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Abstract This paper provides methods for estimating a variety of retrospective measures
of causal e¤ects in systems of dynamic structural equations. These equations need not

be linear or separable. Structural identi�cation of e¤ects of interest is ensured by certain

conditional exogeneity conditions, an extension of the notion of strict exogeneity. The

covariates ensuring conditional exogeneity can contain not only lags but also leads of suitable

proxies for unobservables. We focus on covariate-conditioned average and quantile e¤ects,

together with counterfactual objects that are associated with these, such as point bands

and path bands. The latter are useful for constructing con�dence intervals and testing

hypotheses. We show how these objects can be estimated using state-space methods and

illustrate with a study of the impact of crude oil prices on gasoline prices.
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1 Introduction

This paper studies methods for retrospectively estimating the causal e¤ects of arbitrary

interventions to dynamic economic systems, extending work of White (2006), where the

focus was on methods for estimating the e¤ects of natural experiments, e.g., a regime shift.

In pursuing this goal, we blend a number of research themes that have been of central

interest to David Hendry throughout his proli�c and in�uential career: policy analysis

(e.g., Favero and Hendry, 1992; Banerjee, Hendry, and Mizon, 1996; Ericsson, Hendry and

Mizon, 1998; Hendry, 2000; Hendry and Mizon, 2000; Hendry, 2002); dynamic modeling

(e.g., Hendry, 1974; Hendry and Richard, 1982; Hendry, Pagan, and Sargan, 1984; Hendry,

1995c; Hendry, 1996); forecasting (e.g., Clements and Hendry, 1996; Clements and Hendry,

1998a,b; Clements and Hendry, 1999; Hendry and Ericsson, 2001; Clements and Hendry,

2002a,b; Clements and Hendry, 2003; Hendry, 2003; Chevillon and Hendry, 2005); forecast

failure (e.g., Clements and Hendry, 2002a; Hendry, 2002); notions of exogeneity and their

relation to causality (e.g., Engle, Hendry, and Richard, 1983 (EHR); Engle and Hendry,
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1993; Hendry, 1995a; Hendry and Mizon, 1998, 1999; Hendry, 2004); the links between

economics and econometrics (e.g., Hendry, 1980; Hendry, 1995b; Hendry and Wallace, 1984;

Hendry, 1993; Hendry 2001; Hendry, 2005); cointegration (e.g., Hendry, 1986; Banerjee and

Hendry, 1992); and automatic modeling (e.g., Hendry and Krolzig, 2001). Other areas

where David Hendry has made seminal contributions, such as encompassing (e.g., Hendry

and Richard, 1982), are also relevant to our present subject, but are not directly touched on

here. These references to Hendry�s work are illustrative only. A fuller listing and discussion

would leave little space for presenting our own results.

The plan of the paper is as follows. In Section 2, we posit a general dynamic data gen-

erating process (DGP), suitable for de�ning, identifying, and estimating well-de�ned causal

e¤ects. We do not require our dynamic structure to be separable between observable and

unobservable variables, nor do we impose other structure, such as linearity or monotonicity.

The unobservable drivers of the dependent variable may be countably in�nite in dimension.

Our framework thus permits analysis of general dynamic treatment e¤ects. These have

been considered in depth for panel data in work of Robins (1997) and Abbring and Heck-

man (2007), among others. In the pure time-series setting considered here, cross-section

variation is absent, necessitating the use of methods speci�c to time-series data.

In Section 3, we de�ne certain retrospective covariate-conditioned average e¤ects. Ret-

rospective conditioning makes use of all available relevant information in the past, relative

to the present (time T ). This creates the novel opportunity to improve predictions for a

particular past period (t < T ) using covariate information from the future relative to that

period (t+ � ; � > 0). Structural identi�cation of e¤ects of interest is ensured by conditional

exogeneity, a generalization of strict exogeneity, distinct from the notions of weak, strong,

and super-exogeneity of EHR, and an extension of White�s (2006) CIPP condition.

Section 3 also provides de�nitions of retrospective covariate-conditioned quantile re-

sponses and e¤ects, together with point bands and path bands based on these quantile

measures. We discuss how path bands can be used to test hypotheses about the e¤ects of

speci�c interventions.

In Section 4 we propose estimation methods for the e¤ects de�ned in Section 3. Our

estimators belong to a particular class of state-space �lters, where counterfactual outcomes

central to the de�nition of the e¤ects of interest play the role of unobservable system states.

Section 5 illustrates, with an application to the e¤ects of crude oil prices on gasoline prices.

Section 6 contains a summary and concluding remarks.

2 DGP: A Dynamic Structural System

Let yt denote the values of a ky � 1 vector (ky a �nite integer) of responses of interest, let
dt represent a kd � 1 vector (kd a �nite integer) of values of response-determining variables
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whose e¤ects on the response are of primary interest (causes of interest), and let vt and

zt represent countable vectors of values of other response-determining variables (ancillary

causes). Below we distinguish further between vt and zt. We consider a system of structural

equations in which the values yt are generated dynamically as

yt
c
= qt(y

t�1; dt; vt; zt); t = 1; 2; :::; (1)

where qt is an unknown Rky -valued function (the response function), yt�1 � (y0; y1; :::; yt�1)
denotes the (t� 1)-history of the sequence fytg; and dt � (d0; d1; :::; dt); vt � (v0; v1; :::; vt);
and zt � (z0; z1; :::; zt) similarly denote the t-histories of fdtg; fvtg; and fztg respectively.

We enforce the causal direction of time by requiring that only the past and present

of the referenced variables determine the time t response. We follow Chalak and White

(2007) and White and Chalak (2007a) (WC) in using the notation c
= to emphasize that

the structural equations (1) represent directional causal links (Goldberger, 1972, p.979), in

which manipulations of elements of yt�1; dt; vt; zt result in di¤ering values for yt, as in Strotz

and Wold (1960) and Fisher (1966, 1972). Leading examples of such structures are those

that arise from the dynamic optimization behavior of economic agents and/or interactions

among such agents. (See Chow, 1997, for numerous examples.)

Below, we assume that we can observe histories of yt and dt, but that we only observe

the history of some �nitely dimensioned subvectors ~vt and ~zt of vt and zt.

We seek to evaluate certain e¤ects of the causes of interest viewed retrospectively, that

is, from the present, time T . Specifying these e¤ects requires special care. Following WC,

we de�ne e¤ects in terms of interventions, that is, pairs of alternate values for arguments

of the response function. We consider only interventions to the causes of interest. As

we take a retrospective view, we focus solely on the e¤ects of retrospective interventions,

dT ! d�T � (dT ; d�T ):
A consequence of the explicit dynamics (lagged yt�s) in eq.(1) is that the e¤ects of

interventions can linger, that is, they can propagate through time. To handle this, we can

use an alternate implicit dynamic representation. Recursive substitution gives

y1
c
= q1(y0; d

1; v1; z1)

y2
c
= q2(y0; q1(y0; d

1; v1; z1); d2; v2; z2)
...

yt
c
= rt(y0; d

t; vt; zt) t = 1; 2; :::;

say, where rt is an unknown Rky -valued function that expresses the response value yt purely
in terms of initial values y0 and the history (dt; vt; zt). We distinguish between qt and rt
by calling qt the explicit dynamic response function and rt the implicit dynamic response

function. With no dynamics, the two are identical.

