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Abstract

This paper proposes shrinkage methods for instrumental variable estimation to solve
the “many instruments” problem. Even though using a large number of instruments
reduces the asymptotic variances of the estimators, it has been observed both in the-
oretical works and in practice that in finite samples the estimators may behave very
poorly if the number of instruments is large. This problem can be addressed by shrink-
ing the influence of a subset of instrumental variables. That is, we reconstruct the
estimating equation of an instrumental variable estimator, which is a weighted sum of
sample moment conditions, by shrinking some elements of the weighting vector. This
procedure can also be understood by a two-step process of shrinking some of the OLS
coefficient estimates from the regression of the endogenous variables on the instruments
then using the predicted values of the endogenous variables based on the shrunk coef-
ficient estimates as the instruments. The shrinkage parameter is chosen to minimize
the asymptotic MSE. We find that the optimal shrinkage parameter has a closed form
which leads to easy implementation. The Monte Carlo result shows that the shrink-
age methods work well and moreover perform better than the instrument selection
procedure in Donald and Newey (2001) in several situations relevant to applications.
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1 Introduction

This paper proposes a new solution to the problem of instrumental variable (IV, hereafter)

estimation in the presence of many instruments. In this situation, we can estimate the model

and perform some inference using a minimal subset of instruments. However, with a small

number of instruments, we lose an efficiency which results in relatively large standard errors.

We might try to increase the number of instruments in order to reduce the standard error

of the estimate. It turns out that this approach may be misleading in finite samples. An

IV estimator with many instruments may behave very poorly and can be sensitive to the

number of instruments. In particular the two-stage least square (TSLS, hereafter) estimator

generates a bias whose order is proportional to the number of the instruments (e.g., see

Kunitomo (1980), Morimune (1983) or Bekker (1994)).

An example where this problem occurs in empirical work is the paper of Angrist and

Krueger (1991). They use quarter of birth as an instrument to estimate returns to education.

Even though quarter of birth seems to be a valid instrument, the authors obtain a relatively

large standard error when they estimated the parameter with only the quarter of birth

variables as instruments. By increasing the number of instruments we find a reduction in

the standard error and the estimates becomes close to the OLS estimate. This is a typical

phenomenon of having a large number of instruments and Bound, Jaeger and Baker (1996)

illustrates how the problem of many instruments arose in Angrist and Krueger (1991)1.

Existing solutions for the “many instruments” problem usually involve selection of instru-

ments. Donald and Newey (2001) proposes minimizing the asymptotic mean squared error

as a criterion to choose the number of instruments. Small (2002) also proposes a criterion

function motivated by the Akaike Information Criteria to choose instruments.

This paper introduces a new procedure for IV estimation based on shrinkage methods.

That is, we reconstruct the estimating equation of an instrumental variable estimator, which

1Even though Bound, Jaeger and Baker (1996) emphasizes the weak instrument problem, Table 1 in their

paper indicates that in the data of Angrist and Krueger (1991), we do not suffer from the bias of the TSLS

estimator if we use the minimal subset of instruments. Actually there are two problems arisen: One is the

“many instruments” problem and another problem is that the additional instruments are weak. This paper

focuses on the “many instruments” problem. Chao and Swanson (2003) and Stock and Yogo (2003) discuss

consequences of a large number of weak instruments.
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is a weighted sum of sample moment conditions, by shrinking some elements of the weighting

vector. This idea can also be interpreted as shrinking a part of the OLS coefficient estimates

from the regression of the endogenous variables on the instruments, and then using the

predicted values of the endogenous variables, based on the shrunk coefficient estimates, as

the instruments.

In the statistical literature, it has been observed that shrinkage methods perform very well

and moreover they usually work better than selection methods (e.g., see Hastie, Tibshirani

and Friedman (2001) section 3.4.5). The key decision involved in selection methods is to

select which instruments to discard. Even though we ease the many instruments problem

by doing so, we also ignore the information the discarded instruments might bring. On the

other hand, shrinkage methods not only ease the many instruments problem but also we

can utilize the information which is lost in discarding variables. Shrinkage procedures can

become excellent alternatives to selection methods in IV estimation.

Another advantage of the shrinkage method proposed here is that we don’t need to know

the order of instruments. To implement selection methods such as Donald and Newey (2001),

if we don’t know the order, one must try 2K − 1 combinations of instruments, where K is

the number of instruments, and it is practically impossible. While we need to try only K−1

combinations with knowledge of the order. The order may not be so clear in practice and

the shrinkage methods can avoid this problem.

Even though there is hardly any literature which explicitly considers an application of

shrinkage methods in IV estimations, there is one important paper by Chamberlain and

Imbens (2004) whose procedure, the random effect quasi-maximum likelihood (REQML),

could be categorized as a shrinkage method. They impose a random effect structure on

the coefficients in the regression of the endogenous variable on instruments. However their

approach depends on a specific structure: a single endogenous variable and a linear simul-

taneous equation model. The procedure presented here can be extended to more general

models. The kernel weighted GMM in ARMA models by Kuersteiner (2000, 2001) is also

related to the ideas explored here2.

2The difference of the kernel weighted GMM and the shrinkage methods would be clear, however we note

that we can find a pair of kernel function and bandwidth under which the kernel weighted GMM and the

shrinkage TSLS are equivalent. They are K(u) = 1, for |u| < c and K(u) = s for |u| ≥ c where s is the

shrinkage parameter and c is equal to the ratio of the number of main instruments and the total number of
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One nontrivial question is how to choose the shrinkage parameter. We propose to choose

the shrinkage parameter by minimizing the Nagar (1959)-type approximation of the mean

squared error. We find that the optimal shrinkage parameter has a closed form which leads to

easy implementation. One may consider to choose the shrinkage parameter in a similar way

to the James-Stein estimator. However the James-Stein shrinkage rule is not optimal and

in shrinkage TSLS estimation, there is a crucial difference between these two; The optimal

shrinkage parameter has an order K2 term while the James-Stein shrinkage rule has just an

order K term where K is the number of instruments. The James-Stein shrinkage rule shrinks

less than desired when the number of instruments is large. This shows the importance of

the asymptotic MSE calculation in choosing the shrinkage parameter.

This article is organized as follows. The next section introduces the shrinkage TSLS

estimator, explains the motivation and presents the theoretical results. Section 3 proposes the

shrinkage limited information maximum likelihood estimator. The Monte Carlo experiments

are included in Section 4. Discussion and possible extensions are in Section 5.

We use the following notations throughout the paper. For a sequence of vectors {Ai},
define A as A = (A′

1, A
′
2, . . . , A

′
n)′. For a matrix A, ||A|| =

√
tr(A′A), the usual Euclidean

norm, and PA = A(A′A)−1A′. “wpa1” stands for “with probability approaching one”.

2 The shrinkage TSLS estimator.

2.1 Model and Procedure

Following Donald and Newey (2001), I consider the model:

yi = Y ′
i γ + x′1iβ + εi = W ′

iδ + εi

Wi =


 Yi

x1i


 = f(xi) + ui =


 E(Yi|xi)

x1i


 +


 ηi

0


 , i = 1, . . . , N

where yi is a scalar outcome variable, Yi is a d1×1 vector of endogenous variable, xi = (X ′
i, χ

′
i)

is a vector of exogenous variables and x1i is a part of Xi. The set of instruments has the

instruments and the bandwidth is equal to the total number of instruments. This kernel function is not a

standard one at all and the choice of the bandwidth and that of the shrinkage parameter are not equivalent.

We should regard the kernel weighted GMM as a way to exploit all information from the order of instruments

which is clear in ARMA models while this paper implicitly considers situations where the order is not clear.
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following form; (X ′
i, ψ1(xi), · · · , ψK(xi)) ≡ (X ′

i, Z
′
i) where ψks are some functions of xi. Xi

is a m × 1 vector of main IVs and Zi is a K × 1 vector of IVs. εi and ui are unobserved

random variables. f is an unknown function of x and f would be the best instrument.

I employ this semiparametric structure because it allows us to easily analyze the model

with many instruments. Another reason is that this paper intends to compare instrument

selection methods and shrinkage methods, and to this end, it would be better to have the

same structure as used in Donald and Newey (2001) to present a selection method which

will be compared with shrinkage procedures in the Monte Carlo section.

We consider the situation similar to Chamberlain and Imbens (2004) where we have two

sets of instruments, X and Z. Among the IVs, we typically have “main” instruments and

we denote these instruments by X. We consider to shrink the effect of Z on the estimation

of δ. The meaning of “main” can differ among situations. For example, suppose that we

have a conditional moment restriction model and use a polynomial series as instruments.

The main instruments in this case would be the first l-th polynomial series where l is the

number of the endogenous variables. Another example could be the case where a number

of instruments are generated by multiplying main instruments by regional dummies or time

dummies. For instance, Angrist and Krueger (1991) shows that quarter of birth can be an

instrument to estimate the return of education and uses quarter-of-birth times year-of-birth

or state-of-birth interactions in their TSLS estimation. In this case, the quarter of birth

variables are considered as “main” instruments.

Note that we are able to estimate δ with only using those main instruments if the number

of the main instruments is larger than the number of the endogenous variables. However

such an estimate may have a large standard error. Even though using more instruments

is a way to reduce the standard error of the estimate, it is commonly observed that IV

estimators with many instruments behave poorly (e.g., Morimune (1983) and Bound, Jaeger

and Baker (1996)). The shrinkage TSLS (or LIML) estimator is introduced to address this

“many instruments” problem. In this section the shrinkage TSLS estimator is discussed.

The shrinkage LIML estimator is discussed in the next section.

Now we describe the procedure. First we assume X ′Z = 0 without loss of generality. This

can be achieved by regressing Z on X and taking the residuals. It is important to note that

Z in our discussion may not be the matrix of the instruments itself but the orthogonalized
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one in applications. Under X ′Z = 0, the TSLS estimator of δ is the solution to

W ′PX(y −Wδ) + W ′PZ(y −Wδ) = 0.

The shrinkage TSLS estimator δ̂s is defined as the solution to

W ′PX(y −Wδ) + sW ′PZ(y −Wδ) = 0

and it is:

δ̂s = (W ′P sW )−1W ′P sy

for some shrinkage parameter s where P s = PX + sPZ . By introducing the shrinkage pa-

rameter, s, we can reduce the effect of adding Z into the set of instruments. s lies between

0 and 1; s = 0 gives the TSLS estimator using only X and s = 1 gives the TSLS estimator

using all of instruments. A more detailed discussion will be found in the next subsection.

To operationalize this procedure, a method for choosing s is needed. We recommend the

following choice of s based on a higher order asymptotic result discussed in Section 2.3.

ŝ∗ = 1−
(

1 +
σ̂2

ε

λ̂′Ĥ−1σ̂uεσ̂′uεĤ
−1λ̂

λ̂′Ĥ−1W ′PZWĤ−1λ̂

K2

)
, (1)

where λ̂ is the (possibly estimated) weighing vector chosen by the researcher, σ̂2
ε and σ̂uε are

the estimates of σ2
ε = E(ε2

i ) and σuε = E(uiεi) based on the residuals from a preliminary

estimation and Ĥ = W ′(PX + PZ)W/N which is an estimate of the first order asymptotic

variance.

