01)V N  independently of W .  With data { , , : 1,..., }i i iY X W i n= , the 

maximum likelihood (and asymptotically efficient) estimator of the jc ’s can be obtained by 

applying ordinary least squares to 
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1

( ) ; 1,...,i j j i i
j

Y c W V i nφ
∞

=

= + =∑ . 

Let ˆ jc  ( 1,2,...j = ) denote the resulting estimates.  The maximum likelihood estimator of jg  is 

1/ 2ˆ /j jc λ .   

 Figure 1 shows a graph of | |jg  and the standard deviation of ˆ jg  for 1000n = .  Only the 

first 4 generalized Fourier coefficients are estimated with useful precision.  The standard 

deviation of ˆ jg  is much larger than jg  when 4j > .  ■ 

 The result of Example 3.1 is very general.  Except in special cases, only low-order 

generalized Fourier coefficients of g  can be estimated with useful precision with samples of 

practical size.  This is a consequence of the ill-posed inverse problem and is a characteristic of the 

estimation problem, not a defect of the estimation method.  When identification is through the 

moment condition (1.2), the data contain little information about the higher-order generalized 

Fourier coefficients of g .  Therefore, to obtain a useful estimator of g , one must find a way to 

avoid the need for estimating higher-order coefficients.  Procedures for doing this are called 

“regularization.”  They amount to modifying T  in a suitable way.  The amount of modification is 

controlled by a parameter (the regularization parameter) and decreases as n →∞  to ensure 

consistent estimation.  Several regularization methods are available.  See Engl, Hanke, and 

Neubauer (1996); Kress (1999); and Carrasco, Florens, and Renault (2007).  In this paper, 

regularization will be carried out by replacing T  with a finite-dimensional approximation.  The 

method for doing this is described in Section 4.  Section 3.4 provides the mathematical rationale 

for the method. 

3.4  Avoiding Estimation of Higher-Order Generalized Fourier Coefficients:  The Role of 

Smoothness 

 One way of avoiding the need to estimate higher-order generalized Fourier coefficients is 

to specify a low-dimensional parametric model for g .  That is, ( ) ( , )g x G x θ=  for some known 

function G  and low-dimensional θ .  A parametric model, in effect, specifies high-order 

coefficients in terms of a few low-order ones, so only a few low-order ones have to be estimated.  

But the assumption that g  has a known parametric form is strong and leads to incorrect inference 

unless the parametric model is exact or a good approximation to the true g .  The parametric 

model provides no information about the accuracy of the approximation or the effect of 
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approximation error on inference.  Therefore, it is useful to ask whether we can make an 

assumption that is weaker than parametric modeling but provides asymptotically correct 

inference.  

 The assumption that g  is smooth in the sense of having one or more derivatives achieves 

this goal.  Assuming smoothness is usually weaker than assuming that g  belongs to a known 

parametric family, because most parametric families used in applied research are subsets of the 

class of smooth functions.  The smoothness assumption is likely to be satisfied by many functions 

that are important in applied econometrics, including demand functions and Engel curves, so 

smoothness is not excessively restrictive in a wide variety of applications.  Moreover, as will be 

explained, smoothness provides enough information about higher-order generalized Fourier 

coefficients to make consistent estimation of g  and asymptotically correct inference possible. 

 We first provide a formal definition of the smoothness concept that will be used for 

estimating g .  Let ( ) ( ) /k k kD g x d g x dx=  for 0,1,2,...k =  with 0 ( ) ( )D g x g x= .  Define g  to 

have smoothness s  if 

 
22 2

0
0

s
j

s
j

g D g C
=

≡ ≤∑  

for some finite, positive constant 0C .  In other words, g  has smoothness s  if it has s  square-

integrable derivatives. 

 To see why smoothness is useful for estimating g , let { }jψ  be a basis for 2[0,1]L .  The 

jψ ’s need not be eigenfunctions of T .  If g  has smoothness 0s >  and { }jψ  is any of a variety 

of bases that includes trigonometric functions, orthogonal polynomials, and splines (see, e.g., 

Chen 2007), then there are coefficients { }jg  and a constant C < ∞  not depending on g  such that 

(3.11) 
1

J
s

j j
j

g g CJψ −

=

− ≤∑  

for each 1,2,...J =   Therefore, smoothness provides an upper bound on the error of a truncated 

series approximation to g .  This bound is sufficient to permit consistent estimation of g  and 

asymptotically correct inference.  In other words, smoothness makes nonparametric estimation 

and inference possible.   

 Although smoothness makes nonparametric estimation of g  possible, it does not 

eliminate the need for judgment in estimation.  Depending on the details of g  and the basis 

functions, many generalized Fourier coefficients jg  may be needed to achieve a good 
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approximation to g .  This is a concern because, due to the ill-posed inverse problem, it is 

possible to estimate only low-order jg ’s with useful precision.  Therefore, it is desirable to 

choose basis functions that provide a good low-dimensional approximation to g .  This is not the 

same as parametric modeling because we do not assume that the truncated series approximation is 

exact and, consequently, the length of the series approximation depends on the sample size.  

Theoretically justified methods for choosing basis functions in applications are not yet available. 

4.  NONPARAMETRIC ESTIMATION AND TESTING OF A SMOOTH FUNCTION 

 Section 4.1 presents an estimator of g  in model (1.1)-(1.2).  The estimator is extended to 

model (1.3)-(1.4) in Section 4.2.  Section 4.3 describes two specification tests that will be used in 

the empirical illustrations of Section 5.  It is assumed that X , W , and Z  are scalar random 

variables.  The extension to random vectors complicates the notation but does not affect the main 

ideas and results.  See Hall and Horowitz (2005); Horowitz (2006, 2009a); Blundell, Chen, and 

Kristensen (2007); and Blundell and Horowitz (2007).  

4.1  Estimation of g  in Model (1.1)-(1.2) 

 This section presents an estimator of g  in model (1.1)-(1.2).  The estimator is a 

simplified version of the estimator of Blundell, Chen, and Kristensen (2007).  It is analogous to 

an IV estimator for a linear model and can be computed the same way.  The estimator is also a 

version of the Petrov-Galerkin method for solving a Fredholm integral equation of the first kind 

(Kress 1999).   

 To begin the derivation of the estimator, define  

 ( ) ( | ) ( )Wm w E Y W w f w= = . 

Define the operator A  on 2[0,1]L  by  

 
1

0
( )( ) ( ) ( , )XWAh w h x f x w dx= ∫ . 

Then (3.2) is equivalent to 

(4.1) Ag m= . 

The estimator of this section is obtained by replacing A  and m  with series estimators and 

solving the resulting empirical version of (4.1).3   

                                                      
3  Equation (3.5) and the results of Section 3 can be obtained from (4.1) by setting *T A A=  and 

*r A m= , where *A  is the adjoint of A .  The eigenvalues jλ  are the singular values of A .  The 
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 To obtain the estimators, let { }jψ  be an orthonormal basis for 2[0,1]L  that satisfies 

(3.11).  Then we can write 

 
1

( ) ( )j j
j

g x g xψ
∞

=

=∑ , 

 
1

( ) ( )j j
j

m w m wψ
∞

=

=∑ , 

and 

 
1 1

( , ) ( ) ( )XW jk j k
j k

f x w a x wψ ψ
∞ ∞

= =

=∑∑ , 

where ,j jg g ψ= , ,j jm m ψ= , and 

 
1 1

0 0
( , ) ( ) ( )jk XW j ka f x w x w dxdwψ ψ= ∫ ∫ . 

In addition, 

 
1 1

( )( ) ( )j jk k
j k

Ag w g a wψ
∞ ∞

= =

=∑∑ . 

The jm ’s and jka ’s are estimated 1/ 2n−  consistently by 

 1

1

ˆ ( )
n

j i j i
i

m n Y Wψ−

=

= ∑  

and 

 1

1

ˆ ( ) ( )
n

jk j i k i
i

a n X Wψ ψ−

=

= ∑ . 

The functions m  and operator A  are estimated consistently by 

 
1

ˆ ˆ( ) ( )
nJ

j j
j

m w m wψ
=

=∑  

and 

 
1 1

ˆ ˆ( )( ) ( )
n nJ J

j jk k
j k

Ah x h a wψ
= =

=∑∑ , 

                                                                                                                                                              
formulation of Section 3 is useful for expository purposes because it does not require familiarity 
with the singular value decomposition of an operator.  However, (4.1) yields an estimator that is 
easier to compute. 
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where h  is any function in 2[0,1]L , ,j jh h ψ= , and the integer nJ  is a truncation point that 

increases at a suitable rate as n →∞ .4  The empirical version of (4.1) is 

(4.2) ˆ ˆ ˆAg m= . 

The solution to (4.2) has the form of a conventional linear IV estimator.  To obtain it, let 

nW  and nX , respectively, denote the nn J×  matrices whose ( , )i j  elements are ( )j iWψ  and 

( )j iXψ .  Define 1( ,..., )n nY Y ′=Y .  Let ˆ{ : 1,..., }j ng j J=  denote the generalized Fourier 

coefficients of ˆ.g   That is, 

(4.3) 
1

ˆ ˆ( ) ( )
nJ

j j
j

g x g xψ
=

=∑ . 

Define 1
ˆ ˆ ˆ( ,..., )

nJG g g ′= .  Then the solution to (4.2) is (4.3) with 

(4.4) 1ˆ ( )n n n nG −′ ′= W X W Y . 

Ĝ  has the form of an IV estimator for a linear model in which the matrix of variables is nX  and 

the matrix of instruments is nW . 

