Earned Income Tax Credit Policies:
Impact and Optimality

October 2005

Richard Blundell (IFS and UCL)

(based on joint work with Mike Brewer and Andrew Shephard)

- **The policy issue**: low labour market attachment and high incidence of poverty among certain groups
- **Aim**: to evaluate the impact and assess the optimality of employment tax-credit reforms
- Central position in EU labour market policy debate
 - Tax Credit expansions for lone parents
 - **WFTC expansion** in the UK, 1999/2000
- **Puzzle**: WFTC about twice as generous as EITC but with only half the impact
- focus on **lone mothers**
 - couples - targeting and collective labour supply
- examine the impact/design of further expansions
Layout of the presentation

- Policy Context
- Structure of the reforms/treatment
- Ex-post evaluation of historic reforms
- Ex-ante structural evaluation model
- Robustness of ex-ante model
- Optimality of reforms
- Impact on new tax credit policy in Britain

Pre-reform Employment Trends for Women in the UK (1978 – 1999)

Blundell and Hoynes (2004)
Blundell and Hoynes (2004)

Employment Trends for Women in the US

WFTC is in the class of ‘make work pay’ reforms
- Objective is to balance poverty reduction and employment incentives
- Focus on a ‘work condition’
- Highlight distinction between extensive and intensive margin in empirical labor and in optimal tax literature

Questions?
- How should we evaluate the impact of such a reform?
- Are such tax-credits and their expansion optimal?
- If yes, what is the optimal design?
Focus on WFTC reform (compare with EITC)

- WFTC reform has had a big impact on the policy debate in Europe
- influenced by EITC expansion in the US
- expanded the generosity of the UK in-work benefit system
 - the move from Family Credit to WFTC.
- ex-ante evaluation in 1999
- 2004 further expansion in generosity and extension of eligibility to individuals without children
 - raises important issues about design – time limits etc.

Three criteria for eligibility in WFTC:

- work eligibility
 - 16 or more hours per week
- family eligibility
 - children in full time education
- income eligibility
 - family net income below a certain threshold given by an adult credit plus age-dependent amounts for each child
 - once income is above the threshold then the amount of credit is tapered away at 55% per extra pound of net income – previously 70%
The US Earned Income Tax Credit and the UK WFTC compared

The Expansion in Generosity in the 2000 WFTC Reform
transfers per week for a min. wage lone parent
- unlike the US EITC the credit is based on net (rather than gross) family income

 – interaction with other benefits and taxes matter
 • differing size of the ‘treatment’ across eligibles
 – coincident reforms to family income support
 • different direction of these reforms to US
 – not all eligibles take-up credit
 • stigma/information

<table>
<thead>
<tr>
<th>Table 2.1: Adult and Child Elements of the WFTC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
</tr>
<tr>
<td>Element</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>March 1999 (FC)</td>
</tr>
<tr>
<td>October 1999</td>
</tr>
<tr>
<td>March 2000</td>
</tr>
<tr>
<td>June 2001</td>
</tr>
<tr>
<td>June 2002</td>
</tr>
<tr>
<td>Real Increase (1999-2002)</td>
</tr>
</tbody>
</table>

Note: All monetary amounts are expressed in April 2003 prices.
Transfers and Taxes under Family Credit (lone parent, min wage)

Transfers and Taxes under the WFTC Expansion (lone parent, min wage)
Table 2.2: Child Rates of Income Support and income-based JSA

<table>
<thead>
<tr>
<th>Child Element, Age</th>
<th>0 to 10</th>
<th>11 to 15</th>
<th>16 to 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1999</td>
<td>£21.90</td>
<td>£28.00</td>
<td>£33.50</td>
</tr>
<tr>
<td>October 1999</td>
<td>£27.00</td>
<td>£28.00</td>
<td>£33.50</td>
</tr>
<tr>
<td>March 2000</td>
<td>£28.40</td>
<td>£28.40</td>
<td>£33.80</td>
</tr>
<tr>
<td>March 2001</td>
<td>£33.00</td>
<td>£33.00</td>
<td>£33.80</td>
</tr>
<tr>
<td>October 2001</td>
<td>£34.50</td>
<td>£34.50</td>
<td>£35.40</td>
</tr>
<tr>
<td>March 2002</td>
<td>£34.50</td>
<td>£34.50</td>
<td>£35.40</td>
</tr>
<tr>
<td>October 2002</td>
<td>£38.10</td>
<td>£38.10</td>
<td>£39.00</td>
</tr>
<tr>
<td>April 2003</td>
<td>£38.50</td>
<td>£38.50</td>
<td>£38.50</td>
</tr>
<tr>
<td>Real Increase</td>
<td>76.2%</td>
<td>37.3%</td>
<td>14.9%</td>
</tr>
</tbody>
</table>

