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Abstract

In this paper, I examine whether the claim “the more control variables, the better” holds when matching
in a dynamic context. I exhibit two situations where it is better not to control for past outcomes because
DID matching is unbiased whereas matching on past outcomes is biased. I study the special case of
evaluating a job training program, where both estimators are biased, borrowing a credible selection rule
from Heckman, LaLonde, and Smith (1999) and relying on the parameters of the wage process estimated
by MaCurdy (1982). I derive closed forms for the bias terms of the two estimators when the error terms
are normally distributed. I show that DID matching performs better when used symmetrically around
the period of enrollment, as implemented by Heckman, Ichimura, Smith, and Todd (1998). Matching is
less biased than DID-matching when considering to use the first pre-enrollment period, but symmetric
DID-matching is less biased than the less biased matching estimator.
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1 Introduction

When considering the practical implementation of matching methods, it is widely believed that the more
pre-treatment variables one can control for, the lower the bias of the estimated treatment effect.1 Dehejia
and Wahba (1999), in their re-anaylis of LaLonde (1986)’s critique, argue that controlling for past outcomes
goes a long way in reducing the bias of propensity score matching.2 Heckman, Ichimura, Smith, and Todd
(1998) also show that when adding past wages and more importantly on past labor transitions, greatly de-
creases bias of propensity score matching estimators.

The claim that the more control variables the better has been challenged by Heckman and Navarro-
Lozano (2004): these authors show that, in a static setting, controlling for more variables or for proxies may
on the contrary increase bias. Whether it does so depends on the correlation between the added control
variable and the remaining unobservable confounders. Wooldridge (2005) has also shown that controlling
for post-treatment outcomes may lead to bias.

In this paper, I examine whether the claim that the more control variables, the better, also holds in a
dynamic context. Time varying control variables combining persistent unobserved heterogeneity and true
state dependence are indeed the most common case encountered in micro-economics. Past outcomes are a
particular case of this type of control variables. Is it always better to control for past outcomes when we ob-
serve them? To answer this question is equivalent to comparing the bias of simple matching vs Difference-
In-Difference (DID) matching.3 To see why this is the case, note that matching on all pre-treatment covari-
ates, including past outcomes, implies that pre-treatment mean differences between the treated and their
matched counterparts converges to zero when the sample size gets large. When considering the use of past
outcomes as control variables, we can thus restate the previous question as: is it better to control for past
outcomes by including them in the set of control variables in a simple matching procedure, or is bias lower
when not controlling for past outcomes and applying DID instead?

In this paper, I answer this question in two steps: in section 2, I introduce the problem in a general non
structural framework. I exhibit two situations where it is better not to control for past outcomes because
DID matching is unbiased whereas matching on past outcomes is biased: first if past outcomes do not di-
rectly determine current outcomes, but determine selection into the treatment; second, if past outcomes
directly determine current outcomes, but do not directly determine selection into the treatment and out-
comes follow a linear autoregressive process starting at a random point around its long run equilibrium.
These are to my knowledge the first examples of controlling for too many variables in a dynamic context.
In section 3, I examine the case where both current outcomes and selection depend on past outcomes. In
this case, both estimators are biased. I study the special case of evaluating a job training program, borrow-
ing a credible selection rule from Heckman, LaLonde, and Smith (1999) and relying on the parameters of
the wage process estimated by MaCurdy (1982). I derive closed forms for the bias terms of the two estima-
tors when the error terms are normally distributed. I show that DID matching performs better when used
symmetrically around the period of enrollment, as implemented by Heckman, Ichimura, Smith, and Todd
(1998). Matching is less biased than DID-matching when considering to use the first pre-enrollment period,
but symmetric DID-matching is less biased than the less biased matching estimator. I have thus proved in
an empirically relevant example that controlling for observed covariates may indeed enhance bias.

This paper is organized as follows: section 2 presents a non structural first pass at DID-matching while
section 3 is an in-depth study of the evaluation of a job training program. Section 4 concludes.

1See for example the discussion at http://www.stat.columbia.edu/~cook/movabletype/archives/2010/02/a_
propensity_fo.html.

2Smith and Todd (2005) argue that this is the special structure of Dehejia and Wahba (1999)’s sample that makes the most part
in the bias reduction.

3DID matching has been introduced by Heckman, Ichimura, and Todd (1997). An alternative estimator based on the same
identifying conditions has been proposed by Abadie (2005).
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2 A Non Structural First-Pass at DID-matching

I start the analysis by building on Ashenfelter and Card (1985)’s simple setting. By progressively extend-
ing their simple framework, the main problems appear and a series of results can be stated. As in Ashen-
felter and Card (1985), write the observed outcome as: Yi t = µi + dt +βDi t + εi t , where µi and dt are
unobserved respectively individual and time fixed effects, εi t is an i.i.d. shock and β is a fixed param-
eter. Participation in the program whose average effect we would like to measure is indicated by Di t .
Suppose we only observe two periods of data, k and k − 1: in period k − 1, non one receives treatment
(Di k−1 = 0). In period k, treatment is allocated among the population according to the following rule:
Di k = 1

[
µi +ui k ≥ 0

]
, where ui k is an i.i.d. shock independent from all other variables in the model. In

this simple setting, the difference-in-difference (DID) estimator recovers the treatment on the treated pa-
rameter: E [Yi k −Yi k−1|Di k = 1]−E [Yi k −Yi k−1|Di k = 0] = β= E[

Y 1
i k −Y 0

i k |Di k = 1
]
, where Y 1

i k is the value of
Yi k if individual i receives treatment in period k and Y 0

i k is the value of Yi k if individual i does not receives
the treatment in period k.

The previous setting is highly restrictive in that we need to assume unconditional linear separability
of both time and individual fixed effects from the treatment effect and that we make no use of potential
observed control variables. A non linear version of the previous argument could take the following form:
Yi t = g (Di t ,dt , Xi ,εi t )+µi and Di k = 1

[
h(µi , Xi ,ui k ) ≥ 0

]
, with g and h unrestricted functions and Xi ob-

served variables fixed through time and potentially correlated toµi but neither to ui t or εi t . In this much less
restrictive setting, treatment on the treated is identified by DID-matching. This is because the independent
increments condition is fulfilled:

E
[
Y 0

i k −Y 0
i k−1|Di k = d , Xi

]= E[
g (0,dk , Xi ,εi k )− g (0,dk−1, Xi ,εi k−1)

]
does not depend on d . Together with a support condition, this restriction implies that treatment on the
treated is identified:

E [E [Yi k −Yi k−1|Di k = 1, Xi ]−E [Yi k −Yi k−1|Di k = 0, Xi ] |Di k = 1] = E[
Y 1

i k −Y 0
i k |Di k = 1

]
.