 When n  is small, ĝ  in (4.3)-(4.4) can be highly variable.  Blundell, Chen, and 

Kristensen (2007) propose stabilizing ĝ  by replacing (4.4) with the solution to a penalized least-

squares problem.  Blundell, Chen, and Kristensen (2007) provide an analytic, easily computed 

solution to this problem and present the results of numerical experiments on the penalization 

method’s ability to stabilize ĝ  in small samples.   

 Horowitz (2009a) derived the rate of convergence in probability of ĝ .  When XWf  has 

r < ∞  continuous derivatives with respect to any combination of its arguments and certain other 

regularity conditions hold, then 

(4.5) 1/ 2ˆ ( / )s r
p n n ng g O J J J n−⎡ ⎤− = +⎣ ⎦ . 

If r = ∞ , the rate of convergence is slower, as is discussed below.  When r < ∞ , the rate of 

convergence of ĝ g−  is fastest when the terms s
nJ −  and 1/ 2( / )r

n nJ J n  converge to zero at the 

same rate.  This happens when 1/(2 2 1)r s
nJ n + +∝ , which gives 

                                                      
4  More generally, the series for m̂  and Â  or in the x  and w  directions can use different basis 
functions and have different lengths.  This extension is not carried out here.  The effects on 
estimation efficiency of using different basis functions and series lengths for different functions 
or directions are unknown at present. 
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(4.6) /(2 2 1)ˆ s r s
pg g O n− + +⎡ ⎤− = ⎣ ⎦ . 

Chen and Reiss (2007) show that /(2 2 1)s r sn− + +  is the fastest possible rate of convergence in 

probability of ĝ g−  that is achievable uniformly over functions g  and XWf  satisfying 

Horowitz’s (2009a) conditions.  The rate of convergence in (4.6) is slower than the 1/ 2n−  rate 

that is usually achieved by finite-dimensional parametric models.  It is also slower than the rate of 

convergence of a nonparametric estimator of a conditional mean or quantile function.  For 

example, if ( | )E Y X x=  and the probability density function of X  are twice continuously 

differentiable, then a nonparametric estimator of ( | )E Y X x=  can achieve the rate of 

convergence 2 / 5n− , whereas the rate in (4.6) with 2r s= =  is 2 / 9n− .  A nonparametric IV 

estimator converges relatively slowly because the data contain little information about g  in 

model (1.1)-(1.2), not because of any defect of the estimator. 

In (4.5), the term s
nJ −  arises from the bias of ĝ  that is caused by truncating the series 

approximation (4.3).  The truncation bias decreases as s  increases and g  becomes smoother (see 

(3.11)).  Therefore, increased smoothness of g  accelerates the rate of convergence of ĝ .  The 

term 1/ 2( / )r
n nJ J n  in (4.5) is caused by random sampling errors in the estimates of the 

generalized Fourier coefficients ˆ jg .  Specifically, 1/ 2( / )r
n nJ J n  is the rate of convergence of in 

probability of 
1/ 2

2
1

ˆ( )nJ
j jj

g g
=

⎡ ⎤−⎢ ⎥⎣ ⎦∑ .  Because jg  is inversely proportional to jλ  (see the 

discussion in Section 3), 
1/ 2

2
1

ˆ( )nJ
j jj

g g
=

⎡ ⎤−⎢ ⎥⎣ ⎦∑  converges more slowly when the eigenvalues of 

T  converge rapidly than when they converge slowly.  When XWf  has smoothness r , the 

eigenvalues decrease at a rate that is at least as fast as 2rj−  (Pietsch 1980).  Therefore, the fastest 

possible rates of convergence of 2
1

ˆ( )nJ
j jj

g g
=

−∑  and ĝ g−  decrease as XWf  becomes 

smoother.  Smoothness of XWf  increases the severity of the ill-posed inverse problem and 

reduces the accuracy with which g  can be estimated.  

 When XWf  is the bivariate normal density, r = ∞  and the eigenvalues of T  decrease at 

the rate c je− , where 0c >  is a constant.  The problem of estimating g  is said to be severely ill 

posed, and the rate of convergence of ĝ g−  in (4.3) is [(log ) ]s
pO n − .  This is the fastest 
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possible rate.  Therefore, when XWf  is very smooth, the data contain very little information about 

g  in (1.1)-(1.2).  Unless g  is restricted in other ways, such as assuming that it belongs to a low-

dimensional parametric family of functions or is infinitely differentiable, a very large sample is 

needed to estimate g accurately in the severely ill-posed case. 

Now let 1 2, ,..., Lx x x  be L  points in [0,1] .  Horowitz and Lee (2009) give conditions 

under which 1ˆ ˆ[ ( ),..., ( )]Lg x g x  is asymptotically L -variate normally distributed and the bootstrap 

can be used to obtain simultaneous confidence intervals for 1[ ( ),..., ( )]Lg x g x .  Horowitz and Lee 

(2009) also show how to interpolate the simultaneous confidence intervals to obtain a uniform 

confidence band for g .  The bootstrap procedure of Horowitz and Lee (2009) estimates the joint 

distribution of the leading terms of the asymptotic expansions of ˆ( ) ( )g x g x−  ( 1,..., L= ).  To 

describe this procedure, let 2 ( )ns x  denote the following consistent estimator of the variance of 

the asymptotic distribution of ˆ( )g x : 

2 2 1 2

1

ˆ ˆ ˆ( ) { [ ( , , , , ) ( , )]( )}
n

n n i i i n
i

s x n A Y X W g g xδ δ− −

=

= ⋅ − ⋅∑ , 

where for any 2[0,1]h L∈  

 
1

( , , , , ) [ ( )] ( ) ( )
nJ

n k k
k

x Y X W h Y h X W xδ ψ ψ
=

= − ∑  

and 

 1

1
( , ) ( , , , , )

n

n n i i i
i

x h n x Y X W hδ δ−

=

= ∑ . 

Let * * *{ , , : 1,..., }i i iY X W i n=  be a bootstrap sample that is obtained by sampling the estimation 

data { , , : 1,..., }i i iY X W i n=  randomly with replacement.  The bootstrap version of the asymptotic 

form of ˆ( ) ( )g x g x−  is  

 1 1 * * *

1

ˆ ˆ ˆ( ) { [ ( , , , , ) ( , )]}( )
n

n n i i i n
i

x n A Y X W g g xδ δ− −

=

Δ = ⋅ − ⋅∑ . 

Let *
nA  be the estimator of A  that is obtained from the bootstrap sample.  Define * 2[ ( )]ns x  as the 

following bootstrap estimator of the variance of ( )n xΔ : 

 * 2 2 * 1 * * * * * * 2

1
[ ( )] {( ) [ ( , , , , ) ( , )]( )}

n

n n n i i i n
i

s x n A Y X W g g xδ δ− −

=

= ⋅ − ⋅∑ . 
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where *g  is the estimate of g  obtained from the bootstrap sample and 

* * 1 * * * *
1

( , ) ( , , , , )n
n n i i ii

g n Y X W gδ δ−
=

⋅ = ⋅∑ .  The bootstrap procedure is as follows. 

 Step 1:  Draw a bootstrap sample * * *{ , , : 1,..., }i i iY X W i n=  by sampling the estimation 

data { , , : 1,..., }i i iY X W i n=  randomly with replacement.  Use this sample to form bootstrap 

estimates 1( ),..., ( )n n Lx xΔ Δ  and * *
1( ),..., ( )n ns x s x .  Compute the statistic 

 *
*1

| ( ) |max
( )

n
n

L n

xt
s x≤ ≤

Δ
= . 

 Step 2:  Repeat step 1 many times.  Let M  be the number of repetitions and *
nmt  be the 

value of *
nt  obtained on the m ’th repetition.  Let * *inf{ : ( ) }n MFαζ ζ ζ α= ≥  for any (0,1)α ∈ , 

where 

 * 1 *

1
( ) ( )

M

M nm
m

F M I tτ τ−

=

= ≤∑  

and I  is the indicator function.  Then *
nαζ  is a consistent estimator of the 1 α−  quantile of the 

bootstrap distribution of *
nt . 

 Step 3:  The simultaneous 1 α−  confidence intervals for 1ˆ ˆ[ ( ),..., ( )]Lg x g x  are 

 * *ˆ ˆ( ) ( ) ( ) ( ) ( ); 1,...,n n n ng x s x g x g x s x Lα αζ ζ− ≤ ≤ + = . 

 Implementation of the estimator (4.3) requires choosing the value of nJ .  One possible 

choice is an estimator of the asymptotically optimal nJ .  The asymptotically optimal nJ , denoted 

here by ,n optJ , minimizes 2ˆ( )n AQ J E g g≡ − , where AE  denotes the expectation with respect 

to the asymptotic distribution of ĝ g− .  Note that nQ  depends on J  through ĝ .  Define ,
ˆ
n optJ  

to be an asymptotically optimal estimator of ,n optJ  if , ,
ˆ( ) / ( ) 1p

n n opt n n optQ J Q J →  as n →∞ .  

Horowitz (2010) gives conditions under which an asymptotically optimal estimator of ,n optJ  can 

be obtained by minimizing the quantity 

 22 2 1 * 2

1 1

ˆ ˆˆ ˆ( ) [ ( )] {( ) ]( )}
n n

n i i j i
i j

Q J n Y g X A W gψ− −

= =

⎧ ⎫⎪ ⎪= − −⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑ . 