Note: All monetary amounts are expressed in April 2003 prices.

Weekly Hours Worked:

Low Education Single Mothers (aged 18-45)

[Bar chart showing distribution of weekly hours worked with a lower hours limit marked]
How should we assess the impact of the expansion in tax-credit?

• Ex-post evaluation
 – Quasi-experimental evaluation strategy

• Ex-ante evaluation
 – ‘Structural’ evaluation model
 • ‘necessary’ for simulating further reforms
 • ‘necessary’ for assessing optimality

• use an appropriate mix of both strategies
To assess optimality

- Use Mirrlees optimal tax approach
- Suppose we wish to allocate £R to low income lone parents, how best should we do this?
- Need robust estimates of preferences
 - at least elasticities at extensive and intensive margins – Saez approximation/assumptions.
- Given elasticities, we can pose the question:
 - is the WFTC expansion ‘optimal’ for reasonable social welfare weights?
 - are there obvious aspects for improvement?

Robustness of the ex-ante evaluation model

- Compare structural evaluation model (simulated likelihood) estimated on pre-reform data to quasi-experimental ex-post evaluation
- The idea is to simulate the quasi-experimental estimate (moment)
 - we consider difference-in-differences
Ex-post evaluation: WFTC reform in 2000

- comparing outcomes of eligibles versus those who are not eligible
- identify impact of WFTC on eligibles assuming
 - common trends for eligible and non-eligible groups
 - invariance in group heterogeneity over time
 - conditional on a set of (matching) covariates X
- can structurally simulate this moment anyway!
Difference-in-Differences

suppose F^{-1} is an inverse probability function, let $W=1$ denote eligibility and $t=1$ after the program, consider:

$$\alpha(X) = \{F^{-1}[E(Y|X,W=1,t=1)] - F^{-1}[E(Y|X,W=1,t=0)]\} - \{F^{-1}[E(Y|X,W=0,t=1)] - F^{-1}[E(Y|X,W=0,t=0)]\}$$

then use F and the empirical distribution of X for $W=1$ to recover the average impact on the eligibles.

• cubic polynomial for propensity scores for each of the comparison groups.
• estimate impact using predicted outcome for three non-treatment cases for each of the matched treated observations
Difference-in-Differences Results

<table>
<thead>
<tr>
<th>Single Women</th>
<th>Marginal Effect</th>
<th>Standard Error</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family Resources Survey</td>
<td>3.5</td>
<td>1.55</td>
<td>25,163</td>
</tr>
<tr>
<td>Labour Force Survey</td>
<td>3.6</td>
<td>0.53</td>
<td>233,208</td>
</tr>
</tbody>
</table>

Drop: Summer 1999 – Spring 2000 inclusive; individuals aged over 45.
Outcome: employment. Average impact x 100, employment percentage.
Matching Covariates: age, education, region, ethnicity...

Robustness analysis

- Alternative groups
 - low education: 5.4 (0.61)
 - larger response on a lower base
 - Youngest child aged < 5: 3.13 (0.51)
 - Youngest child aged 5-10: 3.86 (0.54)

- Choice of pre-treatment years
 - results are robust to changing the pre-treatment time window
 - ‘hypothetical’ reform on pre-reform years
 - Spring 1997: treatment effect: .07 (.11)
Structural analysis

- Data from 1995-2003 - FRS
 - 1995-1999: pre-reform estimation data (ex-ante)
 - model does not reject provided ‘take-up’ is modelled
 - Use complete sample for ex-ante analysis of 2004 reforms