2.2 Motivation and Discussion

It would be helpful to review shrinkage estimation in simple situations in order to acquire

some intuition on how they work and to motivate us to use the shrinkage methods to solve the

“many instruments” problem. First we look at the famous James-Stein estimator. Consider

the situation where we have the model: X ∼ N(θ, IK). X is a K-dimensional random vector

and θ is the K-dimensional estimated parameter. Suppose our sample is just X (that is,

sample size is 1). A natural estimator of θ is θ̂ = X which is the maximum likelihood

estimator. This estimator has several nice properties: It is unbiased (E(θ̂) = θ) and it
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achieves the Fisher’s lower bound (V ar(θ̂) = IK which is the inverse of sample size (1)

times the Fisher information matrix (IK)). However if K ≥ 3, one can do better using

a shrinkage estimator in terms of mean squared error. The mean squared error of θ̂ is

E((θ̂ − θ)′(θ̂ − θ)) = K. The James-Stein estimator δ̂JS is defined as

θ̂JS =

(
1− K − 2

X ′X

)
X.

The mean squared error of the James-Stein estimator is:

E((θ̂JS−θ)′(θ̂JS−θ)) = E((X−θ)′(X−θ))−2E

(
(X − θ)′

K − 2

X ′X
X

)
+E

(
(K − 2)2

(X ′X)2
X ′X

)

= K − 2E

(
(K − 2)2

X ′X

)
+ E

(
(K − 2)2

X ′X

)
= K − E

(
(K − 2)2

X ′X

)
< K.

The equality E ((X − θ)′[(K − 2)/(X ′X)]X) = E ((K − 2)2/(X ′X)) comes from integration

by parts. (See Lehmann (1983) section 4.6 for more details.) This is a remarkable result:

θ̂JS has a strictly smaller mean squared error than the MLE θ̂. Note that if we are interested

in estimating a just one value θi, then we cannot do better than θ̂i = Xi. The improved

performance of the James-Stein estimator occurs because our interest is not concentrated on

a particular single element but the overall performance of the estimation and in that sense

each parameter θi becomes “nuisance”.

We can extend this idea into standard regression models. Suppose that we have the

linear model y = Xπ + u where y is an N × 1 random vector, X is a N × K ma-

trix of regressors, π is a K × 1 vector and u ∼ N(0, IN) which is uncorrelated with

X. Let π̂ is the OLS estimator of π. Then π̂ ∼ N(π, σ2(X ′X)−1). Rewriting this, we

have σ−1(X ′X)1/2π̂ ∼ N(σ−1(X ′X)1/2π, IK). A shrinkage estimator of σ−1(X ′X)1/2π is

(1− (K − 2)/(σ−2π̂′(X ′X)π̂)) σ−1(X ′X)
1
2 π̂. A shrinkage estimator of the regression coeffi-

cient is therefore

π̂s =

(
1− σ2(K − 2)

π̂′(X ′X)π̂

)
π̂.

It can be shown that this estimator has a smaller mean squared error than the OLS estimator

under conditions (e.g. see Takada (1979)). Note that the conventional first order asymp-

totic analysis doesn’t tell us how the shrinkage estimator performs better than OLS since
√

nσ2(K − 2)(π̂′(X ′X)π̂)−1 →p 0 if π 6= 0 and X ′X/N converges to some positive definite
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matrix, and consequently the shrinkage estimator has the same asymptotic distribution as

the OLS estimator. The effect of shrinkage arises in higher order terms. This observation

motivates us to investigate a higher order asymptotics.

Now we can proceed to the situation of interest. Consider a simple linear model with

only one endogenous variable and no exogenous regressors:

y = Y δ + u,

and a set of instruments x = (X, Z) where y, Y and u are N × 1 vectors, δ is a scalar

parameter to be estimated and X, Z are N ×m and N ×K matrix. As before we assume

X ′Z = 0 without loss of generality. The TSLS estimator is the solution to:

π̂′XX ′(y − δY ) + π̂′ZZ ′(y − δY ) = 0

which is a weighted sum of sample moment conditions where the weighting vector, (π̂X , π̂Z),

is the OLS coefficient estimate from the regression of Y on (X, Z). The “many instruments”

problem occurs because we need to estimate a large dimension of the weighting vector in

the presence of a large number of instruments. The observation given above would indicate

that the problem could be addressed by some shrinkage techniques. Let s ∈ [0, 1] be some

shrinkage parameter. We consider to use (π̂X , sπ̂Z) instead of (π̂X , π̂Z) as the weighting

vector and obtain the shrinkage TSLS estimator which is the solution to: π̂′XX ′(y − δY ) +

sπ̂′ZZ ′(y − δY ) = 0.

We are also able to provide another useful insight of the shrinkage TSLS in this simple

case. The TSLS estimator is obtained by the following procedure. First we regress Y on x

to obtain π̂x = (x′x)−1x′Y . Then we estimate δ by δ̂ = (Ŷ ′Y )−1Ŷ ′y where Ŷ = xπ̂x. We

attempt to shrink π̂Z in order to obtain a better estimate. The shrinkage TSLS is written

as:

δ̂s = (Ỹ ′Y )−1Ỹ ′y

where Ỹ = Xπ̂X + sZπ̂Z . Therefore the shrinkage TSLS can be understood by a two-

step process of shrinking some of the OLS coefficient estimates from the regression of the

endogenous variables on the instruments then using the predicted values of the endogenous

variables based on the shrunk coefficient estimates as the instruments.
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Note that if we shrink all elements of π̂ then there is no difference from the TSLS since

x(sπ̂) = sŶ and (sŶ ′Y )−1sŶ ′y = δ̂. What matters in the IV estimation is just a ratio of

importance of instruments while the magnitude of πi is not important. On the other hand,

the relative weight πi/πj matters. Shrinking all does not change the relative scale of πis.

This is a difference from usual OLS regression where the magnitude of π is important.

Choosing the shrinkage parameter is an important and nontrivial decision. One choice

can be:

sJS ≡
(

1− σ̂2(K − 2)

π̂′ZZ ′Zπ̂Z

)
,

motivated by the James-Stein estimator. However, this choice is naive. IV estimation is

different from the standard regression problems. This deviation from standard regression

models implies that the best first stage estimation doesn’t necessarily imply the best method

to estimate δ. The optimal choice is given in equation (1) which is derived to minimize the

asymptotic MSE and it is different from the James-Stein shrinkage rule. The Monte Carlo

experiment presented later shows the importance of the asymptotic MSE calculation in

choosing the shrinkage parameter.

2.3 Theoretical results

We will show the asymptotic properties of the shrinkage TSLS under the following assump-

tions. These assumptions are similar to those imposed in Donald and Newey (2001).

Assumption 1. {yi,Wi, xi} are i.i.d, E(ε2
i |xi) = σ2

ε > 0 and E(||ηi||4|xi) and E(|εi|4|xi) are

bounded.

Assumption 2. (i) H̄ ≡ E(fif
′
i) exists and is nonsingular. (ii) there exists πK such that

E(||f(x)− πK(X ′, Z ′)||) → 0 as K →∞

Assumption 3. (i) E((ε, u′)′(ε, u′)|xi) is constant: (ii) X ′X and Z ′Z are nonsingular wpa1.

(iii) X ′Z = 0 wpa1. (iv) maxi≤N PX,ii →p 0 and maxi≤N PZ,ii →p 0. (v) fi is bounded.

Assumption 3(iii) is satisfied for (X, Z̄) where Z̄ = Z −X(X ′X)X ′Z. Therefore this is

not a real restriction but it is important to keep it in mind that Z in our discussion may not

be the matrix of the instruments itself but the orthogonalized one in applications.
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The first theorem is on the consistency and the asymptotic normality of the shrinkage

TSLS estimator.

Theorem 1. Suppose Assumption 1-3 are satisfied. If (sK)2/N →p 0 and either s →p 1 or

f ′PZf/N →p 0, then δ̂s − δ →p 0 and
√

N(δ̂s − δ) →d N(0, σ2
ε H̄

−1).

This justifies the use of the shrinkage TSLS estimator. Unfortunately, this result also

indicates that the conventional first order asymptotic analysis is not enough to investigate the

effect of shrinkage and we cannot have some guidance to choose the shrinkage parameter s.

This is similar to the case of selecting the number of instruments. The first order asymptotic

results are not useful to see how many instruments should be used and we have to look at

a higher order expansion. Given this observation, we look at the higher order asymptotic

expansion and propose to choose the shrinkage parameter to minimize the asymptotic mean

squared error. The notion of asymptotic MSE employed here is similar to the Nagar-type

asymptotic expansion (Nagar 1959). Following Donald and Newey (2001), we approximate

the MSE, E((δ̂ − δ0)(δ̂ − δ0)
′), by σ2

ε H
−1 + S(s) where

N(δ̂ − δ0)(δ̂ − δ0)
′ = Q̂(s) + r̂(s), E(Q̂(s)|x) = σ2

ε H
−1 + S(s) + T (s),

H = f ′f/N and (r̂(s) + T (s))/tr(S(s)) = op(1) as K → ∞, N → ∞. First we divide the

N(δ̂ − δ0)(δ̂ − δ0)
′ into two parts, Q̂(s) and r̂(s), and discard r̂(s) which goes to zero faster

than S(s). Then we take the expectation of Q̂(s) conditional on the exogenous variable, x,

and ignore the term T (s) which goes to zero faster than S(s). σ2
ε H

−1 corresponds to the

first order asymptotic variance. Hence S(s) is the nontrivial and dominant term in the MSE

and our goal is to find S(s).

This Nagar-type approximation is popular in IV estimation literature but not common in

shrinkage literature which mainly focuses on exact finite sample properties. We have several

reasons to investigate the Nagar asymptotic MSE even though usual shrinkage literature do

not use that. First this approach makes comparison with Donald and Newey (2001) easier

since they also use the Nagar expansion. Second, a finite sample parametric approach may

not be so convincing as it relies on a distributional assumption. Lastly, the exact finite

sample approach usually gives us too complicated results to be meaningful. The application

of the Nagar approximation provides a clear result and that leads to an optimal shrinkage

parameter selection procedure that can be implemented easily in practice.

10



The next theorem shows the form of the MSE under K → ∞, N → ∞ and that the

shrinkage parameter is exogenous.

Theorem 2. Suppose that Assumption 1-3 are satisfied. Under (sK)2/N → 0 and either

(1− s) = Op(K
2/N) or E(fiZ

′
i) = 0,

S(s) = H−1

[
σuεσ

′
uε

(sK)2

N
+ σ2

ε

f ′(I − P s)(I − P s)f

N

]
H−1.

Appendix contains the proof. Note that the formula in Donald and Newey (2001) is given

by setting s = 1 as s = 1 corresponds to the standard TSLS estimator.

Given this formula, our task is to find an s which minimizes S(s). S(s) is a matrix so

we need to introduce a weighting vector; λ (λ may be estimated) and solve a minimization

problem with objective function λ′S(s)λ. The optimal shrinkage parameter is:

s∗ = 1−
(

1 +
σ2

ε

λ′H−1σuεσ′uεH
−1λ

λ′H−1f ′PZfH−1λ

K2

)−1

.