This identification strategy is powerful: it allows for different growth rates of the outcome variables in
the treated and untreated groups, due to different observed initial conditions. It is even possible to ac-
commodate interaction between observed variables and fixed effects and to allow the treatment effects
to depend on unobservables (i.e. essential heterogeneity à la Heckman, Urzua, and Vytlacil (2006) can
be allowed for in this setting): Yi t = g a(Di t ,dt , Xi ,εa

i t ,Di tµ
1
i ) + g b(Xi ,εb

i t ,Di tµ
1
i + (1 − Di t )µ0

i ) and Di k =
1
[
h(µ1

i ,µ0
i , Xi ,ui k ) ≥ 0

]
. The independent increment condition is also fulfilled in this model, meaning that

selection on unobserved gains to the treatment does not jeopardize the identification strategy. We have thus
proved the following result:

Result 1 DID-matching identifies treatment on the treated if control variables are fixed through time, unob-
served fixed time and individual effects are additively separable and selection bias is only due to the unob-
served fixed effects terms.

Crucial to this result is the fact that µi and dt are linearly separable in the outcome equation. This
means that DID-matching is not stable to monotonic nonlinear transformations of the outcome variable
(Athey and Imbens, 2006). It is for example well-known that applying DID in logs and in levels may lead to
opposite signs for the estimated treatment effects Meyer, Viscusi, and Durbin (1995). A second restriction
of the setting presented so far is that we have only considered control variables that are fixed through time.
In many applied settings, there exists potential control variables that may vary between k−1 and k. In labor
economics, age is a natural candidate as a time-varying control variable, but pre-treatment outcomes (past
wages and employment status) are also frequently considered as control variables. In the studies of firms,
past levels of capital stock and number of employees are also often included as controls. Do we really know
that DID-matching still identifies treatment effects in this case? In the remaining of this section, I carefully
examine whether the crucial independent increments conditions is fulfilled for three types of time-varying
candidate variables: fully exogenous variables, variables correlated to the fixed effects and past-outcomes.

3



2.1 Exogenous time-varying covariates

Let’s write outcome and selection as a function of time varying covariates: Yi t = g (Di t ,dt , Xi t ,εi t )+µi and
Di k = 1

[
h(µi , Xi k−1,ui k ) ≥ 0

]
. In this example, selection into the program in period k depends on period

k −1 control variables: this is a setting that is often found in practice. The analysis could also be done with
selection driven by period k controls without much alteration in the conclusions. In this setting, there is a
selection problem due to time-varying covariates only if there is true state dependence in the process gen-
erating these variables. I write Xi t = i (Xi t−1,Di t ,ηi t ): covariates in period t depend on past values of the co-
variates, thereby creating a selection on observables problem, on current treatment status, allowing poten-
tial effect of the treatment, and on an i.i.d. shock independent of all other variables in the model. Note that
treatment has no effect on covariates in period k −1: I assume no anticipation of the treatment. Before we
proceed with the analysis of DID-matching in this case, it is to be noted that the general framework adopted
here has consequences for the definition of the individual level treatment effect. We have to make a distinc-
tion between a partial treatment effect, where Xi t is held constant (∆x Yi t = g (1,dt , x,εi t )− g (0,dt , x,εi t ))
and a complete treatment effect where the indirect effect of treatment mediated through Xi t is taken into
account (∆Yi t = g (1,dt , i (Xi t−1,1,ηi t ),εi t )− g (0,dt , i (Xi t−1,0,ηi t ),εi t )).

The most natural control variable in this setting is Xi k−1. It is easy to show in that case that the indepen-
dent increments condition is satisfied conditional on Xi k−1:

E
[
Y 0

i k −Y 0
i k−1|Di k = d , Xi k−1 = x

]= E[
g (0,dk , i (x,0,ηi k ),εi k )|1[h(µi , x,ui k ) ≥ 0

]= d
]−E[

g (0,dk−1, x,εi k−1)
]

= E[
g (0,dk , i (x,0,ηi k ),εi k )

]−E[
g (0,dk−1, x,εi k−1)

]
.

The last equality follows because µi and ui k are independent of ηi k and εi k .
However, controlling only for Xi k leads to a biased estimation for two reasons: first, Xi k is partly deter-

mined by the treatment, so that there is an overcontrol bias. But even if there is no effect of treatment on
Xi k (i.e. if the function i is everywhere constant in its second argument), this estimation strategy would be
biased because the independent increments condition would not be fulfilled:

E
[
Y 0

i k −Y 0
i k−1|Di k = d , Xi k = x

]= E[
g (0,dk , x,εi k )

]
−E[

g (0,dk−1, Xi k−1,εi k−1)|1[h(µi , Xi k−1,ui k ) ≥ 0
]= d , Xi k−1 = i (x,0,ηi k )

]
.

These increments depend on d because the term on the second line is not equal to its unconditional version:
treated people with Xi k = x have different Xi k−1 than untreated people with the same value for Xi k . This
result applies only to variables who have a stochastic component to their relationship with past outcomes.
Variables with non-stochastic dynamic relationships (e.g. age) are not subject to bias if the observation from
the proper period is not used as a control.

Finally, we could control for all the observed variables. In that case, the independent increments condi-
tion is fulfilled. If Xi k depends on treatment status, there is overcontrol bias, but the estimated parameter
can be given causal content: it is the direct treatment effect on the treated (E [∆x Yi k |Di k = 1]). If Xi k does
not depend on treatment status, treatment on the treated is identified. We thus have proved the following
result holds:

Result 2 DID-matching identifies treatment on the treated if time-varying control variables are independent
of the individual fixed effects. Controlling for the value of the covariates at the period when treatment is
decided is sufficient and necessary.

2.2 Endogenous time-varying covariates

In this section, we allow Xi t to depend on µi : Xi t = i (Xi t−1,µi ,ηi t ). Contrary to the previous result, con-
trolling for Xi k−1 does not solve the problem of selection bias: the independent increments property is not
fulfilled in that case:

E
[
Y 0

i k −Y 0
i k−1|Di k = d , Xi k−1 = x

]= E[
g (0,dk , i (x,µi ,ηi k ),εi k )|1[h(µi , x,ui k ) ≥ 0

]= d
]−E[

g (0,dk−1, x,εi k−1)
]

The previous equality depends on d because the first element on the right hand side is not equal to its
unconditional version. The conditioning set restricts the values of µi , and as µi is in the expectation term,
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this conditional expectation depends on d . Thus result 2 breaks down when time varying control variables
are endogenous. The intuition for this result is quite subtle: when comparing treated and untreated people
with the same value for Xi k−1, we do not compare the “same” average people: they differ in their mean
level of µi : those who participate do so because they have different values of the unobserved individual
fixed effects. In the exogenous case, this is not a problem as all the effect of different µi is canceled out by
first-differencing the outcome: time persistent unobservables are differenced out. But in the endogenous
controls case, different µi mean different Xi k : treated and untreated units have different long term values
for the control variables, and they do converge to these different values between k −1 and k. By matching
treated and untreated on Xi k , we render them comparable in an observed dimension, but they still differ in
their unobserved dynamic behavior.

Surprisingly enough, controlling for time-varying covariates in both periods restores the independent
increments property and the unbiasedness of DID-matching.

E
[
Y 0

i k −Y 0
i k−1|Di k = d , Xi k = x, Xi k−1 = x̃

]= E[
g (0,dk , x,εi k )

]−E[
g (0,dk−1, x̃,εi k−1)

]
.