Analogous to White (2006), we de�ne the time t ceteris paribus e¤ect of the intervention

3



dT ! d�T at (y0; vt; zt) to be

�rt(y0; d
t; d�t; vt; zt) � rt(y0; d�t; vt; zt)� rt(y0; dt; vt; zt); t = 1; :::; T:

Because this e¤ect involves the implicit dynamic response function, it fully accounts for any

time propagation of e¤ects. Signi�cantly, this e¤ect depends not only on dt and d�t but also

y0; v
t; and zt: These values are �xed, consistent with the notion of a ceteris paribus e¤ect.

Although this de�nes the e¤ect of dT ! d�T at time t; only the t-histories dt; d�t; vt; and zt

matter, as the elements of dT ; d�T ; vT ; and zT for dates later than t do not determine time

t responses.

We ensure that �rt(y0; dt; d�t; vt; zt) is the total e¤ect of the intervention dT ! d�T by

requiring the system to have the property that y0; vt; and zt do not respond to interventions

to dT . (One can also de�ne and study direct e¤ects and various kinds of indirect e¤ects by

imposing other suitable structure (see Chalak and White, 2007, 2008). For conciseness, we

focus here solely on total e¤ects.)

Equation (1) does not specify how y0 is generated; we adopt the convention that y0
is generated outside the system as the realization of a random vector Y0. More elaborate

conventions are possible. For example, take v0; z0 as given, and require that interventions

dT ! d�T satisfy d0 = d�0. Or replace d
t; vt; and zt in equation (1) with dt�1; vt�1; and

zt�1; enforcing a stronger restriction on the operation of causes in time (as advocated by

Granger, 1969). Our notation permits �exibility: If contemporaneous e¤ects are allowed,

then dt; vt; and zt are observed at time t. If not, then dt; vt; and zt are observed at time

t � 1. The speci�cs of any given application often dictate which is more suitable. In any
case, we do not permit (d0; v0; z0) to respond to y0:

For the ancillary causes, we require that vt and zt do not vary in response to the

histories of dt or yt, so that interventions dT ! d�T have neither direct nor indirect e¤ects

on vt and zt. If, contrary to this requirement, the dynamic response function is formulated

initially in a way that includes ancillary causes that respond to histories of dt or yt, one

can generally perform substitutions that deliver a system in which this response is absent.

Speci�cally, one can generally express the original "responding" ancillary causes as functions

of histories of dt or yt and other ancillary causes that do not respond to these histories.

With these substitutions, our requirement holds, ensuring that �rt(y0; dt; d�t; vt; zt) gives

the total e¤ect of the intervention dT ! d�T : When ancillary causes respond to histories of

the responses or causes of interest, the system is vulnerable to the Lucas critique (Lucas,

1976). Enforcing the requirement that these dependencies are absent ensures that our

system properly captures e¤ects of policy changes represented by interventions.

We enforce these properties by specifying a particular recursive dynamic structure in

which "predecessors" structurally determine "successors," but not vice versa. We write

y ( d to denote that d precedes y (y succeeds d). In particular, future variables (e.g., dt+1)
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cannot precede present or past variables (e.g., yt). Necessarily, successors cannot determine

predecessors. Predecessors may but do not necessarily cause successors, in the sense de�ned

below. In particular, we specify that

dt ( (dt�1; vt; wt; zt)
wt ( (wt�1; vt; zt)
vt ( (vt�1; zt); t = 1; 2; ::::

(2)

Here, we introduce wt, a �nitely dimensioned vector whose t-history may help determine dt,

but not yt:We thus say that wt is structurally irrelevant for the response of interest. As for

yt and dt, we observe all elements of wt. Note that zt has no predecessors. Thus, we view

fztg as being generated outside the system, as the realization of a stochastic process fZtg
with whatever properties may be appropriate for a given application. White and Chalak

(2007b) refer to such structurally exogenous variables as fundamental variables.

The distinction between vt and zt should now be clear: whereas vt represents ancillary

causes determined within the structural system, zt represents ancillary causes determined

outside the structural system.

We formalize the structure developed above as follows:

Assumption A.1 (a) Let (
;F; P ) be a complete probability space, on which are de�ned
random vectors (D0; V0;W0; Y0) and the stochastic process fZtg, where D0; V0;W0; Y0; and

Zt take values in Rkd ; Rkv ; Rkw ;Rky ; and Rkz ; respectively, where kv and kz are count-
ably valued integers and kd; kw; and ky are �nite integers, with kd; ky > 0; such that

Y0 ( (D0; V0;W0; Z0) and D0 ( (V0;W0; Z0): Further, let fDt; Vt;Wt; Ytg be a sequence of
random vectors such that

Vt ( (V t�1; Zt)

Wt ( (W t�1; V t; Zt)

Dt ( (Dt�1; V t;W t; Zt)

Yt
c
= qt(Y

t�1; Dt; V t; Zt); t = 1; 2; :::;

where qt is an unknown measurable function taking values in Rky , and E(Yt) <1.
(b) For t = 0; 1; :::; Vt � ( ~Vt; �Vt) and Zt � ( ~Zt; �Zt), where ~Vt and ~Zt take values in Rk~v

and Rk~z respectively, and k~v and k~z are �nite integers. Realizations of Yt; Dt; ~Vt;Wt; and
~Zt are observed; realizations of �Vt and �Zt are not observed.

This dynamic structure is quite �exible, as few restrictions are imposed. In particular,

we do not require the structural relations to be linear, separable, or monotonic in any of their

arguments. Further �exibility can be gained by letting the dimensions of (D0; V0;W0; Y0)

di¤er from those of (Dt; Vt;Wt; Yt); t > 0: For simplicity, we leave this implicit.
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In A.1(a), the referenced measurability refers to measurability-B`t=Bky ; where B`t and
Bky are ���elds associated with the domain (R`t) and range (Rky) of qt. With ky (resp.
`t) �nite, the ���eld Bky (resp. B`t) is the Borel ���eld generated by the open sets of
Rky (resp. R`t). Otherwise, the ���eld is that generated by the relevant Borel-measurable
�nite dimensional product cylinders (see, e.g., White, 2001, pp.39-41).

In A.1(b), we specify that Vt and Zt may not be fully observable. Instead, we observe

realizations of �nitely dimensioned sub-vectors ~Vt and ~Zt, respectively.

The response function qt contains explicit dynamics. Recursive substitutions give a

response with implicit dynamics as

Yt
c
= rt(Y0; D

t; V t; Zt); t = 1; 2; ::: .

The measurability of rt is ensured by the fact that compositions of measurable functions

are again measurable.

3 De�ning and Identifying Retrospective E¤ects

3.1 Average E¤ects

A key feature of the e¤ect �rt(y0; dt; d�t; vt; zt) is that it is empirically inaccessible. That

is, we cannot evaluate this e¤ect, even if rt were known, as not all elements of vt; zt are

observed. Further, rt is generally unknown. Nevertheless, it may be possible to estimate

useful expected values of the e¤ects of interventions. For this, we introduce some notation.