- Variation: geographic, time, precise rules.
 - Tax and benefit system (accurate income/benefits)
 - Housing costs/benefits (local variation)
 - Local taxation

Key features of the structural model

main elements:

- budget constraint – tax/benefit interactions and take-up
- preferences – discrete hours; flexible parametric utility
- heterogeneity – demographics, age and unobserved het.
- fixed costs of work
- stigma/hassle costs – take-up versus eligibility
- childcare costs
 - mixed-multinomial specification across discrete hours choices.
Net Income schedule for the program:

\[y_{hP} = wh + I - \Gamma(wh, I|Z_{\Gamma}) + \Psi(w, h, I, P|Z_{\psi}) \]

the program payment function \(\Psi(w, h, I, P|Z_{\psi}) \) depends on:
- hours (through the hours condition of entitlement)
- investment income \(I \)
- participation \(P \) in the tax-credit program,
- and household characteristics \(Z_{\psi} \)

Net Income Schedule and Program Participation

\[y_{hP} = wh + I - \Gamma(wh, I|Z_{\Gamma}) + \Psi_0(w, h, I|Z_{\psi}) + P \cdot \Psi_1(w, h, I|Z_{\psi}) \]

\[= \overline{y}_h + P \cdot \Psi_1(w, h, I|Z_{\psi}), \]

let \(E_h = 1(\Psi_1 > 0) \)
be an indicator of entitlement at hours \(h \).
\[P = 1 \] if participate in program

additional term: \(\eta = X_{hP}\beta_2 + u_{hP} \) ‘cost’ of receiving in-work support

\[U_h = \alpha_{11}(\overline{y}_h + P \cdot \Psi_1 - C)^2 + \alpha_{22}h^2 + \alpha_{12}(\overline{y}_h + P \cdot \Psi_1 - C) \cdot h \]
\[+ \beta_1(\overline{y}_h + P \cdot \Psi_1 - C) + \beta_2h + \epsilon_{hP} - (P \cdot E_h) \cdot \eta \]
\[= U_h(\overline{y}_h + P \cdot \Psi_1 - C) - (P \cdot E_h) \cdot \eta \]

important in structural simulation of increasing generosity
Stochastic specification and discrete hours

discrete hours alternatives: \(h \in \{h_1, \ldots, h_J\} \)

payoff ‘utility’ for each hours point:
\[
U(h, y_{hp}) \approx a_{11} y_{hp}^2 + a_{22} h^2 + a_{12} y_{hp} h + \beta_1 y_{hp} + \beta_2 h + \varepsilon_{hp}
\]

\[
\beta_1 = X_1 \beta_{1x} + u_y
\]
\[
\beta_2 = X_2 \beta_{2x} + u_h
\]
\[
a_{11} = X_{11} a_{11x}
\]
\[
a_{22} = X_{22} a_{22x}
\]
\[
a_{12} = X_{12} a_{12x}
\]

Program Participation

Utility ‘cost’ of receiving in-work support
\[
\eta = X_\eta \beta_\eta + u_\eta
\]

claim \(\Psi_1 \) in FC/WFTC at hours \(h_j \) if:
\[
U_p(h_j, \tilde{y}_{h_j} + \Psi_1 - C, P = 1) > U(h_j, \tilde{y}_{h_j} - C).
\]

utility cost among those who choose to claim WFTC must not exceed the utility gain from receipt of WFTC transfer income relative to non-receipt:
\[
\eta < U(h_j, \tilde{y}_{h_j} + \Psi_1 - C) - U(h_j, \tilde{y}_{h_j} - C) - X_\eta \beta_\eta
\]

\[
u_\eta < \Omega_U \quad \text{where} \quad \Omega_U = U(h_j, \tilde{y}_{h_j} + \Psi_1 - C) - U(h_j, \tilde{y}_{h_j} - C) - X_\eta \beta_\eta
\]
Probability specification and likelihood

\[
\log L = \sum \log \int \left[\int_{u_{w0}} \prod_j \Pr(h = h_j, P = 1|X, u) \right. \\
+ \int_{u_{j0} \leq \Omega_j} \prod_j \Pr(h = h_j, P = 1|X, u) \left. \right] f(u_\eta) du_\eta \\
+ \int_{u_{j0} \leq \Omega_j} \prod_j \Pr(h = h_j, P = 0|X, u) \int f(u_\eta) du_\eta \\
+ \int_{u_{j0} \leq \Omega_j} \prod_j \Pr(h = h_j, P = 1|X, u, \eta = 0) \int f(u_\eta) du_\eta \\
\int f(u_\eta) du_\eta
\]

where \(u_\eta = (u_w, u_x, u_y, u_h)\)