If Xi k is influenced by the treatment, the estimated treatment effect is the average partial effect. If Xi k is not
determined by Di k , the estimated treatment effect is the average complete effect.

Result 3 With endogenous time-varying covariates, DID-matching controlling only on covariates at the time
of selection is biased. When controlling on covariates both at the time of selection and at the time when the
outcome is measured, DID-matching is unbiased for the average partial effect on the treated. If treatment does
not affect the control variables in the period when the outcome is measured, the estimated treatment effect is
the complete effect.

2.3 Past outcomes as covariates

We can now study the case of particular covariates: past outcomes. Controlling for past outcomes in the
matching process and then using DID is unnecessary relative to the same period: matching eliminates all
differences in past outcomes between the treated and their matched counterparts. Matching and DID-
matching are equivalent when past outcomes are included as control variables.4 I consider three distinct
cases: past outcomes determine participation or current outcomes or both.

2.3.1 Past outcomes only determine selection

Let’s write Di k = 1
[
h(Yi k−1,µi ,ui k ) ≥ 0

]
and Yi t = g (Di t ,dt ,εi t )+µi . In that setting, and quite surprisingly

as it determines selection, controlling on past outcome leads to bias while not controlling leads to unbiased
estimation of the treatment on the treated parameter. To prove this result, first note that DID-matching
when controlling on Yi k−1 is equivalent to simple matching. Unbiasedness in this setting thus means that
the conditional expectation of Y 0

i k conditional on past outcome must not depend on treatment status:

E
[
Y 0

i k |Di k = d ,Yi k−1 = y
]= E[

g (0,dk ,εi t )
]+E[

µi |1
[
h(y,µi ,ui k ) ≥ 0

]= d
]

.

This equality depends on d because the second term on the right hand side is not equal to its unconditional
counterpart: units selected into the treatment converge to a different long term value of the outcome than
units not selected into the treatment but with the same pre-treatment outcome. It is on the contrary obvious
that in this case simple DID without matching (or matching only on observable characteristics fixed through
time) is not biased, because the independent increments condition is verified unconditionally. This setting
is thus an occurrence of biased generated by the desire to control “too much”. We generate bias by trying
to render treated and untreated units identical along observed dimensions: by doing so, we generate time
varying bias that cannot be corrected by time-differencing. This is to my knowledge the first instance of bias
due to too many controls in the panel data setting.5 This also sheds light on whether one should use proxies

4This has nevertheless been somewhat overlooked in the literature: Heckman, Ichimura, Smith, and Todd (1998); Heckman,
Ichimura, and Todd (1997); Heckman and Smith (1999) use earnings in the month of enrollment as a control variable and estimate
how the bias term varies through time, including in the quarter containing the month of enrollment. Smith and Todd (2005) use
both income in 1974 and 1975 as control variables in some of their specifications while first-differencing across the same years.

5See Heckman and Navarro-Lozano (2004) and Wooldridge (2005) for examples in the cross-section case.
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as controls (variables correlated with µi but that have no direct effect on outcomes): the answer is no, as
long as the additive separability is maintained. Otherwise, both approaches are biased.

Result 4 If past outcomes do not directly determine current outcomes, but determine selection into the treat-
ment, controlling for past outcomes biases DID-matching, while not doing so preserves unbiasedness.

2.3.2 Past outcomes only determine current outcomes

Let’s write Di k = 1
[
h(µi ,ui k ) ≥ 0

]
and Yi t = g (Yi t−1,Di t ,dt ,εi t )+µi . In that setting, matching on Yi k−1 is

equivalent to DID-matching and is biased, because the fixed effect term is not differenced out. The bias
term is equal to the mean difference in the unobserved fixed effects between treated and untreated with the
same value of the past outcome, integrated over the distribution of past outcomes in the treated group. This
bias appears because identical people (in terms of past outcomes) are different in terms of fixed effects and
thus have different long run value for their outcomes. They happen to have the same outcomes when they
enter the treatment because of different histories of shocks. They start converging to their different long run
values just after receiving the treatment.

Simple DID is also biased in this case, because first-differencing does generally not eliminate all the
influence of the individual fixed effects. If there exists a long run equilibrium point or path to which the
Yi t process converges, this long run value generally depends on µi . Then, two cases can be considered in
turn. First, if Yi k−1 is not a random point around the long run equilibrium (i.e. the process has just started
a few periods ago: individuals have just entered the labor market without specific knowledge of µi ), then
the process will start its convergence toward the long run equilibrium along different paths for treated and
untreated individuals, since they have different long run values for their equilibrium level. In this case,
the independent increments condition is violated. Second, if Yi k−1 is a random point around the long run
equilibrium, individuals will start converging toward their long run equilibrium and the bias of DID depends
on the speed of this process, which in turns depend on the first derivative of the g function with respect to
its first argument. Generally, this first derivative does depend on Yi k−1, and thus on µi : mean speed of
convergence will vary between treated and untreated groups, and DID will be biased. An important special
feature of this second case appears if g is linear in its first argument: Blundell and Bond (1998) show that
in this case the average speed of adjustment is independent from µi and thus both group follow the same
mean path toward their long run equilibrium. In the case of an additive autoregressive process that starts
around its long run equilibrium, simple DID is thus not biased whereas controlling on past outcomes would
be.

Result 5 If past outcomes directly determine current outcomes, but do not directly determine selection into
the treatment, both controlling and not controlling for past outcomes biases DID-matching. In the special case
of a linear autoregressive process starting at a random point around its long run equilibrium, not controlling
on past outcomes preserves unbiasedness.

2.3.3 Past outcomes determine both selection and current outcomes

Let’s write Di k = 1[h(Yi k−1,µi ,ui k ) ≥ 0
]

and Yi t = g (Yi t−1,Di t ,dt ,εi t )+µi . In that setting, both approaches
are generally biased. Matching on past outcomes is biased because people having the same value of past
outcomes have different values of µi and thus converge toward different long run equilibria after receiving
the treatment. Not matching on past outcomes is also biased. The easiest way to see this is perhaps to show
that even in the case of an additive autoregressive process starting around its long run equilibrium, DID
would be biased. Let’s write: Y 0

i k = ρYi k−1 +dk + εi k +µi and Yi k−1 = µi

1−ρ + εi k−1. In this case, the bias of
the DID estimator (equal to the difference in mean increments between treated and untreated) is equal to:
(ρ−1)(E [εi k−1|Di k = 1]−E [εi k−1|Di k = 0]). This term is in general not null because Di k depends directly on
Yi k−1 and thus on εi k−1.

Result 6 If past outcomes directly determine both current outcomes and selection into the treatment, both
controlling and not controlling for past outcomes biases DID-matching.

Thus far, we have mainly established impossibility results: in the most general case of endogenous time-
varying covariates influenced by the treatment, DID-matching is biased. We have proved that controlling
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for past outcomes can be harmful in some cases, whereas not controlling could avoid bias in some special
cases. But we have no general hint at whether one should control or not in general cases. I establish more
precise results in the case of the evaluation of a labor program in the next section.

3 The Evaluation of Job Training Programs: a Structural Model

3.1 A simple model of the wage process and of entry in a job training program

This section heavily borrows on the setting presented in Heckman, LaLonde, and Smith (1999). In their
handbook chapter, the authors show that with perfect credit markets, entry into a job market program in
period k should be governed by the following rule for individual i :

Di k = 1
[αi

r
≥ ci +Y 0

i k

]
, (1)

where αi is the individual level wage gain from the program, r is the interest rate, ci are the administrative
costs of entering the program (including transfers partially compensating the opportunity cost) and Y 0

i k are
log-earnings in period k outside of the program (they measure the opportunity cost of entering the program
during one period). Earnings are not observed to the econometrician for those individuals entering the
program, but are assumed known to the individual when she decides to enter the program. I follow the
suggestion in Heckman, LaLonde, and Smith (1999) in specifying the wage equation:

Y 0
i t = g 0(Xi ,dt )+µi +Ui t , with Ui t = ρUi t−1 +m1vi t−1 +m2vi t−2 +m0vi t︸ ︷︷ ︸

νi t

, (2)

where the exact formulation for the residual process comes from MaCurdy (1982)’s preferred specification
for the dynamics of log-wage earnings (ARMA(1,2)). Note that I abstract from the problem of time varying
covariates other than past outcomes in this analysis. The analyst wishes to estimate the effect of entering
the program in period k on period k+τmean outcome and that she considers controlling for past outcomes
observed in period k−τ′. Direct control for the direct determinants of entry into the program (Yi k ) is indeed
impossible, wage in period k being unobserved because the individual participate in the program. Only
proxies for this unobserved determinants can be used in the analysis. In the remaining of this section, I
consider in turn two possible avenues for implementing DID-matching in this setting: controlling for past
outcomes (which amounts to only using simple matching) vs not controlling for past outcomes (pure DID-
matching).

3.2 Bias from pure DID-matching (not controlling for past outcomes)

If we just control for Xi and not for past outcomes and apply DID to the matched sample between periods
k +τ and k −τ′, the bias term is as follows (for τ> 1):6

B di d
x = E [Ui k+τ−Ui k−τ′ |Xi = x,Di k = 1]−E [Ui k+τ−Ui k−τ′ |Xi = x,Di k = 0]

=
(
ρτ+τ

′ −1
)

(E [Ui k−τ′ |Xi = x,Di k = 1]−E [Ui k−τ′ |Xi = x,Di k = 0]) (3a)

+ρτ+τ′−2

(
(ρm1 +m2) (E [vi k−τ′ |Xi = x,Di k = 1]−E [vi k−τ′ |Xi = x,Di k = 0])

+ρm2 (E [vi k−τ′−1|Xi = x,Di k = 1]−E [vi k−τ′−1|Xi = x,Di k = 0])

)
(3b)

+ρτ−2 (
ρ2 +ρm1 +m2

)τ′−1∑
j=0

ρ j (
E
[
vi k− j |Xi = x,Di k = 1

]−E[
vi k− j |Xi = x,Di k = 0

])
. (3c)

The first part of the bias term (3a) is due to initial differences in the history of shocks up to period
k −τ′ between treated and untreated. These initial differences persist until period k, leading to different
participation decisions, but progressively fade away as long as we get away from the enrollment period.
This progressive return to the mean wage is confounded with a causal effect of the treatment by the DID
estimator because it fails to take into account that some of the initial differences in earnings are due to

6If τ= 1, in the last term, the term
(
ρ2 +ρm1 +m2

)
is deleted and replaced inside the sum by

(
ρ2 +ρm1 + 1

[
j > 1

]
m2

)
.
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transient shocks. This leads to an upward bias in the estimation of the treatment on the treated parameter.
The farther away the two periods, the higher the bias. The dependence of this bias term onρ, the persistence
of shocks, is difficult to determine: on the one hand, the higher ρ, the lower the discrepancy between the
two periods, because the initial differences tend to persist. On the other hand, a higher ρ leads to higher
variance of the error terms, and thus may increase the size of the bias term.

The second part of the bias (3b) reflects the fact that some of the negative shocks to wages will get
corrected in the immediate aftermath of period k −τ, through the action of the MA terms. The estimated
MA terms are generally negative: the negative shocks leading people to participate do not fully persist until
period k+τ. This bias term will also be positive because it leads to an overestimate of the initial mean wage
differences between participants and non participants.

The last part of the bias term (3c) is the consequence of shocks that have happened after the pre-
treatment control period (k −τ′). This bias term will generally be negative because the AR term dominates
the MA terms (with the estimates in MaCurdy (1982), we have ρ2+ρm1+m2 ≈ 0.5) and because mean shocks
are negatively correlated to participation through the participation equation (the lower the wage, the higher
the probability of participation). So this term may offset the two previous terms, all the more so if τ′ is large.
Note finally that in the case of a pure white noise process (ρ = m1 = m2 = 0), the three bias terms are null
because earnings in period t are not related to past shocks.

It is possible to derive closed form expressions for these bias terms if we make the assumption that the
i.i.d MA terms are normal with variance σ2 (see appendix A.1 for the derivation). From (3), we can derive
the bias terms for the DID case (for τ,τ′ ≥ 2): 7, 8

B di d
x

σ2

σ2
D∗

(
φ(Ax )

1−Φ(Ax ) +
φ(Ax )
Φ(Ax )

) =−
(
ρτ+τ

′ −1
)
ρτ

′−1

(
ρ
σ2

U

σ2 +m1 +m2
(
m1 +ρ

))
(4a)

−ρτ+2τ′−4(ρm1 +m2(ρ2 +1))
(
m2 +ρm1 +ρ2) (4b)

−ρτ−2 (
ρ2 +ρm1 +m2

)(1−ρ2τ′

1−ρ2 +m1ρ
1−ρ2τ′−2

1−ρ2 +m2ρ
2 1−ρ2τ′−4

1−ρ2

)
(4c)

with Ax = c̄− ᾱ
r +g (x,dk )
σD∗ , σ2

D∗ =σ2
U +σ2

µ+σ2
c + σ2

α

r 2 +2(σµc − σµα

r ) and φ (resp. Φ) is the density (resp. cumulative
distribution function) of the standard normal.

These bias terms have the expected signs: the first term (4a) is positive because ρ < 1 and
σ2

U

σ2 > 1, so that

in general ρ
σ2

U

σ2 +m1 +m2
(
m1 +ρ

)
is positive. The second term (4b) is positive because m1 < m2 < 0. The

third term (4b)is negative because the AR term dominates the MA term, leading to positive terms inside the
brackets.

Figure 1 presents the values of the three components of this bias term for the value of the parameters of
the wage process estimated by MaCurdy (1982). Three conclusions emerge from this figure:

1. The main components of bias are the terms (4a) and (4c). They have opposite signs and both increase
with τ′, i.e. with the distance between treatment and the pre-treatment control period.

2. Total bias is null when τ= τ′: symmetric DID is unbiased though non symmetric DID is biased. The
intuition for this result is the following: correlation between Yi k−t , (t = −τ,τ′) and Di k is due to the
correlation between Yi k and Yi k−t . When t =−τ, the correlation between Yi k+τ and Di k is weakened
(compared to that between Yi k and Di k ) because of the occurrence of τ periods of i.i.d. shocks. The
same is true for t = τ′: the τ′ periods of shocks that have not yet occurred weaken the relationship
between Yi k+τ′ and Di k . When τ = τ′, the correlation between Yi k−τ′ and Di k on the one hand and
Yi k+τ and Di k on the other hand have been weakened by the same amount compared to the correla-
tion between Yi k and Di k . This gives a rationale to the use of symmetric matching DID by Heckman,
Ichimura, Smith, and Todd (1998); Heckman, Ichimura, and Todd (1997).

7When τ′ = 1, the second component of the bias (4b) is equal to −ρτ−1 (
(ρm1 +m2)(m1 +ρ)+ρm2(m2 +ρm1 +ρ2)

)
and the

third component (4c) is equal to −ρτ−2(ρ2 +ρm1 + 1 [τ> 1]m2).

8If τ= 1 and τ′ > 1, the third component (4c) is equal to ρ+m1 +
(
ρ2 +ρm1 +m2

)(
ρ

1−ρ2τ′−2

1−ρ2 +m1
1−ρ2τ′−2

1−ρ2 +m2ρ
1−ρ2τ′−4

1−ρ2

)
.
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Figure 1 – Bias from DID-matching (not controlling on past outcomes) for τ= 4

2 4 6 8 10

−
4

−
2

0
2

4

ττ'

B
ia

s + + + + + + + + + +●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

+
●

●

a
b
c

c (shock)
Total
Total (shock)

Note: a, b and c stand respectively for the components (4a), (4b) and (4c) of the
bias term of DID matching. (choc) corresponds to the value of the correspond-
ing terms when vi k is not observed when the individual decides to participate.
All values have been computed according to MaCurdy (1982)’s estimates of the
parameters: ρ = 0.99, m1 =−0.4, m2 =−0.01.

3. This result of minimal bias when implementing symmetric DID critically hinges on the assumption
that individuals perfectly know the wages they would have earned if they have remained on their job
at period k. If, for example, we assume that they do not know vi k when deciding whether or not they
enter the program, figure 1 (terms “shock”) show that symmetric DID is no longer the least biased
estimator.

This case study has thus proved the following result:

Result 7 When evaluating a job training program, symmetric DID is the least biased estimator among the
simple DID estimators when the agents know perfectly the wage they would have had in the period the pro-
gram takes place if they had not entered the program.

3.3 Bias from pure matching (controlling for past outcomes)

When controlling for past outcomes, a very usual relationship can be extracted from the common factor
representation of the wage process in equation (2), making use of the fact that Ui t = Y 0

i t − g 0(Xi ,dt )−µi :

Y 0
i k+τ = g 0(Xi ,dk+τ)+ρτ+τ′Yi k−τ′ −ρτ+τ

′
g 0(Xi ,dk−τ′)+µi (1−ρτ+τ′)+

τ+τ′∑
j=0

ρ jνi k+τ− j .

9



From this formula, we can derive the bias that arises from matching on Xi and Yi k−τ′ (for τ≥ 2):

B m
x y =

(
1−ρτ+τ′

)(
E
[
µi |Xi = x,Yi k−τ′ = y,Di k = 1

]−E[
µi |Xi = x,Yi k−τ′ = y,Di k = 0

])
(5a)

+ρτ+τ′−2

(
(ρm1 +m2)

(
E
[
vi k−τ′ |Xi = x,Yi k−τ′ = y,Di k = 1

]−E[
vi k−τ′ |Xi = x,Yi k−τ′ = y,Di k = 0

])
+ρm2

(
E
[
vi k−τ′−1|Xi = x,Yi k−τ′ = y,Di k = 1

]−E[
vi k−τ′−1|Xi = x,Yi k−τ′ = y,Di k = 0

]) )
(5b)

+ρτ−2 (
ρ2 +ρm1 +m2

)τ′−1∑
j=0

ρ j (
E
[
vi k− j |Xi = x,Di k = 1

]−E[
vi k− j |Xi = x,Di k = 0

])
. (5c)

The first part of the bias term is due to differences in unobservables fixed through time between treated
and untreated. This term arises because participation into the program is partly determined by differences
inµi because of the opportunity cost of participating in the program in terms of foregone wages. The second
part of the bias term arises because of the moving average components of the wage process. In terms of
the participation equation, this term means that among people with the same pre-treatment wage, only
those with a recent positive shock to their wages have decided to enroll into the program. This shock being
transitory (40% of the shock will have disappeared after one year), these people tend to have lower wages
in period k after a wage surge in period k −1. With lower potential wages in period k, they thus decide to
enroll into the program, whose opportunity cost has decreased. After the adjustment in period k due to the
MA(1) term, the rest of the positive wage shock tend to persist through time, due to the large AR(1) term.
Wages for participants thus persist, but at a lower level than those of untreated people who had the same
wages in period k −1. We thus tend to underestimate the impact of the program by confouding it with the
fading out of a transient shock that lead people to participate in the first place. The last component of the
bias does not depend on Yi k−τ′ because it is due to shocks posterior to period k −τ′. This part of the bias is
thus identical to the bias in the simple DID case when we do not control on Yi k−τ′ .

In order to be able to compare the two estimators, we have to derive bias terms conditional on the
same conditioning set (here Xi = x). We can derive expressions for the unconditional bias term of simple
matching if we assume that the error terms are normally distributed. The bias term for the simple matching
case is derived in appendix A.2. After integrating out Yi k−τ′ |Di k = 1, Xi = x, we have:

B m
x =− 1−ρτ+τ′

1−Φ(Ax )


σD∗,µ

σD∗
φ(Ax )+

σD∗,µ−
σ2
µσD∗ ,Yk−τ′

σ2
Y

σD∗σY

√
1−

σ2
D∗ ,Yk−τ′
σ2

D∗σ2
Y

∫ +∞

−∞
φ

(
y − g (x,dk−τ′)

σY

)
φ(Ax y )

1−Φ(Ax y )

Φ(Ax y )
d y

 (6a)

− ρτ+τ
′−2

1−Φ(Ax )


(
(ρm1 +m2)

σUt ,vt−τ′

σD∗
+ρm2

σUt ,vt−τ′−1

σD∗

)
φ(Ax )+

(ρm1 +m2)
σUt ,vt−τ′ −

σ2σD∗ ,Yk−τ′
σ2

Y

σD∗σY

√
1−

σ2
D∗ ,Yk−τ′
σ2

D∗σ2
Y

+ ρm2

σUt ,vt−τ′−1
−

m1σ
2σ2

D∗ ,Yk−τ′
σ2

Y

σD∗σY

√
1−

σ2
D∗ ,Yk−τ′
σ2

D∗σ2
Y


∫ +∞

−∞
φ

(
y − g (x,dk−τ′)

σY

)
φ(Ax y )

1−Φ(Ax y )

Φ(Ax y )
d y

 (6b)

−ρτ−2 (
ρ2 +ρm1 +m2

)(1−ρ2τ′

1−ρ2 +m1ρ
1−ρ2τ′−2

1−ρ2 +m2ρ
2 1−ρ2τ′−4

1−ρ2

)
σ2

σ2
D∗

(
φ (Ax )

1−Φ (Ax )
+ φ (Ax )

Φ (Ax )

)
(6c)

The first part of each component of the bias term is identical to the DID case. The second part of each
component is an integration of the distribution of the error term among the untreated conditional on the
value of past outcomes with respect to the distribution of past outcomes in the treated population. In order
to compute this integral, I use 32 points Gauss-Hermite integration rule.