First, let Xt � ( ~Vt;Wt; ~Zt) represent the covariates; these are observable. We call Ut �
( �Vt; �Zt) unobserved causes and let U t � ( �V t; �Zt) be the t-history of unobserved causes. We
write realizations of XT and U t as xT and ut respectively.

When E(rt(Y0; dt; V t; Zt)) is �nite for each dt in the support of Dt; we de�ne the retro-

spective counterfactual conditional expectation

�t;T (d
t j y0; xT ) � E( rt(Y0; d

t; V t; Zt) j Y0 = y0; XT = xT )

=

Z
rt(y0; d

t; vt; zt) dGt;T (u
t j y0; xT ):

The conditional expectation is "retrospective," as t � T . We call this expectation "counter-
factual" to emphasize that we are not conditioning on Dt = dt, as Dt = dt does not appear

in the list of conditioning arguments; we condition only on (Y0; XT ) = (y0; x
T ): Instead,

we view dt as set by some manipulation. The representation of the arguments of �t;T is

intended to emphasize this distinction. The structure imposed in A.1(a) further ensures

that dt and (y0; xT ) are variation free: di¤erent settings for dt do not necessitate di¤erent

values for (y0; xT ), as (y0; xT ) is functionally independent of dt. Thus, �t;T (d
t j y0; xT ) gives

the expected response conditional on (Y0; XT ) = (y0; x
T ) for any value of dt, in partic-

ular, for counterfactual values. The integral representation holds under A.1(a), provided
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dGt;T (u
t j y0; xT ); the retrospective conditional density of U t given (Y0; XT ) = (y0; x

T ); is

regular (Dudley, 2002, ch.10.2). Throughout, we assume that any referenced conditional

density is regular.

A noteworthy aspect of �t;T (d
t j y0; xT ) is its explicit dependence on "leads" of the

covariates, that is, covariate values that occur in the future, relative to the response of

interest. For example, if interest attaches to a response at time t, then whenever t < T; the

expected response �t;T (d
t j y0; xT ) can depend on xt+1: Although leads have not received

much attention in structural modeling, there is nothing inappropriate about their presence

here; indeed, their presence is natural and helpful. Covariate leads do not violate the causal

direction of time, as the covariates do not play a causal (structural) role in determining

the expected response. They are instead predictive (in the backcasting sense), serving as

proxies for unobservable structurally relevant but ancillary causes, U t. Natural choices for

such proxies, as discussed by White (2006), are observed responses ~Vt;Wt, to unobserved

ancillary causes Ut of Yt, observed drivers ~Vt;Wt, ~Zt of Dt; and observed responses ~Vt;Wt

to unobserved causes Ut of Dt. (See eq.(2) above.) The presence of dynamics and resultant

lingering e¤ects makes it natural that one or more leads of the covariates may be driven by
�Vt and/or �Zt. These leads are thus useful for backcasting Ut:

We use �t;T to de�ne the retrospective covariate-conditioned average e¤ect of intervention

dT ! d�T as

��t;T (d
t; d�t j y0; xT ) � �t;T (d

�t j y0; xT )� �t;T (dt j y0; xT )

=

Z
�rt(y0; d

t; d�t; vt; zt) dGt;T (u
t j y0; xT )

= E(�rt(Y0; d
t; d�t; V t; Zt) j Y0 = y0; XT = xT ):

By the optimality property of conditional expectation, we see that ��t;T (d
t; d�t j y0; xT )

gives a mean squared error-optimal prediction of�rt(Y0; dt; d�t; V t; Zt); the e¤ect of interest,

conditional on the speci�ed information (Y0 = y0; X
T = xT ): Observe that the ancillary

causes vt; zt are not held constant here, as they are in �rt(y0; dt; d�t; vt; zt). Rather, we

average over the t-history of unobserved causes U t, conditional on initial values Y0 = y0

and a T -history of covariates XT = xT :

There may nevertheless be ceteris paribus aspects of ��t;T (d
t; d�t j y0; xT ): Speci�cally,

the intervention may hold certain components of the causes of interest constant. For ex-

ample, if dt is two dimensional, dt = (dt1; dt2); and we hold dT2 constant (put d
�T
2 = dT2 ),

then ��t;T (d
t; d�t j y0; xT ) represents the time t average e¤ect of an intervention to dT1

(dT1 ! d�T1 ) holding d
T
2 constant, averaged over the unobserved causes U

t, conditional on

the given initial values and the T -history of covariates, y0; xT . Besides averages, other as-

pects of the retrospective conditional distribution of e¤ects can be similarly de�ned. We

discuss some of these in the next subsection.
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Although �t;T (d
t j y0; xT ) provides the basis for an e¤ect measure whose arguments do

not involve unknown quantities, it is nevertheless empirically inaccessible, because it is the

conditional expectation of rt(Y0; dt; V t; Zt) for counterfactual values dt; and we have no way

to observe rt(Y0; dt; V t; Zt). An empirically accessible analog is the retrospective conditional

expectation

�t;T (y0; d
t; xT ) � E( Yt j Y0 = y0; Dt = dt; XT = xT )

=

Z
rt(y0; d

t; vt; zt) dGt;T (u
t j y0; dt; xT );

where dGt;T (ut j y0; dt; xT ) is the retrospective conditional density of U t, given (Y0; Dt;
XT ) = (y0; d

t; xT ), viewing y0; dt; and xT as realizations of random variables Y0; Dt; andXT ,

generated according to Assumption A.1(a). Because this quantity is de�ned as a functional

of the joint distribution of observable variables only, it is empirically accessible, as it can

be consistently estimated from a sample of observables under typically mild conditions.

Without further conditions, �t;T is purely a stochastic object, providing no information

about causal e¤ects. Nevertheless, the equality above shows that the underlying structure

embodied in rt helps determine the properties of �t;T .

Inspecting �t;T and the structural representation for �t;T , we see that the key di¤erence

between them is that dGt;T (ut j y0; xT ) appears in �t;T , whereas dGt;T (ut j y0; dt; xT )
appears in �t;T . It follows that if dGt;T (u

t j y0; dt; xT ) = dGt;T (ut j y0; xT ) for all ut; y0; dt;
and xT , then �t;T = �t;T : This equality ensures that �t;T is not just a stochastic object but

also provides structural/causal information. In this case, we say that �t;T is structurally

identi�ed. Similarly, �t;T is identi�ed with a stochastic object; we thus say that �t;T is

stochastically identi�ed. When stochastic identi�cation holds uniquely with a representation

solely in terms of observable variables, we say that both �t;T and �t;T are fully identi�ed

(cf. WC).

The condition dGt;T (ut j y0; dt; xT ) = dGt;T (u
t j y0; xT ) for all ut; y0; dt; and xT is a

conditional independence requirement: Dt and U t are independent given Y0 and XT . We

express this as

Dt ? U t j Y0; XT ; (3)

following Dawid (1979) (hereafter designated "D"). Because of the similarity to the concept

of strict exogeneity (here, Dt ? U t j Y0) and the central role played by this condition in
identifying causal e¤ects, we introduce the following de�nition.