Horowitz (2010) presents Monte Carlo evidence indicating that this estimator performs well with 

samples of practical size in both mildly and severely ill-posed estimation problems. 
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4.2  Extension to Model (1.3)-(1.4) 

 This section extends the estimator (4.3) to model (1.3)-(1.4), which contains the 

exogenous explanatory variable Z .  Assume that Z  is a scalar whose support is [0,1] .  The data 

are the independent random sample { , , , : 1,..., }i i i iY X W Z i n= . 

If Z  is discretely distributed with finitely many mass points, then ( , )g x z , where z  is a 

mass point, can be estimated by using (4.3) with only observations i  for which iZ z= .  The 

results of Section 4.1 hold with n  replaced by the number of observations for which iZ z= , 

which is 
1

( )n
z ii

n I Z z
=

= =∑ .   

 If Z  is continuously distributed, then ( , )g x z  can be estimated by using (4.3) with 

observations i  for which iZ  is “close” to z .  Kernel weights can be used to select the appropriate 

observations.  To this end, let K  be a kernel function in the sense of nonparametric density 

estimation or regression, and let { }nb  be a positive sequence of bandwidths that converges to 0 as 

n →∞ .  Define ( ) ( / )bK v K v b=  for any real v  and b .  Also define 

 
1

1ˆ ( ) ( )
n

n

jz i j i b i
n i

m Y W K z Z
nb

ψ
=

= −∑ , 

 
1

1ˆ ( ) ( ) ( )
n

n

jkz j i k i b i
n i

a X W K z Z
nb

ψ ψ
=

= −∑ , 

 
1

ˆ ˆ( ) ( )
nJ

z jz j
j

m w m wψ
=

=∑ , 

and 

 
1 1

ˆ ˆ( , , ) ( ) ( )
n nJ J

XWZ jkz j k
j k

f x w z a x wψ ψ
= =

=∑∑ . 

Define the operator ˆ
zA  by 

 
1

0
ˆˆ( )( , ) ( ) ( , , )z XWZA h w z h x f x w z dx= ∫  

for any 2[0,1]h L∈ .  Let XWZf  and WZf  denote the probability density functions of ( , , )X W Z  

and ( , )W Z , respectively.  Estimate ( , )g x z  for any (0,1)z∈  by solving 

(4.7) ˆ ˆ ˆz zA g m= . 

This is a finite-dimensional matrix equation because ˆ
zA  is a n nJ J×  matrix and ˆ zm  is a 1nJ ×  

vector.  Equation (4.7) is an empirical analog of the relation 
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(4.8) ( | , ) ( , ) ( )( , )WZ zE Y W w Z z f w z A g w z= = = , 

where the operator zA  is defined by 

1

0
( )( , ) ( , ) ( , , )z XWZA h w z h x z f x w z dw= ∫ . 

Equation (4.8) can be derived from (1.3)-(1.4) by using reasoning like that used to obtain (3.6). 

Under regularity conditions that are stated in the Section A.1 of the appendix,  

(4.9) 2 2 /(2 2 1)ˆ ( , ) ( , ) s r s
pg z g z O n κ− + +⎡ ⎤⋅ − ⋅ = ⎣ ⎦ , 

where 2 /(2 1)r rκ = + .  The estimator can be extended to 0z =  and 1z =  by using a boundary 

kernel (Gasser and Müller 1979; Gasser, Müller, and Mammitzsch 1985) in ˆ jzm  and ˆ jkza .  

Boundary kernels are explained in the discussion of the second specification test  in Section 4.3. 

4.3  Two Specification Tests 

 This section presents two specification tests that will be used in the empirical illustrations 

of Section 5.  One test is of the hypothesis that ( , ) ( , , )g x z G x z θ=  for all 2( , ) [0,1]x z ∈ , where G  

is a known function and θ  is a finite-dimensional parameter whose value must be estimated from 

the data.  Under this hypothesis, the parametric model ( , )G x θ  satisfies (1.3)-(1.4) for some θ .  

A similar test applies to (1.1)-(1.2).  In this case, the hypothesis is ( ) ( , )g x G x θ= .  The second 

test presented in this section is of the hypothesis that ( , )g x z  does not depend on x .  The first test 

was developed by Horowitz (2006).  The second test is new. 

 Testing a Parametric Model against a Nonparametric Alternative:  In this test, the null 

hypothesis, 0H , is that 

(4.10) ( , ) ( , , )g x z G x z θ=  

for a known function G , some finite-dimensional θ  in a parameter set Θ , and almost every 

2( , ) [0,1]x z ≡ .  “Almost every ( , )x z ” means every ( , )x z  except, possibly, a set of ( , )x z  values 

whose probability is 0.  The alternative hypothesis, 1H , is that there is no θ ∈Θ  such that (4.10) 

holds for almost every ( , )x z .  The discussion here applies to model (1.3)-(1.4).  A test of 

0 : ( ) ( , )H g x G x θ=  for model (1.1)-(1.2) can be obtained by dropping z  and setting ( , ) 1x z =  in 

the discussion below.  The test statistic is 

 
1 1 2
0 0

( , )n nS x z dxdzτ = ∫ ∫ , 

where 
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 ( )1/ 2

1

ˆˆ( , ) [ ( , , )] ( , , ) ( , )
n

i
n i i i i i iXWZ

i
S x z n Y G X Z f x W Z Z zθ −−

=

= −∑ , 

θ̂  is a GMM estimator of θ  and ( )ˆ i
XWZf −  is a leave-observation- i -out kernel estimator of XWZf .  

That is 

( )
3

1

1ˆ ( , , ) ( ) ( ) ( )
n n n

n
i

b j b j b jXWZ
n j

j i

f x w z K x X K w W K z Z
nb

−

=
≠

= − − −∑  

where K  is a kernel function and nb  is a bandwidth.  In applications, the value of nb  can be 

chosen by cross-validation.  The function  is any function on [0,1]  with the property that 

 
1

0
( , ) ( ) 0x z h x dx =∫  

for almost every [0,1]z∈  only if ( ) 0h x =  for almost every [0,1]x∈ .  0H  is rejected if nτ  is too 

large.  Horowitz (2006) derives the asymptotic distribution of nτ  under 0H  and 1H  and gives a 

method for computing its critical value.  The nτ  test is consistent against any fixed alternative 

model and against a large class of alternative models whose distance from the null-hypothesis 

parametric model is 1/ 2( )O n−  or greater.   

 The test can be understood intuitively by observing that as n →∞ , 1/ 2 ( , )nn S x z−  

converges in probability to  

( , ) {[ ( , ) ( , , )] ( , , ) ( , )},XWZ XWZS x z E g X Z G X Z f x W Z Z zθ∞ ∞= −  

where XWZE  denotes the expectation with respect to the distribution of ( , , )X W Z  and θ∞  is the 

probability limit of nθ  as n →∞ .  If g  is identified, then ( , ) 0S x z∞ =  for almost every 

2( , ) [0,1]x z ∈  only if ( , ) ( , , )g x z G x z θ∞=  almost every ( , )x z .  Therefore,  

 
1 1 2
0 0

( , )S x z dxdzτ∞ ∞= ∫ ∫  

is a measure of the distance between ( , )g x z  and ( , , )G x z θ∞ .  The test statistic nτ  is an empirical 

analog of τ∞ .   

 Testing the Hypothesis that g(x,z) Does Not Depend on x:  This test is a modification of 

the exogeneity test of Blundell and Horowitz (2007).  The null hypothesis, 0H , is that 

(4.11) ( , ) ( )g x z G z=  
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for almost every 2( , ) [0,1]x z ∈  and some unknown function G .  The alternative hypothesis, 1H , 

is that there is no G  such that (4.11) holds for almost every 2( , ) [0,1]x z ∈ .  It follows from (1.3)-

(1.4) that ( ) ( | )G z E Y Z z= =  if 0H  is true.  Accordingly, we set ( ) ( | )G z E Y Z z= =  for the rest 

of the discussion of the test of 0H . 

 The test statistic is 

 
1 1 2
0 0

( , ) ,n nS x z dx dzτ = ∫ ∫ , 

where 

(4.12) ( )1/ 2 ( )

1

ˆˆ( , ) [ ( )] ( , , ) ( , )
n

ii
n i i i i iXWZ

i
S x z n Y G Z f x W Z Z z−− −

=

= −∑ . 

In (4.12),  is defined as in the test of a parametric model.  ( )ˆ iG −  and ( )ˆ i
XWZf − , respectively, are 

leave-observation-i-out “boundary kernel” estimators of the mean of Y  conditional on Z  and 

XWZf .  Boundary kernels are defined in the next paragraph.  The estimators are 

( ) ( ) ( )
1 1 1

( )

3
1 1

ˆ ( , , )

1 , , ,

i
XWZ

n

b j b j b j
j
j i

f x w z

K x X x K w W w K z Z z
nb

−

=
≠

=

− − −∑

 

and  

( )
2

( )
( )

12

1ˆ ( ) , ,ˆ ( )

n
i

i b ji
jZ
j i

G z Y K z Z z
nb f z

−
−

=
≠

= −∑  

where 1b  and 2b  are bandwidths, and  

( )
2

( )

2 1

1ˆ ( ) ,
n

i
b jZ

j
j i

f z K z Z z
nb

−

=
≠

= −∑ . 

In applications, 1b  can be chosen by cross-validation.  The value of 2b  can be set at 7 / 40n−  times 

the value obtained by cross-validation.   