This form is very intuitive: the optimal shrinkage parameter is a increasing function of

a measure of the strength of the instruments, f ′PZf/N , and a decreasing function of the

number of instruments, K. Surprisingly, this suggests that we should shrink always since

s = 1 occurs only if f ′PZf = ∞ however f ′PZf goes to infinity in at most a smaller order

than that of the mean squared error. 0 ≤ s < 1 also means that the shrinkage TSLS does

better than TSLS with the same number of instruments.

The standard case is f ′PZf/N →p c > 0 and s →p 1. This means that if Z is a valid

instrument, then asymptotically we don’t shrink and achieve the semiparametric efficiency.

On the other hand, if f ′PZf/K2 →p 0 which occurs when Z is an irrelevant instrument,

s →p 0. Introducing the shrinkage parameter we can defend against the use of completely

weak instruments. The weak instruments case in Staiger and Stock (1997) sense occurs when

f ′PZf/K2 →p c > 0. Then s →p s̄ where 0 < s̄ < 1. Even though we do not consider this

case formally, we can conjecture that the shrinkage TSLS can even utilize the information

from the weak instruments.

The main difference of this shrinkage rule from the James-Stein shrinkage rule is that we

have an order K2 term but the James-Stein shrinkage rule has just an order K term. This

might imply that the James-Stein shrinkage rule shrink less than desired when the number

of instruments is large.
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If we only have one endogenous variable or in other words Yi is a scalar, we do not need

to care about the choice of λ and the optimal shrinkage parameter is given by:

s∗ = 1−
(

1 +
σ2

ε

σ2
uε

Ȳ ′PZ Ȳ

K2

)−1

.

where Ȳ = (E(Y1|x1), . . . , E(YN |xN))′.

The optimal shrinkage parameter depends on the unknown parameters which has to

be estimated to implement the procedure. A natural estimator of the optimal shrinkage

parameter is given by equation (1) and the following theorem justifies the use of it.

Theorem 3. Assumption 1-3 are satisfied and σ̂2
ε →p σ2

ε , σ̂uε →p σuε and λ̂−λ →p 0. Then

(S(ŝ∗)− S(s∗))/S(s∗) = op(1)

The estimation error of s∗ can be negligible so that the estimated shrinkage parameter

attains the minimum of the MSE asymptotically.

Note that in principle we can choose s and K simultaneously to minimize the asymptotic

MSE. However this paper does not consider such a procedure here even though it may be

worth a further investigation. The main purpose of this paper is to see the performance of

instrumental variables estimators with shrinkage and a shrinkage-selection hybrid method

lies beyond the focus of this paper.

3 The shrinkage LIML estimator

We can extend our idea of the shrinkage TSLS into the limited information maximum like-

lihood estimator (LIML). The LIML estimator is the minimizer of (y −Wδ)′(PX + PZ)(y −
Wδ)/((y −Wδ)′(y −Wδ)). The shrinkage LIML estimator δ̂ is defined as:

δ̂ = argmin
δ

(y −Wδ)′P s(y −Wδ)

(y −Wδ)′(y −Wδ)
.

Let vi = ui− εiσuε/σ
2
ε and define Σv = E(viv

′
i). The next theorem derives the asymptotic

MSE of the shrinkage LIML estimator. The third moment condition E(ε2
i vi) = 0 is assumed

to simplify the formula.
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Theorem 4. Assumptions 1-3 are satisfied, Σv 6= 0, E(||ηi||5|xi) and E(|ε|5|xi) are bounded

and E(ε2
i vi) = 0. Then under sK/N →p 0 and 1− s = Op(sK/N) or E(fiZ

′
i) = 0, we have

δ̂ →p δ,
√

N(δ̂ − δ) →d N(0, σ2
ε H̄

−1) and

S(s) = H−1

[
σ2

ε Σv
s2K

N
+ σ2

ε

f ′(I − P s)(I − P s)f

N

]
H−1.

The shrinkage parameter is chosen to minimize λ′S(s)λ with respect to s and the optimal

shrinkage parameter is

s∗ = 1−
(

1 +
1

λ′H−1ΣvH−1λ

λ′H−1f ′PZfH−1λ

K

)−1

.

If there is only one endogenous variable, the minimizer doesn’t depend on λ and that is

s∗ = 1−
(

1 +
σ2

ε

σ2
ησ

2
ε − σ2

ηε

Ȳ ′PZ Ȳ

K

)−1

,

where σ2
η = E(η2

i ) and σηε = E(ηiεi)

The optimal shrinkage parameter has the order K term while that of the shrinkage TSLS

has the order K2 term. This means that we should shrink less in the shrinkage LIML than

in the shrinkage TSLS when K is large. This observation is consistent with the established

result that the LIML estimator is more robust against the number of instruments than the

TSLS estimator. Still we have 0 ≤ s∗ < 1 always and we can do always better by shrinking

even in the LIML.

4 Monte Carlo Simulation

This section reports the result of the Monte Carlo experiments3. The aims of this experiments

are to see how the shrinkage estimators behave in a moderate sample size and to compare

the shrinkage methods with the other estimation methods. Comparison with the instrument

selection procedure in Donald and Newey (2001) is one of the main purposes of this study.

To make this comparison easier, we borrowed their experimental design.

3This Monte Carlo simulation was conducted with Ox 3.20 (Doornik 2002) for Linux and I really thank

the provider.
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4.1 Design

Our data generating process is the following model

yi = δYi + εi

Yi = π′Zi + ui

for i = 1, . . . , n where Yi is a scalar, δ is a scalar parameter of interest, Zi ∼ i.i.d.N(0, IK̄)

and

εi

ui


 = N





0

0


 ,


1 c

c 1





 .

K̄ is the total number of instruments. Among Zs, the first instrument is the “main” in-

strument which corresponds to X in the theoretical part of this paper. That is, m = 1 and

K = K̄ − 1 in the notation used before. We fix the true value of δ, δ = 0.1 and we examine

how well each estimator estimates δ.

In this framework, each experiment is indexed by the vector of specifications: (n, K̄, c, {π}).
n represents the sample size and we use n = 100 and n = 500. We set K̄ = 20 if n = 100

and K̄ = 25 if n = 500. The degree of endogeneity is summarized in c and we set c = 0.1,

0.5 and 0.9.

Hahn and Hausman (2002) observes that the theoretical R2 of the first stage regression

is given by R2
f = π′π/(π′π + 1). We keep this R2

f fixed over the experiments. This means

that even though we tried the three different specifications of π which are stated later, π

always satisfies π′π = R2
f/(1−R2

f ). We tried R2
f = 0.1 and 0.01.

The first specification of π is a case where the instruments are all equally important.

Model (a): πk =

√
R2

f

K̄(1−R2
f )

,∀k.

This case is difficult since not only they are all equally important, but also all of them are

weak. Using only the first instrument is by no mean good. Using all instruments might

cause a “many instruments” problem. Since there is no reason to prefer some to others, the

situation is hard for selection methods. It is also problematic for shrinkage methods as the

main instrument itself is weak and other instruments are as important as the main one.
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The second model considered is

Model (b): π1 = c, πk =
c√

K̄ − 1
∀k > 1

where c is chosen to satisfy π′π = R2
f/(1−R2

f ) is satisfied. This is a situation which motivates

shrinkage methods. The first instrument is strong but others are poor instruments. This

data generating process seems relevant for applications. Often we know that the instruments

in our hand guarantee the identification of the parameter of interest. However the estimate

using only those instruments shows a relatively large standard error and we cannot make a

sharp conclusion with this estimates. In this case even if we are aware that other possible

instruments are relatively weak, we may want to increase the number of instruments to

obtain a smaller standard error. For example, see Angrist and Krueger (1991). Therefore,

it is important to see how each method performs especially compared to the IV estimator

using only one instrument.

Finally we considered the data generating process which Donald and Newey (2001) used:

Model (c): πk = c(K̄)

(
1− k

K̄ + 1

)4

.

The strength of instruments decreases in k moderately. An instrumental selection procedure

such as Donald and Newey (2001) proposed would be suitable in this situation. We executed

an experiment assuming that we know the order of strength of instruments. Note that this

information is only relevant in this model. In model (a) and (b), the order (except that we

know the first instrument in model(b)) is not important.

The number of replication is 1000.

We will compare the following estimators. The first one is the ordinally least square

estimator (OLS), which is is inconsistent but can be an attractive choice if the degree of

endogeny is small. The second is the TSLS estimator with all available instruments (TSLS).

The third estimator examined is the IV estimator with only the first instrument (IV,1). This

would be the one we try first in an empirical research and typically we find a relatively large

standard error and think of using more instruments. The fourth is the TSLS estimator with

Donald and Newey’s (2001) optimal selection of the number of instruments (DNTSLS).

The next three estimators are the shrinkage TSLS estimators with the different choices of

shrinkage parameters. The first choice is the James-Stein shrinkage rule (JSTSLS). The point
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of including this procedure is to see the performance of the shrinkage TSLS estimator with a

naive way to shrink. The next one is the true optimal shrinkage parameter (OSTSLS), which

is infeasible in practice. The performance of OSTSLS can be seen as the upper bound of

shrinkage procedures. The last choice of shrinkage parameter is the estimated (i.e., feasible)

optimal shrinkage parameter (STSLS).

Other three estimators are the limited maximum likelihood estimator (LIML) with all

instruments, the LIML estimator with Donald and Newey (2001)’s optimal selection of the

number of instruments (DNLIML), and the (feasible) shrinkage LIML estimator (SLIML).

For the selection methods and the shrinkage methods, we need some caution to see

the result. The result depends on how to estimate the selection criteria or the shrinkage

parameters. Following Donald and Newey (2001), the preliminary estimate is obtained with

the number of instruments chosen by the first stage cross-validation for both methods and

the cross-validation criteria is used for R̂(K) (see Donald and Newey (2001)) in the selection

criteria.

4.2 Result

The results of the experiments are summarized in Table 1-6. ‘∗’ indicates that the number

is more than 1,000.

For each estimator, we computed the median bias (bias), the median absolute deviation

(MAD), the difference between the 0.1 and 0.9 quantile (Dec. Rge.)4 and the coverage

rate (Cov. Rate) of a 95% confidence interval. To construct the confidence intervals to

compute the coverage probabilities, we used the following estimate of asymptotic variance

respecting Donald and Newey (2001). The estimators examined here have the common

form: δ̂ = (X̂ ′X)−1X̂ ′Y (X̂ = X in OLS, X̂ = Z(Z ′Z)−1Z ′X in TSLS and so on). And the

estimates of variance V̂ is given by

V̂ =
(y −Xδ̂)′(y −Xδ̂)

N
(X̂ ′X)−1X̂ ′X̂(X ′X̂)−1.

“MAD” would represent the performance of each estimator most well and the discussions

stated below are based on “MAD”.

4We use these “robust” measures because of concerns on existence of moments of estimators.
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First we summarize the performance of the established procedures: OLS, TSLS, IV,1 and

LIML. If the endogeneity is small, then OLS performed well and sometimes it dominated all

others. The relative performance between TSLS and LIML depends on the degree of endo-

geneity. TSLS did much better than LIML in the cases with c = 0.1 and LIML outperformed

TSLS in the cases with c = 0.9. This is consistent with the MSE formula; the MSE of TSLS

increases with the degree of endogeneity and that of LIML decreases. IV,1 performed well

in model (b), c = 0.9 cases and was best in the model (b), R2
f = 0.01, c = 0.9 cases. In the

model (c), R2
f = 0.1, c = 0.9 cases, the performance of TSLS was much worse than that of

IV,1 and this illustrates the “many instruments” problem.

Now we compare the selection methods and the shrinkage methods. The first comparison

is between DNTSLS and STSLS. Generally STSLS performed well in model (a) and (b) and

DNTSLS did well in model (c), even though if the endogeneity is small, STSLS is better

in model (c). A remarkable phenomenon is that there are cases where DNTSLS performed

substantially worse than TSLS especially when the endogeneity is small. On the other

hand, STSLS was usually better than TSLS. Even in the cases where TSLS was better,

the difference is small. A similar phenomenon is observed when we compare DNLIML and

SLIML. Contrary to that SLIML could achieve improvement on LIML generally, the relative

performance of DNLIML to LIML is not stable; in some cases DNLIML did much better

than LIML but also there are cases where DNLIML did much worse than LIML. The good

performance of DNLIML usually occurred in the low endogeneity cases where TSLS type

estimators or OLS performed well. In the high endogeneity cases which are suitable for LIML

type estimators, SLIML was usually best in model (a) and (b). In model (c) with c = 0.9,

DNLIML was usually best though the differences between DNLIML and SLIML are small.

Next, we compare JSTSLS and STSLS to see the effect of the choice of the shrinkage

parameter. In most cases, STSLS dominates JSTSLS. Take the case of model (b), R2
f = 0.1,

c = 0.9, n = 100 for example. In this case the difference between these two is quite remarkable

and JSTSLS did much worse than all others but OLS, which is inconsistent, and TSLS.

Though there are a few of cases where JSTSLS did better than STSLS, the differences are

small in those cases. This result demonstrates the importance of investigating an appropriate

way to shrink.

We conclude that the selection methods and the shrinkage methods are compliment and
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neither of them is dominating. However we observed that the shrinkage methods could

achieve an improvement on the baseline methods generally while there are cases where the

selection methods might perform substantially worse than using all instruments. It would

be beneficial if applied researchers utilize shrinkage methods as alternative approaches to

IV selection. Also it would be an interesting future research to investigate how to hybridize

these two approaches.

5 Discussion

The idea of shrinkage stated in this paper can be extended into general moment restriction

models easily, though how to find an optimal way to shrink might be demanding. As linear

instrumental variable estimation, the generalized method of moments estimator is a solution

to the equation of a weighted sum of sample moment conditions and the shrinkage type esti-

mators can be obtained by shrinking some elements of the weighting vector. The shrinkage

parameter would be chosen to minimize the asymptotic mean squared error which might be

difficult. On the other hand, the idea of REQML by Chamberlain and Imbens (2004), which

is closely related to the shrinkage methods, is hard to extend into more general models since

it is based on the likelihood function though REQML has several attractive features, such

as being interpretable as a Bayes procedure.

Another useful extension is to handle multiple groups of instruments. Note that this

article focuses on the situation where we have only 2 groups of instruments, main instruments

and others. If we have more than 2 groups of instruments, we just need to shrink group by

group. The optimal shrinkage parameter would be calculated with a similar way as the

one presented here. The crucial assumption is that we know which group some particular

instrument belongs to. We may also think of hybrid methods of adaptively partitioning

instruments and shrinking group by group. For estimation of a multivariate normal mean,

George (1986) provides an interesting discussion on a method to handle a situation with

several candidates of partition. We consider hybrid methods as a promising direction to go.

A Proofs

This appendix contains the proofs of the theorems. Hereafter all expectations are conditional on
x. We will employ Lemma A.1 in Donald and Newey (2001) to show Proposition 2 and 3. The
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estimator examined has the form of
√

N(δ̂ − δ) = Ĥ−1ĥ. We define h = f ′ε/
√

N and H = f ′f/N .

Lemma 1 (Donald and Newey (2001) Lemma A.1). If there is a decomposition ĥ = h+T h +
Zh , Ĥ = H + TH + ZH ,

(h + T h)(h + T h)′ − hh′H−1TH′ − THH−1hh′ = Â(s) + ZA(s),

such that T h = op(1), h = Op(1), H = Op(1), the determinant of H is bounded away from zero
with probability 1, ρK,N = op(1),

||TH ||2 = op(ρK,N ), ||T h||||TH || = op(ρK,N ), ||Zh|| = op(ρK,N ), ||ZH || = op(ρK,N ),

ZA(s) = op(ρK,N ), E(Â(s)|X) = σ2H + HS(s)H + op(ρK,N )

then

N(δ̂ − δ0)(δ̂ − δ0)′ = Q̂(s) + r̂(s)
E(Q̂(s)|X) = σ2

ε H
−1 + S(s) + T (s)

(r̂(s) + T (s))/tr(S(s)) = op(1),K →∞, N →∞

We state two technical lemmas and their proofs. Those lemmas will be used to prove the
theorems. First recall that Z ′X = 0 and P s = PX + sPZ where PX = X(X ′X)−1X ′ and PZ =
Z(Z ′Z)−1Z ′.

Lemma 2. Suppose Assumption 1-3 are satisfied. Then we have

1. tr(P s) = m + sK

2.
∑

i(P
s
ii)

2 = op(sK)

3.
∑

i6=j P s
iiP

s
jj = (m + sK)2 + op(sK)

4.
∑

i6=j P s
ijP

s
ij = (m + s2K) + op(sK)

5. h = f ′ε/
√

N = Op(1) and H = f ′f/N = Op(1)

Proof. First note that (sK)−1 = Op(1). For 1,

tr(P s) = tr(PX) + s · tr(PZ) = m + sK.

Assumption 3 and Lemma 2.1 implies
∑

i

(P s
ii)

2 ≤ max
i

(P s
ii)tr(P

s) = op(1)(m + sK) = op(sK).

This is the proof of 2. Also these results imply
∑

i6=j

P s
iiP

s
jj =

∑

i

P s
ii

∑

j

P s
jj −

∑

i

(P s
ii)

2 = (m + sK)2 + op(sK)

which is 3. To show 4, first we observe that
∑

i6=j

P s
ijP

s
ij = tr(P s′P s)−

∑

i

(P s
ii)

2.
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Now P s′P s = (PX + sPZ)(PX + sPZ) = PX + s2PZ and tr(P s′P s) = m + s2K. Since we know∑
i(P

s
ii)

2 = op(sK) from 2 in this Lemma,
∑

i6=j

P s
ijP

s
ij = m + s2K + op(sK).

This is 4.
5 is Lemma A.2 (v) in Donald and Newey (2001).

Let es
f = f ′(I − P s)(I − P s)f/N and ∆s = tr(es

f )

Lemma 3. Suppose Assumption 1-3 are satisfied and s →p 1 or f ′PZf/N →p 0. Then we have

1. ∆s = op(1),

2. f ′(I − P s)ε/
√

N = O(∆1/2
s ),

3. u′P sε = Op(sK),

4. E(u′P sεε′P su) = σuεσ
′
uε(m + sK)2 + (σ2

ε Σu + σuεσ
′
uε)(m + s2K) + op(sK),

5. E(f ′εε′P su) =
∑

i fiP
s
iiE(ε2i u

′
i) = Op(sK),

6. ∆1/2
s /

√
N = op(sK/N + ∆s),

7. E(hh′H−1u′f/N) =
∑

i fif
′
iH

−1E(ε2ui)f ′i/(N2) = Op(1/N),

8. E(f ′(I − P s)εε′P su/N) = op(∆
1/2
s

√
sK/

√
N).

Proof. Let start the proof from 1. Since (I−P s)(I−P s) = I−P +(s−1)2PZ by a simple algebra,

f ′(I − P s)(I − P s)f
N

=
f ′(I − P )f

N
+ (s− 1)2

f ′PZf

N
.

The first term is op(1) by Lemma A.3(i) in Donald and Newey (2001) and the second term converges
to 0 if s →p 1 or f ′PZf/N →p 0. Therefore ∆s = op(1).

Next we observe that E(f ′(I − P s)ε/
√

N) = 0 and

E

(
f ′(I − P s)ε√

N

ε′(I − P s)f√
N

)
= σ2

ε

f ′(I − P s)(I − P s)f
N

= σ2
ε e

s
f

Therefore f ′(I − P s)ε/
√

N = Op(∆
1/2
s ) by the Chebyshev inequality. This is 2.

For 3, Cauchy-Schwartz inequality says that all element of u′P sε is less than [tr(u′P su)(ε′P sε)]1/2,
then since E(u′P su) = σ2

u(m+sK) = Op(sK) and similarly E(ε′P sε) = Op(sK), Therefore Markov
inequality implies that u′P sε/

√
N = Op(sK/

√
N).

To give 4, observe that E(uiP
s
ijεjεkP

s
klu

′
l) = 0 if one of (i, j, k, l) is different from all the rest.

Also E(ε2i uiu
′
i) is bounded by Assumption 1. Therefore we have

E(u′P sεε′P su) =
∑

i

(P s
ii)

2E(ε2i uiu
′
i) +

∑

i6=j

E(uiP
s
iiεiεjP

s
jju

′
j)

+
∑

i 6=j

E(uiP
s
ijεjεiP

s
iju

′
j) +

∑

i6=j

E(uiP
s
ijε

2
jP

s
jiu

′
i)

= OP (1)
∑

i

(P s
ii)

2 + σuεσ
′
uε

∑

i 6=j

P s
iiP

s
jj + (σεΣu + σuεσ

′
uε)

∑

i6=j

P s
ijP

s
ij

= op(sK) + σuεσ
′
uε(m + sK)2 + (σ2

ε Σu + σuεσ
′
uε)(m + s2K)
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by Lemma 2.2, 2.3 and 2.4.
Assumption 1 also implies

E(f ′εε′P su) =
∑

i.j.k

fiP
s
jkE(εiεju

′
k) =

∑

i

fiP
s
iiE(ε2i u

′
i).

and furthermore together with Assumption 3 and Lemma 2.1,
∣∣∣∣∣
∑

i

fiP
s
iiE(ε2i u

′
i)

∣∣∣∣∣ ≤
∑

i

P s
ii · ||fi|| · ||E(ε2i u

′
i)|| = Op(sK)

which gives 5.
To prove 6, first we consider the function of a: sK/a + a which is convex and whose minimum

value is 2
√

sK with the minimizer a =
√

sK. If ∆s = 0, then (∆s/
√

N)((sK)/N + ∆s) = 0 and
for ∆s 6= 0, (∆s/

√
N)/((sK)/N + ∆s) = (sK/

√
∆sN +

√
∆sN)−1 ≤ 1/

√
sK → 0 since sK →∞.

7 is Lemma A.3(vii) in Donald and Newey (2001).
Now we are in the last step, 8. Let Q = I − P s and for some a and b let ζi = fa(xi, zi) and

µi = E(ε2i uib)P s
ii. Now the a, b th element of E(f ′(I − P s)εε′P su) satisfies

∣∣∣∣∣∣
E(

∑

i.j.k.l

ζiQijεjεkP
s
klulb)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

i,j

ζiQijE(ε2jujb)P s
jj

∣∣∣∣∣∣
= |ζ ′Qµ| ≤ |ζ ′QQζ|1/2|µ′µ|1/2

where the inequality is the Cauchy-Schwartz inequality. Now |ζ ′QQζ|1/2 = Op((N∆s)1/2) by the
definition of ∆s. |µ′µ| ≤ C

∑
i(P

s
ii)

2 for some constant C by Assumption 1 and applying Lemma
2(2) we have |µ′µ| = op(sK). Therefore we have

E(f ′(I − P s)εε′P su/N) = Op((N∆s)1/2)op(
√

sK)Op(1/N) = op(∆1/2
s

√
sK/

√
N).

A.1 Proof of Theorem 1 and 2

Proof. The shrinkage TSLS estimator has the following form.
√

N(δ̂ − δ0) = Ĥ−1ĥ, Ĥ = W ′P sW/N, ĥ = W ′P sε/
√

N.

Also Ĥ and ĥ are decomposed as

ĥ = h + T h
1 + T h

2 ,

T h
1 = −f ′(I − P s)ε/

√
N, T h

2 = u′P sε/
√

N

Ĥ = H + TH
1 + TH

2 + ZH

TH
1 = −f ′(I − P s)f/N, TH

2 = (u′f + f ′u)/N
ZH = (u′P su + u′(I − P s)f + f ′(I − P s)u)/N.

Now we will show that the conditions of Lemma 1 are satisfied and S(s) has the form given in
the theorem. Note that in our case op((sK)2/N + ∆s) = op(ρK,N ). So it is enough to show that
the term is op((sK)2/N + ∆s) in order to show that a term is op(ρK,N ).
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Now h = Op(1) and H = Op(1) by Lemma 2(5). Since T h = T h
1 + T h

2 = −f ′(I − P s)ε/
√

N +
u′P sε/

√
N , Lemma 3(2) and 3(3) say that T h

1 = Op(∆
1/2
s ) and T h

2 = Op(sK/
√

N) so T h =
Op(∆

1/2
s ) + Op(sK/

√
N). ∆s = op(1) by Lemma 3(1) and sK/

√
N = op(1) by (sK)2/N = op(1).

Therefore T h = op(1).
Next,

TH
1 = −f ′(I − P s)f

N
= −es

f − s(1− s)
f ′PZf

N
= −es

f + Op(
K2

N
) = Op(

(sK)2

N
+ ∆s).

TH
2 = Op(1/

√
N) by CLT. Note that (sK)2/N + ∆s = op(1). Then each of ((sK)2/N + ∆s)2, 1

N
and ((sK)2/N + ∆s)/N are o(ρK,N ) which implies ||TH ||2 = op(ρK,N ).

Now we analyze ||T h||||TH ||. We have seen that T h = Op(∆
1/2
s ) + Op(sK/

√
N). and TH =

Op(∆s) + Op(1/
√

N). Now Op(∆
3/2
s ) = op(∆s) = op(ρK,N ) by Lemma 3(1), Op(∆

1/2
s /

√
N) =

op(sK/N + ∆s) = op(ρK,N ) by Lemma 3(6), Op(sK∆s/
√

N) = op(ρK,N ) since sK∆1/2
s /

√
N ≤

(sK)2/N+∆s and ∆1/2
s = op(1) by Lemma 3(1), and Op(sK/N) = op(ρK,N ). Therefore ||T h||||TH || =

op(ρK,N ).
Since ||Zh|| = 0 in our case, ||Zh|| = op(ρK,N ). The last part which we need to show op(ρK,N ) is

||ZH ||. Now ZH = u′P su/N +u′(I−P s)f/N +f ′(I−P s)u/N where the first term is Op(sK/N) =
op(ρK,N ) and the second and third term are Op(∆1/2/

√
N) = op(sK/N+∆s) = op(ρK,N ) by Lemma

3(6). Therefore we have ||ZH || = op(ρK,N ).
Note that we have shown Ĥ = H + op(1) and ĥ = h + op(1). Then Proposition 1 holds by the

LLN, the CLT and the Slutzky’s Lemma.
We are going to the last part. Here we have ZA(s) = 0 and Â(s) = (h + T h

1 + T h
2 )(h + T h

1 +
T h

2 )′ − hh′H−1(TH
1 + TH

2 )′ − (TH
1 + TH

2 )H−1hh′.
Now we calculate the expectation of each term in A(s). First of all, E(hh′) = E(fεε′f ′/N) =

σ2
ε H. Second,

E(hT h′
1 ) = E(−fεε(I − P s)f ′

N
) = −σ2

ε

f(I − P s)f ′

N
.

Similarly E(T h
1 h′) = σ2

ε f(I − P s)f ′/N . Third,

E(hT h′
2 ) = E(

fεε′P su

N
) = Op(

sK

N
)

by Lemma 3(5). This implies that E(T h
2 h′) = Op(sK/N) also. Fourth,

E(T h
1 T h′

1 ) = E(
f ′(I − P s)εε′(I − P s)f

N
) = σ2

ε

f ′(I − P s)(I − P s)f
N

.

Fifth,

E(T h
1 T h′

2 ) = −E(
f ′(I − P s)εε′P su

N
) = op(

∆1/2
s

√
sK√

N
).

by Lemma 3(8). Again we have E(T h
2 T h′

1 ) = op(∆
1/2
s

√
sK/

√
N). Sixth,

E(T h
2 T h′

2 ) = E(
u′P sεε′P su

N
) = σuεσ

′
uε

(sK)2

N
+ op(

(sK)2

N
)

22



by Lemma 3(4). Seventh,

E(hh′H−1TH′
1 ) = −E(

f ′εε′fH−1f ′(I − P s)f
N2

) = −σ2
ε

f ′(I − P s)f
N

also we have E(TH
1 H−1hh′) = −σ2

ε f
′(I − P s)f/N . Finally, Lemma 3(7) implies

E(hh′H−1TH′
2 ) = E(

hh′H−1(u′f + f ′u)
N

) = Op(
1
N

).

and E(TH
2 H−1hh′) = OP (1/N). Therefore we have

E(Â(K)) = σ2
ε H − σ2

ε

f ′(I − P s)f
N

+ Op(
sK

N
)

−σ2
ε

f ′(I − P s)f
N

+ σ2
ε

f ′(I − P s)(I − P s)f
N

+ op(
∆1/2

s

√
sK√

N
)

+Op(
sK

N
) + op(

∆1/2
s

√
sK√

N
) + σuεσ

′
uε

(sK)2

N
+ op(

sK

N
)

+σ2
ε

f ′(I − P s)f
N

+ Op(
1
N

) + σ2
ε

f ′(I − P s)f
N

+ Op(
1
N

)

= σ2
ε H + σuεσ

′
uε

(sK)2

N
+ σ2

ε

f ′(I − P s)(I − P s)f
N

+ op(ρK,N )

where the last equality holds because 1/N = op(ρK,N ), sK/N = op(ρK,N ) and op(∆
1/2
s

√
sK/

√
N) =

op(ρK,N ) by the fact that ∆1/2
s

√
sK/

√
N ≤ sK/N + ∆s.

A.2 Proof of Theorem 3

Proof. Under the assumptions, W ′(PX + PZ)W/N − H →p 0 and W ′PZW/N − f ′PZf/N →p 0.
Let

V ≡ σ2
ε

λ′H−1σuεσ′uεH
−1λ

λ′H−1f ′PZfH−1λ

N
, V̂ ≡ σ̂2

ε

λ̂′Ĥ−1σ̂uεσ̂′uεĤ
−1λ̂

λ̂′Ĥ−1W ′PZWĤ−1λ̂

N
.

Then V̂ − V = op(1) and s∗ and ŝ∗ can be written as 1− (1 + V N/K2)−1 and 1− (1 + V̂ N/K2)−1

respectively. Suppose f ′PZf/N → c > 0 for some c, then

ŝ∗ − s∗ =
V̂ N/K2 − V N/K2

(1 + V̂ N/K2)(1 + V N/K2)
=

V̂ − V

(K2

N + V̂ )(K2

N + V )
K2

N
= op(K2/N).

This implies that

H(S(ŝ∗)− S(s∗))H = (ŝ∗2 − s∗2)K2/N + ((1− ŝ∗)2 − (1− s∗)2)f ′PZf/N = op(K2/N)

by the continuous mapping theorem. Since S(s∗) is at least Op(K2/N) in this case, the result holds.
Suppose f ′PZf = Op(K) which occurs when Z is an irrelevant instrument, then s∗ = Op(1/K)

and S(s∗) = Op(1/N). Since N(V̂ − V )/K = op(1), we have

ŝ∗ − s∗ =
V̂ N/K2 − V N/K2

(1 + V̂ N/K2)(1 + V N/K2)
=

N(V̂ − V )/K

(1 + V̂ N/K2)(1 + V N/K2)
1
K

= op(1/K).

It follows therefore that S(ŝ∗)− S(s∗) = op(1/N).
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A.3 Proof of Theorem 4

First we show that the consistent of shrinkage LIML and derive the asymptotic distribution of it
under sK/N → 0. Now our δ̂ is δ̂ = argminδ(y −Wδ)′P s(y −Wδ)/(y −Wδ)′(y −Wδ).

Lemma 4. Assumption 1-3 are satisfied. Then under sK/N → 0 and s → 1 or f ′PZf/N →p 0,
δ̂ →p δ0.

Proof. Define W̄ ≡ (y,W ) and D0 ≡ (δ, I). W̄ can be written as W̄ = WD0 + εe1. where e1 is the
first unit vector. Let Â = W̄ ′P sW̄/N and A = D′

0H̄D0.
Observing Lemma A.4 and the proof of Lemma A.5 in Donald and Newey (2001), it is enough

to show that Â →p A.
Â has the following decomposition.

Â = D′
0

(
f ′f
N

− f ′(I − P s)f
N

+
u′P sf

N
+

f ′P su

N

)
D0 + e1

ε′P sW

N
D0 + D′

0

WP sε

N
e′1 +

ε′P sε

N
e1e

′
1.

First we have f ′f/N →p H̄ by the LLN. f ′(I−P s)f/N = f ′(I−P )f/N +(1−s)f ′PZf/N →p 0
by Lemma A.2(1) in Donald and Newey (2001) and that s →p 1 or f ′PZf/N →p 0. E(ε′P sε) =
tr(P sE(εε′)) = σ2

ε (m + sK) which implies that ε′P sε/N →p 0 by Markov’s inequality, Similarly we
can show that u′P su/N →p 0. Let Wj be the jth column of W . Then

∣∣∣∣
W ′

jP
sε

N

∣∣∣∣ ≤
√

W ′
jP

sWj

N

√
ε′P sε

N
≤

√
W ′

jWj

N
op(1) = op(1).

The first inequality is the Cauchy-Schwartz inequality and the second inequality comes from the
fact that I − P s is positive definite which is because I − P s = I − P + (1 − s)PZ and I − P and
PZ are is positive definite and 1− s ≥ 0. It follows therefore that W ′P sε/N →p 0. f ′P su/N →p 0
similarly.

Summing up we have Â →p A.