De�nition 3.1 For given t and T; t � T; suppose that Dt ? U t j Y0; XT : Then we say

that Dt is conditionally exogenous with respect to U t given (Y0; XT ).

For brevity, we may just say that Dt is "conditionally exogenous." Conditional exogeneity

contains strict exogeneity as the special case in which Xt � 1. This concept involves only
the DGP and does not involve any parametric model. It is thus distinct from notions
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of weak, strong, or super-exogeneity of Engle, Hendry, and Richard (1983), as these are

de�ned in terms of the properties of correctly speci�ed parametric models and have primary

consequences for estimator e¢ ciency. Conditional exogeneity has no particular implications

for estimator e¢ ciency; instead it facilitates identi�cation of causal e¤ects.

The plausibility of conditional exogeneity depends on the structure generating Dt: For

example, suppose Dt
c
= ct(D

t�1; Xt; ~U t); with (D0; ~U t) ? U t j Y0; XT ; where f ~Utg is a
sequence of unobserved causes of fDtg: Then conditional exogeneity holds as a consequence
of D, lemmas 4.1 and 4.2.

To proceed, we impose conditional exogeneity.

Assumption A.2 For given T; Dt is conditionally exogenous with respect to U t given

(Y0; X
T ); t = 1; :::; T:

Our discussion above establishes the following identi�cation result. For this, we let

supp(Y0; X
T ) denote the support of (Y0; XT ), that is, the smallest set containing (Y0; XT )

with probability one, and let supp(Dt j y0; xT ) denote the support of Dt given that Y0 =
y0; X

T = xT .

Proposition 3.2 Suppose Assumptions A.1(a) and A.2 hold. Then �t;T (y0; d
t; xT ) =

�t;T (d
t j y0; xT ) for all (y0; xT ) 2 supp(Y0; XT ) and dt 2 supp(Dt j y0; xT ). Thus, �t;T

is structurally identi�ed, and �t;T is stochastically identi�ed. Further, ��t;T = ��t;T ; so

��t;T is structurally identi�ed and ��t;T is stochastically identi�ed, where

��t;T (y0; d
t; d�t; xT ) � �t;T (y0; d�t; xT )� �t;T (y0; dt; xT ):

If Assumption A.1(b) also holds, then �t;T and �t;T are fully identi�ed.

A measure of e¤ect related to ��t;T that is often of interest in applications is

yt � �t;T (dt j y0; xT );

where yt = rt(y0; d
�t; vt; zt) is the factually observed response value associated with the

factual initial value y0, factual cause histories d�t; vt; zt, and factual covariate history xT ;

and dt is a counterfactual scenario of interest. For example, when one is interested in

retrospectively measuring the e¤ect of a cartel, yt represents the price actually generated

by the cartel in a particular period t, and d�t is a history representing the operation of

the cartel, e.g., d�� = 1 if the cartel operates in period � and d�� = 0 otherwise. The

counterfactual �t;T (d
t j y0; xT ) represents the price expected but for the operation of the

cartel, under the identical market conditions otherwise. In this case, dt represents a history

in which the cartel did not operate, i.e., a vector of zeroes. We call yt � �t;T (dt j y0; xT ) a
"but-for" average e¤ect. Formally, we have

Corollary 3.3 Given Assumptions A.1 and A.2, yt � �t;T (y0; dt; xT ) and yt � �t;T (dt j
y0; x

T ) are fully identi�ed.
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3.2 Quantile Responses, Quantile E¤ects, and Point Bands

In applications, e¤ects on aspects of the response distribution other than the average are

often of interest. Here we also consider e¤ects de�ned in terms of retrospective counterfactual

conditional quantiles for scalar Yt: (We ensure no loss of generality by letting Y0 remain

a vector.) We begin by de�ning the retrospective counterfactual conditional distribution

functions

Ft;T (y; dt j y0; xT ) � P [rt(Y0; dt; V t; Zt) � y j Y0 = y0; XT = xT ]

=

Z
1[rt(y0; d

t; vt; zt) � y] dGt;T (ut j y0; xT ); y 2 supp(Yt j y0; xT ):

The retrospective counterfactual conditional ��quantiles are then given by

Qt;T (�; dt j y0; xT ) � inffy : � < Ft;T (y; dt j y0; xT )g; 0 < � < 1:

The retrospective covariate-conditioned ��quantile e¤ect of intervention dT ! d�T is de-

�ned by

�Qt;T (�; dt; d�t j y0; xT ) � Qt;T (�; d�t j y0; xT )�Qt;T (�; dt j y0; xT ):

This measures the impact of the intervention dT ! d�T on the retrospective conditional

��quantile of the response, a version of the covariate-conditioned quantile e¤ect de�ned
by WC, and the unconditional quantile e¤ects of Lehmann (1974), also studied by Abadie,

Angrist, and Imbens (2002) and Imbens and Newey (2003).

Observe that �Qt;T represents a quantile e¤ect. The retrospective e¤ect quantile, de-
�ned as the functional inverse of

P [�rt(Y0; d
t; d�t; V t; Zt) � y j Y0 = y0; XT = xT ];

although certainly of interest, is much more complicated to analyze, as it involves the

di¢ cult-to-access conditional joint distribution of the responses rt(Y0; dt; V t; Zt) and rt(Y0;

d�t; V t; Zt): A detailed consideration of the issues involved for dynamic treatment e¤ect

distributions in panel data is given by Abbring and Heckman (2007). Because of the chal-

lenges presented by these e¤ects, we leave their consideration aside here. Nevertheless, we

consider a related and more tractable measure of e¤ect quantiles below.

The quantile function Qt;T can be used to de�ne other useful counterfactual objects of
interest. For example, for a given time t, the interval

[Qt;T (�=2; dt j y0; xT ); Qt;T (1� �=2; dt j y0; xT )]

is a retrospective counterfactual conditional (1 � �) � 100% con�dence interval for the

response under the history dT . (This is a symmetric interval. Asymmetric intervals can
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be analogously de�ned. These may be shorter; we discuss symmetric intervals to keep the

notation simple.)

We also call such an interval a (1 � �) "point band" for the response at time t; as
this interval represents a band of possible responses for a particular point in time having

probability (1��) of containing the true response with history dT , given Y0 = y0; XT = xT :

Analogous to the but-for average e¤ect measure yt � �t;T (dt j y0; xT ) introduced above,
we can also consider the but-for e¤ect interval

[yt �Qt;T (1� �=2; dt j y0; xT ); yt �Qt;T (�=2; dt j y0; xT )];

where yt is the factually observed response value associated with factual initial value y0,

factual cause histories d�t; vt; zt, and factual covariate history xT ; and dt is a counterfactual

scenario whose e¤ects are of interest. In the cartel example discussed above, where yt
represents the time t actual cartel price and dt represents a history in which the cartel

did not operate, this interval represents a range of price outcomes that would have been

realized under identical market conditions, but for the operation of the cartel. This range is

constructed so as to contain the true but-for outcome with probability 1� �. In this case,
it is possible to measure the e¤ect quantiles, because yt is set to the actual value.

Stochastic objects analogous to the counterfactual objects just discussed are retrospective

conditional distribution functions

Ft;T (y j y0; dt; xT ) � P [Yt � y j Y0 = y0; Dt = dt; XT = xT ]

=

Z
1[rt(y0; d

t; vt; zt) � y] dGt;T (ut j y0; dt; xT ); y 2 supp(Yt j y0; dt; xT );

and retrospective conditional ��quantiles,

Qt;T (� j y0; dt; xT ) � inffy : � < Ft;T (y j y0; dt; xT )g; 0 < � < 1:

It is now a straightforward exercise to verify

Proposition 3.4 Suppose Assumptions A.1(a) and A.2 hold. Then Ft;T ( � j y0; dt; xT ) =
Ft;T ( � ; dt j y0; xT ) and Qt;T ( � j y0; dt; xT ) = Qt;T ( � ; dt j y0; xT ) for all (y0; xT ) 2
supp(Y0; X

T ) and dt 2 supp(Dt j y0; xT ), so Ft;T and Qt;T are structurally identi�ed, and
Ft;T and Qt;T are stochastically identi�ed.

Further, �Qt;T = �Qt;T , so �Qt;T is structurally identi�ed, with

�Qt;T (� j y0; dt; d�t; xT ) � Qt;T (� j y0; d�t; xT )�Qt;T (� j y0; dt; xT );

as are the point bands [Qt;T (�=2 j y0; dtxT ); Qt;T (1 � �=2 j y0; dtxT )] and [yt � Qt;T (1 �
�=2 j y0; dt; xT ); yt �Qt;T (�=2 j y0; dt; xT )]: In addition, the counterfactual objects �Qt;T ,
[Qt;T (�=2; dt j y0; xT ); Qt;T (1 � �=2; dt j y0; xT )], and [yt � Qt;T (1 � �=2; dt j y0; xT );
yt �Qt;T (�=2; dt j y0; xT )] are stochastically identi�ed.

If Assumption A.1(b) also holds, then Ft;T , Qt;T ; �Qt;T ; Ft;T ; Qt;T ; and �Qt;T are fully
identi�ed, as are the corresponding point bands.
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3.3 Path Bands

The point bands introduced above can be used to construct path bands, that is sequences

of pairs of elements of supp(Yt) such that a random sequence of responses, actual or coun-

terfactual, for a given history of causes of interest exits the band de�ned by the pairs with

a speci�ed probability. These path bands are of interest in their own right, as they rep-

resent con�dence intervals for the response path under the history dT . Path bands can

also be used to test the null hypothesis of the absence of e¤ects for various interventions.

They are analogs of the uniform con�dence bands for nonparametric regression discussed

by Härdle (1990); Jordà and Marcellino (2007) analyze related path bands for prospective

forecasts. See also Jordà (2007). To keep the notation simple, we de�ne symmetric path

bands; asymmetric path bands can be analogously de�ned.

De�nition 3.5 A retrospective covariate-conditioned (1� �)�path band for frt(Y0; dt;
V t; Zt)g over [�1; �2] is a sequence of point bands

f[Qt;T (��=2; dt j y0; xT ); Qt;T (1� ��=2; dt j y0; xT )]g�2t=�1 ; (4)

where �� is a function of �; �1; �2 such that

P [
�2Q
t=�1

1fQt;T (��=2; dt j y0; xT ) � rt(Y0; dt; V t; Zt) � Qt;T (1� ��=2; dt j y0; xT )g

= 1 j Y0 = y0; XT = xT ] = 1� �:

Although the mathematical expression for this de�nition is somewhat cumbersome, the

basic idea is straightforward: the path band is a sequence of point bands, where the point

band coverage, (1 � ��); is chosen so that over the time interval [�1; �2], the path bands
contain 100 (1 � �)% of the realized response paths frt(Y0; dt; V t; Zt)g generated by dT ,
given Y0 = y0 and XT = xT : Below, we describe how to estimate �� = ��(�; �1; �2):

Equivalently, the (conditional) probability is � that the sequence of responses frt(Y0; dt;
V t; Zt)g exits the band at any point during the time interval [�1; �2]: Thus, one can use the
path bands to test the hypothesis

Ho : d
T ! d�T has no e¤ect over the time interval [�1; �2];

where the "e¤ect" is understood to be the e¤ect of the intervention dT ! d�T on the response

of interest, conditional on Y0 = y0, XT = xT . To implement the test, one computes the path

bands of eq.(4) associated with the "benchmark" history, dT , for a given level, �. Then one

inspects the path of frt(Y0; d�t; V t; Zt)g to see if it exits the band at any point during the
interval [�1; �2]: If so, one rejects Ho at level �. Otherwise, one fails to reject Ho. The test

relies on the fact that Ho is true if and only if frt(Y0; d�t; V t; Zt)g has the same conditional
distribution (given Y0 = y0, XT = xT ) on [�1; �2] as frt(Y0; dt; V t; Zt)g:
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In most applications, frt(Y0; d�t; V t; Zt)g will correspond to an observed response history
fYtg generated by the underlying natural data generating process (subject to the actual
history d�T ), as the generation of other response histories will require knowledge of the

history of the unobserved causes, UT , as well as knowledge of frtg. Thus, for example, one
can test whether a cartel had any e¤ect on prices by comparing the price history generated

by the cartel to the path bands generated by the counterfactual history dT designating the

absence of the cartel.

Such tests complement methods of Angrist and Kuersteiner (2004), who propose tests for

the presence of causal e¤ects associated with recurring interventions, such as the monetary

policy interventions studied by Romer and Romer (1989). The Angrist and Kuersteiner

tests make use of the �policy propensity score,� rather than directly estimating the e¤ect

of the intervention.

4 Estimating Retrospective E¤ects

When �t;T is fully identi�ed, we can estimate �t;T by estimating �t;T . For this, a useful

representation of �t;T is

�t;T (y0; d
t; xT ) =

Z
yt dFt;T (yt j y0; dt; xT );

where dFt;T (yt j y0; dt; xT ) de�nes the conditional density of Yt given (Y0; Dt; XT ) = (y0; d
t;

xT ). There are many ways to proceed, but a particularly useful approach is based on

estimating dFt;T (yt j y0; dt; xT ); as this a¤ords a complete characterization of the conditional
stochastic behavior of Yt. This not only yields estimates of mean e¤ects but also other e¤ects

of interest, such as quantile e¤ects or path bands. As dFt;T involves only observable random

variables, it can be estimated with suitable data.

Although sample values for Yt are observable, our interest in counterfactual (thus unob-

servable) response values under interventions makes it natural to treat the response vector

as the state vector for a dynamic state-space system with speci�c properties appropriate to

the present context. This not only permits us to readily develop useful representations for

the objects of interest, but also allows us to draw on appropriate segments of the extensive

dynamic state-space systems literature.

Viewing Yt as a state vector, we have the prediction density equation

dFt+1;T (yt+1 j y0; dt+1; xT ) =
Z
dFt+1;T (yt+1 j yt; y0; dt+1; xT ) dFt;T (yt j y0; dt+1; xT ): (5)

The "�ltering" or "updating" density is given by Bayes theorem as

dFt;T (yt j y0; dt+1; xT ) =
dFt+1;T (dt+1 j yt; y0; dt; xT ) dFt;T (yt j y0; dt; xT )

dFt+1;T (dt+1 j y0; dt; xT )
: (6)
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Our assumed DGP permits convenient simpli�cations. Speci�cally,

dFt+1;T (dt+1 j yt; y0; dt; xT ) = dFt+1;T (dt+1 j y0; dt; xT ): (7)

Equivalently, this condition states that Dt+1 ? Yt j Y0; Dt; XT ; this also directly yields

dFt;T (yt j y0; dt+1; xT ) = dFt;T (yt j y0; dt; xT ): (8)

Formally, we have

Proposition 4.1 Suppose Assumptions A.1(a) and A.2 hold. Then Dt+1 ? Yt j Y0; Dt; XT ,

i.e. eqs.(7) and (8) hold.

Proof: By A.2, Dt+1 ? U t+1 j Y0; XT : By D lemma 4.2(ii), Dt+1 ? U t+1 j Y0; Dt; XT : D

lemma 4.1 then gives Dt+1; Y0; XT ? U t+1; Y0; Dt; XT j Y0; Dt; XT : Given A.1(a), we have

Yt
c
= rt(Y0; D

t; V t; Zt), so D lemma 4.2(i) gives Dt+1; Y0; XT ? Yt j Y0; Dt; XT : Applying D

lemma 4.2(i) once more gives Dt+1 ? Yt j Y0; Dt; XT : �

The prediction density simpli�es under plausible memory restrictions. For concreteness

and simplicity, we exploit a "�rst order" memory condition on the evolution of Yt,

dFt;T (yt j yt�1; y0; dt; xT ) = dFt;T (yt j yt�1; dt; xT ); (9)

where the argument lists identify the relevant random variables in the obvious way. Other

�nite order memory conditions will yield results similar to what follows. We interpret the

appearance on the right of dt in place of dt as requiring that only Dt has direct predictive

relevance for Yt, given (Yt�1; XT ): Also note that y0 is absent on the right. Thus, any

predictive impact of Y0 or of past values Dt�1 is indirect, through Yt�1. (Note that although

we permit the e¤ect of Dt to be contemporaneous, this not necessary, as Dt may be observed

in period t� 1, as mentioned above.)
The next result provides a restriction on the dynamic structure su¢ cient for eq.(9).

Proposition 4.2 Suppose Assumption A.1(a) holds, that Ut ? Y0 j Yt�1; Dt; XT and

Ut ? Dt�1 j Yt�1; Dt; XT hold, and that

Yt
c
= qt(Yt�1; Dt; Vt; Zt): (10)

Then Yt ? Dt�1; Y0 j Yt�1; Dt; XT , i.e. eq.(9) holds.

Proof: By D lemma 4.3, Ut ? Y0 j Yt�1; Dt; XT and Ut ? Dt�1 j Yt�1; Dt; XT imply

Ut ? Y0; Dt�1 j Yt�1; Dt; XT : Eq.(3.10) and D lemmas 4.1 and 4.2 then give the result. �

Substituting eq.(9) into eq.(5) gives

dFt+1;T (yt+1 j y0; dt+1; xT ) =

Z
dFt+1;T (yt+1 j yt; dt+1; xT ) dFt;T (yt j y0; dt+1; xT ):

(11)
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By eq.(8), dFt;T (yt j y0; dt+1; xT ) = dFt;T (yt j y0; dt; xT ): Substituting this into eq.(11) then
gives

dFt+1;T (yt+1 j y0; dt+1; xT ) =
Z
dFt+1;T (yt+1 j yt; dt+1; xT )dFt;T (yt j y0; dt; xT );

which provides a recursion useful for estimating dFt;T (yt j y0; dt; xT ): To apply this recursion,
we seek an estimate of dFt+1;T (yt+1 j yt; dt+1; xT ) for suitable values of t.

Estimation of these densities becomes especially tractable if for given T , there exists a

�nite non-negative integer � such that for all t � T � � ;

dFt;T (yt j yt�1; dt; xT ) = dF� (yt j yt�1; dt; xt+�t�� ); (12)

where dF� (yt j yt�1; dt; xt+�t�� ) de�nes the conditional density of Yt given Yt�1 = yt�1; Dt = dt;

and Xt+�
t�� = xt+�t�� ; where X

t+�
t�� � (Xt�� ; :::; Xt+� ) is the (��) near history of Xt. This

combines a memory condition with a conditional stationarity assumption. Conditional

stationarity holds because dF� does not depend on t. The memory condition says that

given Yt�1 and Dt; only the near history of the covariates is useful in predicting Yt. This

is often plausible, as the memory of Ut contained in the covariates (and the memory of the

covariates contained in Ut) will generally fade as time passes. Thus, we impose

Assumption A.3 For given T; there exists a �nite non-negative integer � and a conditional
density dF� such that for all t � T � � , and for all argument values

dFt;T (yt j yt�1; dt; xT ) = dF� (yt j yt�1; dt; xt+�t�� ):

Combining our results and the above development of the prediction and �ltering equa-

tions provides the basis for feasible estimation.

Proposition 4.3 Suppose Assumption A.1(a) holds with eq.(10), and that A.2 and A.3

hold. Then dF1;T (y1 j y0; d1; xT ) = dF� (y1 j y0; d1; x1+�1�� ) and for t = 1; :::; T � � � 1

dFt+1;T (yt+1 j y0; dt+1; xT ) =
Z
dF� (yt+1 j yt; dt+1; xt+1+�t+1�� ) dFt;T (yt j y0; dt; xT ):

This result makes it straightforward to estimate dFt;T (yt j y0; dt; xT ) using sample data
when A.1(b) holds. Using that estimate, we can then estimate any desired aspect of the

distribution, in particular the means or quantiles that have been our focus here.

From Proposition 4.3, we see that the key to estimating dFt;T is the estimation of dF� .

Let dF̂� denote any suitable estimator for dF� . Depending on the context, one may use

either parametric, semi-parametric, or nonparametric estimators dF̂� . For example, Li and

Racine (2007, ch.5) provide nonparametric methods for conditional density estimation in

the empirically relevant "mixed data" case, in which the variables involved may be either
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continuously or discretely distributed. Given dF̂� ; we can recursively construct estimators

of dFt;T using the structure provided by Proposition 4.3. Speci�cally, we compute

dF̂1;T (y1 j y0; d1; xT ) = dF̂� (y1 j y0; d1; x1+�1�� ) (t = 0)

dF̂t+1;T (yt+1 j y0; dt+1; xT ) =

Z
dF̂� (yt+1 j yt; dt+1; xt+1+�t+1�� ) dF̂t;T (yt j y0; dt; xT );

t = 1; :::; T � � � 1: (13)

In writing these recursions, we adopt the convention that covariate values for negative time

indexes (t = 1� � ; :::;�1) are observable. (Now XT � (X1�� ; :::; XT ).) This enables us to
maintain our conventions regarding the starting and ending observation indexes for the other

variables. It further implies that we can use sample observations t = 1; :::; T � � to estimate
dF� : The recursions above stop � periods before the end of the sample to accommodate the

covariate leads. If it is important to estimate response distributions in periods after T � �
(e.g., dFT;T (yT j y0; dT ; xT )), one can modify the procedures above to estimate these.