Elasticities by ‘Earnings’ Class/Hours

<table>
<thead>
<tr>
<th>Earnings Class</th>
<th>1 (10)</th>
<th>2 (19)</th>
<th>3 (26)</th>
<th>4 (33)</th>
<th>5 (40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensive</td>
<td>0.376 (0.129)</td>
<td>0.425 (0.072)</td>
<td>0.460 (0.056)</td>
<td>0.649 (0.053)</td>
<td>0.555 (0.035)</td>
</tr>
<tr>
<td>Intensive</td>
<td>0.2403 (0.091)</td>
<td>0.1816 (0.072)</td>
<td>0.1485 (0.071)</td>
<td>0.0978 (0.054)</td>
<td></td>
</tr>
</tbody>
</table>

£4.80 per hour wage hours/earnings class
Structural Evaluation Results: WFTC Expansion

Change in employment rate

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Age of Youngest Child</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.66</td>
<td>3.60</td>
</tr>
<tr>
<td></td>
<td>(.25)</td>
<td>(.33)</td>
</tr>
</tbody>
</table>

Average change in hours:

- **Unconditional**
 - All: 1.63
 - 0-2: 0.75
 - 3-4: 0.75
 - 5-10: 0.70
 - 11+: 0.91
 - 11+: 0.65

- **Workers only**
 - All: 1.10
 - 0-2: 0.75
 - 3-4: 0.75
 - 5-10: 0.70
 - 11+: 0.91
 - 11+: 0.65

Estimated on pre-reform FRS data; 4.12 without change in take-up

Structural Evaluation Results: WFTC Expansion

Post-WFTC

<table>
<thead>
<tr>
<th></th>
<th>Not working</th>
<th>Part Time</th>
<th>Full Time</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-WFTC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not working</td>
<td>51.90</td>
<td>1.95</td>
<td>2.71</td>
<td>56.56</td>
</tr>
<tr>
<td>Part Time</td>
<td>0.00</td>
<td>20.84</td>
<td>1.47</td>
<td>22.31</td>
</tr>
<tr>
<td>Full Time</td>
<td>0.00</td>
<td>0.93</td>
<td>20.20</td>
<td>21.13</td>
</tr>
<tr>
<td>Total</td>
<td>51.90</td>
<td>23.72</td>
<td>24.37</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Change in employment: 4.66 (.25)
Structural Evaluation Results: All Reforms

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Age of Youngest Child</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-2</td>
</tr>
<tr>
<td>Change in employment rate</td>
<td>3.48</td>
<td>2.12</td>
</tr>
<tr>
<td></td>
<td>(.23)</td>
<td>(.31)</td>
</tr>
<tr>
<td>Average change in hours:</td>
<td></td>
<td>Unconditional</td>
</tr>
<tr>
<td></td>
<td>1.22</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>0.57</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Estimated on pre-reform FRS data;
3.12 without change in take-up

Remember! Transfers and Taxes under the WFTC Expansion (lone parent, min wage)

![Graph](Graph.png)

- **Net Income**
- **Increase in Child Allowance and IS**
- **Family Credit**
- **WFTC and IS reform**
Evaluation of the ex-ante model

• The *simulated* diff-in-diff parameter from the structural evaluation model does not differ significantly from the diff-in-diff estimate
 – Compare *simulated moment* with *diff-in-diff moment*
 \[3.48 (.23) - 3.6 (.55) \]
 – Chi-square test statistic p-value .42
 – Consider additional moments
 • education; youngest child interaction

Evaluation of the ex-ante model

• small average treatment on treated effect appears to be due to interaction of WFTC with other taxes/benefits and rise in IS.
• rather than ‘small’ response elasticities:
 – extensive elasticity \[.81 (.13) \]
 – intensive elasticity \[.31 (.09) \]
Is the design ‘optimal’?