Lemma 5. Assumption 1-3 are satisfied, sK/N →p 0 and s →p 1 or f ′PZf/N →p 0, then√
N(δ̂ − δ0) →d N(0, σ2

ε H̄
−1).

Proof. Let As(δ) ≡ (y −Wδ)′P s(y −Wδ)/N and B(δ) ≡ (y −Wδ)′(y −Wδ)/N . Define Λ(δ) ≡
As(δ)/B(δ) so that δ̂ = argminδ Λ(δ).

Let Λδ(δ) and Λδδ(δ) be the gradient and Hessian of Λ(δ) respectively. A standard Taylor
expansion shows that

√
N(δ̂ − δ0) = −Λδδ(δ̃)−1

√
NΛδ(δ0) = (

σ̃2
ε Λδδ(δ̃)

2
)−1(− σ̃2

ε

√
NΛδ(δ0)
2

)

for some mean value δ̃. Now we have

Λδ(δ) = B(δ)−1(Aδ(δ)− Λ(δ)Bδ(δ))
Λδδ(δ) = B(δ)−1(Aδδ(δ)− Λ(δ)Bδδ(δ))−B(δ)−1(Bδ(δ)Λδ(δ)′ + Λδ(δ)B′

δ).

Since δ̂ →p δ0 by the Lemma 4, δ̃ →p δ0, which implies that B(δ̃) →p σ2
ε , Bδ(δ̃) →p −2σuε. As in

before A(δ̃) →p 0 and therefore Λ(δ̃) →p 0. Also Aδ(δ̃) →p 0 and therefore Λδ(δ̃) →p 0. Aδδ(δ) =
2W ′P sW/N →p 2H̄. Bδδ(δ) = 2W ′W/N →p 2E(WiW

′
i ). Therefore we have σ̃2

ε Λδδ(δ̃) →p H̄.
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Consider the gradient term. First define α̂ = W ′ε/ε′ε and α = σuε/σ2
ε . α̂ − α = Op(1/N) by

the CLT. We have the following decomposition.

− σ̃2
ε

√
NΛδ(δ0)
2

=
W ′P sε√

N
− ε′P sεW ′ε√

Nε′ε
= h− f ′(I − P s)ε√

N
+

v′P sε√
N

− (α̂− α)
ε′P sε√

N
.

h →d N(0, σ2H̄) by the CLT. Lemma 2(1) and Chebyshev inequality says f ′(I−P s)ε/
√

N = op(1).
A similar argument as in the proof of Lemma 2(4) with E(viεi) = 0 implies that v′P sε/

√
N =

Op(
√

sK/N) = op(1). ε′P sε = Op(sK) as we see in the proof of Lemma 4. It follows therefore
(α̂− α)ε′P sε/

√
N = Op(sK/N) = op(1). Hence it holds −σ̃2

ε

√
NΛδ(δ0)/2 →d N(0, σ2

ε H̄).
In conclusion, we have

√
N(δ̂ − δ) →d H̄−1N(0, σ2

ε H̄) = N(0, σ2
ε H̄

−1)

Define Λ̂ = minδ(y −Wδ)′P s(y −Wδ)/(y −Wδ)′(y −Wδ) and Λ̃ = ε′P sε/(Nσ2
ε ). Also note

that in LIML case, to show op(ρK,N ), it is enough to show op(sK/N + ∆s).

Lemma 6. Assumption 1-3 are satisfied, sK/N →p 0 and 1 − s = op(K/N) or f ′PZf/N →p 0,
then

Λ̂ = Λ̃−
(

σ̃2
ε

σ2
ε

− 1
)

Λ̃− h′H−1h

2Nσ2
ε

+ R̂Λ = Λ̃ + op(
sK

N
).

And
√

NR̂Λ = op(ρK,N ).

Proof. We expand Λ̂ = Λ(δ̂) around the true value δ0. Then

Λ̂ = Λ(δ0)− Λδ(δ0)′(Λδδ(δ0))−1Λδ(δ0)
2

+ Op(
1

N3/2
)

= Λ̃−
(

σ̃2
ε

σ2
ε

− 1
)

Λ̃ +
(σ̃2

ε − σ2
ε )

2

σ̃2
ε σ

2
ε

Λ̃− Λδ(δ0)′(Λδδ(δ0))−1Λδ(δ0)
2

+ Op(
1

N3/2
).

We can see from the proof of Lemma 5,

− σ̃2
ε

√
NΛδ(δ0)
2

= h + Op(∆1/2
s +

sK

N
).

This also implies that Λδ = Op(1/
√

N). Then,

σ̃2
ε Λδδ(δ̃)

2
=

W ′P sW

N
− Λ(δ0)

W ′W
N

+ Op(
1√
N

).

by Bδ(δ0) = Op(1). It follows that

σ̃2
ε Λδδ(δ̃)

2
= H − f ′(I − P s)f

N
+

u′P sf

N
+

f ′P su

N
+

u′P su

N
+ Op(

√
sK

N
).

by Λ(δ0) = Op(
√

sK/N). As in the proof of proposition 2, we have f ′(I − P s)f/N = Op(∆s +
sK/N). It holds also that u′P sf/N = Op(1/

√
N) and u′P su/N = Op(sK/N). Summing up we

have σ̃2
ε Λδδ(δ̃)/2 = H + Op(∆

1/2
s +

√
sK/N). Then we have

Λδ(δ0)′(Λδδ(δ0))−1Λδ(δ0)
2

=
h′H−1h

Nσ2
ε

+ Op(
∆1/2

s

N
+

√
sK

N3
).
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Also it follows that
(
σ̃2

ε /σ2
ε − 1

)
= Op(1/

√
N) by the CLT and the Delta method. These results

give the first equation of the lemma since

Λ̂ = Λ̃−
(

σ̃2
ε

σ2
ε

− 1
)

Λ̃− h′H−1h

2Nσ2
ε

+ Op(
∆1/2

s

N
+

√
sK

N3
) + Op(

sK

N2
) + Op(

1
N3/2

)

and all of remainder terms are op(ρK,N ).
The second equation in the lemma is given by the fact that Λ̃ = Op(sK/N).

Lemma 7. Assumption 1-3 are satisfied, sK/N →p 0 and s →p 1, then

1. u′P su/N − Λ̃Σu = op(sK/N),

2. E(hΛ̃ε′v/
√

N) = (m + sK)/N ·∑i fiE(ε2i v
′
i)/N + Op(sK/N2),

3. E(hh′H−1h/
√

N) = Op(1/N).

Proof. We begin with the proof of (1). E(Λ̃) = tr(P sE(εε′))/(Nσ2
ε ) = (m + sK)/N and

E((Λ̃− m + sK

N
)2) =

E(ε′P sεε′P sε)
N2σ4

ε

− (
m + sK

N
)2

=
σ4

ε (m + sK)2 + op((sK)2)
N2σ4

ε

− (
m + sK

N
)2 = op((

sK

N
)2)

by Lemma 3(4) with replacing u by ε. This gives (Λ̃− (m+ sK)/N)Σu = op(sK/N). We also have
E(u′P su) = (m + sK)Σu and u′P su/N − ((m + sK)/N)Σu = op(sK/N). Therefore 1 is proved.

We observe

E(
hΛ̃ε′v√

N
) =

∑
i,j,k,l E(fiεiεjP

s
jkεkεlv

′
l)

N2σ2
ε

=
∑

i fiP
s
iiE(ε4i v

′
i)

N2σ2
ε

+ 2

∑
i6=j fiP

s
ijE(ε2jv

′
j)

N2
+

∑
i6=j fiP

s
jjE(ε2i v

′
i)

N2

= Op(
sK

N2
) + op(

sK

N2
) +

m + sK

N

∑
i fiE(ε2i v

′
i)

N

which gives 2.
3 is Lemma A.8(iii) in Donald and Newey (2001).

Proof of Theorem 4. The consistency and the asymptotic normality of the shrinkage estimator
stems from Lemma 4 and Lemma 5. The shrinkage estimator LIML estimator has the following
representation.

√
N(δ̂ − δ0) = Ĥ−1ĥ, Ĥ =

W ′P sW

N
− Λ̂

W ′W
N

, ĥ =
W ′P sε√

N
− Λ̂

W ′ε√
N

.

As in the case of TSLS, we are going to verify the assumption of Lemma 1. First Ĥ and ĥ have
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the decomposition:

ĥ = h +
5∑

i=1

T h
i + Zh,

T h
1 = −f ′(I − P s)ε√

N
= Op(∆1/2

s ), T h
2 =

v′P sε√
N

= Op(

√
sK

N
),

T h
3 = −Λ̃h = Op(

sK

N
), T h

4 = −Λ̃
v′ε√
N

= Op(
sK

N
),

T h
5 =

h′H−1h

2
√

Nσ2
ε

σuε = Op(
1√
N

),

Zh = −(Λ̂− Λ̃)h +
√

N(
σ̃2

ε

σ2
ε

− 1)Λ̃(
u′ε
N

− σuε) +
h′H−1h

2
√

Nσ2
ε

(
u′ε
N

− σuε)−
√

NR̂Λ
u′ε
N

and

Ĥ = H +
3∑

i=1

TH
i + ZH ,

TH
1 = −f ′(I − P s)f

N
= Op(

sK

N
+ ∆s), TH

2 =
u′f + f ′u

N
= Op(

1√
N

), TH
3 = −Λ̃H = Op(

sK

N
),

ZH = −u′(I − P s)f
N

− f ′(I − P s)u
N

+
uP su

N
− Λ̃

u′u
N

− Λ̃(
u′f + f ′u

N
)− (Λ̂− Λ̃)

W ′W
N

.

h = Op(1) and H = Op(1) by Lemma 3(8). T h = op(1) since all of ∆1/2
s ,

√
sK/N , sK/N and

1/
√

N are op(1).
||TH

1 ||2 consists of terms of order (sK/N + ∆s)2, 1/N , (sK/N)2, (sK/N + ∆s)/
√

N , (sK/N +
∆s) · sK/N and sK/N3/2. It is easy to see that all of them are op(ρK,N ). It follows that ||TH

1 ||2 =
op(ρK,N ).

Similarly ||T h|| · ||TH || consists of terms of order (sK/N + ∆s)op(1), ∆1/2
s /

√
N ,

√
sK/N , 1/N

and sK/N · op(1). A simple inspection and Lemma 3(6) say that all of them are op(ρK,N ). That
gives ||T h|| · ||TH || = op(ρK,N ).

To show Zh = op(ρK,N ), we investigate each term of Zh. (Λ̂−Λ̃)h = op(sK/N)Op(1) = op(ρK,N )
by Lemma 6.

√
N(σ̃2

ε /σ2
ε − 1)Λ̃(u′ε/N − σuε) = Op(1)Op(sK/N)Op(1/

√
N) = Op(sK/N3/2) =

op(ρK,N ) by the CLT and the delta method. h′H−1h/(2
√

Nσ2
ε )·(u′ε/N−σuε) = Op(1/

√
N)Op(1/

√
N) =

Op(1/N) = op(ρK,N ) by the CLT.
√

NR̂Λu′ε/N = op(ρK,N )Op(1) = op(ρK,N ) by the LLN and
Lemma 6. Therefore Zh = op(ρK,N ).

Similarly, the each term of ZH is shown to be op(ρK,N ). u′(I − P s)f/N = Op(∆
1/2
s /

√
N) =

op(ρK,N ) where the first equality can be verified as in the proof of Lemma 3(2) and the second
equality is Lemma 3(6). uP su/N − Λ̃u′u/N = uP su/N − Λ̃Σu − Λ̃(u′u/N − Σu) = op(sK/N) +
Op(sK/N)op(1) = op(ρK,N ) by Lemma 7(1) and the LLN. The CLT implies Λ̃(u′f + f ′u)/N =
Op(sK/N)Op(1/

√
N) = op(ρK,N ). Finally (Λ̂ − Λ̃)W ′W/N = op(sK/N)Op(1) = op(ρK,N ) by the

LLN and Lemma 6. Hence we have ZH = op(ρK,N ).
Consider the decomposition

(h +
5∑

i=1

T h
i )(h +

5∑

i=1

T h
i )′ − hh′H−1

3∑

i=1

TH′
i −

3∑

i=1

TH
i H−1hh′ = A(s) + ZA(s)
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where

A(s) ≡ hh′ +
5∑

i=1

hT h′
i +

5∑

i=1

T h′
i h′ + (T h

1 + T h
2 )(T h

1 + T h
2 )′ − hh′H−1

3∑

i=1

TH′
i −

3∑

i=1

TH
i H−1hh′

ZA(s) ≡ (
5∑

i=3

T h
i )(

5∑

i=3

T h
i )′ + (

5∑

i=3

T h
i )(T h

1 + T h
2 )′ + (T h

1 + T h
2 )(

5∑

i=3

T h
i )′

ZA(s) consists of terms of order (sK/N)2, sK/N3/2, 1/N , ∆1/2
s sK/N , ∆1/2

s /
√

N , (sK/N)3/2 and√
sK/N . All of them are op(ρK,N ) by a simple inspection and Lemma 3(6). ZA(s) = op(ρK,N ).

What is remained to be shown is the expectation of A(s). As we saw in the TSLS case,
we have E(hh′) = σ2

ε H, E(hT h′
1 ) = E(T h

1 h′) = −σ2
ε f
′(I − P s)f/N , E(T h

1 T h′
1 ) = σ2

ε f
′(I −

P s)(I − P s)f/N , E(T h
1 T h′

2 ) = op(∆
1/2
s

√
sK/N) = op(ρK,N ), similarly E(T h

2 T h′
1 ) = op(ρK,N ),

E(hh′H−1TH′
1 ) = E(TH

1 H−1hh′) = −σ2
ε f
′(I − P s)f/N , E(hh′H−1TH′

2 ) = Op(1/N) = op(ρK,N )
and similarly E(TH

2 H−1hh′) = op(ρK,N ).
A similar argument as in the proof of Lemma 3(6) noting that E(viεi) = 0 gives

E(T h
2 T h′

2 ) = σ2
ε Σv

s2K

N
+ op(ρK,N ).

Lemma 7(3) shows

E(hT h′
5 ) = E(

hh′H−1h

2Nσ2
ε

σuε) = Op(
1
N

) = op(ρK,N ).

Similarly, E(T h
5 h) = op(ρK,N ).

Lemma 7(2) gives

E(hT h′
4 ) = E(

hΛ̃ε′v√
N

) = −sK

N

∑
i fiE(ε2i v

′
i)

N
+ op(ρK,N ).

Also we have E(hT h′
2 ) =

∑
i fiP

s
iiE(ε2i v

′
i)/N . Letting ζ̂ ≡ ∑

i fiP
s
iiE(ε2i v

′
i)/N−sK/N ·∑i fiE(ε2i v

′
i)/N ,

E(hT h′
2 ) + E(hT h′

4 ) = ζ̂ + op(ρK,N ) and E(T h
2 h′) + E(T h

4 h′) = ζ̂ ′ + op(ρK,N ).
Summing up, we have

E(A(s)) = σ2
ε H − 2σ2

ε

f ′(I − P s)f
N

+ ζ̂ + ζ̂ ′

+σ2
ε

f ′(I − P s)(I − P s)f
N

+ σ2
ε Σv

s2K

N
+ 2σ2

ε

f ′(I − P s)f
N

+ op(ρK,N )

= σ2
ε H + σ2

ε Σv
s2K

N
+ σ2

ε

f ′(I − P s)(I − P s)f
N

+ ζ̂ + ζ̂ ′ + op(ρK,N ).

Note that under E(ε2i vi) = 0, ζ̂ = 0.
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Table 1: model (a), R2
f = 0.1

OLS TSLS IV,1 DNTSLS JSTSLS OSTSLS STSLS LIML DNLIML SLIML

c = 0.1
n = 100

bias 0.085 0.067 0.026 0.046 0.062 0.064 0.064 0.070 0.055 0.064
MAD 0.092 0.133 0.718 0.270 0.152 0.134 0.161 0.361 0.265 0.349

Dec. Rge 0.245 0.482 4.164 1.690 0.581 0.479 0.597 1.998 1.195 1.834
Cov. Rate 0.847 0.934 0.998 0.979 0.945 0.933 0.950 0.983 0.985 0.983

n = 500
bias 0.092 0.031 0.006 0.030 0.030 0.030 0.031 -0.007 -0.000 -0.005

MAD 0.092 0.081 0.415 0.084 0.081 0.080 0.081 0.113 0.112 0.113
Dec. Rge 0.106 0.291 2.367 0.300 0.296 0.292 0.294 0.432 0.426 0.431
Cov. Rate 0.429 0.950 0.996 0.954 0.952 0.951 0.949 0.965 0.965 0.966

c = 0.5
n = 100

bias 0.442 0.325 0.243 0.300 0.321 0.304 0.312 0.041 0.238 0.054
MAD 0.441 0.325 0.726 0.392 0.338 0.309 0.319 0.329 0.321 0.323

Dec. Rge 0.225 0.433 4.147 1.673 0.526 0.636 0.578 1.161 1.069 1.540
Cov. Rate 0.000 0.471 0.978 0.733 0.555 0.704 0.550 0.937 0.901 0.933

n = 500
bias 0.463 0.153 0.073 0.196 0.157 0.144 0.148 -0.007 0.026 -0.004

MAD 0.443 0.153 0.419 0.219 0.152 0.144 0.150 0.108 0.108 0.108
Dec. Rge 0.092 0.271 2.328 0.453 0.272 0.284 0.284 0.411 0.397 0.416
Cov. Rate 0.000 0.665 0.971 0.706 0.676 0.724 0.681 0.961 0.946 0.961

c = 0.9
n = 100

bias 0.811 0.569 0.410 0.521 0.567 0.511 0.544 0.020 0.302 0.022
MAD 0.811 0.569 0.704 0.610 0.570 0.511 0.544 0.232 0.385 0.233

Dec. Rge 0.128 0.305 3.686 2.138 0.390 0.779 0.469 1.189 1.104 1.198
Cov. Rate 0.000 0.017 0.849 0.589 0.119 0.450 0.165 0.937 0.723 0.936

n = 500
bias 0.811 0.273 0.104 0.283 0.272 0.249 0.276 0.005 0.030 0.006

MAD 0.811 0.273 0.403 0.347 0.272 0.250 0.276 0.095 0.096 0.095
Dec. Rge 0.054 0.213 2.211 1.106 0.212 0.295 0.261 0.365 0.353 0.367
Cov. Rate 0.000 0.202 0.895 0.706 0.207 0.494 0.310 0.950 0.941 0.952
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Table 2: model (a), R2
f = 0.01

OLS TSLS IV,1 DNTSLS JSTSLS OSTSLS STSLS LIML DNLIML SLIML

c = 0.1
n = 100

bias 0.093 0.101 0.077 0.052 0.112 0.096 0.096 0.319 0.129 0.285
MAD 0.099 0.172 0.912 0.561 0.265 0.187 0.219 0.910 0.482 0.858

Dec. Rge 0.255 0.575 6.418 4.264 1.702 0.654 0.855 15.981 2.460 8.131
Cov. Rate 0.836 0.935 0.999 0.991 0.972 0.952 0.952 0.994 0.992 0.995

n = 500
bias 0.101 0.083 0.163 0.117 0.096 0.080 0.084 0.168 0.109 0.129

MAD 0.101 0.143 0.853 0.465 0.200 0.143 0.173 0.589 0.363 0.553
Dec. Rge 0.108 0.478 5.204 2.931 0.914 0.487 0.678 4.666 1.528 4.338
Cov. Rate 0.389 0.936 1.000 0.986 0.951 0.929 0.951 0.991 0.992 0.990

c = 0.5
n = 100

bias 0.488 0.479 0.428 0.473 0.482 0.462 0.482 0.361 0.450 0.377
MAD 0.488 0.479 0.948 0.686 0.527 0.582 0.493 0.889 0.592 0.870

Dec. Rge 0.234 0.538 4.606 3.301 1.575 1.854 0.804 4.726 2.037 4.144
Cov. Rate 0.000 0.324 0.979 0.829 0.603 0.932 0.459 0.900 0.892 0.900

n = 500
bias 0.498 0.414 0.367 0.402 0.414 0.402 0.408 0.078 0.388 0.108

MAD 0.498 0.414 0.851 0.583 0.440 0.418 0.413 0.525 0.468 0.517
Dec. Rge 0.097 0.437 4.604 2.633 0.763 0.996 0.571 3.459 1.495 3.434
Cov. Rate 0.000 0.308 0.984 0.777 0.521 0.791 0.405 0.945 0.896 0.942

c = 0.9
n = 100

bias 0.894 0.851 0.838 0.830 0.844 0.832 0.858 0.184 0.730 0.220
MAD 0.898 0.851 0.966 0.883 0.853 0.840 0.859 0.825 0.848 0.817

Dec. Rge 0.116 0.276 2.920 2.059 0.873 1.541 0.457 * * *
Cov. Rate 0.000 0.000 0.771 0.544 0.288 0.701 0.034 0.739 0.506 0.735

n = 500
bias 0.890 0.745 0.649 0.719 0.732 0.699 0.744 0.025 0.548 0.045

MAD 0.890 0.745 0.852 0.773 0.741 0.700 0.744 0.382 0.633 0.375
Dec. Rge 0.050 0.266 3.547 2.173 0.516 1.039 0.427 4.756 1.625 4.247
Cov. Rate 0.000 0.000 0.794 0.547 0.195 0.471 0.060 0.895 0.579 0.896
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Table 3: model (b), R2
f = 0.1

OLS TSLS IV,1 DNTSLS JSTSLS OSTSLS STSLS LIML DNLIML SLIML

c = 0.1
n = 100

bias 0.084 0.062 -0.020 0.022 0.038 0.053 0.046 0.065 0.013 0.010
MAD 0.091 0.134 0.286 0.216 0.160 0.135 0.162 0.380 0.214 0.309