The boundary kernel function bK  has the property that for all [0,1]ξ ∈  

(4.12) 
1( 1) 1  if 0

( , )
0 if 1.

j j
b

j
b u K u du

j
ξ

ξ
ξ

+− + =⎧
= ⎨ =⎩∫  
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If b  is small and ξ  is not close to 0 or 1, then we can set ( , ) ( / )bK u K u bξ = , where K  is an 

“ordinary” order s kernel.  If ξ  is close to 1, then we can set ( , ) ( / )bK u K u bξ = , where K  is a 

bounded, compactly supported function satisfying 

0

1  if 0
( )

0 if 1 1.
j j

u K u du
j s

∞ =⎧
= ⎨ ≤ ≤ −⎩∫  

If ξ  is close to 0, we can set ( , ) ( / )bK u K u bξ = − .  Gasser and Müller (1979) and Gasser, 

Müller, and Mammitzsch (1985) give examples of boundary kernels.  A boundary kernel is used 

here instead of an ordinary kernel because, to prevent imprecise estimation of G , the probability 

density function of Z , Zf , is assumed to be bounded away from 0.  This causes ( )Zf z  and 

( , , )XWZf x w z  to be discontinuous at 0z =  and 1z = .  The boundary kernel overcomes the 

resulting edge effects.   

 The nτ  test rejects 0H  if nτ  is too large.  Section A.2 of the appendix gives the 

asymptotic properties of the test, including the asymptotic distribution of nτ  under 0H , a method 

for computing the critical value of the test, and the test’s consistency.  The nτ  test can be 

understood intuitively by observing that as n →∞ , 1/ 2 ( , )nn S x z−  converges in probability to  

 ( , ) {[ ( , ) ( )] ( , , ) ( , )}XWZ XWZS x z E g X Z G Z f x W Z Z z∞ ∞= − , 

where ( ) ( | )G z E Y Z z∞ = = .  Therefore, nτ  is an empirical measure of the distance between 

( , )g x z  and ( | )E Y Z z= . 

5.  EMPIRICAL EXAMPLES 

 This section presents two empirical examples that illustrate the usefulness of 

nonparametric IV estimation and how conclusions drawn from parametric and nonparametric IV 

estimators may differ.  The first example is about estimation of an Engel curve.  The second is 

about estimating the effects of class size on students’ performances on standardized tests. 

5.1  Estimating an Engel Curve 

 This section shows the result of using the method of Section 4.1 to estimate an Engel 

curve for food.  The data are 1565 household-level observations from the British Family 

Expenditure Survey.  The households consist of married couples with an employed head-of-

household between the ages of 25 and 55 years.  The model is (1.1)-(1.2).  Y  denotes a 

household’s expenditure share on food, X  denotes the logarithm of the household’s total 
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expenditures, and W  denotes the logarithm of the household’s gross earnings.  Blundell, Chen, 

and Kristensen (2007) used the Family Expenditure Survey for nonparametric IV estimation of 

Engel curves.  Blundell, Chen, and Kristensen (2007) also report the results of an investigation of 

the validity of the logarithm of gross earnings as an instrument for expenditures. 

The basis functions used here are B-splines with 4 knots.  The estimation results are 

similar with 5 or 6 knots.  The estimated Engel curve is shown in Figure 2.  The curve is 

nonlinear and different from what would be obtained with a simple parametric model such as a 

linear or quadratic model.  The nτ  test of Horowitz (2006) that is described in Section 4.3 rejects 

the hypothesis that the Engel curve is a linear, quadratic, or cubic function ( 0.05p <  in all cases).  

Thus, in this example, nonparametric methods reveal an aspect of data (the shape of the Engel 

curve) that would be hard to detect using conventional parametric models.  Of course, with 

sufficient effort it may be possible to find a simple parametric model that gives a curve similar to 

the nonparametric one.  Although such a parametric model may be a useful way to represent the 

curve, it could not be used for valid inference for the reasons explained in Section 2. 

5.2  The Effect of Class Size on Students’ Performances on Standardized Tests 

 Angrist and Lavy (1999) studied the effects of class size on test scores of 4th and 5th 

grade students in Israel.  Here, I use one of their models for 4th grade reading comprehension and 

their data to illustrate differences between parametric and nonparametric IV estimation and the 

effects that parametric assumptions can have on the conclusions drawn from IV estimation.  The 

data are available at http://econ-www.mit.edu/faculty/angrist/data1/data/anglavy99.  Angrist’s 

and Lavy’s substantive conclusions are based on several different models and methods.  The 

discussion in this section is about one model and is not an evaluation or critique of Angrist’s and 

Lavy’s substantive findings, which are more broadly based. 

 One of the models that Angrist and Lavy (1999) use is 

(5.1) 0 1 2CS CS CS S CSY X D Uβ β β ν= + + + + . 

In this model, CSY  is the average reading comprehension test score of 4th grade students in class 

C  of school S , CSX  is the number of students in class C  of school S , CSD  is the fraction of 

disadvantaged students in class C  of school S , Sν  is a school-specific random effect, and CSU  

is an unobserved random variable that is independently distributed across schools and classes.  

CSX  is a potentially endogenous explanatory variable.  The instrument for CSX  is 

 / int[1 ( 1) / 40]CS S SZ E E= + − , 
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where SE  is enrollment in school S .  The data consist of observations of 2049 classes that were 

tested in 1991.  The IV estimate of 1β  in (5.1) is -0.110 with a standard error of 0.040 (Angrist 

and Lavy 1999, Table V).  Thus, according to model (5.1), increasing class size has a negative 

and statistically significant effect on reading comprehension test scores.   

 The nonparametric version of (5.1) is 

(5.2) ( , ) ; ( | , ) 0CS CS CS S CS S CS CS CSY g X D U E U Z Dν ν= + + + = . 

Figure 3 shows the result of using the method of Section 4.2 to estimate g  as a function of CSX  

for 1.5CSD =  percent.  The basis functions are orthogonal (Legendre) polynomials, the series 

length is 3, and the bandwidth is 1.5nb = .  The solid line in the figure is the estimate of g , and 

the dots show a bootstrap-based uniform 95% confidence band obtained using the method of 

Horowitz and Lee (2009).  Unobserved school-specific effects, Sν , were handled by using 

schools as the bootstrap sampling units.  The nonparametrically estimated relation between test 

scores and class size is nonlinear and non-monotonic, but the confidence band is very wide.  

Functions that are monotonically increasing and decreasing can fit easily in the band.  Moreover, 

the nτ  test of Section 4.3 does not reject the hypothesis that test scores are independent of class 

size ( 0.10p > ).  Thus, the data and the instrumental variable assumption, by themselves, are 

uninformative about the form of any dependence of test scores on class size.  This does not 

necessarily imply that test scores and class sizes are independent.  For example, the nτ  test may 

not be sufficiently powerful to detect any dependence, or the effects of class size might be 

obscured by heterogeneity that is not accounted for by CSD .  However, the nonparametric model 

does not support the conclusion drawn from the linear model that increases in class sizes are 

associated with decreased test scores.   

 Average derivatives can be estimated more precisely than functions can, so it is possible 

that an estimator of ( , | 1.5) /E g X D D X∂ = ∂  is more informative about the effects of class size 

on test scores than is the function ( ,1.5)g x .  The average here is over the distributrion of X  

conditional on 1.5D = .  Ai and Chen (2009) provide asymptotic distributional results for 

nonparametric IV estimators of unconditional average derivatives, but there is no existing theory 

on nonparametric IV estimation of conditional average derivatives such as 

( , | 1.5) /E g X D D X∂ = ∂ .  To get some insight into whether an estimate of the conditional 

derivative can clarify the relation between test scores and class size, ( , | 1.5) /E g X D D X∂ = ∂  was 

estimated by  
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(5.3) ,

,

ˆ ( ,1.5) ( 1.5)
ˆ( , | 1.5)ˆ

( 1.5)

n

n

CS
b CS

C S

b CS
C S

g X K D
Xg X D DE

X K D

∂
−

∂∂ =
=

∂ −

∑
∑

. 

The standard error of the estimate was obtained by applying the bootstrap to the leading term of 

the asymptotic expansion of the right-hand side of (5.3) with schools as the bootstrap sampling 

units.  The resulting estimate of the conditional average derivative is 0.064 with a standard error 

of 0.14.  Therefore, the nonparametric average derivative estimate does not support the 

conclusion from the linear model that increases in class size are associated with decreases in test 

scores. 

The conclusions drawn from the linear model might be persuasive, nonetheless, if this 

model were consistent with the data.  However, the nτ  test of Section 4.3 rejects the hypothesis 

that g  is a linear function of CSX  and CSD  ( 0.05p < ).  This does not necessarily imply that the 

linear model is a poor approximation g  in (5.2), but the quality of the approximation is 

unknown.  Therefore, one should be cautious in drawing conclusions from the linear model.  In 

summary, the data are uninformative about the dependence, if any, of g  in (5.2) on CSX .  The 

conclusion from (5.1) that increases in class size decrease test scores is a consequence of the 

linearity assumption, not of information contained in the data per se. 

6.  DISCRETELY DISTRIBUTED EXPLANATORY VARIABLES AND INSTRUMENTS 

 This section is concerned with identification and estimation of g  when, as happens in 

many applications, X , W , and Z  are discretely distributed random variables with finitely many 

points of support.  Because Z  is exogenous and discrete, all of the analysis can be carried out 

conditional on Z  being held fixed at one of its points of support.  Accordingly, the discussion in 

this section is concerned with identifying and estimating g  as a function of X  at a fixed value of 

Z .  The notation displays dependence only on X  and W .  Section 6.1 discusses identification 

and estimation of g .  Section 6.2 presents empirical illustrations of the results of Section 6.1. 