Figure 2 presents the absolute values of the bias terms of DID matching (equation 4) and simple match-
ing (equation 6) with the values of the parameters estimated by MaCurdy (1982). Three important results
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emerge from this figure:

1. Not controlling on past outcomes has generally lower bias than controlling on past outcomes.

2. Controlling on past outcomes is the least biased when controlling for the period closest to enrollment
(i.e. τ′ = 1). In that case, matching controlling on past outcome is less biased than DID matching with
respect to the same period.

3. Symmetric DID matching is the least biased estimator: it is less biased than matching controlling on
the period closest to enrollment.

All these results rely on the bias reduction property of symmetric simple DID: the mean pre-treatment
difference in outcomes between treated and untreated τ′ periods before enrollment is a good estimate of the
mean post treatment difference in outcomes τ′ periods after enrollment. We thus have proved the following
result:

Result 8 When evaluating a job training program, symmetric DID is less biased than matching controlling
on past outcomes.

Figure 2 – Comparison of bias when controlling (simple matching) and not controlling (DID
matching) on past outcomes for τ= 4
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Note: the value of the bias for DID (resp. simple) matching are the ab-
solute values of the terms in equation (4) (resp. 6) computed according
to MaCurdy (1982)’s estimates of the parameters: ρ = 0.99, m1 = −0.4,
m2 = −0.01, σ2 = 0.055, σ2

µ = 0. The rest of the parameters takes the

following values: c̄ = −2, σ2
c = 0.05, σµc = 0, ᾱ = 0.1, σ2

α = 0, σµα = 0,
r = 0.05, g (x,dk ) = g (x,dk−τ′ ) = 0.

This result enable us to reinterpret some of the results in Heckman, Ichimura, Smith, and Todd (1998)
and Smith and Todd (2005). Heckman, Ichimura, Smith, and Todd (1998) compares the relative ability of dif-
ferent set of control variables to reproduce the experimental results of the evaluation of Job Training Part-
nership Act (JTPA) thanks to matching and DID matching. When using a crude control set not including
wages at the date of enrollment, the average bias of the estimator is lower than that obtained thanks to the
set of variables with the higher predicting power including wages at enrollment (see their table XII p.1062).
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Smith and Todd (2005) use two set of control variables when estimating the bias of propensity score match-
ing and DID propensity score matching in the National Support for Work experimental study: the first set
(they name it the Lalonde set) does not contain past income while the second set (the Dehejia and Wahba
(DW) set) does contain past income. When they apply DID matching with the first set of controls, the bias
is lower than when they use the second set of controls (see their table 6, p.340).

4 Conclusion

In this paper, I study whether is always better to control for more covariates in a dynamic context. I study
the relative biases case of matching on past covariates vs Difference in Difference matching. I exhibit two
special cases where controlling on past outcomes is biased whereas implemented DID matching is not. In
the general case where both estimators are biased, I study the special case of the evaluation of a job training
program. Borrowing a credible selection rule from Heckman, LaLonde, and Smith (1999) and relying on
the parameters of the wage process estimated by MaCurdy (1982), I derive closed forms for the bias terms
of the two estimators when the error terms are normally distributed. I show that DID matching performs
better when used symmetrically around the period of enrollment, as implemented by Heckman, Ichimura,
Smith, and Todd (1998). Matching is less biased than DID-matching when considering to use the first pre-
enrollment period, but symmetric DID-matching is less biased than the less biased matching estimator.
These results are to my knowledge the first one that prove in a practical application that not controlling for
past outcomes may be better than controlling for them.

This work can naturally be extended to controlling for covariates that are not past outcomes, but are
correlated to them, like quasi-fixed factors when evaluating the effect of a treatment on variable factors.
For example, in the evaluation of investment or hiring subsidies, should we control for past values of the
capital stock? A second extension to this work would include examining the relative performances of other
estimators when faced with the same problem: the Change in Change (CIC) estimator of Athey and Imbens
(2006), the exchangeable estimator of Altonji and Matzkin (2005).

12



References

ABADIE, A. (2005): “Semiparametric Difference-in-Differences Estimators,” Review of Economic Studies,
72(1), 1–19.

ALTONJI, J. G., AND R. L. MATZKIN (2005): “Cross Section and Panel Data Estimators for Nonseparable Mod-
els with Endogenous Regressors,” Econometrica, 73(4), 1053–1102.

ARNOLD, B., R. BEAVER, R. GROENEVELD, AND W. MEEKER (1993): “The Nontruncated Marginal of a Trun-
cated Bivariate Normal Distribution,” Psychometrika, 58(3), 471–488.

ASHENFELTER, O., AND D. CARD (1985): “Using the Longitudinal Structure of Earnings to Estimate the Effect
of Training Programs,” The Review of Economic Statistics, 67(4), 648–660.

ATHEY, S., AND G. W. IMBENS (2006): “Identification and Inference in Nonlinear Difference-in-Differences
Models,” Econometrica, 74(2), 431–497.

BLUNDELL, R., AND S. BOND (1998): “Initial Conditions and Moment Restrictions in Dynamic Panel Data
Models,” Journal of Econometrics, 87(1), 115–143.

DEHEJIA, R. H., AND S. WAHBA (1999): “Causal Effects in Nonexperimental Studies: Reevaluating the Evalu-
ation of Training Programs,” Journal of the American Statistical Association, 94(448), 1053–1062.

HECKMAN, J. J., H. ICHIMURA, J. SMITH, AND P. TODD (1998): “Characterizing Selection Bias Using Experi-
mental Data,” Econometrica, 66, 1017–1099.

HECKMAN, J. J., H. ICHIMURA, AND P. E. TODD (1997): “Matching as an Econometric Evaluation Estimator:
Evidence from Evaluating a Job Training Programme,” The Review of Economic Studies, 64(4, Special Issue:
Evaluation of Training and Other Social Programmes), 605–654.

HECKMAN, J. J., R. J. LALONDE, AND J. A. SMITH (1999): “The Economics and Econometrics of Active Labor
Market Programs,” in Handbook of Labor Economics, ed. by O. C. Ashenfelter, and D. Card, vol. 3, chap. 31,
pp. 1865–2097. Elsevier, North Holland.

HECKMAN, J. J., AND S. NAVARRO-LOZANO (2004): “Using Matching, Instrumental Variables, and Control
Functions to Estimate Economic Choice Models,” The Review of Economics and Statistics, 86(1), 30–57.

HECKMAN, J. J., AND J. SMITH (1999): “The Pre-Programme Earnings Dip and the Determinants of Par-
ticipation in a Social Programme. Implications for Simple Programme Evaluation Strategies,” Economic
Journal, 109(457), 313–348.

HECKMAN, J. J., S. URZUA, AND E. VYTLACIL (2006): “Understanding Instrumental Variables in Models with
Essential Heterogeneity,” Review of Economics and Statistics, 88, 389–432.

LALONDE, R. (1986): “Evaluating the Econometric Evaluation of Training Programs with Experimental
Data,” American Economic Review, 76, 604–620.

MACURDY, T. E. (1982): “The Use of Time Series Processes to Model the Error Structure of Earnings in a
Longitudinal Data Analysis,” Journal of Econometrics, 18(1), 83–114.

MEYER, B. D., W. K. VISCUSI, AND D. L. DURBIN (1995): “Workers’ Compensation and Injury Duration:
Evidence from a Natural Experiment,” The American Economic Review, 85(3), 322–340.

SMITH, J. A., AND P. E. TODD (2005): “Does Matching Overcome LaLonde’s Critique of Nonexperimental
Estimators?,” Journal of Econometrics, 125(1-2), 305–353.

WOOLDRIDGE, J. M. (2005): “Violating Ignorability of Treatment by Controlling for Too Many Factors,”
Econometric Theory, 21(05), 1026–1028.

13



A Derivation of bias terms in the labor example with normal MA terms

A.1 Not controlling for past outcomes

It is possible to derive closed form expressions for the bias terms of section 3.2 if we make the assumption
that the i.i.d MA terms are normal with variance σ2. I assume that the process generating the outcomes as
begun sufficiently far in the past so that I can abstract from the dependence on t by considering that the
MA terms are a sum of an infinite number of shocks. I moreover pose that αi =α is a constant, and that ci

is a normal variable with variance σ2
c , independent of µi , whose variance is σ2

µ. To obtain the biased terms,
I study the joint distribution of for normal variables conditional on Xi = x, under the assumption that Xi is
independent from µi . The observed variables we want to condition on are:

D∗
i k = ci − αi

r
+ g (x,dk )+µi +Ui k

Yi k−τ′ = g (x,dk−τ′)+µi +Ui k−τ′
Yi k−τ′−1 = g (x,dk−τ′−1)+µi +Ui k−τ′−1.

So we need to derive the joint distribution of the following error terms:(
Ui k ,Ui k−τ′ ,Ui k−τ′−1,

{
vi k− j

}
0≤ j≤τ′−1 , vi k−τ′ , vi k−τ′−1

)
. This distribution is a centered normal with covari-

ance matrix Σ1:

Σ1 =



σ2
U

ρτ
′−1σUt ,Ut−1 σ2

U
ρτ

′
σUt ,Ut−1 σUt ,Ut−1 σ2

U
σUt ,vt− j 0 0 σ2

σUt ,vt−τ′ σ2 0 0 σ2

σUt ,vt−τ′−1
σ2(m1 +ρ) σ2 0 0 σ2

 ,

with σ2
U = σ2

(
1+ (m1 +ρ)2 + ρ4(ρ2+ρm1+m2)2

1−ρ2

)
, σUt ,Ut−1 = ρσ2

U +σ2
(
m1 +m2

(
m1 +ρ

))
and σUt ,vt− j =

ρ j−2(1
[

j 6= 0
]
1
[

j 6= 1
]

m2+1
[

j 6= 0
]
ρm1+ρ2)σ2. The latter term comes from the fact that the shocks at t and

t −1 are not fully adjusted for at period t : the first shock only enters directly while the second shock enters
through the AR term and the MA term. All previous shocks enter in the same way, according to a weighted
average of the ARMA terms. To obtain σ2

U , note that Ui t = (ρ2+ρm1+m2)
∑∞

j=2ρ
j vi t− j +vi t +(m1+ρ)vi t−1.

The variance of Ui t is the sum of the variances of these three terms. The variance of the first term is:

Var(
∑∞

j=2ρ
j vi t− j ) = σ2 ∑∞

j=2ρ
2 j . As ρ2 < 1 we can write:

∑∞
j=2ρ

2 j = ∑∞
j=0ρ

2 j − 1 − ρ2 = 1−(1+ρ2)(1−ρ2)
1−ρ2 =

ρ4

1−ρ2 , which gives the result. To obtain σUt ,Ut−1 , note that Cov(Ut ,Ut−1) = Cov(ρUi t−1 + vi t + m1vi t−1 +
m2vi t−2,Ui t−1) = ρσ2

U +m1Cov(vi t−1,Ui t−1)+m2Cov(vi t−2,Ui t−1). As Ui t−1 = ρ2Ui t−3 + vi t−1 +m1vi t−2 +
m2vi t−3 +ρ(vi t−2 +m1vi t−3 +m2vi t−4), this leads to the result.

From these expressions, we can readily obtain the bias terms for the DID case (for τ,τ′ ≥ 2): 9, 10

B di d
x

σ2

σ2
D∗

(
φ(Ax )

1−Φ(Ax ) +
φ(Ax )
Φ(Ax )

) =−
(
ρτ+τ

′ −1
)
ρτ

′−1

(
ρ
σ2

U

σ2 +m1 +m2
(
m1 +ρ

))

−ρτ+2τ′−4(ρm1 +m2(ρ2 +1))
(
m2 +ρm1 +ρ2)

−ρτ−2 (
ρ2 +ρm1 +m2

)(1−ρ2τ′

1−ρ2 +m1ρ
1−ρ2τ′−2

1−ρ2 +m2ρ
2 1−ρ2τ′−4

1−ρ2

)
,

with Ax = c̄− ᾱ
r +g (x,dk )
σD∗ and σ2

D∗ =σ2
U +σ2

µ+σ2
c + σ2

α

r 2 +2(σµc − σµα

r ).
If parts (4a) and (4b) of the bias term are quite self-explanatory, some calculation details are needed for

part (4c). This term is the sum of the expectations of shocks after the control period τ′ until k conditional on

9When τ′ = 1, the second component of the bias (4b) is equal to −ρτ−1 (
(ρm1 +m2)(m1 +ρ)+ρm2(m2 +ρm1 +ρ2)

)
and the

third component (4c) is equal to −ρτ−2(ρ2 +ρm1 + 1 [τ> 1]m2).

10If τ= 1 and τ′ > 1, the third component (4c) is equal to ρ+m1 +
(
ρ2 +ρm1 +m2

)(
ρ

1−ρ2τ′−2

1−ρ2 +m1
1−ρ2τ′−2

1−ρ2 +m2ρ
1−ρ2τ′−4

1−ρ2

)
.