Using dF̂t;T , we estimate �t;T (y0; d
t; xT ) and ��t;T (y0; d

t; d�t; xT ) as

�̂t;T (y0; d
t; xT ) =

Z
yt dF̂t;T (yt j y0; dt; xT )

��̂t;T (y0; d
t; d�t; xT ) = �̂t;T (y0; d

�t; xT )� �̂t;T (y0; dt; xT ); t = 1; :::; T � � :

Under structural identi�cation, these are also our estimators of �t;T (d
t j y0; xT ) and

��t;T (d
t; d�t j y0; xT ). The but-for average e¤ect estimator is

yt � �̂t;T (y0; dt; xT ):

To estimate Ft;T and Qt;T , we can use dF̂t;T to compute

F̂t;T (y j y0; dt; xT ) �
Z
1[yt � y] dF̂t;T (yt j y0; dt; xT )

Q̂t;T (� j y0; dt; xT ) � inffy : � < F̂t;T (y j y0; dt; xT )g; 0 < � < 1:

Under structural identi�cation, we can thus estimate Ft;T using F̂t;T and Qt;T using Q̂t;T :
The retrospective covariate-conditioned ��quantile e¤ect estimator is

�Q̂t;T (�; dt; d�t j y0; xT ) = Q̂t;T (� j y0; d�t; xT )� Q̂t;T (� j y0; dt; xT ):

Similarly, the 1� � counterfactual point bands can be estimated as

[Q̂t;T (�=2 j y0; dt; xT ); Q̂t;T (1� �=2 j y0; dt; xT )];

and the but-for e¤ect intervals can be estimated as

[yt � Q̂t;T (1� �=2 j y0; dt; xT ); yt � Q̂t;T (�=2 j y0; dt; xT )]:
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To estimate the path bands, it su¢ ces to construct a consistent estimate �̂� of ��(�; �1; �2);

the path bands are then given by

f[Q̂t;T (�̂�=2 j y0; dt; xT ); Q̂t;T (1� �̂�=2 j y0; dt; xT )]g�2t=�1 :

To construct �̂�, one can use the sequence fdF̂�g to generate a large number, say N ,
of independent and identically distributed (IID) simulated response paths fŶt;ig�2t=�1 ; i =
1; :::; N; such that for each t and i; Ŷt;i has density dF̂� ( � j Ŷt�1;i; dt; xt+�t�� ): It is then a

straightforward numerical exercise to choose �̂� to solve the problem

min
��
j(1� �)�N�1

NX
i=1

�2Q
t=�1

1fQ̂t;T (��=2 j y0; dt; xT ) � Ŷt;i � Q̂t;T (1� ��=2 j y0; dt; xT )gj:

Space is not available here to undertake a formal analysis of the properties of these

estimators. Because of the close similarity of the estimating equations (13) for dFt;T to

those arising in the estimation of state-space models, one may bring the rich array of

techniques of that literature to bear in implementing and analyzing the estimators fdF̂t;T g:
Speci�cally, methods of particle �ltering (e.g., Crisan and Doucet, 2002), auxiliary particle

�ltering (Pitt and Shephard, 1999), or their extensions (e.g., Doucet and Tadíc, 2002; Tadíc

and Doucet, 2002; DeJong, Hariharan, Liesenfeld, and Richard, 2007) are directly relevant.

5 An Illustrative Application

We illustrate the methods described in the previous section by constructing retrospective

conditional means, point bands, and path bands useful for examining the impact of crude

oil prices on gasoline prices at the monthly frequency. In particular, we study the e¤ects

of the Cushing OK WTI spot crude oil price (Dt) on the next month�s spot price for U.S.

Gulf Coast conventional gasoline (Yt).

5.1 Gasoline Price Determination

In the present framework, modeling proceeds by identifying the relevant variables of the

DGP and then specifying a method for constructing the estimators fdF̂t;T g:We have already
speci�ed Yt and Dt, so it remains to specify Vt;Wt; and Zt. As the choice of Wt is primarily

informed by that of (Vt; Zt), we focus �rst on specifying these variables, the other drivers

of gasoline price.

Economic theory says that gasoline prices are determined by the costs of producing

gasoline, by demand for gasoline, and by the nature of the conduct among gasoline market

participants. For the market and time period we examine (January 1994 through April

2006), we suppose that this conduct is relatively stable. Consequently, we will not include
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variables to proxy for this conduct. Nevertheless, we can and will use our methods to assess

the validity of this assumption. It remains to specify the relevant cost and demand factors.

Crude oil prices are the main driver of gasoline cost, and it is the e¤ect of crude prices

on gasoline that is of interest here. To measure the total e¤ect of interest, we thus must

omit from consideration cost variables driving gasoline prices that are themselves driven by

the crude oil price. This includes such things as crude oil inventories, re�ning capacity and

utilization rates, or diesel fuel prices. Cost factors that may be much less strongly driven

by crude oil prices are re�nery worker wages, natural gas prices, and interest rates. We

treat cost shifters other than crude oil prices as unobservable, belonging to Ut: Thus, we

seek proxies for these.

Demand factors not driven by the price of crude oil are regional temperatures and

seasonal factors. Income and population are also plausibly weakly driven by crude oil prices

in the short run, so we shall treat these also as elements of (Vt; Zt): Prices of other goods

may in principle impact gasoline demand, but for simplicity we assume here that the e¤ects

of other prices on gasoline demand are negligible. We thus do not consider these further.

We do not assume we can measure the true demand drivers, so we assign these to Ut and

seek suitable proxies. Thus, ( ~Vt; ~Zt) has zero dimension here.

We also identify drivers of crude oil prices that do not drive gasoline prices and that

are not themselves driven by crude oil prices. Such variables are things like exchange rates

and industrial production for countries whose growth is not highly dependent on crude oil

prices. As for the drivers of gasoline prices, we do not assume these are observable, so we

assign them to Ut and seek suitable proxies.

These considerations lead us to select as covariates Xt the following cost and demand

proxies Wt: (i) Texas Initial and Continuing Unemployment Claims (taken from State

Weekly Claims for Unemployment Insurance Data, Not Seasonally Adjusted); (ii) Hous-

ton temperature; (iii) a Winter dummy for January, February, and March; (iv) a Sum-

mer dummy for June, July, and August; (v) the 3-Month T-Bill (Secondary Market Rate)

(TB3MS); (vi) the U.S. Bureau of Labor Statistics Natural Gas price index; (vii) the U.S.

Bureau of Labor Statistics Electricity price index; and (ix) the Yen-US dollar and British

pound-US dollar exchange rates.

Our response variable Yt is the U.S. Gulf Coast Conventional Gasoline, Regular Spot

Price (FOB), measured in cents per gallon; Dt is the previous month�s Cushing, OK WTI

Crude Oil Spot Price (FOB), measured in dollars per barrel.

5.2 Estimation

Figure 1 displays plots of the natural logarithm of gasoline and crude oil prices, together

with the change in the natural logarithm of crude oil prices. As expected, gasoline and

crude oil prices appear cointegrated. The stochastic trend of oil prices also exhibits an
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apparent change in January 2002. A test of the null of no change in the mean of the log

crude oil price di¤erences before and after January 2002 soundly rejects the null hypothesis

of no change. This shift is plausibly thought to be driven by strong growth in demand in

East Asia, especially China and India. We examine whether this shift is associated with

any corresponding change in the relation between crude oil and gasoline prices. We also

examine a counterfactual scenario in which this trend shift is absent.

Accordingly, in a �rst step, we test for cointegration between these two variables over

the period January 1994-December 2001 using the method of Johansen (1991). Finding

that these series are cointegrated we estimate a regression model in di¤erences (�Yt) by

ridge regression. Our regression includes the error correction term and �Dt, together with

optional lags of the dependent variable and �Dt; plus leads and lags of the covariates Xt,

transformed to stationarity when appropriate. We explicitly allow changes in crude oil

prices to have asymmetric directional impacts. We select variables for the �nal prediction

equation using an automated selection algorithm that implements a general to speci�c search

followed by a speci�c to general search. At each stage, variables are included or excluded

so as to minimize the cross-validated root mean square error (CVRMSE). We also choose

the optimal ridge parameter to minimize CVRMSE.

To generate counterfactual retrospective histories, we apply the method of White (2006),

in which an initial counterfactual value of dt is used to generate an initial counterfactual

value for Yt. For successive periods, counterfactual values of dt are used together with lagged

counterfactual values of Yt to roll forward succeeding counterfactual values of Yt. In each

period, we introduce prediction errors drawn from a normal distribution with standard error

equal to the CVRMSE for the estimated prediction equation. This generates a realization

of a counterfactual history. Repeating this a large number of times yields conditional means

and point bands. We construct path bands from the point bands, as described above. This

corresponds to specifying that F� is a conditional normal density with conditionally varying

mean and conditional homoskedasticity. Other speci�cations are certainly of interest. We

adopt the present speci�cation for simplicity in conducting our illustration.

5.3 Results

First, we construct path bands for the period starting in January 2002 using the actual

history of crude oil prices. (Note that these bands are for a period outside the estimation

sample.) By comparing actual prices to these path bands, we can test the null hypothesis

that there has not been a change in the process generating gasoline prices after 2001 (the

"test period"). Among other things, this tests for forecast failure and provides insight into

the validity of the market stability assumption introduced above. Figure 2 plots the 5th and

95th percentile path bands around the retrospective dynamic forecast (conditional mean)

starting in January 2002. Observed gasoline prices fall within these path bands throughout
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the entire test period. We thus fail to reject the null hypothesis of stability at the 10% level.

Next, we study crude oil price e¤ects using two alternative counterfactual paths for crude

oil prices. Our �rst counterfactual series is motivated by the apparent structural break in

the mean log-di¤erence of crude oil prices. We construct an alternative crude oil series in

which no such break occurred by adjusting the post-2001 crude oil price series so that the

month-to-month changes in natural logarithms have the same mean as that for the period

prior to 2002. Figure 3 shows the actual and resulting counterfactual price series. (The

series are constructed using natural log di¤erences and converted to levels for plotting.)

Figure 4 displays 90% path bands for this �rst counterfactual scenario. Not surprisingly,

we see that the actual price exits the path bands, leading to rejection of the null hypothesis

of no e¤ect of the change in crude oil price structure on gasoline prices. On average, prices

were 54 cents per gallon higher in the period beginning in 2002 than they would otherwise

have been, and the gap continues to widen.

Our second counterfactual series is motivated by the disruption to petroleum markets

associated with hurricanes Katrina and Rita of 2005. (Katrina reached peak strength on

August 28, 2005. We call September 2005 and after the "Katrina period.") We construct an

alternative crude oil series representing price behavior plausible in the absence of Katrina

and Rita by applying to the Katrina period average month-speci�c changes for crude-oil

price in the periods prior to the hurricanes. Figure 5 displays the actual and resulting

counterfactual price series. Figure 6 shows what happens when we estimate the model

using data through July, 2005 and then use this to generate counterfactual 90% path bands

for the Katrina period. The actual price path begins by spiking up sharply, exiting the

counterfactual path bands in September. After the initial price spike, however, the actual

price drops to levels below what we would otherwise expect. An expected seasonal price

spike for December is absent. Moreover, while gasoline prices are approximately 6 cents

above what they would otherwise have been from August 1995 through January 2006, the

average impact drops to less than one cent by February 2006, and actual prices are lower

than we would expect under our counterfactual scenario.

6 Summary and Conclusion

This paper provides methods for estimating a variety of retrospective measures of causal

e¤ects in systems of dynamic structural equations. These equations need not be linear or

separable, or possess other properties such as monotonicity. Structural identi�cation of

e¤ects of interest is ensured by certain conditional exogeneity conditions, an extension of

the notion of strict exogeneity. The variables of the system can be characterized according

to their role as responses of interest, causes of interest, ancillary causes, or proxies for

unobserved drivers of the responses of interest and the causes of interest. The observed

20



ancillary causes and proxies serve as covariates, playing a supporting role that is predictive

rather than causal. Because this predictive role admits back-casting, not only lags but also

leads of the covariates may be usefully employed.

We emphasize that only the e¤ects of the causes of interest are informatively measured

using our methods. They do not identify e¤ects of observed ancillary causes or the structural

dynamics associated with the lags of the dependent variable. Instead, observed ancillary

causes and lagged dependent variables form part of the predictive support structure that

serves to identify e¤ects of causes of interest.

We pay particular attention to covariate-conditioned average and quantile e¤ects, to-

gether with counterfactual objects that are associated with these, such as point bands and

path bands. The latter are useful for constructing con�dence intervals and testing hypothe-

ses. We show how these objects can be estimated using state-space methods. We illustrate

our methods with a study of the impact of crude oil prices on gasoline prices.

There are many interesting topics for further research beyond the scope of this paper.

One task is to provide formal conditions ensuring consistency, rates, and/or asymptotic

distributions for the estimators proposed here. Another task is to study tests for conditional

exogeneity appropriate to the present framework, e.g., extensions of tests proposed by White

(2006), so that one can subject hypothesized structures to falsi�cation. The present DGP,

with its recursive structure, is only one of a variety of structures in which causal e¤ects

can be de�ned and identi�ed, along the lines of the discussion in Chalak and White (2007);

an interesting area for future work is the analysis of identi�cation and estimation of e¤ects

in possibly non-recursive systems. Finally, the e¤ects studied here are retrospective; the

study of prospective e¤ects is also of interest, especially for policy applications. Prospective

e¤ects present a variety of interesting analytical challenges distinct from those arising here.

Nevertheless, many of the ideas developed here should also prove useful in that study.
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Dynamic forecast of U.S. Gulf Coast Conventional Gasoline from January 2002
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Counterfactual of crude oil prices in the absence of a structural break
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Dynamic forecast using counterfactual (no structural break) crude oil prices 
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Counterfactual crude oil prices in the absence of hurricanes Rita and Katrina
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Dynamic forecast based on observed and counterfactual (no hurricanes)
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