6.1  Identification and Estimation of g  

 Let the supports of X  and W , respectively, be 1{ ,..., }Jx x  and 1{ ,..., }Kw w  for finite, 

positive integers J  and K .  For 1,...,j J=  and 1,...,k K= , define ( )j jg g x= , 
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( | )k km E Y W w= = , and ( | }jk j kP X x W wπ = = = .  When X  and W  are discretely distributed, 

condition (1.2) is equivalent to 

(6.1) 
1

; 1,...,
J

k jk j
j

m g k Kπ
=

= =∑ . 

Let Π  be the J K×  matrix whose ( , )j k  element is jkπ .  If K J≥  and ( )Rank JΠ = , then  

(6.1) can be solved to obtain 

(6.2) 1( )g M−′= ΠΠ Π , 

where 1( ,..., )KM m m ′=  and 1( ,..., )Jg g g ′= .   

An estimator of g  that is 1/ 2n− -consistent and asymptotically normal can be obtained by 

replacing Π  and M  in (6.2) with estimators.  With data { , , : 1,..., }i i iY X W i n= , the km ’s and 

jkπ ’s are estimated 1/ 2n−  consistently by 

 1

1

ˆ ( )
n

k k i i k
i

m n Y I W w−

=

= =∑  

and 

 1

1

ˆ ( ) ( )
n

jk k i j i k
i

n I X x I W wπ −

=

= = =∑ , 

where  

 
1

( )
n

k i k
i

n I W w
=

= =∑ . 

The estimator of g  is 

 1 ˆˆ ˆ ˆˆ ( )g M−′= ΠΠ Π , 

where Π̂  is the J K×  matrix whose ( , )j k  element is ˆ jkπ , 1
ˆ ˆ ˆ( ,..., )KM m m ′= , and 

1ˆ ˆ ˆ( ,..., )Jg g g= .  There is no ill-posed inverse problem and, under mild regularity conditions, 

there are no other complications. 

 There are, however, many applications in which K J< .  In some applications, W  is 

binary, so 2K = .  For example, Card (1995) estimates models of earnings as a function of years 

of schooling and other variables.  Years of schooling is an endogenous explanatory variable.  The 

instrument for it is a binary indicator of whether there is an accredited four-year college in an 

individual’s metropolitan area.   
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When W  is binary, g  is not identified nonparametrically if 2J > .  Nor are there 

informative, nonparametrically identified bounds on g  in the absence of further information or 

assumptions.  A linear model for g , such as that used by Card (1995), is identified but not 

testable.  Thus, in contrast to the case in which X  and W  are continuously distributed, when X  

and W  are discretely distributed and W  has too few points of support, the problem is 

identification, not estimation.  The remainder of this section discusses what can be learned about 

g  when it is not point identified. 

 Chesher (2004) gives conditions under which there are informative, nonparametrically 

identified bounds on g .  Write model (1.1)-(1.2) in the form 

(6.3) ( ) ; ( | ) 0; 1,...,kY g X U E U W w k K= + = = =  

and 

(6.4) ( , ); ~ [0,1];X H W U Wε ε ε= ⊥ . 

Equation (6.4) defines H  to be the conditional quantile function of X  and is a tautology.  Order 

the points of support of X  so that 1 2 ... Jx x x< < < .  Assume that 

(6.5) ( | , ) ( )kE U W w e c eε= = =  

for all 1,...,k K=  and some monotonic function c .  This is a version of assumption (1.10) of the 

control function model that is discussed in Section 1.2.  Also assume that there are an (0,1)e ∈  

and points 1jw − , jw  in the support of W  such that 

(6.6) 1 1( | ) ( | )j j j jP X x W w e P X x W w− −≤ = ≤ ≤ ≤ =  

for some 1,...,j J= .  Chesher (2004) shows that if (6.5) and (6.6) hold, then 

1

1

(6.7) min[ ( | , ), ( | , )] ( )

max[ ( | , ), ( | , )].

j j j j j

j j j j

E Y X x W w E Y X x W w g c e

E Y X x W w E Y X x W w

−

−

= = = = ≤ +

≤ = = = =
 

Inequality (6.7) makes it possible to obtain identified bounds on differences j kg g−  if 

(6.6) holds for j  and k  with the same value of e .  Specifically, 

(6.8) ,min ,max ,max ,minj k j k j kg g g g g g− ≤ − ≤ − , 

where ,minjg  and ,maxjg , respectively, are the lower and upper bounds on jg  in (6.7).  The 

quantities ,minkg  and ,maxkg  are the bounds obtained by replacing j  with k  in (6.7).  The 

bounds on j kg g−  can be estimated consistently by replacing the conditional expectations in 
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(6.7) with sample averages.  Specifically, ( | , )E Y X x W w= =  for any ( , )x w  in the support of 

( , )X W  is estimated by 

 1

1

ˆ ( | , ) ( , )
n

xw i i i
i

E Y X x W w n Y I X x W w−

=

= = = = =∑ , 

where 

 
1

( , )
n

xw i i
i

n I X x W w
=

= = =∑ . 

 Manski and Pepper (2000) give conditions under which there are identified upper and 

lower bounds on g  and an identified upper bound on j kg g− .  The conditions are: 

 Monotone treatment response (MTR):  Let (1)y  and (2)y  denote the outcomes (e.g., 

earnings) that an individual would receive with treatment values (that is, values of x ) (1)x  and 

(2)x , respectively.  Then (2) (1)x x≥  implies (2) (1)y y≥ . 

 Monotone treatment selection (MTS):  Let SX  denote the treatment (e.g., years of 

schooling) that an individual selects.  Let x  denote any possible treatment level.  Then (2) (1)x x≥  

implies 

 (2) (1)( | ) ( | )S SE Y X x E Y X x= ≥ = . 

Assumption MTR is analogous to Chesher’s (2004) monotonicity condition (6.5).  Assumption 

MTS replaces the assumption that a conventional instrument is available.  Manski and Pepper 

(2000) show that under MTR and MTS, 

 

:

:

( | ) ( ) ( | ) ( )

( | ) ( ) ( | ) ( )

j

j

j j
x x

j

j j
x x

E Y X x P X x E Y X x P X x

g

E Y X x P X x E Y X x P X x

<

>

= = + = ≥

≤

≤ = = + = ≤

∑

∑

 

and 
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1

1

(6.9) 0 [ ( | ) ( | )] ( )

[ ( | ) ( | )] ( ).

[ ( | ) ( | )] ( ).

k

j k j

j k k j

J

k
j

g g E Y X x E Y X x P X x

E Y X x E Y X x P x X x

E Y X x E Y X x P X x

=

= +

≤ − ≤ = − = =

+ = − = ≤ ≤

+ = − = =

∑

∑

 

These bounds can be estimated consistently by replacing expectations with sample averages.  

Confidence intervals for these bounds and for those in (6.8) can be obtained by taking advantage 

of the asymptotic normality of sample averages.  See, for example, Horowitz and Manski (2000), 

Imbens and Manski (2004), and Stoye (2009). 

6.2  An Empirical Example 

 This section applies the methods of Section 6.1 to nonparametric estimation of the return 

to a college education, which is defined here as the percentage change in earnings from increasing 

an individual’s years of education from 12 to 16.  The data are those used by Card (1995).  They 

are available at http://emlab.berkeley.edu/users/card/data_sets.html and consist of 3010 records 

taken from the National Longitudinal Survey of Young Men.  Card (1995) treats years of 

education as endogenous.  The instrument for years of education is a binary variable equal to 1 if 

there is an accredited 4-year college in what Card (1995) calls an individual’s “local labor 

market” and 0 otherwise.  A binary instrument point identifies returns to education in Card’s 

parametric models, but it does not provide nonparametric point identification.  We investigate the 

possibility of obtaining bounds on returns to a college education by using the methods of Chesher 

(2004) and Manski and Pepper (2000). 

 In the notation of Section 6.1, Y  is the logarithm of earnings, X  is the number of years 

of education, and W  is the binary instrument.  To use Chesher’s (2004) method for bounding 

returns to a college education, the monotonicity condition (6.6) must be satisfied.  This requires 

either 

(6.10) ( | 1) ( 1| 0)P X J W P X J W≤ = ≤ ≤ − =  

or  

(6.11) ( | 0) ( 1| 1)P X J W P X J W≤ = ≤ ≤ − =  

for 12J =  and 16J = .  Table 1 shows the relevant empirical probabilities obtained from Card’s 

(1995) data..  Neither (6.10) nor (6.11) is satisfied.  Therefore, Chesher’s (2004) method with 

Card’s (1995) data and instrument cannot be used to bound returns to a college education. 
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 Manski’s and Pepper’s (2000) approach does not require an instrument but depends on 

the MTR and MTS assumptions, which are not testable.  If these assumptions hold for the 

population represented by Card’s data, then replacing population expectations in (6.9) with 

sample averages yields estimated upper bounds on returns to a college education.  These are 

shown in Table 2 for several levels of labor-force experience.  Card (1995) estimated returns from 

linear models with a variety of specifications.  He obtained point estimates in the range 36%-

78%, depending on the specification, regardless of experience.  The estimates of returns at the 

lower end of Card’s range are consistent with the Manski-Pepper bounds in Table 2. 

7.  CONCLUSIONS 

 Nonparametric IV estimation is a new econometric method that has much to offer applied 

research.  Nonparametric estimation: 

 1.  Minimizes the likelihood of specification errors. 

 2.  Reveals the information that is available from the data and the assumption of validity 

of the instrument as opposed to functional form assumptions. 

 3.  Enables one to assess the importance of functional form assumptions in drawing 

substantive conclusions from a parametric model. 

As this paper has illustrated with empirical examples, nonparametric estimates may yield 

results that are quite different from those reached with a parametric model.  Even if one 

ultimately chooses to rely on a parametric model to draw conclusions, it is important to 

understand when the restrictions of the parametric model, as opposed to information in the data 

and the assumption of instrument validity, are driving the results. 

 There are also unresolved issues in nonparametric IV estimation.  These include choosing 

basis functions for series estimators and choosing instruments if the dimension of W  exceeds that 

of X . 

APPENDIX 

 Section A.1 outlines the proof of (4.9).  Section A.2 presents the asymptotic distributional 

properties of the nτ  test of the hypothesis that ( , )g x z  does not depend on x . 

A.1  Outline of Proof of (4.9) 

Let 1 1 2 2( , ) ( , ) Ex w x w−  denote the Euclidean distance between 1 1( , )x w  and 2 2( , )x w .  Let 

( , , )j XWZD f x w z  denote any j ’th partial or mixed partial derivative of ( , , )XWZf x w z  with 
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respect to its first two arguments.  Let 0 ( , , ) ( , , )XWZ XWZD f x w z f x w z= .  For each [0,1]z∈ , 

define ( , ) ( | , ) ( , )WZm w z E Y W w Z z f w z= = = .  Define the sequence of function spaces 

1
:

nJ

ns j j gs
j

h h h Cψ
=

⎧ ⎫⎪ ⎪= = ≤⎨ ⎬
⎪ ⎪⎩ ⎭

∑H . 

Let *
zA  denote the adjoint of zA .  For [0,1]z∈ , define 

 
* 1/ 2

sup
( )ns

nz
h z z

h

A A h
ρ

∈
=

H
. 

Blundell, Chen, and Kristensen (2007) call nzρ  the sieve measure of ill posedness and discuss its 

relation to the eigenvalues of *
z zA A .  Define 

 
1

( ) ( )
nJ

nz jz j
j

g x g xψ
=

=∑ . 

For [0,1]z∈ , define 

 ( , , ) ( ) ( )jkz XWZ j ka f x w z x w dxdwψ ψ= ∫ . 

Let nzA  be the operator whose kernel is 

 
1 1

( , ) ( ) ( )
n nJ J

nz jkz j k
j k

a x w a x wψ ψ
= =

=∑∑ . 

Also define nz nz nzm A g= .   

 Make the following assumptions. 

Assumption 1:  (i) The support of ( , , )X W Z  is contained in 3[0,1] .  (ii) ( , , )X W Z  has a 

probability density function XWZf  with respect to Lebesgue measure.  (iii) There are an integer 

2r ≥  and a constant fC < ∞  such that | ( , , ) |j XWZ fD f x w z C≤  for all 3( , , ) [0,1]x w z ∈  and 

0,1,...,j r= .  (iv) 1 1 2 2| ( , , ) ( , , ) |r XWZ r XWZD f x w z D f x w z−  1 1 2 2( , ) ( , )f EC x w x w≤ −  for any 

order r  derivative, any 1 1( , )x w  and 2 2( , )x w  in 2[0,1]  and any [0,1]z∈ .   

 Assumption 2:  2( | , ) YE Y W w Z z C= = ≤  for each 2( , ) [0,1]w z ∈  and some constant 

YC < ∞ .   
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Assumption 3:  (i) For each [0,1]z∈ , (1.3) has a solution ( , )g z⋅  with 0( , ) sg z C⋅ <  and 

2s ≥ .  (ii) The estimator ĝ  is as defined in (4.7).  (iii) The function ( , )m w z  has r s+  square-

integrable derivatives with respect to w  and r  bounded derivatives with respect to z .   

 Assumption 4:  (i) The basis functions { }jψ  are orthonormal, complete on 2[0,1]L , and 

bounded uniformly over j .  (ii) ( )r
nz z nA A O J −− =  uniformly over [0,1]z∈ .  (iii)  For any 

2[0,1]Lν ∈  with  square integrable derivatives, there are coefficients jν  ( 1,2,...j = ) and a 

constant C < ∞  that does not depend on ν  such that  

1

J

j j
j

CJν ν ψ −

=

− ≤∑ .  

 Assumption 5:  (i) The operator zA  is nonsingular for each [0,1]z∈ .  (ii) ( )r
nz nO Jρ =  

uniformly over [0,1]z∈ .  (iii) As n →∞ , 

 
( )

sup ( )
ns

nz z s
nz n

A A
O J

ν

ν
ρ

ν
−

∈

−
=

H
 

uniformly over [0,1]z∈ . 

 Assumption 6:  The kernel function K  is a symmetrical, twice continuously 

differentiable function on [ 1,1]− , and 

 
1

1

1if 0
( )

0 if 1.
j j

v K v dv
j r−

=⎧
= ⎨ ≤ −⎩∫  

 Assumption 7:  (i) The bandwidth, nb , satisfies 1/(2 1)r
n bb c n− += , where bc  is a constant 

and 0 bc< < ∞ .  (ii) /(2 2 1)r s
n JJ C nκ + +=  for some constant JC < ∞ . 

 Assumptions 1 and 2 are smoothness and boundedness conditions.  Assumption 3 defines 

the function being estimated and the estimator.  The assumption requires 0( , ) sg z C⋅ <  (strict 

inequality) to avoid complications that arise when g  is on the boundary of sH .  Assumption 3 

also ensures that the function m  is sufficiently smooth.  This function has more derivatives with 

respect to w  than z  because ( , ) [ ( , )]( , )zm w z A g z w z= ⋅ , and zA  smooths g  along its first 

argument but not its second.  Assumption 4 is satisfied by trigonometric bases and B-splines that 

have been orthogonalized by, say, the Gram-Schmidt procedure.  Orthogonal polynomials do not 

satisfy the boundedness requirement.  However, this does not prevent the use of orthogonal 

polynomials in applications because, for any fixed integer J , the basis can consist of the first J  
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orthogonal polynomials plus a rotation of B-splines or trigonometric functions that is orthogonal 

to the polynomials.  Assumption 5(ii) is a simplified version of assumption 6 of Blundell, Chen, 

and Kristensen (2007).  Blundell, Chen, and Kristensen (2007) and Chen and Reiss (2007) give 

conditions under which this assumption holds.  Assumption 5(iii) ensures that nzA  is a 

“sufficiently accurate” approximation to zA  on nsH .  This assumption complements 4(ii), which 

specifies the accuracy of nzA  as an approximation to zA  on the larger set sH .  Assumption 5(iii) 

can be interpreted as a smoothness restriction on XWZf .  For example, 5(iii) is satisfied if 

assumptions 4 and 5(ii) hold and zA  maps sH  to r s+H .  Assumption 5(iii) also can be interpreted 

as a restriction on the sizes of the values of jkza  for j k≠ .  Hall and Horowitz (2005) used a 

similar diagonality restriction.  Assumption 6 requires K  to be a higher-order kernel if XWZf  is 

sufficiently smooth.  K  can be replaced by a boundary kernel (Gasser and Müller 1979; Gasser, 

Müller, and Mammitzsch 1985) if XWZf  does not approach 0 smoothly on the boundary of its 

support.   

 Proof of (4.9):  Use the notation ( , ) ( )zg x z g x= , ˆ ˆ( , ) ( )zg x z g x= , and ( , ) ( )zm w z m w= .  

For each (0,1)z∈ , 

(A.1) ˆ ˆz z z nz nz zg g g g g g− ≤ − + − . 

Moreover,  

 ( )s
nz zg g O J −− =  

by assumption 4(iii).  Therefore, 

(A.2) ˆ ˆ ( )s
z z z nzg g g g O J −− ≤ − + . 

Now consider ˆ z nzg g− .  By ˆ( ) 1z nsP g ∈ →H  as n →∞  and the definition of nzρ , 

(A.3) ˆ ˆ( )z nz nz z z nzg g A g gρ− ≤ −  

with probability approaching 1 as n →∞ .  In addition, ˆ ˆ ˆz z zA g m=  and z z zA g m= .  Therefore, 

 

ˆ ˆˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ).

z z nz z z z z z z nz z z z

z z z z z z nz z

A g g A A g A g A g g A g

A A g m m A g g

− = − + − − −

= − + − − −

 

The triangle inequality now gives 

 ˆˆ ˆ ˆ( ) ( ) ( )z z nz z z z z z z nz zA g g A A g m m A g g− ≤ − + − + − . 

Standard calculations for kernel estimators show that under assumptions 3(iii), 6, and 7,  
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 1/ 2 /(2 1)ˆ ˆ [ ]r r
z z p nm Em O J n− +− =  

and  

 1/ 2 /(2 1)ˆ [ ]r r r s
z z n nEm m O J n J− + − −− = + . 

Therefore, 

 1/ 2 /(2 1)ˆ [ ]r r r s
z z p n nm m O J n J− + − −− = + . 

In addition, ( ) 0nz nz zA g g− = , so ( ) ( )( )z nz z nz z nz zA g g A A g g− = − − .  Therefore,  

 

( )( )
( )

( )

nz z nz z
z nz z nz z

nz z

r s
n

A A g g
A g g g g

g g

O J − −

− −
− = −

−

=

 

by assumptions 4 and 5.  Therefore, we have 

(A.4) 1/ 2 /(2 1)ˆˆ ˆ( ) ( ) ( )r r r s
z z nz z z z p n nA g g A A g O J n J− + − −− ≤ − + + . 

 Now consider ˆ ˆ( )z z zA A g− .  By the triangle inequality and assumption 5, 

 

ˆ ˆˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ).

z z z nz nz z

r s
z nz n

A A g A A g A A g

A A g O J − −

− ≤ − + −

= − +

 

For each (0,1)z∈  

 ˆ ˆˆ( ) sup ( )
ns

z nz z z zA A g A A
ν

ν
∈

− ≤ −
H

. 