Dec. Rge 0.254 0.486 1.233 0.970 0.650 0.489 0.634 2.005 0.978 1.412
Cov. Rate 0.838 0.933 0.990 0.975 0.961 0.944 0.951 0.982 0.984 0.981

n = 500
bias 0.091 0.026 -0.014 0.017 0.016 0.022 0.003 0.010 0.018 0.013

MAD 0.091 0.079 0.119 0.090 0.080 0.079 0.085 0.115 0.109 0.107
Dec. Rge 0.105 0.289 0.498 0.350 0.305 0.291 0.318 0.448 0.425 0.420
Cov. Rate 0.432 0.949 0.963 0.951 0.950 0.954 0.928 0.956 0.954 0.950

c = 0.5
n = 100

bias 0.443 0.319 -0.015 0.129 0.213 0.088 0.224 0.040 0.155 0.045
MAD 0.443 0.319 0.286 0.284 0.260 0.228 0.271 0.356 0.279 0.303

Dec. Rge 0.223 0.443 1.298 1.056 0.655 0.777 0.718 1.775 1.023 1.403
Cov. Rate 0.000 0.492 0.956 0.804 0.729 0.914 0.685 0.916 0.905 0.917

n = 500
bias 0.452 0.146 -0.014 0.082 0.111 0.049 0.089 0.002 0.050 0.001

MAD 0.452 0.147 0.120 0.142 0.120 0.098 0.121 0.108 0.107 0.103
Dec. Rge 0.092 0.266 0.505 0.453 0.287 0.347 0.367 0.415 0.371 0.408
Cov. Rate 0.000 0.689 0.963 0.832 0.798 0.942 0.827 0.968 0.934 0.966

c = 0.9
n = 100

bias 0.811 0.565 -0.015 0.128 0.410 0.046 0.245 -0.024 0.153 -0.007
MAD 0.811 0.565 0.265 0.332 0.429 0.238 0.283 0.242 0.267 0.231

Dec. Rge 0.127 0.308 1.367 1.274 0.671 0.895 0.667 1.340 1.113 1.176
Cov. Rate 0.000 0.017 0.912 0.760 0.367 0.889 0.689 0.947 0.852 0.938

n = 500
bias 0.811 0.270 -0.014 0.035 0.212 0.030 0.081 0.005 0.046 0.005

MAD 0.811 0.269 0.120 0.125 0.212 0.109 0.120 0.094 0.096 0.093
Dec. Rge 0.056 0.203 0.520 0.501 0.247 0.418 0.367 0.367 0.340 0.360
Cov. Rate 0.000 0.200 0.950 0.902 0.429 0.938 0.856 0.952 0.921 0.950

33



Table 4: model (b), R2
f = 0.01

OLS TSLS IV,1 DNTSLS JSTSLS OSTSLS STSLS LIML DNLIML SLIML

c = 0.1
n = 100

bias 0.093 0.100 0.055 0.051 0.093 0.089 0.068 0.275 0.108 0.238
MAD 0.098 0.170 0.757 0.497 0.273 0.210 0.220 0.892 0.460 0.802

Dec. Rge 0.255 0.576 4.427 3.063 1.677 0.786 0.926 9.802 2.237 6.833
Cov. Rate 0.830 0.933 0.999 0.992 0.972 0.973 0.953 0.990 0.993 0.991

n = 500
bias 0.100 0.080 -0.003 0.034 0.062 0.063 0.060 0.105 0.056 0.076

MAD 0.100 0.140 0.403 0.316 0.199 0.153 0.184 0.573 0.303 0.472
Dec. Rge 0.108 0.482 2.167 1.575 0.845 0.527 0.749 3.675 1.390 2.775
Cov. Rate 0.388 0.934 0.994 0.983 0.968 0.951 0.952 0.984 0.987 0.983

c = 0.5
n = 100

bias 0.488 0.485 0.265 0.365 0.431 0.313 0.458 0.296 0.396 0.301
MAD 0.488 0.485 0.768 0.623 0.514 0.593 0.464 0.897 0.532 0.820

Dec. Rge 0.235 0.539 4.572 3.012 1.375 2.161 0.823 5.925 1.970 5.344
Cov. Rate 0.000 0.320 0.974 0.828 0.633 0.962 0.482 0.921 0.902 0.918

n = 500
bias 0.498 0.407 0.046 0.199 0.291 0.134 0.303 0.083 0.228 0.102

MAD 0.498 0.407 0.388 0.390 0.353 0.299 0.337 0.534 0.378 0.482
Dec. Rge 0.096 0.433 2.014 1.564 0.934 1.187 0.782 3.359 1.382 2.530
Cov. Rate 0.000 0.313 0.969 0.822 0.686 0.932 0.571 0.939 0.914 0.934

c = 0.9
n = 100

bias 0.893 0.852 0.460 0.675 0.770 0.490 0.794 0.113 0.549 0.196
MAD 0.893 0.852 0.716 0.790 0.799 0.654 0.794 0.857 0.778 0.805

Dec. Rge 0.115 0.283 4.195 2.810 1.292 2.686 0.717 * * *
Cov. Rate 0.000 0.000 0.824 0.604 0.345 0.803 0.159 0.762 0.589 0.748

n = 500
bias 0.890 0.724 0.057 0.234 0.530 0.116 0.417 0.021 0.280 0.050

MAD 0.890 0.742 0.375 0.484 0.573 0.325 0.422 0.399 0.429 0.376
Dec. Rge 0.050 0.268 2.258 1.892 1.069 1.317 0.715 4.667 2.775 3.787
Cov. Rate 0.000 0.000 0.900 0.711 0.397 0.870 0.518 0.902 0.764 0.901
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Table 5: model (c), R2
f = 0.1

OLS TSLS IV,1 DNTSLS JSTSLS OSTSLS STSLS LIML DNLIML SLIML

c = 0.1
n = 100

bias 0.083 0.056 -0.021 0.016 0.041 0.051 0.051 0.040 0.013 0.015
MAD 0.092 0.137 0.346 0.194 0.157 0.140 0.150 0.372 0.208 0.325

Dec. Rge 0.245 0.484 1.594 0.816 0.644 0.486 0.584 1.871 0.890 1.534
Cov. Rate 0.847 0.937 0.994 0.965 0.956 0.938 0.941 0.973 0.978 0.975

n = 500
bias 0.091 0.025 -0.018 0.005 0.020 0.024 0.033 0.008 0.010 0.008

MAD 0.091 0.077 0.158 0.084 0.077 0.077 0.081 0.113 0.092 0.109
Dec. Rge 0.108 0.292 0.660 0.319 0.293 0.292 0.285 0.421 0.359 0.416
Cov. Rate 0.428 0.948 0.980 0.949 0.947 0.950 0.937 0.948 0.957 0.951

c = 0.5
n = 100

bias 0.440 0.319 -0.009 0.143 0.249 0.141 0.249 0.017 0.099 0.014
MAD 0.440 0.319 0.352 0.237 0.283 0.225 0.273 0.346 0.218 0.314

Dec. Rge 0.225 0.463 1.634 0.835 0.616 0.757 0.649 1.613 0.852 1.472
Cov. Rate 0.000 0.491 0.960 0.818 0.671 0.891 0.652 0.917 0.917 0.921

n = 500
bias 0.452 0.144 -0.018 0.052 0.132 0.086 0.116 0.012 0.035 0.011

MAD 0.452 0.145 0.157 0.098 0.135 0.112 0.139 0.105 0.097 0.103
Dec. Rge 0.093 0.257 0.676 0.352 0.272 0.329 0.354 0.425 0.365 0.412
Cov. Rate 0.000 0.700 0.964 0.885 0.752 0.910 0.781 0.969 0.950 0.967

c = 0.9
n = 100

bias 0.809 0.563 0.015 0.212 0.460 0.120 0.327 -0.026 0.112 -0.001
MAD 0.809 0.563 0.318 0.310 0.482 0.254 0.336 0.243 0.233 0.234

Dec. Rge 0.128 0.293 1.612 1.057 0.655 0.858 0.602 1.330 0.934 1.231
Cov. Rate 0.000 0.021 0.906 0.734 0.287 0.849 0.586 0.939 0.866 0.934

n = 500
bias 0.811 0.272 -0.019 0.084 0.245 0.074 0.129 0.006 0.021 0.007

MAD 0.811 0.272 0.153 0.116 0.245 0.123 0.149 0.092 0.089 0.093
Dec. Rge 0.057 0.205 0.714 0.349 0.220 0.408 0.361 0.358 0.341 0.354
Cov. Rate 0.000 0.195 0.945 0.851 0.312 0.903 0.789 0.943 0.926 0.942
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Table 6: model (c), R2
f = 0.01

OLS TSLS IV,1 DNTSLS JSTSLS OSTSLS STSLS LIML DNLIML SLIML

c = 0.1
n = 100

bias 0.092 0.098 0.033 0.064 0.086 0.094 0.068 0.297 0.108 0.269
MAD 0.098 0.170 0.798 0.460 0.275 0.199 0.221 0.882 0.423 0.818

Dec. Rge 0.252 0.576 5.068 3.070 1.696 0.718 0.920 9.503 2.046 9.091
Cov. Rate 0.830 0.931 0.999 0.991 0.973 0.958 0.950 0.990 0.995 0.991

n = 500
bias 0.101 0.082 0.021 0.058 0.072 0.073 0.071 0.130 0.059 0.107

MAD 0.101 0.139 0.500 0.300 0.193 0.144 0.174 0.576 0.288 0.529
Dec. Rge 0.109 0.495 3.002 1.421 0.870 0.528 0.685 3.726 1.280 3.107
Cov. Rate 0.389 0.932 0.996 0.979 0.965 0.936 0.950 0.992 0.987 0.991

c = 0.5
n = 100

bias 0.487 0.480 0.317 0.357 0.446 0.344 0.472 0.323 0.398 0.317
MAD 0.487 0.480 0.800 0.585 0.517 0.581 0.483 0.892 0.528 0.836

Dec. Rge 0.234 0.548 4.750 2.849 1.442 2.073 0.785 6.241 1.930 5.665
Cov. Rate 0.000 0.324 0.977 0.827 0.612 0.956 0.462 0.923 0.911 0.919

n = 500
bias 0.498 0.405 0.115 0.254 0.342 0.252 0.358 0.112 0.236 0.123

MAD 0.498 0.405 0.511 0.363 0.389 0.336 0.370 0.530 0.344 0.499
Dec. Rge 0.097 0.427 2.912 1.372 0.914 1.147 0.676 3.235 1.228 2.673
Cov. Rate 0.000 0.329 0.973 0.775 0.623 0.904 0.500 0.930 0.908 0.927

c = 0.9
n = 100

bias 0.893 0.851 0.563 0.707 0.797 0.609 0.817 0.130 0.541 0.186
MAD 0.893 0.851 0.794 0.781 0.819 0.701 0.817 0.854 0.744 0.810

Dec. Rge 0.115 0.271 3.901 2.450 1.291 2.293 0.637 * * *
Cov. Rate 0.000 0.000 0.813 0.569 0.331 0.776 0.114 0.759 0.616 0.754

n = 500
bias 0.890 0.747 0.166 0.381 0.630 0.255 0.553 -0.032 0.278 0.015

MAD 0.890 0.747 0.460 0.509 0.651 0.364 0.554 0.381 0.397 0.376
Dec. Rge 0.050 0.258 3.596 1.608 0.974 1.585 0.674 6.139 1.702 4.704
Cov. Rate 0.000 0.001 0.878 0.657 0.319 0.782 0.312 0.905 0.770 0.903
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