14



participating (resp. not participating) in period k. Both conditional expectations depend on the covariance

σUk ,vk− j . Indeed, after factorization of σ2

σ2
D

(
φ(Ax )

1−Φ(Ax ) +
φ(Ax )
Φ(Ax )

)
, the sum term that remains is:

∑τ′−1
j=0 ρ j σUk ,vk− j

σ2 =∑τ′−1
j=0 ρ

2 j−2(1
[

j 6= 0
]
1
[

j 6= 1
]

m2 + 1
[

j 6= 0
]
ρm1 +ρ2) = ∑τ′−1

j=0 (ρ2) j +m1ρ
∑τ′−1

j=1 (ρ2) j−1 +m2ρ
2 ∑τ′−1

j=2 (ρ2) j−2 =∑τ′−1
k=0 (ρ2)k + m1ρ

∑τ′−2
k=0 (ρ2)k + m2ρ

2 ∑τ′−3
k=0 (ρ2)k . If the decision maker does not know period k informa-

tion (i.e. shock vi k ) when deciding to enter the program, the first term of the previous sum is changed

to
∑τ′−1

j=1 (ρ2) j = ρ2 ∑τ′−1
j=1 (ρ2) j−1 = ρ2 ∑τ′−2

k=0 (ρ2)k = ρ2 1−ρ2τ′−2

1−ρ2 .

These bias terms have the expected signs: the first term (4a) is positive because ρ < 1 and
σ2

U

σ2 > 1, so that

in general ρ
σ2

U

σ2 +m1 +m2
(
m1 +ρ

)
is positive. The second term (4b) is positive because m1 < m2 < 0. The

third term (4b)is negative because the AR term dominates the MA term, leading to positive terms inside the
brackets.

A.2 Controlling for past outcomes

To derive a closed form expression for the bias term of DID-matching when controlling on past outcomes
(i.e. simple matching), we have to derive the joint distribution of µi , vi k−τ′ ,vi k−τ′−1,D∗

i k and Yi k−τ′ , which is

a normal with mean µ2 =
(
0,0,0, c̄ + ᾱ

r + g (x,dk ), g (x,dk−τ′)
)

and covariance Σ2:

Σ2 =


σ2
µ

0 σ2

0 0 σ2

σD∗,µ σUt ,vt−τ′ σUt ,vt−τ′−1
σ2

D∗
σ2
µ σ2 m1σ

2 σD∗,Yk−τ′ σ2
Y

 ,

with σD∗,Yk−τ′ =σµc − σµα

r +σ2
µ+ρτ

′−1σUt ,Ut−τ′ , σD∗,µ =σ2
µ+σµc − σµα

r and σ2
Y =σ2

µ+σ2
U . The distribution of

µi , vi k−τ′ ,vi k−τ′−1,D∗
i k conditional on Yi k−τ′ = y is normal, with mean µ

y
2 calculated as the linear projection

of these variables onto Yi k−τ′ and covariance matrix Σy
2 which is the Schur complement of (σ2

µ+σ2
U ) in Σ2.

We thus have:

µ
x y
2 =


(y − g (x,dk−τ′))

σ2
µ

σ2
Y

(y − g (x,dk−τ′)) σ
2

σ2
Y

(y − g (x,dk−τ′)) m1σ
2

σ2
Y

c̄ + ᾱ
r + g (x,dk )+ (y − g (x,dk−τ′))

σD∗ ,Yk−τ′
σ2

Y

 ,

Σ
x y
2 =



σ2
µ

(
1− σ2

µ

σ2
Y

)
−σ2 σ2

µ

σ2
Y

σ2
(
1− σ2

σ2
Y

)
−m1σ

2σ2
µ

σ2
Y

−m1σ
4

σ2
Y

σ2
(
1− m2

1σ
2

σ2
Y

)
σD∗,µ−

σ2
µσD∗ ,Yk−τ′

σ2
Y

σUt ,vt−τ′ −
σ2σD∗ ,Yk−τ′

σ2
Y

σUt ,vt−τ′−1
− m1σ

2σD∗ ,Yk−τ′
σ2

Y
σ2

D∗ −
σ2

D∗ ,Yk−τ′
σ2

Y


.

The first part of the bias term of matching on past values of the outcomes is thus:

B m1
x y =−(1−ρτ+τ′)

σD∗,µ−
σ2
µσD∗ ,Yk−τ′

σ2
Y√

σ2
D∗ −

σ2
D∗ ,Yk−τ′
σ2

Y

(
φ

(
Ax y

)
1−Φ(

Ax y
) + φ

(
Ax y

)
Φ

(
Ax y

))
,

where Ax y =
c̄− ᾱ

r +g (x,dk )+(y−g (x,dk−τ′ ))
σD∗ ,Yk−τ′

σ2
Y√√√√

σ2
D∗−

σ2
D∗ ,Yk−τ′

σ2
Y

.
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The second part of the bias term is:

B m2
x y =−ρτ+τ′−2

(ρm1 +m2)
σUt ,vt−τ′ −

σ2σD∗ ,Yk−τ′
σ2

Y√
σ2

D∗ −
σ2

D∗ ,Yk−τ′
σ2

Y

+ρm2

σUt ,vt−τ′−1
− m1σ

2σD∗ ,Yk−τ′
σ2

Y√
σ2

D∗ −
σ2

D∗ ,Yk−τ′
σ2

Y


(

φ
(

Ax y
)

1−Φ(
Ax y

) + φ
(

Ax y
)

Φ
(

Ax y
))

.

In order to obtain bias terms that are comparable to those calculated for DID matching, we have to in-
tegrate B m1

x y and B m2
x y with respect to the distribution FYi k−τ′ |Di k=1,Xi=x (y). This distribution has the following

density (Arnold, Beaver, Groeneveld, and Meeker, 1993):

fYi k−τ′ |Di k=1,Xi=x (y) = 1

σY
φ

(
y − g (x,dk−τ′)

σY

)
1−Φ(Ax y )

1−Φ(Ax )
.

We can derive expressions for the two unconditional bias terms after integrating out Yi k−τ′ |Di k = 1, Xi = x:

B m1
x =− 1−ρτ+τ′

1−Φ(Ax )


σD∗,µ

σD∗
φ(Ax )+

σD∗,µ−
σ2
µσD∗ ,Yk−τ′

σ2
Y

σD∗σY

√
1−

σ2
D∗ ,Yk−τ′
σ2

D∗σ2
Y

∫ +∞

−∞
φ

(
y − g (x,dk−τ′)

σY

)
φ(Ax y )

1−Φ(Ax y )

Φ(Ax y )
d y

 ,

B m2
x =− ρτ+τ

′−2

1−Φ(Ax )

[(
(ρm1 +m2)

σUt ,vt−τ′

σD∗
+ρm2

σUt ,vt−τ′−1

σD∗

)
φ(Ax )+(ρm1 +m2)

σUt ,vt−τ′ −
σ2σD∗ ,Yk−τ′

σ2
Y

σD∗σY

√
1−

σ2
D∗ ,Yk−τ′
σ2

D∗σ2
Y

+ρm2

σUt ,vt−τ′−1
−

m1σ
2σ2

D∗ ,Yk−τ′
σ2

Y

σD∗σY

√
1−

σ2
D∗ ,Yk−τ′
σ2

D∗σ2
Y


∫ +∞

−∞
φ

(
y − g (x,dk−τ′)

σY

)
φ(Ax y )

1−Φ(Ax y )

Φ(Ax y )
d y

 .
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