Write ν  in the form 

 
1

nJ

j j
j

ν ν ψ
=

=∑ , 

where  

 ( ) ( )j jx x dxν ν ψ= ∫ . 

Then 

(A.5) 
2

1 1

ˆ ˆ( ) ( )
n nJ J

z nz jkz jkz j
k j

A A a aν ν
= =

⎡ ⎤
⎢ ⎥− = −
⎢ ⎥⎣ ⎦

∑ ∑ . 

But 
1
| |nJ

jj
ν

=∑  is bounded uniformly over nsν ∈H  and n .  Moreover, 
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1 1 1

1ˆ ( ) ( ) ( )
n n

n

J J n

j jkz j j i k i b i
nj j i

a X W K z Z
nb

ν ν ψ ψ
= = =

= −∑ ∑ ∑ . 

Therefore, it follows from Bernstein’s inequality that 

 1/ 2

1

ˆ ˆ( ) [( ) ]
nJ

j jkz jkz p n
j

a Ea O nbν −

=

− =∑  

uniformly over nsν ∈H .  Therefore,  

(A.6) 1/ 2 1/ 2ˆ ˆ( ) [ /( ) ]z nz n nA EA O J nbν− =   

uniformly over nsν ∈H .  In addition, ˆ ( )r
jkz jkz nEa a O b= + .  Therefore, boundedness of 

1
| |nJ

jj
ν

=∑  gives  

 
1

ˆ( ) ( )
nJ

r
jkz jkz j n

j
Ea a O bν

=

− =∑  

and  

(A.7) 1/ 2ˆ( ) ( )r
z nz n nEA A O J bν− =   

uniformly over nsν ∈H .  Combining (A.6) and (A.7) and using assumption 7 gives 

 1/ 2 /(2 1)ˆsup ( ) [ ]
ns

r r
z nz p nA A O J n

ν
ν − +

∈
− =

H
.   

Therefore, 

(A.8) 1/ 2 /(2 1)ˆsup ( ) [ ]
ns

r r r s
z z p n nA A O J n J

ν
ν − + − −

∈
− = +

H
. 

Combining (A.4) and (A.8) gives 

 1/ 2 /(2 1)ˆ( ) [ ]r r r s
z z nz p n nA g g O J n J− + − −− = + . 

This result and assumption 5(ii) imply that 

(A.9) 1/ 2 /(2 1)ˆ( ) [ ]r r r s
nz z z nz p n nA g g O J n Jρ + − + −− = + . 

The theorem follows by combining (A.2), (A.3), and (A.9).  Q.E.D. 

A.2  Asymptotic Properties of the nτ  Test 

Let 1 1 1 2 2 2( , , ) ( , , ) Ex w z x w z−  denote the Euclidean distance between the points 1 1 1( , , )x w z  and 

2 2 2( , , )x w z .  Let j XWZD f  denote any j ’th partial or mixed partial derivative of XWZf .  Set 
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0 ( , , ) ( , , )XWZ XWZD f x w z f x w z= .  Let 2s ≥  be an integer.  Define ( )V Y G Z= − , and let Zf  

denote the density of Z .  Define *
z z zT A A= .  Make the following assumptions. 

 1.  (i) The support of ( , , )X W Z  is contained in 3[0,1] .  (ii) ( , , )X W Z  has a probability 

density function XWZf  with respect to Lebesgue measure.  (ii)  There is a constant 0ZC >  such 

that ( )Z Zf z C≥  for all supp( )z Z∈ .  (iv) There is a constant fC < ∞  such that 

| ( , , ) |j XWZ fD f x w z C≤  for all 3( , , ) [0,1]x w z ∈  and 0,1,2j = , where derivatives at the boundary 

of supp( , , )X W Z  are defined as one-sided. (iv) 1 1 1 2 2 2| ( , , ) ( , , ) |s XWZ s XZWD f x w z D f x w z−  

1 1 1 2 2 2( , , ) ( , , )f EC x w z x w z≤ −  for any 2 nd derivative and any 3
1 1 1 2 2 2( , , ), ( , , ) [0,1]x w z x w z ∈ .  

(v) zT  is nonsingular for almost every [0,1]z∈ . 

 2.  (i) ( | , ) 0E U Z z W w= = =  and 2( | , ) UVU Z z W w C= = ≤E  for each 2( , ) [0,1]z w ∈  

and some constant UVC < ∞ .  (ii) | ( , ) | gg x z C≤  for some constant gC < ∞  and all 2( , ) [0,1]x z ∈ . 

 3.  The function G  satisfies | ( ) |j fD G z C≤  for all [0,1]z∈  and 0,1,2j = . (ii) 

1 2 1 2| ( ) ( ) | | |s s fD G z D G z C z z− ≤ −  for any 2 nd derivative and any 2
1 2( , ) [0,1]z z ∈ .  (iii) 

2( | ) UVV Z z C= ≤E  for each [0,1]z∈ . 

4.  (i) bK  satisfies (4.12) and 2 1 2 1| ( , ) ( , ) | | | /b b KK u K u C u u bξ ξ− ≤ −  for all 2 1,u u , all 

[0,1]ξ ∈ , and some constant KC < ∞ .  For each [0,1]ξ ∈ , ( , )hK b ξ  is supported on 

[( 1) / , / ]b bξ ξ− ∩K , where K  is a compact interval not depending on ξ .  Moreover, 

0, [0,1],
sup | ( , ) |b

b u
K bu

ξ
ξ

> ∈ ∈
< ∞

K
. 

(ii)  The bandwidth 1b  satisfies 1/ 7
1 1bb c n−= , where 1bc < ∞  is a constant.  (iii) The bandwidth, 

2b , satisfies 2 2bb c n α−= , where 2bc < ∞  is a constant and 1/ 4 1/ 2α< < .  

 Assumption 1(ii) is used to avoid imprecise estimation of G  in regions where Zf  is 

close to 0.  The assumption can be relaxed by replacing the fixed distribution of ( , , )X Z W  by a 

sequence of distributions with densities { }nXZWf  and { }nZf  ( 1,2,...n = ) that satisfy ( )nZ nf z C≥  

for all ( ) [0,1]z ∈  and a sequence { }nC  of strictly positive constants that converges to 0 

sufficiently slowly.  Assumption 1(v) combined with the moment condition ( | , ) 0E U X Z =  

implies that g  is identified and the instruments W  are valid in the sense of being suitably related 

to X .  Assumption 4(iii) implies that the estimator of G  is undersmoothed.  Undersmoothing 
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prevents the asymptotic bias of ( )ˆ iG −  from dominating the asymptotic distribution of nτ .  The 

remaining assumptions are standard in nonparametric estimation.   

 The nτ  test is a modification of the exogeneity test of Blundell and Horowitz (2007), and 

its properties can be derived by using the methods of that paper.  Accordingly, the properties of 

the nτ  test are stated here without proof.  Define ( )i i iV Y G Z= −  ( 1,..., )i n= ,   

 
11/ 2
0

1

1( , ) ( , , ) ( , ) ( , )
( ) i

n

n i XZW i i Z i
Z ii

B x z n V f x Z W t x d Z z
f Z

ξ ξ−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ∫ , 

and  

1 1 2 2 1 1 2 2( , ; , ) [ ( , ) ( , )]n nR x z x z B x z B x z= E . 

Define the operator Ω  on 2
2[0,1]L  by 

 
1

0
( )( , ) ( , ; , ) ( , )h x z R x z h d dξ ζ ξ ζ ξ ζΩ = ∫ . 

Let { : 1,2,...}j jω =  denote the eigenvalues of Ω  sorted so that 1 2 ... 0ω ω≥ ≥ ≥ .  Let 

2
1{ : 1,2,...}j jχ =  denote independent random variables that are distributed as chi-square with one 

degree of freedom.  Define the random variable 

 2
1

1
j j

j
τ ω χ

∞

∞
=

=∑ . 

For any α  such that 0 1α< < , let αξ  denote the 1 α−  quantile of the distribution of τ∞ . 

Then  

 1.  Under 0H , d
nτ τ∞→ .  

 2.  Under 1H ,  

 lim ( ) 1nn
P ατ ξ

→∞
> =  

for any α  such that 0 1α< < .  Thus, the nτ  test is consistent. 

 The final result shows that for any 0ε >  and as n →∞ , the nτ  test rejects 0H  with 

probability exceeding 1 ε−  uniformly over a set of functions g  whose distance from G  is 

1/ 2( )O n− .  The practical consequence of this result is to define a large class of alternatives 

against which the nτ  test has high power in large samples.  The following additional notation is 

used.  Let L  be the operator on 2[0,1]L  that is defined by 

 
1

0
( )( ) ( ) ( , )Lh z h z dζ ζ ζ= ∫ . 
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Define ( , ) ( , ) ( )q x z g x z G z= − .  Let XZWf  be fixed.  For each 1,2,...n =  and finite 0C > , define 

ncF  as a set of distributions of ( , , , )Y X Z W  such that: (i) XZWf  satisfies assumption 1; (ii) 

[ ( , ) | , ] 0E Y g X Z Z W− =  for some function g  that satisfies assumption 2 with ( , )U Y g X Z= − ; 

(iii) ( | ) ( )E Y Z z G z= =  for some function G  that satisfies assumption 3 with ( )V Y G Z= − ; (iv) 

1/ 2
zLT q n C−≥ , where ⋅  denotes the 2

2[0,1]L  norm; and (v) 1 (log ) / (1)s
zh n q LT q o=  as 

n →∞ .  ncF  is a set of distributions of ( , , , )Y X Z W  for which the distance of g  from G  

shrinks to zero at the rate 1/ 2n−  in the sense that ncF  includes distributions for which 

1/ 2( )q O n−= .  Condition (v) rules out distributions for which q  depends on ( , )x z  only through 

sequences of eigenvectors of zT  whose eigenvalues converge to 0 too rapidly.  The practical 

significance of condition (v) is that the nτ  test has low power when g  differs from G  only 

through eigenvectors of zT  with very small eigenvalues.  Such differences tend to oscillate 

rapidly (that is, to be very wiggly) and are unlikely to be important in most applications.  The 

uniform consistency result is as follows. 

 3.  Given any 0ε > , any α  such that 0 1α< < , and any sufficiently large (but finite) C ,  

 lim inf ( ) 1
nc

nn ατ ξ ε
→∞

> ≥ −P
F

. 

The remainder of this section explains how to obtain an approximate asymptotic critical 

value for the nτ  test.  The method is based on replacing the asymptotic distribution of nτ  with an 

approximate distribution.  The difference between the true and approximate distributions can be 

made arbitrarily small under both the null hypothesis and alternatives.  Moreover, the quantiles of 

the approximate distribution can be estimated consistently as n →∞ .  The approximate 1 α−  

critical value of the nτ  test is a consistent estimator of the 1 α−  quantile of the approximate 

distribution.   

We now describe the approximation to the asymptotic distribution of nτ .  Given any 

0ε > , there is an integer Kε < ∞  such that  

2
1

1
0 ( )

K

j j
j

t t
ε

ω χ τ ε∞
=

⎛ ⎞
⎜ ⎟< ≤ − ≤ <
⎜ ⎟
⎝ ⎠
∑P P . 

uniformly over t .  Define 

2
1

1

K

j j
j

ε

ετ ω χ
=

=∑ . 
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Let zεα  denote the 1 α−  quantile of the distribution of ετ .  Then 0 ( )zεατ α ε∞< > − <P .  

Thus, using zεα  to approximate the asymptotic 1 α−  critical value of nτ  creates an arbitrarily 

small error in the probability that a correct null hypothesis is rejected.  Similarly, use of the 

approximation creates an arbitrarily small change in the power of the nτ  test when the null 

hypothesis is false.  The approximate 1 α−  critical value for the nτ  test is a consistent estimator 

of the 1 α−  quantile of the distribution of ετ .  Specifically, let ˆ jω  ( 1,2,..., )j Kε=  be a 

consistent estimator of jω  under 0H .  Then the approximate critical value of nτ  is the 1 α−  

quantile of the distribution of  

2
1

1

ˆˆ
K

n j j
j

ε

ετ ω χ
=

=∑ . 

This quantile can be estimated with arbitrary accuracy by simulation.  In applications, Kε  can be 

chosen informally by sorting the ˆ jω ’s in decreasing order and plotting them as a function of j .  

They typically plot as random noise near ˆ 0jω =  when j  is sufficiently large.  One can choose 

Kε  to be a value of j  that is near the lower end of the “random noise” range.  The rejection 

probability of the nτ  test is not highly sensitive to Kε , so it is not necessary to attempt precision 

in making the choice. 

 We now explain how to obtain the estimated eigenvalues ˆ{ }jω .  Let ˆ
XZWf  be a kernel 

estimator of XZWf .  Define 

1
1 2 1 20

ˆ ˆˆ ( , ) ( , , ) ( , , )z XZW XZWt x x f x z w f x z w dw= ∫ . 

Estimate the iV ’s by generating data from an estimated version of the model 

(A.10) ( )Y G Z V= + , 

where [ ( ) | , ]Y Y E Y G Z Z W= − −  and ( )V Y G Z= − .  Model (A.10) is identical to model (1.3)-

(1.4) under 0H .  Moreover, the moment condition ( | , ) 0E V Z W =  holds regardless of whether 

0H  is true.  Observe that ( | , )V Y E Y Z W= − .  Let ( )ˆ ( | , )iE Y Z W−  denote the leave-observation-

i-out nonparametric regression of Y  on ( , )Z W .  Estimate iV  by 

( )ˆ ˆ ( , )i
i i i iV Y E Z W−= − . 

Now define 
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1

0

1ˆ ˆˆ( , , ) ( , , ) ( , )ˆ ( ) ii i XZW i i Z
Z i

r x Z W f x Z W t x d
f Z

ξ ξ= − ∫  

1 1 2 2( , ; , )R x z x z  is estimated consistently by 

1 2
1 1 2 2 1 2 1 2

1

ˆ ˆˆ ˆ( , , , ) ( , ) ( , ) ( , ) ( , )
n

i i i i i
i

R x z x z n r x Z r x Z Z z Z z V−

=

= ∑ . 

Define the operator Ω̂  on 2[0,1]L  by 

 
1

0
ˆ ˆ( )( , ) ( , ; , ) ( , )x z R x z d dψ ξ ζ ψ ξ ζ ξ ζΩ = ∫ . 

Denote the eigenvalues of Ω̂  by ˆ{ : 1,2,...}j jω =  and order them so that 1 2ˆ ˆ ... 0M Mω ω≥ ≥ ≥ .  

Then the ˆ jω ’s are consistent estimators of the jω ’s.   

To obtain an accurate numerical approximation to the ˆ jω ’s, let ˆ ( , )F x z  denote the 1n×  

vector whose i ’th component is ˆ( , , ) ( , )i i ir x Z W Z z , and let ϒ  denote the n n×  diagonal matrix 

whose ( , )i i  element is 2
îV .  Then 

 1
1 1 2 2 1 1 2 2

ˆ ˆ ˆ( , ; , ) ( , ) ( , )R x z x z n F x z F x z− ′= ϒ . 

The computation of the eigenvalues can now be reduced to finding the eigenvalues of a finite-

dimensional matrix.  To this end, let { : 1,2,...}j jφ =  be a complete, orthonormal basis for 

2
2[0,1]L .  Let { }jψ  be a complete orthonormal basis for 2[0,1]L .  Then 

1 1

ˆ ˆ( , , ) ( , ) ( , ) ( , )XZW jk j k
j k

f x Z W Z z d x z Z Wφ φ
∞ ∞

= =

=∑ ∑ , 

where  
1 1 1 1

1 2 2 2 1 1 20 0 0 0
ˆ ˆ ( , , ) ( , ) ( , ) ( , )jk XZW j kd dx dz dz dwf x z w z z x z z wφ φ= ∫ ∫ ∫ ∫ , 

and 

1

0
1 1

ˆ ˆ( , ) ( , ) ( , ) ( )Z jk j k
j k

Z z t x d a x z Zξ ξ φ ψ
∞ ∞

= =

=∑ ∑∫ , 

where 

1

1 1 1 1
1 2 1 2 2 10 0 0 0

ˆˆ ( , ) ( , ) ( , ) ( )jk z j ka dx dz dz d t x z z x z zξ ξ φ ψ= ∫ ∫ ∫ ∫ . 

Approximate ˆ ( , , ) ( , )XZWf x Z W Z z  and 
1

0
ˆ( , ) ( , )ZZ z t x dξ ξ∫ , respectively, by the finite sums 
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1 1

ˆ( , , , ) ( , ) ( , )
M M

f jk j k
j k

x z W Z d x z Z Wφ φ
= =

Π =∑ ∑  

and 

1 1

ˆ( , , )) ( , ) ( ).
M M

t jk j k
j k

x z Z a x z Zφ ψ
= =

Π =∑ ∑  

for M < ∞ .  Since ˆ
XZWf  and 

1

0 Ẑt dξ∫  are known functions, M  can be chosen to approximate 

them with any desired accuracy.  Let Φ  be the n L×  matrix whose ( , )i j  component is 

1/ 2

1

ˆ ˆˆ[ ( , ) ( ) / ( )]
L

ij jk k i i jk k i Z i
k

n d Z W a Z f Zφ ψ−

=

Φ = −∑ .   

The eigenvalues of Ω̂  are approximated by those of the L L×  matrix ′Φ ϒΦ .   
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Table 1:  Empirical Probabilities of Various Levels of Educationa 

 

     Years    With    Without 
 of Education Nearby College    Nearby College 
 
  11   0.136    0.228 
        (0.022)      (0.028) 
 
  12   0.456    0.578 
        (0.016)      (0.021) 
 
  15   0.707    0.775 
        (0.012)      (0.015) 
 
  16   0.866    0.915 
        (0.008)      (0.009) 
 
a.  Table entries are the empirical probabilities that years of education is less than or equal to 11, 
12, 15, and 16 conditional on whether there is a 4-year accredited college in an individual’s local 
labor market.  Quantities in parentheses are standard errors.  
 
 
 

Table 2:  Manski-Pepper (2000) Upper Bounds on Returns to a University Education 
 
 
  Years of   Point Estimate       Upper 95%  
 Experience  of Upper Bound  Confidence Limit 
 

   6-7      0.38    0.44 

   8-10     0.40    0.46 

  11-23     0.52    0.61 
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Figure 1:  Illustration of Ill-Posed Inverse Problem.  The solid line is the absolute values of the 

generalized Fourier coefficients. The dashed line is the standard deviation of maximum likelihood 

estimates of these coefficients. 
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Figure 2:  Estimated Engel Curve for Food 
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Figure 3:  Estimate of test score as function of class size.  Solid line is estimate.  Dashed lines 
indicate a uniform 95% confidence band. 

 