• Assume we want to redistribute ‘£R’ to low ed. lone parents, what is the ‘optimal’ way to do this?
• Recover optimal tax/credit schedule in terms of earnings
 – use approximation in terms of extensive and intensive elasticities at different earnings
 – as ‘first step’ in a Mirrlees optimal tax problem
• Given elasticities at extensive and intensive margin, we can pose the question:
 – is the WFTC expansion ‘optimal’ for reasonable social welfare weights?

Optimal Structure

• Suppose we distinguish two groups
 – ‘low’ or ‘no’ earners: group 0
 – ‘higher’ earners: group 1
• Suppose the social welfare weight is higher for low earners, group 0
• Choose transfers and taxes T to maximise welfare
Optimal design gives

\[\frac{T_1 - T_0}{c_1 - c_0} = \frac{(g_0 - 1)}{\zeta_1} \]

\(\zeta_i \) is the labour supply elasticity

\(g_0 \) is the social welfare weight

\(-T\) is the subsidy given to that group

\(c \) is the net of tax income for that group

Optimal Structure

Net Income

\('NIT' reform\)

Hours of Work = Earnings/Min Wage
Suppose we distinguish ‘non-employed’, ‘low earners’ and ‘higher’ earners, 0, 1, 2 .. etc

\[\frac{T_i - T_{i-1}}{c_i - c_{i-1}} = \frac{1}{\zeta_i} \sum_{j=i}^I \left[1 - \hat{g}_j \right] \]

where

\[\hat{g}_j = g_j + \eta_j k \]

\(\zeta \) is the intensive elasticity, \(\eta \) is the extensive elasticity

Note that a ‘large’ extensive elasticity can ‘turn around’ impact of social weights - implying an optimal tax credit structure – e.g. a higher transfer to lower skilled workers than to those out of work
Implied Social Welfare Weights by ‘Earnings’ Class

<table>
<thead>
<tr>
<th>Earnings Class</th>
<th>0 (10)</th>
<th>1 (19)</th>
<th>2 (26)</th>
<th>3 (33)</th>
<th>4 (40)</th>
<th>5 (40)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFTC with IS</td>
<td>1.27</td>
<td>.90</td>
<td>1.11</td>
<td>.93</td>
<td>1.02</td>
<td>.80</td>
</tr>
<tr>
<td>WFTC alone</td>
<td>1.10</td>
<td>.93</td>
<td>1.06</td>
<td>.92</td>
<td>1.02</td>
<td>.81</td>
</tr>
</tbody>
</table>

£5 per hour wage hours/earnings class
(minimum wage is £4.30)
Lone parent; child aged 4.

- ‘Almost’ monotonically declining social welfare weights make the reform optimal
 - non-monotonicities correspond to ‘peculiar’ hours conditions
- Weight g_0 higher than a pure tax-credit expansion
- Choose monotonic weights =>
The new tax credits in the UK

- **Child Tax Credit (CTC):** no work condition
 - increase in generosity and combined child elements in IS
- **Working Tax Credit (WTC):** work condition
 - increase the generosity relative to WFTC for workers with children
 - ex-ante prediction of further 3.8 increase in employment
- **WTC for childless single people and couples**
 - lower rate
 - only people aged 25 and over
 - working 30 hours or more per week
 - implicitly much lower social welfare weight for workers without children
- Opens debate on time limits – tax-credits may under insure by over providing static incentives
Summary

- Empirically robust elasticities and knowledge of the full tax and benefit system can easily reconcile EITC and WFTC ‘puzzle’.
- Can justify the WFTC expansion even with social welfare weights that decline monotonically with income – except for hours conditions.
- Contrast with implicit social welfare weights for the EITC expansions in the US.
- Contrast to the 2004 WTC/CTC expansions UK for individuals with and without children

Adequacy of the specification

- line-up structural model with quasi-experiment treatment effects
- work experience and wages?
 - Gladden and Tamer (2000)
 - Grogger (2005)
- program impact on gross wages?
- couples?
 - targeting in collective labour supply models with children - forthcoming JPE paper
- childcare? ; impact on fertility?
Some References:

