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Introduction

In recent years, economists have increasingly turned to job-search models to examine key questions

in labor economics. For example, search models allow us to distinguish among hypotheses for why

wage growth varies by race: are blacks and whites offered different wages, do they encounter offers

at different rates, or do they accumulate human capital at different rates? Papers that explore

these issues include Wolpin (1992) and Bowlus, Kiefer, and Neumann (2001). As another example,

search models can be used to assess long-run earnings inequality: how likely are low wage workers

to eventually find higher paying jobs? Papers in this vein include Flinn (2002) and Bowlus and

Robin (2004). Finally, search models can be useful for predicting the effects of various events on

labor markets. This includes the effects of increasing the minimum wage, as in van den Berg and

Ridder (1998) and Flinn (2004), or of a macroeconomic shock, as in Barlevy (2002).

Unfortunately, the answers we obtain using this approach can be sensitive to functional form

assumptions, particularly those that govern the offer distribution workers face. For example,

we may erroneously conclude blacks and whites face a common offer distribution if the same

distribution happens to provide the best overall fit for both groups within the limited family

of distributions we consider. As another example, the effect of an increase in the minimum wage

depends on how many employers choose to offer a wage just above the original minimum wage, and

a functional form that provides a good general fit may do poorly in matching this particular part of

the distribution. Thus, it is important to ask whether we can identify the relevant distributions in

job search models non-parametrically, at the very least so that we can verify candidate functional

forms before proceeding with parametric estimation. Moreover, since differences in wages across

workers likely reflect both differences in employer pay as well as differences in worker quality, we

need an approach to identification that is robust to the presence of worker heterogeneity.

This paper examines whether we can non-parametrically identify the offer distribution in a stan-

dard search model. It is related to work by Athey and Haile (2002) on non-parametric identification

of auction models. Appealing to the auction literature is only natural; after all, search models

also involve multiple bidders competing over a common object, namely the worker’s time. One

key difference, though, is that auction data typically include the number of active bidders, while

worker surveys seldom ask workers how many job offers they received. This is important, since

many of Athey and Haile’s results require that we know the number of bidders in the auction.1

1Song (2004) examines identification in auction models when the number of bidders is unknown. Her approach
can be applied to search models, but it is not robust to the presence of unobserved heteroegneity.
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While we cannot appeal to results in Athey and Haile (2002), it turns out that the offers a worker

accepts — the analog of winning bids in auction models — have a particular structure that we can

still exploit. Specifically, the jobs the worker accepts form a sequence of records, in the sense that

the worker must value each job he accepts more than the offers that preceded it. Statisticians have

studied the behavior of record values from random sequences, and have applied their findings to

study various phenomena such as global warming, record athletic performances, road congestion,

and tolerance testing.2 Appropriate extensions of results in the statistics literature establish that

if the offers a worker accepts correspond to records, we can identify the offer distribution workers

face even with only limited information on how worker quality varies across individuals or over a

worker’s lifetime. By contrast, previous work on non-parametric identification in search models

has had to assume that worker heterogeneity is either absent or perfectly observable.

In what follows, I describe a model of on-the-job search in which workers of varying ability draw

offers from a fixed offer distribution. I show that this distribution — or alternatively, the underlying

distribution of productivity across firms that determines the equilibrium offer distribution — is

identified even when ability is unobserved, although exact identification turns out to be too data

intensive in practice. Nevertheless, we can test particular hypotheses about the shape of the

offer distribution and narrow down the set of possible functional forms. For example, using data

on young men from the National Longitudinal Survey of Youth (NLSY), I find that the offer

distribution is consistent with a Pareto shape, a functional-form used by Flinn (2002), but not

with a lognormal distribution as has been assumed in some of the other aforementioned works.

While I mostly focus on one particular approach to identifying the wage offer distribution, this

distribution is in fact overidentified: the offer distribution uniquely determines both the average

wage gains of voluntary job changers and the average wage losses of involuntary job changers. This

allows me to test the validity of my search model and confirm that the distribution I identify is

consistent with the wage losses of involuntary job changers. I also show how this insight can be

used to gauge the role of job-specific human capital in wage growth for the workers in my sample;

that is, I show how record statistics can be used as an alternative approach for identifying the

contribution of job-specific human capital to the ones proposed by Altonji and Shaktoko (1987)

and Topel (1991). My results suggest job-specific human capital is relatively unimportant, at least

for my sample of young workers.

The paper is organized as follows. Section 1 introduces the concept of record statistics. Section

2An entertaining survey on the various applications of record statistics is provided in Glick (1978).
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2 describes the model and shows how to identify the offer distribution non-parametrically. Section

3 describes data from the NLSY that can be used to implement this approach. Section 4 reports

the results. Section 5 discusses the wage losses of involuntary job changers. Section 6 considers

search models in which wages do not correspond to record statistics but where there is still an

underlying record structure inherent to the model. Section 7 concludes.

1. Record Statistics

Although statisticians have written extensively on record processes, their work has attracted scant

attention from economists.3 I therefore begin with a quick overview of record statistics. More

comprehensive reviews are available in Arnold, Balakrishnan, and Nagaraja (1992, 1998) and

Nevzorov and Balakrishnan (1998).

Consider a sequence of real numbers {Xm}Mm=1. An element in the sequence is a record if it
exceeds all observations that preceded it in the sequence. Formally, let L1 = 1, and for any integer

n > 1 define the n-th record time Ln recursively as

Ln = min
©
m : Xm > XLn−1

ª
(1.1)

The n-th record, denoted Rn, is just the value of Xm at the n-th record time, i.e.

Rn = XLn (1.2)

As an illustration, suppose we recorded the daily average temperature in a given location on the

same date each year, and obtained the following sequence:

{65, 61, 68, 69, 63, 67, 64, 66, ...} (1.3)

The first observation is trivially a record, so L1 = 1 and R1 = 65. The next observation that

exceeds this value is the third one, so L2 = 3 and R2 = 68. The very next observation exceeds

this value, so L3 = 4, and R3 = 69. Thus, we can construct a sequence of records {Rn} from the

original sequence {Xm} in (1.3):
{65, 68, 69, ...}

3Exceptions are Kortum (1997) and Munasinghe, O’Flaherty, and Danninger (2001). Kortum remarks on the
connection between his model of innovation and record theory. However, most of his analysis does not make
use of the underlying record structure, since he conditions on time elapsed rather than the number of previously
successful innovations. Munasinghe et al analyze the number of track and field records in national and international
competitions to gauge the effects of globalization, and remark on the likely applicability of record theory in economics.
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Note that {Rn} is a subsequence of {Xm}, and as such is less informative. For example, we cannot
infer how many years transpired between when any two consecutive record temperatures were set,

i.e. we cannot deduce Ln from the sequence {Rn}.

Next, suppose the sequence {Xm}Mm=1 represents some stochastic process. In this case, the num-
ber of records in the sequence {Xm}Mm=1 and their values are well-defined probabilistic events. One
case that has been analyzed extensively, enough that it is referred to as the classical record model,

is where M = ∞ and Xm are independent and identically distributed with a given distribution

that is referred to as the parent distribution. This case was first analyzed by Chandler (1952).

Various results for this case have since been derived: formulae for the distribution of record times

Ln and the number of records within a given sample size; the distribution of various attributes of

the record process {Rn}∞n=1 for a given parent distribution; and, conversely, characterizations for
the parent distribution given information on the record process {Rn}∞n=1. Record processes are
more difficult to characterize when Xm are not i.i.d., although some results have been developed

for special cases; see Arnold, Balakrishnan, and Nagaraja (1998) for a summary of recent devel-

opments. As we shall see below, the standard search model does not quite reduce to the classical

record model, so we will not be able to rely on existing results for our analysis.

As a final note, it is worth commenting on the connection between record statistics and order

statistics. The n-th maximal order statistic, denoted Xn:n, is the maximum of n random variables,

max {X1, ...,Xn}. By contrast, the n-th record statistic Rn is the maximum of a random number

Ln observations, max {X1, ...,XLn}. Given a value for Ln, the n-th record can certainly be viewed

as an order statistic, i.e. Rn = XLn:Ln , and the fact that the highest recorded number in the

series changed n− 1 times can be ignored. But without conditioning on the value of Ln, the n-th

record Rn is a mixture of order statistics, whose mixing probabilities depend on n. Formally, the

probability that the n-th record value equals x can be expressed as

Pr (Rn = x) =
∞X

m=n

Pr (Ln = m)× Pr (Xm:m = x) (1.4)

Since mixtures of distributions do not necessarily inherit the properties of the underlying distrib-

utions, results that are true for order statistics may not be true for record statistics. For example,

the average value of the n-th record value may not exist even though the average value of the

corresponding order statistic exists for any finite sample size. Thus, although order statistics

and record statistics are closely related, results on order statistics that have proven so useful for

analyzing auction models cannot be directly applied to studying record processes.

4



2. Job Search and Record Statistics

Having introduced the concept of records, I can turn my attention to job search. This section

describes a model in which workers search from a fixed offer distribution, and shows how insights

from record statistics can be used to identify this distribution. Note that I treat the offer distrib-

ution as a primitive rather than deriving it from economic fundamentals. However, I show below

that my model can be viewed as a reduced form of richer models in which the equilibrium offer

distribution is uniquely determined by economic fundamentals. For these models, identifying the

offer distribution is equivalent to identifying the fundamentals we might ultimately care about.

This section is organized as follows. I first describe the economic environment. Next, I discuss

identification in the benchmark case where worker productivity is perfectly observable. I then turn

to the case where worker productivity is imperfectly observable.

2.1. A Model of Job Search

Consider an economy populated by employers and workers. Workers supply a homogeneous labor

input, although they may each supply different amounts of labor. Let cit denote the amount of

labor worker i can supply per hour at date t. This amount — which is essentially the worker’s

productivity — is observable to both the employer and the worker, but need not be observable to

the econometrician who collects data on this market. Later on I will be more precise as to what

the econometrician observes and what assumptions I impose on the unobservable part.

A worker can be either unemployed or working for an employer. While unemployed, a worker

can produce bcit units of output per hour, where b is the productivity of the technology in the

home sector. Alternatively, b can be viewed as the marginal value of leisure, and bcit is the amount

of leisure he gets to enjoy. All workers are assumed to share the same value of b. The reason for

imposing this structure will become clear momentarily.

When a worker is unemployed, he encounters potential employers at rate λ0 per unit time. When

an employer meets a worker, he offers to employ him at a fixed price w per unit of effective labor.

As I explain below, in various models where employers choose their wages, they will in fact offer

a fixed price per unit of effective labor in equilibrium. Alternatively, one can view this as an

assumption that employers pay a piece rate, so workers earn in direct proportion to what they
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produce. If the worker accepts a job offer, his hourly wage would be

Wit = wcit (2.1)

I use an upper-case W to denote the hourly wage and a lower case w to denote the price per unit

of effective labor. In the data, we will only get to observe hourly wages Wit.

Let Fi (·) denote the distribution of the price per unit labor w across all potential employers

worker i could meet. Since the worker is assumed to search haphazardly, each new offer is an

independent draw from Fi (·). All workers face the same distribution, i.e. Fi (·) = F (·) for all i.4
This assumption is not unreasonable if we limit attention to workers searching in broadly similar

labor markets. However, since practical considerations ultimately require me to group together

workers with different educational, racial, and geographic backgrounds, this assumption may be

questionable in my actual application. Still, there is nothing that conceptually precludes us from

implementing the approach outlined below separately for distinct groups.

Employed workers face a constant hazard λ1, possibly different from λ0, of encountering potential

employers. Once again, they are offered a fixed price per unit of labor drawn from F (·).

Finally, employed workers face a constant hazard δ of losing their job. This rate is assumed to

be independent of the wage on a worker’s current job. Workers cannot recall offers they already

turned down, so a worker who loses his job must resume searching from scratch.

Assuming the worker seeks to maximize the present discounted value of his earnings, his search

problem is fairly simple. While unemployed, he should set a reservation price w∗ and accept offers
of at least w∗ per unit of labor. While he is employed, he should trivially accept any offer that
exceeds the price on his current job and turn down any offer below it. The optimal cutoff w∗

depends on F (·) as well the parameters b, δ, λ0, and λ1. By assuming these parameters are

the same for all workers, I ensure the cutoff w∗ will be as well. All workers thus face the same
essential search problem. Differences in ability only scale the price w paid by an employer, but

the distribution of w a worker will accept is the same for all workers.

The focus of this paper is whether we can identify the offer distribution F (·) non-parametrically
from hourly wage data {Wit}. As we shall see below, and as others have already noted, identifi-

4Assuming that all workers face the same offer distribution need not require that they prefer the same employers.
For example, Marimon and Zilibotti (1999) and Barlevy (2002) consider Roy-type models in which workers have a
comparative advantage for certain jobs. Under the symmetry assumptions they impose, Fi (·) is the same for all i,
but each worker prefers the particular job where his own comparative advantage lies.
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cation is trivial when cit is perfectly observable (which implies w is perfectly observable as well).

The more interesting question is whether we can identify F (·) when cit is imperfectly observable.

Before I turn to the question of identification, let me briefly address whether F (·) is really the
object we ought to be interested in. Certainly, there are questions for which all we need to know is

F (·), e.g. whether wage growth differs between blacks and whites because they are offered different
wages. But for other applications, we need to know not the offer distribution but the economic

fundamentals that shape it. For example, to simulate the effects of changes in policy, we need to

know the underlying fundamentals in order to derive the equilibrium under the new policy. I now

argue that the environment above represents a reduced form of several popular equilibrium search

models in which there is a one-to-one mapping between the equilibrium offer distribution F (·) and
the fundamentals that shape it. For these models, identifying F (·) is equivalent to identifying the
deeper structural parameters of interest: once we estimate F (·), we can back out a productivity
distribution that we can use to calibrate or simulate counterfactual scenarios.

Suppose employer j can produce zj units of output per unit of effective labor, and Γ (·) is the
cumulative distribution of zj across all employers. Employers know this distribution as well as

their own productivity, and choose what to offer workers. Can we identify Γ (·) from wage data?

To answer this, we need to be more specific on how we model the labor market. Consider the Lucas

and Prescott (1974) model, where workers search across locations and each location contains many

employers using the same technology. In equilibrium, the worker must be paid his productivity, or

else another firm in the same location would hire him away. Thus, the wage in location j is given

by Wit = zjcit, confirming that employers pay a constant price per unit of effective labor. Note

that we can easily identify the distribution of productivity across locations Γ (z). In particular,

the fraction of locations with productivity z or less is just F (z), the fraction of firms offering a

price of z or less. Thus, identifying F (·) allows us to identify the distribution of interest Γ (·).

Subsequent researchers have criticized Lucas and Prescott’s assumption that workers must wait

for offers from more productive employers but can immediately take a job from an equally pro-

ductive employer. Instead, they assume workers must wait for any offer. In this case, we need

to take a stand on what employers can credibly promise to pay workers without reneging once

the worker begins his job and cannot immediately find another job. One popular assumption is

that employers cannot make credible promises, since any promise can be renegotiated. Mortensen

(1986) suggested modeling this renegotiation using Nash bargaining. Shimer (2004) analyzes the

analogous bargaining problem with on-the-job search. His solution implies employers will offer

workers a fixed price w per unit of effective labor in equilibrium, where w depends on the produc-
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tivity of the firm zj . Shimer further shows that there exists a one-to-one mapping from Γ (·) to
the offer distribution F (·). Hence, we can still use F (·) to recover the distribution of interest Γ (·)
by appealing to the inversion formula provided by Shimer.

Alternatively, we could assume employers can credibly promise to pay a pre-announced price

per unit of labor without reneging as soon as the worker begins working for them. This case was

formally developed in Burdett and Mortensen (1998). Firms face a non-trivial problem in choosing

what price to announce: a higher price would lead to lower profits, but it also attracts more workers

and retains them for longer periods. Bontemps, Robin, and van den Berg (2000) solve the firms’

problems, and explicitly show how to back out the distribution of Γ (·) in this model given the
equilibrium offer distribution of F (·) and the ratio λ1 (1− F (w∗)) /δ, which as we will see below
we can identify. Once again, we can use F (·) to identify the distribution of interest Γ (·).5

In sum, although I will focus on identifying the offer distribution, there are various models of

the labor market in which identifying the offer distribution allows us to recover deeper structural

parameters. An analogy can be made to structural estimation in the auction literature. Consider

the case of independent private value auctions, where each bidder values the good according to

an independent draw from some common distribution. To identify this distribution, the first step

is to construct the underlying distribution of bids. This is trivial if we observe all bids; but if we

only observe winning bids, or if there are unobserved covariates, we need to appeal to results in

order statistics to recover this distribution. Next, using the rules of the auction, we can infer the

distribution of valuations from the distribution of bids. For example, in a second price auction,

participants bid their valuations, so the distribution of bids is the same as the distribution of

values. In a first price auction, bidders will bid less than their true valuation, but as demonstrated

in Guerre, Perrigne, and Vuong (2000), we can still map the distribution of bids into a distribution

of valuations. In the search model, zj is analogous to a bidder’s valuation, since it reflects the

maximum amount the firm would pay a worker. Depending on the nature of the labor market,

firms might offer to pay zj (as in the Lucas and Prescott model) or less than zj (as in the Shimer

and Burdett-Mortensen models), but even in the latter case we might still be able to recover the

distribution of productivity zj across firms if we knew the distribution of offers across firms.

5Note that comitting to a pre-announced price is suboptimal: it is better to match some outside offers and earn
smaller but still positive profits than let the worker go and earn nothing. This observation led some to assume
employers commit not to a fixed price but to never lowering their price, an idea formalized by Postel-Vinay and
Robin (2002). Their model does not yield my framework as a reduced form, since employers will not offer a fixed
price w per unit labor over a job. However, their model still involves records: the price w on a job represents the
record outside offer a worker received, while the productivity of a job is the record productivity across employers a
worker encounters. Whether one can use this insight to identify the distribution of productivity across firms in the
face of time-varying unobserved worker heterogeneity is an interesting question, but beyond the scope of this paper.

8



2.2. Identification with Observed Heterogeneity

Let us return to the question of whether it is possible to identify the offer distribution F (·)
from hourly wage data {Wit}. I begin with the case in which labor productivity cit is perfectly

observable. In this case, we can recover the price w from the hourly wage Wit. Not surprisingly,

the fact that we can observe w allows us to easily identify F (·), a point previous authors have
already noted. However, analyzing this case sheds some insight as to why we might still be able

to identify the wage offer distribution even when we cannot recover w from Wit.

I begin my analysis by describing the data available for identification. The most common sources

of wage data are surveys that follow workers over time and keep track of their work histories: the

hourly wage paid on each job a worker held, how long each job lasted, why the job ended if it did,

and so on. As noted earlier, these surveys typically ask about the jobs workers accept, not the

offers they encounter. Hence, the only available data are the hourly wages Wit workers earned on

jobs they were employed on, as well as data on how many jobs a worker held and the reason each

job ended. Most of the papers cited in the Introduction also use data on how long workers were

employed on each job, but we don’t need this data to identify the offer distribution F (·).

Following Wolpin (1992), I partition the data for each worker into distinct employment cycles,

where a cycle is defined as the time between forced layoffs. That is, a cycle begins when the worker

is forced to leave a job, continues on through his unemployment and subsequent employment, and

ends the next time he is forced out of a job. It is therefore important to distinguish between

instances in which a worker is forced out of a job, i.e. involuntary job changes, and those in which

the worker chooses to move upon meeting a higher paying employer, i.e. voluntary job changes.

While voluntary and involuntary job changes have precise meanings in the model, distinguishing

between them empirically raises some issues that I discuss in more detail later. We should index

observations by their respective employment cycle, but I omit this subscript in what follows.

Within each employment cycle, the worker first spends some time unemployed, followed by a

period of uninterrupted employment in one or more jobs. Let Mu denote the (random) number

of offers he receives before the first offer he accepts. Thus, if the worker accepts his very first job

offer, Mu would equal 0. It is easy to show that the number of offers until he accepts his first

offer has a geometric distribution, namely Pr(Mu = m) = F (w∗)m (1− F (w∗)). Similarly, let Me

denote the (random) number of offers he receives from the first offer he accepts until he is laid

off. Thus, if the worker were laid off from the first job he accepted, Me would equal 1. The total

number of offers the worker encounters on an employment cycle is Mu +Me.
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For our purposes, however, it will prove more useful to only keep track of those offers that exceed

w∗. Thus, let M denote the (random) number of offers that exceed w∗ on an employment cycle.
As the next lemma illustrates, M is also geometrically distributed.

Lemma 1: The unconditional number of offers on an employment cycle of at least w∗ has a

geometric distribution, i.e. Pr(M = m) = (1− p)m−1 p, where p =
δ

λ1 (1− F (w∗)) + δ
. ¥

The proof of this lemma and other results are contained in an Appendix. Let m ∈ {1, 2, ...,M}
index the offers of at least w∗ as they arrive sequentially, and let {Xm}Mm=1 denote the list of prices
per unit labor of at least w∗ which the worker encounters over an employment cycle, starting with
the first offer he accepts. Define N as the (random) number of actual jobs the worker is employed

on in a given cycle, so that N ≤M , and let n ∈ {1, 2, ..., N} index these jobs. Finally, let {wn}Nn=1
denote the price per unit of labor on each of these jobs. The optimal search strategy for a worker

implies that

wn = XLn

i.e. the price per unit labor on the n-th job in the cycle is the n-th record from the sequence

{Xm}Mm=1, and N is the number of records in this sequence.

Let Wn
it denote the hourly wage of the i-th worker at time t who is on the n-th job in his cycle.

Since cit is observable, we can divide Wn
it by cit to recover the price per unit labor wn on his n-th

job. Since the latter are just record statistics, identifying the wage offer distribution reduces to

recovering the parent distribution from information on the record values in the sequence {Xm}Mm=1.
Recall that this is one of the problems statisticians have analyzed for the classical record model in

which the number of observations M is infinite. By contrast, here the number of observations M

is itself random, a case that has received less attention in the statistics literature.

Before proceeding, I should point out that since we never observe data below w∗, we couldn’t
possibly identify F (·) non-parametrically below this threshold.6 All we can hope to identify is

F (w | w ≥ w∗) =
F (w)− F (w∗)
1− F (w∗)

(2.2)

I therefore focus on the truncated distribution above. For some applications, this distribution

suffices. Moreover, in some models, economic theory implies F (w∗) = 0, so the truncated distri-
bution is the true offer distribution. In a slight abuse of terminology, I will interchangeably refer

to identifying F (·) when I mean identifying F (· | w ≥ w∗).

6One can potentially identify F (·) below w∗ by imposing parametric assumptions. Flinn and Heckman (1982)
derive conditions for when a given parametric functional form for F (·) is recoverable from data on w ≥ w∗.
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So, can we identify F (· | w ≥ w∗) from hourly wage data? Since we can recover w, identification
is straightforward. As Bontemps, Robin, and van den Berg (2000) observe, since the first job in an

employment cycle is a random draw from F (· | w ≥ w∗), wages on these jobs will be distributed
as the offer distribution.7 Translated into the language of records, this implies that the first record

identifies the offer distribution. However, there is no need to appeal to the implicit record structure

of wages to recognize the potential of wages on a first job for identification.

Nevertheless, acknowledging the record structure of wages, while not essential for identification

when worker heterogeneity is observable, does provide insights that prove useful when we allow for

unobserved heterogeneity. Using only the wages from the first job out of unemployment ignores

potentially useful data. In particular, the wages on jobs beyond the first job in an employment

cycle — which correspond to subsequent record statistics — are also useful for identifying the offer

distribution. The next proposition implies that for any integer n, knowing the distribution of

wages on just the n-th job in the cycle allows us to identify the offer distribution:

Proposition 1: Consider a sequence of i.i.d. random variables {Xm}Mm=1 where Pr(M = m) =

(1− p)m−1 p for some p ∈ (0, 1). Let {Rn}Nn=1 denote the records in this sequence. For any integer
n, the distribution of Xm is uniquely determined in the class of continuous distribution functions

by (1) the distribution of Rn given N ≥ n; and (2) the distribution of the number of records N .

For n > 1, we need data not only on wages but also on the number of jobs workers hold in a

typical employment cycle (the analog of the number of records N). To appreciate why we need

this additional information, consider the distribution of wages on the second job in an employment

cycle. We only observe these wages if a worker managed to switch into a second job before being

forced out of a job. But if a worker was lucky enough to get a high offer on his first job, he is

unlikely to find an even better job in time. Thus, workers who make it to a second job are more

likely to be those who drew low offers on their first job. To correct for this selection, we need to

know something about how many jobs workers pass through on a typical employment cycle.

More precisely, we need to know λ1 (1− F (w∗)) /δ, the rate at which workers meet employers
they would ever be willing to work for relative to the rate at which they lose contact with employers.

How can we recover this ratio? One approach would be to directly estimate both λ1 (1− F (w∗))
and δ, especially since both parameters are themselves of interest. Several of the papers cited

7More accurately, Bontemps et al argue that the wage of a worker on the first job we observe him on provides
a non-parametric estimator of the steady-state wage distribution G (·), from which we can back out F (·). But the
logic for using the wage on the first job we observe the worker on out of unemployment is identical.
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in the Introduction estimate these parameters using job duration data. Specifically, they exploit

the fact that the duration of a job that pays w is exponential with hazard λ1 (1− F (w)) + δ,

so that looking at how duration varies with w allows us to separately identify λ1 (1− F (w∗))
and δ. But this approach requires us to know the functional form for F (·), whereas we need the
ratio λ1 (1− F (w∗)) /δ to identify F (·). However, if F (·) is continuous, it turns out that the
distribution of N allows us to recover this ratio without knowing F (·).

Lemma 2: If F (·) is continuous, then the distribution of the number of jobs on an employment
cycle is given by Pr(N = n) =

p

1− p

(− ln p)n
n!

where p = [λ1 (1− F (w∗)) /δ + 1]−1. In this case,

the distribution of N suffices to identify the ratio λ1 (1− F (w∗)) /δ.

To summarize, for any integer n, we can uncover the offer distribution from the distribution

of wages on the n-th job of their employment cycle in two steps. First, we use mobility data to

identify p. Given p, we can then recover the offer distribution from wage data.8

The implication of Proposition 1 is that when worker quality is observable, the wage offer

distribution is overidentified. This suggests a way to test the validity of the underlying search

model. That is, we can always construct an empirical distribution of wages on the first job out of

unemployment, even if workers are not searching optimally from a fixed offer distribution. But to

the extent that the model is true, wages on different jobs in an employment cycle should consistently

reveal the same offer distribution. More importantly, though, the proposition reveals that the offer

distribution uniquely determines the evolution of wages over an employment cycle. Thus, the wage

growth of workers over the employment cycle contains revealing information about the wage offer

distribution. This additional information is redundant when worker quality is observable, but as I

show in the next section, it proves essential for identification when worker quality is unobservable.

2.3. Identification with Unobserved Heterogeneity

Given the inherent difficulty of measuring a worker’s true productivity, I now allow cit to be

unobservable. In this case, the wages of workers on their first job no longer uniquely identify the

offer distribution; without any information on cit, it is impossible to tell if variation in the wages

8Once we identify F (·), we can separately recover λ1 (1− F (w∗)) and δ from the way job duration varies with
w. The ratio of these two rates is thus overidentified. When we allow for unobserved heterogeneity, this approach
would be complicated by the fact that we don’t directly observe w. However, if we knew F (·), we might be able to
deconvolute the distribution of observed wages Wit to infer the distribution of cit. From this we could construct the
likelihood h (w | Wit), which should still allow us to recover λ1 (1− F (w∗)) and δ from duration data.
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on the first job out of unemployment W 1
it is due to variation in the prices w1 across employers or

ability cit across workers. Formally, the distribution of hourly wages is a convolution of prices and

ability, and without further restrictions there is no unique way to deconvolute these terms and

identify F (· | w ≥ w∗).

Of course, if we impose enough structure on the unobservable component, we might be able to

uncover cit even when it is not directly observable. For example, suppose each worker’s productivity

were constant over time, i.e. cit = ci for all t. Observing workers over multiple employment cycles

would allow us to infer their relative productivities, since more productive workers consistently

earn higher wages. Once we know which workers are more productive, we can back out w and

use wages on the first job out of unemployment to recover the offer distribution. In fact, using a

result from Kotlarski (1967), we only need to observe each worker on just two employment cycles.

Let w01 and w001 denote the price per unit labor on the first job in the first and second employment
cycles, respectively. Kotlarski’s theorem states that under certain regularity conditions, given any

three independent variables w01, w001 , and ci, the joint distribution of (w01ci, w001ci) identifies the
distribution of all three variables up to a scale parameter.

The problem with imposing assumptions on unobserved ability this way is that such assumptions

are impossible to verify (although one might be able to rule them out; e.g. the assumption that

ability is fixed over time is inconsistent with the fact that wages vary over the duration of a job).

A more satisfying approach would be to determine whether the offer distribution can be identified

even under minimal assumptions on cit. This is the approach I pursue.

Consider the following specification for cit, based on Flinn (1986), which allows for both observ-

able and unobservable variation in worker ability:

cit = exp (βZit + φi + εit) (2.3)

The first term, Zit, represents observable characteristics for individual i that affect his productivity,

and β represents the returns to these characteristics. The next term, φi, is fixed over time, reflecting

variations in innate ability that make some workers consistently more productive than others. I

do not require this term to be observable. The last term, εit, denotes unobserved variation in

productivity, as well as multiplicative measurement error in reported wages.

In what follows, I consider changes in wages at regularly-spaced intervals, e.g. one year apart,

denoted ∆ lnWit. Differencing wages has the virtue of eliminating the fixed effect term φi. Some

of my assumptions on cit involve differences of variables rather than the variables themselves. In
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particular, I impose the following three assumptions:

Assumption 1: cit is independent of job-specific characteristics

Assumption 2: ∆Zit is independent of ∆εit

Assumption 3: E [∆εit] = 0

The first assumption states that the choice of employer has no effect on the worker’s produc-

tivity. This insures a worker will accept any offer that pays more per unit of labor than his current

job. It also implies any human capital the worker accumulates must be general in nature, since

it cannot be specific to any one employer. An important part of my empirical work will be to

confirm that job-specific human capital is indeed negligible in my sample.

The second assumption states that growth in observable and unobservable worker productivity

are independent. This insures we can consistently estimate the returns to observable characteristics

from wage data. Since the only observable characteristic in my empirical application is potential

experience, which evolves deterministically, this assumption seems plausible.

The final assumption states that εit should not grow on average over the time interval we consider.

This assumption is essentially without loss of generality, since we can always include intercepts

in ∆Zit to capture growth in εit. Intuitively, if εit grows systematically over time, we could infer

this from workers who remain on the same job, so such growth is essentially observable. The fact

that εit is a martingale at the relevant time horizon imposes very minimal restrictions on earnings.

For example, it allows for serial correlation in wages over the duration of a job, including the case

where εit is non-stationary. Likewise, the variance of εit can vary arbitrarily over time and across

individuals, and each individual’s productivity can follow a different stochastic process.

Given such weak assumptions, it will be impossible to uncover cit from data onWit. Nevertheless,

I now show that by appealing to the underlying record structure of the search model, we can still

identify the distribution of prices w workers face. Define ωn = lnwn as the log price per unit labor

on the worker’s n-th job, so that ωn represents the n-th record in the sequence of log price offers

{xm}Mm=1 where xm = lnXm. After substituting in for cit, we obtain the following equation for

the log hourly wage:

lnWn
it = ωn + βZit + φi + εit (2.4)

We next first-difference equation (2.4) to get rid of the fixed effect term φi:

∆ lnWn
it = ∆ω + β∆Zit +∆εit (2.5)
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For a worker employed on the same job at these two points in time, ∆ω = 0, so that

∆ lnWn
it = β∆Zit +∆εit (2.6)

Since ∆Zit and ∆εit are assumed to be independent, we can estimate (2.6) by ordinary least

squares, i.e. we can estimate the contribution of observable characteristics to productivity growth.

Next, using our estimate for β, we can net out the role of observable productivity growth for

workers who change jobs voluntarily. Thus, for a worker who moves from his n-th job to his

n+ 1-th job, the net wage gain from changing jobs is given by

∆ lnWn
it − β∆Zit = (ωn − ωn−1) +∆εit (2.7)

The net wage gain for a voluntary job changer who leaves his n-th job is thus the sum of a noise

term ∆εit and the gap between the n-th and n + 1-th records among i.i.d. draws from the log

offer distribution. Since I imposed no assumptions on ∆εit other than that its mean, we still face

a deconvolution problem in recovering the distribution of the record gap ∆ω from data on hourly

wages. However, since ∆εit has zero mean, we can recover expected record gaps. That is, averaging

the net wage gains for workers who move from their n− 1-th to their n-th job, we obtain
E(∆ lnWn

it − β∆Zit | N ≥ n) = E (ωn − ωn−1 | N ≥ n) +E(∆εit | N ≥ n)

= E (ωn − ωn−1 | N ≥ n)

where the fact that E(∆εit | N ≥ n) = 0 follows from the assumption that ∆εit is independent of

job characteristics. I shall now argue that the sequence of expected record gaps

{E (Rn+1 −Rn | N ≥ n+ 1)}∞n=1 (2.8)

from an i.i.d. sequence {Xm}Mm=1 uniquely characterizes the parent distribution of each Xm. I

first need to provide conditions under which this sequence of moments exists.

Lemma 3: Consider a sequence of i.i.d. random variables {Xm}Mm=1 where Pr(M = m) =

(1− p)m−1 p for some p ∈ (0, 1). Let {Rn}Nn=1 denote the records of this sequence. IfE (|Xm|) <∞,
then the conditional expectation E (Rn+1 −Rn | N ≥ n+ 1) is finite for n = 1, 2, 3, ...

Thus, we need to assume that the offer distribution has a finite mean. Under this assumption,

given a value of p, which recall we can back out from the distribution of N , we can identify the

shape of the wage offer distribution from the sequence in (2.8):9

9 I am indebted to H. N. Nagaraja for his assistance with the proof of this proposition.
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Proposition 2: Consider a sequence of i.i.d. random variables {Xm}Mm=1 where Pr(M = m) =

(1− p)m−1 p for some p ∈ (0, 1). If E (|Xm|) <∞, the sequence

{E (Rn+1 −Rn | N ≥ n+ 1)}∞n=1

characterizes the distribution of Xm in the set of continuous distributions, up to a location shift.

Remark: Gupta (1984), building on Kirmani and Beg (1984), shows that when Pr(M =∞) = 1,
the sequence {E (Rn+1 −Rn)}∞n=1 uniquely characterizes the parent distribution up to a location
shift. Since in the classical record model N =∞ with probability one, there is no need to condition

on there being at least n records. But when Pr(M =∞) < 1, as in our case, the expected value of
the n-th record must be conditioned on there being at least n records among the sequence of offers

the worker encounters. This conditioning is non-trivial, and we cannot simply extend Gupta’s

result to the present setting. In a related paper to the present one, Nagaraja and Barlevy (2003)

provide a more rigorous analysis of record moments when the number of observations M has a

geometric distribution. They show that characterization results based on record moments from a

geometric number of observations are stronger than those from an infinite number of observations,

i.e. moment sequences that are not enough to uniquely identify the parent distribution when M

is infinite can identify the parent distribution when M has a geometric distribution.

Proposition 2 implies that the average wage gains of voluntary job changers (net of returns to

experience) identify the distribution of log wage offers xm = lnXm up to a location parameter.

We can then recover the offer distribution in levels up to a scale parameter. The average wage

growth of voluntary job changers provides us enough information to identify the shape of the offer

distribution.

What is the intuition for the above identification result? Recall from my discussion of the case

of observable heterogeneity that the offer distribution uniquely determines the evolution of wages

over an employment cycle. Thus, looking at the extent to which wages grow with job mobility

yields a great deal of information on the underlying offer distribution over which workers are

searching. A more technical explanation is that for any random variable X, we can always uncover

its distribution by tracing out E (X | X > x)− x for all values of x. The n-th average record gap

E (Rn+1 −Rn | N > n) is just a weighted average of E (X | X > x)−x over all values of x, which
puts more weight on low values of x for low values of n and more weight on high values of x for

high values of n. Tracing the way in which the average record gap varies with n provides as much

information as tracing the way E (X | X > x)− x varies with x.
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2.4. Applying Identification to Estimate the Offer Distribution

Proposition 2 establishes that the average net wage gains of voluntary job changers at different

points in an employment cycle can identify the wage offer distribution. But to make practical use

of this result, i.e. to obtain an actual estimate of the offer distribution, we need to be able to

map these averages into a distribution function. In a previous version of this paper, I explicitly

solve the inversion problem of how to construct the parent distribution from the infinite set of

expected record gaps {E (Rn+1 −Rn | N ≥ n+ 1)}∞n=1. I also derive a consistent estimator for this
distribution based on a finite number of moments that converges to the true parent distribution

as the number of employment cycles goes to infinity and with it the number of moments one can

estimate. However, this estimator is too noisy for the sample sizes I use, since I can estimate only

a small number of moments with great precision.

Nevertheless, even a small number of moments allows us to test whether certain functional

forms are consistent with the data. As an illustration, Figure 1 displays the expected record gaps

E (Rn+1 −Rn | N ≥ n+ 1) for two different distributions, an exponential and a normal (which in

inverse logs correspond to Pareto and lognormal distributions, respectively). The moments are

computed assuming M has a geometric distribution consistent with my estimates in Section 4,

and both distributions are normalized to yield the same average log wage gain across voluntary

job changers as we observe in the data. As Figure 1 reveals, the two distributions can be easily

distinguished from one another even with only a small number moments. In particular, the average

net wage gain does not depend on n for the exponential distribution, reflecting the memoryless

property of this distribution, while the average wage gain declines rapidly with n for the normal

distribution, reflecting its logconcave shape. In my empirical work, I will focus on this implication

rather than try to construct a non-parametric estimator for F (·).

3. Data

To apply the insights above, I need a dataset with detailed work-history data to assign n to jobs.

Moreover, since job mobility is highest when workers enter the labor market, it seems wise to focus

on young workers. In addition, my assumption that all human capital is general is more likely to

be true for younger workers, whose high mobility should make investment in job-specific skills less

attractive. These considerations led me to the National Longitudinal Survey of Youth (NLSY)

dataset. The NLSY tracks a cohort of individuals who were between 14 and 22 years old in 1979.

To avoid using observations where workers are already well established in their careers, I only use
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data through 1993, when the oldest worker in the sample was 36. Each year, respondents were

asked questions about the jobs they held since their previous interview, including starting and

stopping dates, the wage paid, and the reason for leaving. To mitigate the influence of mobility

due to non-wage considerations, e.g. pregnancy or child-care, I restrict attention to male workers.

Most of the variables I use are standard. For the wage, I use the hourly wage as reported by the

worker for each job, divided by the GDP deflator (with base year 1992). I also experimented with

the CPI, but the results were similar. To minimize the effect of outliers, I removed observations

for which the reported hourly wage was less than or equal to $0.10 or greater than or equal to

$1000. This eliminated 0.1% of all wage observations. Many of these outliers appear to be coding

errors, since they are far out of line with what the same workers report at other dates, including

for the same job. For my measure of potential experience, I follow previous work in dating entry

into the labor market at the worker’s birthyear plus 6 plus his reported years of schooling (highest

grade completed). If an individual reported working prior to that year, I date his entry at the year

in which he reports his first job. Table 1 provides summary statistics across all jobs.

The one new variable I use is the position n of each job in its respective employment cycle.

First, I need to partition the data into employment cycles, using the occurrence of involuntary

job changes as break points. To identify these occurrences, I could use the worker’s response

on whether he quit voluntarily or was laid off. Alternatively, the model implies involuntary job

changes will be followed by an unemployment spell, so I could classify job changes in which the

worker spent some time not working between jobs as involuntary changes. In the model, these

measures coincide. But in the data they agree only 60% of the time. More precisely, workers who

report a layoff do seem to spend at least one week without a job, and workers who directly move

into their next job without a spell of unemployment do often report quitting their job. However,

nearly half of all workers who reported quitting did not start their next job until weeks or even

months later. Some of these delays may be planned; for example, a teacher who leaves to work

for another school would likely spend two months in the summer not working; likewise, a worker

may use up vacation days when he leaves an employer, but report leaving his job on the day

he started his vacation. Yet in many of these instances the worker probably resumed searching

from scratch after quitting, e.g. because he quit to avoid being laid off or he was embarrassed to

admit he was laid off. As a compromise, I use the worker’s stated reason for leaving his job as

long as he starts his next job within 8 weeks of when his previous job ended, but treat him as an

involuntarily job changer regardless of his stated reason if he does not start his next job until more

than 8 weeks later. If the worker offers no reason for leaving his job, I classify his job change as

voluntary if he starts his next job immediately and involuntary is he starts it after two months,
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but otherwise do not classify the job. I experimented with cutoffs other than eight weeks. These

had very little impact on the first few record moments (i.e. n = 1, 2, and 3), although they did

affect my estimates for higher values of n where sample sizes were already small.

Next, I assign all jobs within each employment cycle a value of n. That is, I set n = 1 after

the first involuntary job change I observe for a person, so a worker must experience at least one

involuntary job change before I can start assigning values for n. From then on, I increment n by

1 whenever the worker changes jobs voluntarily, until the employment cycle ends and n is reset

to 1 at the start of the next cycle. One complication is that a non-trivial fraction of workers

simultaneously hold more than one job. To deal with this, I draw on Paxson and Sicherman

(1996), who argue that the primary reason workers hold multiple jobs is that they are constrained

to work a maximum number of hours on each job. Suppose then that workers can work on only

one job full time, but they can receive additional draws from the distribution F (·) and work on
those part-time. Thus, if we observe a worker employed in job A take on a second job B, we treat

job B as a second draw from F (·) that is available for part-time work. If he then leaves job B
before he leaves his original job A, job B provides us with no information on the price of labor

on job A, so we can ignore it. Alternatively, if the worker leaves job A and remains in job B, a

full-time position must have opened up on job B. Since the wages on these jobs are assumed to be

drawn from the same offer distribution, we can treat it the same way as a new job that started

only after job A ended, whether job A ended voluntarily or not.

Out of the 52,827 distinct jobs in my original sample, the procedure above identifies 8,234 as

secondary jobs. As a check, the NLSY asks workers to rank their jobs each year in terms of which

is their primary job. Of the 8,234 jobs I identify as secondary jobs, 72% are never ranked by the

worker as his primary job, and only 9% are ranked as the primary job each year the job is reported.

Figure 2 displays the distribution of n across the remaining 44,593 jobs. Figure 2a shows the

fraction of all jobs each year for which a value for n could not be assigned. Since we can only

assign n following the first involuntary job change, this fraction is small in the first few years of the

sample when workers experienced a limited amount of mobility. By 1993, though, I could assign

a value of n to 87% of all the jobs reported. Figure 2b shows the distribution of n where a value

for n could be assigned. Not surprisingly, most jobs early on in the sample that can be classified

are associated with n = 1. But over time, a larger share of workers is observed on higher levels of

n. The cross-sectional distribution of n appears to settle down after about 10 years, with roughly

half of all jobs associated with n = 1, a quarter with n = 2, 12% with n = 3, 6% with n = 4, and

3% with n = 5. Note that very high values of n are uncommon, in line with the known result that
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records from a sequence of i.i.d. draws are relatively rare.

Before I make use of this data, a few issues need to be settled. First, I need to decide the horizon

at which to compute the differences in equation (2.7). Since the NLSY only asks for one wage per

job per interview, I can only measure within-job wage growth at one year differences. However,

when Topel and Ward (1992) study a similar sample of young workers using quarterly data, they

report a “strong tendency for within-job earnings changes to occur at annual intervals.” Thus,

it seems that little is lost by focusing on annual wage growth. Since my estimates involve the

difference between wage growth across jobs and within jobs, consistency would suggest restricting

attention to wage growth across jobs that is also computed at one year horizons. To ensure this,

I only use wage data for jobs the worker reported working on within two weeks of the interview

date. My constructed sample consists of 40,370 observations in which the worker reports a wage

in both the current year and previous year. Of these, 28,015 observations involve the same job

in both the current year and the previous year, and 12,355 observations involve a change in jobs

between the previous interview and the current one.

Next, I need to specify the vector of observable characteristics Zit. I assume Zit is quadratic in

potential experience Xit, i.e. the time from when worker i entered the labor market up to date t:

Zit = β1Xit + β2X
2
it (3.1)

Since at annual horizons Xit = Xi,t−1 + 1, it follows that

∆Zit ≡ Zit − Zi,t−1 = β1 + β2 (2Xit − 1)

Assuming that potential experience is the only observable worker characteristic is faithful to my

assumption that Zit is independent of any job-specific characteristics. To assess the plausibility of

this assumption, I also consider the possibility that the worker’s ability depends on certain job-

specific characteristics, specifically the time the worker has spent working for his current employer.

This measure can be viewed as a proxy for the amount of job-specific human capital the worker

could have accumulated. Let Tit denote the tenure of worker i on the job he holds at date t, and

let us amend (3.1) to include Tit:

Zit = β1Xit + β2X
2
it + γTit (3.2)

I will consider higher-order terms in Tit in my empirical implementation below, but for notational

simplicity it will be easier to proceed as if returns to tenure are linear. Evidence that γ is different

from zero would invalidate my identification results from the previous section. In particular, under

(3.2) one can show that optimal search will imply that the sequence of prices {wn}Nn=1 correspond
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not to simple records as defined in Section 1 but to records in which an observation is counted as

a record if it beats the previous record by some (random) threshold, enough to compensate the

worker for the returns to tenure he loses when changing jobs. Although wages still correspond to

records in an appropriately defined sense, the proofs of the various propositions in the previous

section no longer apply (although this doesn’t rule out that analogous identification results could

be obtained by appealing to a different argument). For the analysis above to be relevant, we need

to establish returns to tenure are in fact small in my sample.

Previous authors have already tackled the question of how to estimate the returns to tenure

from wage data, i.e. to uncover γ from the wage equation

lnWn
it = ωn + φi + β1Xit + β2X

2
it + γTit + εit (3.3)

Since the unobserved log price per unit labor ωn is likely to be correlated with Tit — for example,

workers are more likely to remain on a job that pays a relatively high price — ordinary least squares

will yield a biased estimate for γ. Altonji and Shakotko (1987) proposed an instrumental variables

approach for estimating γ, which yielded small values for γ. Topel (1991) proposed a two-step

estimator that yielded fairly large returns to tenure. Altonji and Williams (1997) critique Topel’s

implementation, but even after they take their critiques into account, they find that his approach

yields somewhat larger estimates for the returns to tenure than the original Altonji and Shakotko

estimates. To bias against finding small returns to tenure, I focus on Topel’s approach. However,

since my sample consists of much younger workers than in Topel’s sample, my results may not be

comparable to his.

Topel’s approach uses the fact that Xit = X0it+Tit, where X0it is the worker’s experience when

he started working on the job he holds at date t. Substituting this into (3.2), we have

lnWn
it = ωn + φi + β1X0it + β2X

2
it + (β1 + γ)Tit + εit (3.4)

To estimate γ, we use the following two-step procedure. First, wage growth over a one-year interval

on a given job will equal

∆ lnWn
it = (β1 + γ) + β2 (2Xit − 1) +∆εit

Hence, we can estimate (β1 + γ) and β2 by ordinary least squares. Next, we use these estimates

to construct the difference

lnWn
it − (β1 + γ)Tit − β2X

2
it = ωn + φi + β1X0it + εit
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We regress the difference on the left-hand side on X0it and individual fixed effects to arrive at

an estimate for β1, adjusting the standard errors to take into account first-stage estimation error.

The estimate for γ is just the difference between the estimates for β1 + γ and β1.

Table 2 reports the results of this two-step procedure for my dataset. The point estimates for

β1+γ and β1 are 0.0794 and 0.0740, respectively, implying γ = 0.0054. The implied point estimate

for γ is significantly different from zero at the 5% level, but its magnitude is quite small. This

finding appears to be robust to variations in the functional form for the returns to tenure. The

bottom panel of Table 2 allows for quadratic returns to tenure, i.e. γ1Tit + γ2T
2
it. The estimated

returns remain small; although not reported, returns to tenure attain a maximum of only 0.0433

log points at 5 years with the same employer and decline from that point on.

Interestingly, the returns to potential experience in Table 2 are consistent with those found in

Altonji and Shakotko (1987), Topel (1991), and Altonji and Williams (1997, 1998). Topel’s point

estimate for β1 of 0.0713 in particular is close to mine. The reason I find such small returns to

tenure is that wage growth on the job in my sample is smaller than in Topel’s sample; whereas he

estimated β1 + γ at 0.1258, my estimate is only 0.0794. That is, on-the-job wage growth among

young workers is not much larger than the consensus estimates for the returns to experience that

are found in the literature, leaving little room for wage to grow with tenure.

While my point estimate for γ is small, Topel himself observed that it is likely to be biased

downwards given that the estimate for β1 is biased upwards. The source of the bias in estimating

β1 is that workers with more experience have had more time to search for better matches, so initial

experience X0it will be positively correlated with n and thus ωn. However, this bias is likely to be

small given the high incidence of involuntary job loss in my sample, which weakens the correlation

between X0it and n. Moreover, when I revisit the question of how large returns to tenure are in

Section 5, I find additional evidence that γ is small.

4. Empirical Results

Having described the variables I use in my analysis, I can now estimate the average record gaps

implied by the wage growth of voluntary job changers. While I would have liked to estimate the

offer distribution separately for distinct worker groups, e.g. blacks and whites or high-school and

college graduates, the number of observations in my sample is sufficiently small that I am forced

to group all workers together and assume they face a common offer distribution.
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Recall that the first step in identification is to recover the parameter p = δ/ (λ1 (1− F (w∗)) + δ).

Let Kn denote the number of employment cycles with exactly n records. From Lemma 2, the

maximum likelihood estimator for p is given by

bp = argmax
p

∞Y
n=1

·
p

1− p

(− ln p)n
n!

¸Kn

Of the 44,593 jobs in my sample, 22,135 are classified as ending involuntarily. Among these,

the distribution of n is heavily skewed towards n = 1. This would suggest the rate of involuntary

job loss is high relative to the rate at which workers encounter offers, i.e. p should be relatively

high. The maximum likelihood estimates for p are reported in Table 3. I estimate p at 0.48,

implying λ1 (1− F (w∗)) /δ ≈ 1. To check whether grouping workers together overlooks important
differences across subgroups, I also estimated p separately for different education groups. The point

estimates do not seem to differ much from one another, confirming a similar result in van den Berg

and Ridder (1998). The implied ratio for λ1 (1− F (w∗)) /δ of 1 is smaller than the value of 10
reported in some of the papers cited in the Introduction that estimate δ and λ1 from duration

data as opposed to mobility data, including some that use the same NLSY dataset. However,

it agrees with Bowlus, Keifer, and Neumann (2001), who also use duration data and estimate

λ1 (1− F (w∗)) /δ ≈ 1.

Next, I estimate the average wage gains in (2.7). Once again, to mitigate the effect of outliers, I

eliminated the extreme 1% of my sample for which |∆ lnWit| was largest. Most of these deletions
appear to be due to coding errors, since nearly all were followed by equally large wage changes

in the opposite direction in the subsequent year. Since there are very few observations for high

values of n, I also confine my analysis to job changers who leave their n-th job for n ≤ 5. Let
Dn,n+1
it represent a dummy variable that equals 1 if worker i moved from his n-th job in date t− 1

to his n+1-th in date t. Rather than estimating returns to experience from a separate first-stage

regression, I combine job stayers and job changers into a single regression

∆ lnWn
it = β1∆Xit + β2∆X

2
it +

∞X
n=1

πnD
n,n+1
it +∆εit (4.1)

The coefficients πn are unbiased estimates of the expected moment gaps E (Rn+1 −Rn | N > n).

Combining the two stages allows the wage growth of job changers to help in identifying the coef-

ficient β2, and should therefore be more efficient. Note that the variance of the residual will be

different for job stayers and job changers, since the residual for the latter also contains deviations

of ωn+1 − ωn from its average. I therefore report only robust (White) standard errors.

The results of this regression are reported in Table 4. The number of workers who are observed

to change from the n-th job in the previous year to the n+ 1-th job this year is reported for each
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n next to the corresponding dummy variable. The estimated coefficients in (4.1) are reported in

the second column. The first column in the table reports the estimates for β1 and β2 omitting job

changers, confirming that estimating β1 and β2 from job stayers alone would have negligible effects

on my point estimates. The estimates for πn are all clustered around 8%, with the exception of π4.

However, this coefficient (as well as the coefficient π5) is rather imprecisely estimated given the

small number of job changers for this value of n. The large standard errors in Table 4 illustrate

the difficulty of further dividing this sample by education or race.

Given that we can only estimate a small number of moments very precisely, a fully non-

parametric estimator for F (·) based on πn is likely to be very noisy. Clearly, we would need

many more employment cycles to come up with a reliable estimator. However, as noted earlier,

we can still test particular candidate distribution functions. Recall that the offer distribution is

Pareto — and consequently the log offer distribution is exponential — if and only if the coefficients

πn are constant for all n. Thus, testing whether the coefficients πn in (4.1) are equal for all n is

equivalent to testing whether the offer distribution is Pareto. Note that this is a test of a general

shape restriction, i.e. it tests whether the offer distribution is Pareto rather than whether it is

a Pareto with a particular parameter value. To the extent that we fail to reject that the πn are

equal, we can estimate the exact Pareto distribution from (4.1) restricting all πn to be equal.

The first row in the bottom panel of Table 4 reports the results for the test that all of the

coefficients πn are equal. The probability of observing this degree of variation in wage gains under

the null that they are all the same equals 0.264. We thus fail to reject the null that the wage offer

distribution is Pareto at conventional significance levels. The third column of Table 4 estimates

(4.1) imposing that πn are all equal. The average net wage growth from voluntarily moving jobs

is 0.0806, in line with the average wage growth for young workers reported in Topel and Ward

(1992). Under the null of a Pareto offer distribution, this value represents the inverse hazard

rate of the implied exponential log offer distribution. Flinn (2002) also estimated a Pareto offer

distribution using the same NLSY data, but he finds an inverse hazard of 0.2400 (Table 4, p633).

The discrepancy arises because Flinn abstracts from on-the-job wage changes and attributes any

growth between the starting wage on the n-th job in the cycle and the starting wage on the n+1-th

job in the cycle to a better price from the underlying offer distribution. Using my estimates for

the returns to experience, workers would have to spend about two years on a job to reconcile this

discrepancy. This is a little larger than the average tenure of workers on their first job in the NLSY

(which Flinn uses in his estimation), but it is certainly within reason.

While we fail to reject a Pareto offer distribution, the second row in the bottom panel of Table
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4 reveals that we can reject the hypothesis that the offer distribution is lognormal. In particular,

if log wage offers were distributed as N
¡
µ, σ2

¢
, the average net wage growth among workers who

move from their n-th job to their n+ 1-th job would equal

σE
¡
R0n+1 −R0n | N > n

¢
(4.2)

where R0n denotes the n-th record from the sequence {X 0
m}Mm=1 where X 0

m are i.i.d. standard nor-

mals. Thus, if the wage offer distribution is lognormal, the sequence {πn}∞n=1 will be proportional
to
©
E
¡
R0n+1 −R0n | N > n

¢ª∞
n=1
. Using my estimate for p from Table 3, we can readily compute

the latter sequence. Table 4 shows we can reject the null of a lognormal offer distribution at almost

a 1% significance level. This calculation does not incorporate uncertainty in our estimate for p,

but since the moment sequence in (4.2) is sharply declining for a various p, and since p is tightly

estimated, the rejection of the normal is likely to be robust to incorporating sampling error.10

The intuition comes from Figure 1; if the distribution were lognormal, wage gains would decline

sharply with n. We can likewise reject other functional forms that imply similarly sharp declines.

5. Involuntary Job Changers and Specific Human Capital

So far, I have focused exclusively on the wage gains of voluntary job changers. Yet the wage losses

of involuntary job changers also contain useful information. Consider a worker who is forced out

of his n-th job. The total number of jobs in his last employment cycle is n, implying the price

per unit labor on his previous job will on average equal E (Rn | N = n), the expected value of the

n-th record conditional on exactly n records in the sequence {Xm}Mm=1. Similarly, the price per
unit labor on his new job will, on average, equal E (R1 | N ≥ 1), the expected value of the first
record conditional on at least one record. Since every employment cycle has a first record, this is

just E (R1). Hence, the average net wage loss for this worker is given by

E ( |∆ lnWn
it − β∆Zit| | Nt−1 = n) = E (Rn | N = n)−E (R1)

Adapting results in Nagaraja and Barlevy (2003), one can show that the sequence of moments

{E (Rn | N = n)−E (R1)}∞n=1 identifies the parent distribution among continuous distribution
functions up to a location parameter. That is, the offer distribution uniquely determines not just

the wage gains of voluntary job changers but also the wage losses of involuntary job changers.

To put it another way, the wage losses of involuntary job changers provide an overidentifying

test of whether the search model above is consistent with the data. Even if the data we observe

10Note that under the null hypothesis that the log wage offer distribution is exponential distribution, the πn would
not depend on p, so there is no need to adjust for sampling error in our estimate for p.
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did not come from the search model I describe, we will always be able to estimate average net

wage gains for voluntary job changers. Not all values we could compute would be consistent with

a search model. For example, E (Rn −Rn−1 | N ≥ n) can never be negative, while the average net

wage gain could be negative in the data. But we could arrive at a sequence of average net wage

gains that is compatible with search even when in truth workers are not really searching as in our

model. However, given the offer distribution we identify, the model does make sharp predictions

as to how much workers will lose on average as a function of how many jobs they held before they

were laid off, and it is not obvious that other models of job mobility would be consistent with

these predictions. For us to have any confidence in the search model above as a reasonable theory

of job mobility, we should be able to uncover the same offer distribution from data on involuntary

job changers as we do from voluntary job changers.

As in the previous section, we can recover the relevant differences between record moments with

a single wage regression. Let Dn,1
it denote a dummy which equals 1 if worker i moved from his n-th

job in date t− 1 to a first job in date t. Then the coefficients πn in the regression

∆ lnWn
it = β1∆Xit + β2∆X

2
it −

∞X
n=1

πnD
n,1
it +∆εit (5.1)

are unbiased estimators for E (Rn | N = n) − E (R1). The first column in Table 5 reports my

estimates of πn. According to the model, πn should be monotonically increasing in n. It indeed

rises with n between n = 1 and 4, although the point estimate for π5 falls below that of π4.

To test whether the offer distribution has a Pareto shape, note that the offer distribution is

Pareto if and only if {πn}∞n=1 is proportional to {E (R0n | N = n)−E (R01)}∞n=1, where R0n denotes
the n-th record from a sequence of standard exponentials (with mean 1). Setting p = 0.48 in line

with Table 3, I numerically compute E (R0n | N = n)−E (R01) to be

{0.197, 0.762, 1.127, 1.396, 1.616, ...} (5.2)

The bottom panel of Table 5 reports the probability of observing deviations from this proportion-

ality condition at least as large as those in the data under the null of a Pareto offer distribution.

Once again, we fail to reject the null hypothesis. In the second column of Table 5, I estimate (5.1)

under the constraint that πn is proportional to (5.2); the constant of proportionality corresponds

to the inverse hazard of the implied exponential log offer distribution. I estimate this inverse

hazard to equal 0.0816. By comparison, the wage gains of voluntary job changers imply an inverse

hazard of 0.0806. The wage losses of involuntary job changers and the wage gains of voluntary job

changers thus consistently identify the same offer distribution, as required by the model.
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Although data on voluntary job changers reject the lognormal specification, I did check if

the wage losses of involuntary job changers provide additional evidence against this functional

form. The offer distribution is lognormal if and only if {πn}∞n=1 is proportional to the sequence
{E (R0n | N = n)−E (R01)}∞n=1, where R0n denotes the n-th record from a sequence of standard

normals. As the bottom row of Table 5 reveals, in contrast to the data for voluntary job changers,

we cannot reject this hypothesis using involuntary job changers. The reason for this is illustrated

in Figure 3, which shows the estimated net wage loss together with the best-fitting values for

E (Rn | N = n)− E (R1) assuming a normal and exponential distribution respectively. Although

the two sequences are distinct, it is difficult to distinguish them empirically given both are in-

creasing and concave. By contrast, the implied average wage gains of voluntary job changers are

sufficiently different for these two distributions that they can be easily distinguished.

To recap, the wage losses of involuntary job changers do not help to narrow down the set of

functional forms for the offer distribution beyond what we learn from voluntary job changers.

However, they do allow us to test a particular overidentifying restriction of the model. Specifically,

the model predicts that the average wage losses of involuntary job changers should equal record

moments from i.i.d. observations whose parent distribution is the offer distribution we identify

from voluntary job changers, and the data are consistent with this prediction.

We can interpret this consistency between the wage growth of voluntary job changers and the

wage losses of involuntary job changers in different ways. On the one hand, if we take as given

that returns to specific human capital are negligible, comparing gains and losses allows us to test

whether workers really search from a fixed offer distribution without recall. Conversely, if we

take as given that workers search from a fixed offer distribution without recall, comparing gains

and losses allows us to test whether returns to specific human capital are small, as suggested by

the evidence in Table 2. The latter interpretation is particularly intriguing, since it offers a new

way to tackle an old question in labor economics, namely whether wages rise with seniority. The

remainder of this section develops this idea.

The intuition behind my approach to identifying returns to seniority is as follows. When a worker

loses his job, he loses both the human capital that was specific to his last job and the returns to

previous on-the-job search. We can use the moments of record statistics to directly account for

the latter. Any remaining losses must then be due to specific human capital, from which we can

infer a value for the returns to seniority γ.

Formally, suppose the worker’s productivity cit is linear in the time spent with his current
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employer as in (3.2). The implied wage change associated with an involuntary job change is

∆ lnWit = ωn − ω1 + β1 + β2∆X
2
it − γTi,t−1 +∆εit (5.3)

At the same time, the wage change for workers who remain on the same job is given by

∆ lnWit = (β1 + γ) + β2∆X
2
it +∆εit ≡ β∆Zit +∆εit

Averaging the wage losses of involuntary job changers net of the expected wage growth of job

stayers β∆Zit yields

E [ |∆ lnWit − β∆Zit| | Nt−1 = 1] = E (ωn | N = n)−E (ω1)

+ γE (Ti,t−1 + 1 | Nt−1 = n)
(5.4)

Knowing that workers search from a fixed offer distribution, we could compute E (ωn | N = n)−
E (ω1) and proceed to estimate γ. However, recall that in the presence of specific human capital,

ωn no longer represent simple record statistics; a worker will only switch jobs if the price on his new

job exceeds the price on his previous job by enough to compensate him for the returns to tenure on

his old job. To compute E (ωn | N = n)− E (ω1) would therefore require us to know γ. But this

is precisely the parameter we wish to estimate. Rather than compute E (ωn | N = n) − E (ω1),

then, I derive a bound for this term using moments of ordinary record statistics. While this does

not allow me to estimate γ, it does provide an upper bound on its value.

I begin with workers who are laid off from their very first job in an employment cycle. Let ω01
denote the log price per unit labor on the first (and only) job in his first employment cycle, and let

ω001 denote the log price per unit labor on the first job in his second employment cycle. Since ω001 is
just a random draw from the truncated offer distribution, it is identical to the first record statistic

from a sequence of i.i.d. random variables with the offer distribution as the parent distribution.

Hence, E (ω001) = E (R1). As for E (ω01 | Nt−1 = 1), I show in the Appendix that

E
¡
ω01 | N = 1

¢ ≥ E
¡
ω01
¢
= E (R1) (5.5)

The average net wage loss for a worker laid off from his first job thus satisfies

E ( |∆ lnWit − β∆Zit| | Nt−1 = 1) = E
¡
ω01 | N = 1

¢−E
¡
ω001
¢
+ γE (Ti,t−1 + 1 | Nt−1 = 1)

≥ E (R1)−E (R1) + γE (Ti,t−1 + 1 | Nt−1 = 1)

= γE (Ti,t−1 + 1 | Nt−1 = 1)

Rearranging yields the following upper bound on the returns to tenure γ:

γ ≤
E
³
|∆ lnWit − bβ∆Zit|

¯̄̄
Nt−1 = 1

´
E (Ti,t−1 + 1 | Nt−1 = 1)

(5.6)
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In other words, given that E (ω01 | N = 1)−E (ω001) is nonnegative, the average wage loss of workers
who are laid off from their first job provides an upper bound on the average returns to tenure for

these workers. When returns to tenure are linear, this allows us to estimate an upper bound on

the returns to tenure γ. Note that this bound will be true for any fixed offer distribution, so we

do not need to identify the offer distribution to derive it.11

To estimate the upper bound in (5.6), note that the coefficient π1 in (5.1) is an unbiased estimator

for the numerator in (5.6). Let T 1 denote the average tenure in the sample for workers who were

laid off from their first job. Then T 1+1 forms an unbiased estimator for the denominator in (5.6).

Thus, a natural estimator for the upper bound in (5.6) is the ratio of the two,
π1

T 1 + 1
≡ bγ1.

The first row of Table 6 constructs bγ1. Column (1) reports the value of π1 in Table 5. Column
(3) reports the average tenure of workers who are laid off from their first job, 1.28 years. The

implied value of bγ1 is 0.001, reported in column (4) of the table. To construct a confidence interval
for bγ1, I apply the delta method to derive an asymptotic standard error for bγ1. In particular, bγ1
asymptotically converges to a normal random variable with variance

σ2γ1 =
Var (π1) + 2bγCov ¡π1, T 1¢+ bγ2Var ¡T 1¢¡

T 1 + 1
¢2

I estimate Var(π1) using the standard error for π1 in Table 5. To estimate Var
¡
T 1
¢
, I use the

sample variance for tenure across all workers laid off from their first job, divided by the number

of such workers. This leaves Cov
¡
π1, T 1

¢
. Using a Monte Carlo simulation, I verified that this

covariance is small (but positive) when γ = 0. Thus, for small values of γ, this covariance should

not have a noticeable effect on my estimate of σ2γ1 . Intuitively, since we have a reasonably large

sample of workers who are laid off from their first job, we can estimate T 1 quite precisely, and the

main source of variation in estimating bγ1 comes from variance in π1. Using a one-tailed t-test, we

can reject that γ exceeds 0.008 at the 5% level. Thus, the wage losses of workers who are laid off

from their first job suggest only modest returns to tenure. Note that this result is distinct from

the evidence of small returns to tenure using Topel’s two-step estimator. In particular, the results

in Table 6 are based on the wage losses of workers laid off from the first job in their employment

cycle, while Topel’s estimator compares the wage growth of job stayers and the way wages grow

with initial experience for all workers. My approach does require imposing additional assumptions

11The bound I derive might seem trivial at first; if workers gravitate to higher paying jobs, isn’t the price on the
job a worker lost always at least as large on average as the price on a brand new job? Surprisingly, this is not true
for any arbitrary offer distribution. Intuitively, workers who find a job they prefer to their first job even when they
already have tenure on that first job probably drew a very low initial offer. Observing a worker hold two or more
jobs in an employment cycle could lower our assessment of E (ωn | N = n) by enough to fall below E (ω1).
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on how workers search for jobs that are not required for Topel’s approach to be valid, but it still

allows for fairly arbitrary unobserved differences in ability across workers and over time.

What about workers who are laid off from jobs later on in their respective employment cycles?

Once again, we can try to use record statistics to bound E (ωn | Nt−1 = n)− E (ω1) and thereby

bound γ. However, unlike in the case where n = 1, establishing these bounds requires us to know

the exact shape of the wage offer distribution. While I argued above that the offer distribution

is consistent with a Pareto shape, recall that this relied on assuming γ = 0. What can we infer

about the shape of the offer distribution if we don’t impose that γ = 0? Suppose returns to

tenure were linear. Since this implies wages always grow at the same rate on all jobs, the worker

should change jobs if and only if his new job pays more than he earns on his current job after

accounting for his tenure on his current job, i.e. if ωn ≥ ωn−1 + γ (Ti,t−1 + 1). In this case, the
average wage growth for a voluntary job changer net of the expected wage growth of job stayers,

E (∆ lnWit − β∆Zit | N ≥ n), must equal

E (ωn − ωn−1 − γ (Ti,t−1 + 1) | ωn ≥ ωn−1 + γ (Ti,t−1 + 1) , N ≥ n) (5.7)

If the offer distribution is Pareto, implying the log offer distribution is exponential, the above

expectation will be constant for all n, and corresponds to the inverse hazard of the implied log

offer distribution. If returns to tenure are linear, then, we can still take the results in Table 4 to

mean that we fail to reject a Pareto offer distribution even allowing for γ > 0.

If the offer distribution is indeed Pareto, it is possible to show that

E (ωn | Nt−1 = n) ≥ E (Rn | N ≥ n)

i.e. the average wage on the worker’s n-th job is at least as large as the n-th record from i.i.d.

draws from this distribution. Since E (ω1) = E (R1), it follows that

γ ≤ πn − (E (Rn | N ≥ n)−E (R1))

Tn + 1
≡ bγn

where πn is defined in (5.1), Tn is the average tenure for workers who lose their n-th job, and

E (Rn | N ≥ n)− E (R1) is computed using the implied exponential distribution for the log offer

distribution. Relying on Tables 3 and 4, I compute record moments for an exponential distribution

with mean 0.0806 and p = 0.42. Table 6 reports the point estimates for bγn. For n = 2, 3, and 4,
we can assign a 95% probability that γ ≤ 0.023, half of Topel’s point estimate using older workers
from the PSID. This last estimate should be interpreted with some caution, since my standard

error ignores estimation error in either the mean of the exponential or in p. But the point estimates

for bγn for n ≥ 2 are consistent with those of bγ1 in suggesting very modest returns to seniority.
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To summarize, a model in which workers search from a fixed offer distribution and accumulate

only general human capital can account quite well for the wage dynamics of young workers early in

their careers. Returns to experience are the main force for wage growth in my sample. According

to Table 2, ten years of experience on average add 0.57 log points to wages, an increase of over

75% over their starting wage. Search also plays a significant role; workers raise their log wages

by 0.08 on average each time they change jobs voluntarily. However, the benefit to job search is

inherently limited, since once a worker finds a high wage job it will be harder for him to find an

even higher paying job. Workers only benefit from mobility if they earn low wages. Thus, for

example, the model implies that workers who change jobs five times only increase their wages by

0.13 log points on average; this is because their first several job changes must not have involved

high wage increases if they went on to find even better jobs. By contrast, job-specific human

capital seems not to contribute at all to wage growth in the first several years of a worker’s career.

6. Alternative Models of Search

My identification results above rely heavily on the fact that observed wages over an employment

cycle {Wn
it} are associated with a sequence of prices {wn}Nn=1 that represent records from the set

of offers {Xm}Mm=1. However, it will not be true for more general search models that the prices on
the jobs workers accept correspond to ordinary record statistics. Nevertheless, I now argue that

even when prices {wn}Nn=1 do not correspond to record values, it will often be the case that there
is still some implicit record structure implied by the model, and we might still be able to exploit

this structure. The case where returns to tenure γ are positive provides one example. Recall that

in this case {wn}Nn=1 does not correspond to a list of records in the conventional sense; rather,
wn must exceed wn−1 by some threshold amount. However, by normalizing wages in a particular
way, we can transform the data so that the normalized wages are a sequence of records in the

conventional sense (i.e. with no threshold). The key difference is that {Xm}Mm=1 are no longer
identically distributed as in the case where γ = 0.

As another example, suppose a job offer specifies both a price w and a number of hours h that

the worker must work. Workers draw job offers from a fixed distribution over (w,H) and choose

the job that maximizes their utility. Thus, on a job offering the pair (w,h), an individual would

earn an hourly wage of Wit = wcit, and an income Iit = wcith. Once again, we can define an

employment cycle as the time between forced layoffs, and let {wn, hn}Nn=1 denote the wages and
hours on the different jobs over each such cycle. The sequence {wn}Nn=1 will no longer correspond to
a sequence of records, and will typically not be monotonic, since a worker might voluntarily move
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to a job that offers lowerW if it is more attractive in terms of the hours it offers. Nevertheless, the

n-th job in the cycle still corresponds to the n-th record in utility space. Formally, the sequence

{U (wn, hn)}∞n=1 represents the records from the set {Um}Mm=1 where Um denotes the utility the

worker derives from the m-th job offer. If we knew the function U (·, ·), e.g. by estimating it from
observed choices, we might be able to use data on wages and hours to identify the distribution of

utility across job offers. As an illustration, suppose agents do not care about leisure, and would

always choose the job that offers the greatest income, i.e. U (w, h) = wh. In this case, the income

on the n-th job corresponds to the n-th record from i.i.d. draws in which the parent distribution

is the offer distribution for incomes, and we can adapt my approach to identify this distribution

from observations on income Init = (wnhn)× cit.

7. Conclusion

This paper proposes a way to estimate the wage offer distribution non-parametrically by exploiting

the underlying record structure implicit in standard search models. While the number of obser-

vations in the NLSY dataset I use is too small to provide a fully non-parametric estimator for

this distribution, we can reject the lognormal distribution as a candidate for the offer distribu-

tion in favor of the Pareto distribution. This result is distinct from the oft-noted fact that the

cross-sectional distribution of wages exhibits a Pareto tail.12 For one thing, the cross-sectional

distribution is a convolution of the distribution of prices firms pay and the distribution of ability

across agents. In addition, selection from workers moving to higher wage jobs would tend to put

more mass on higher values of this distribution.

The implicit record structure of the standard search model also proves useful for constructing

bounds on the returns to tenure, offering an alternative approach to estimating these returns to the

one advanced in previous work. For my sample of young workers, I conclude that these returns are

not economically meaningful, and that it is instead general human capital and on-the-job search

that account for wage growth of these workers.

Finally, while this paper only examines search applications, record theory is potentially applica-

ble in a variety of contexts. Record statistics arise whenever we get to observe the extremes from

an unknown number of observations, a feature that characterizes various economic environments.

For example, in the Postel-Vinay and Robin (2002) model, the wage a worker earns on his job

is the maximum of the outside offers the worker receives, but we rarely get to observe when a

12On the presence of a Pareto tail in cross-sectional earnings distributions, see Neal and Rosen (2000).
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worker receives an outside offer. A related example is the problem of optimal contracting with

one-sided commitment in Beaudry and DiNardo (1991), where the optimal contract stipulates

that the wage is a monotonic function of the record economic conditions since the employment

relationship began. Yet another application that is discussed at some length in Arnold, Balakr-

ishnan, and Nagaraja (1998) involves optimal stopping problems, since the event that we reach

a point at which we exceed some threshold can be translated into the statement that the record

value exceeds some cutoff. Record statistics could thus be useful in both empirical and theoretical

economic applications.
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8. Appendix

Proof of Lemma 1: To derive the expression for Prob(M = m), let condition on the time between
the first offer and the end of the cycle, which is distributed as an exponential with rate δ. Then
the probability that there are exactly m offers on an employment cycle can be expressed as

Pr (M = m) =

Z ∞

0
Prob (m− 1 offers arrive by date t) δe−δtdt

Since offers of at least w∗ arrive at rate λ1 (1− F (w∗)), the number of offers that arrive within t

units of time is Poisson with parameter λ1 (1− F (w∗)) t, so that

Pr (M = m) =

Z ∞

0

e−λ1(1−F (w∗))t (λ1 (1− F (w∗)) t)m−1

(m− 1)! δe−δtdt

=

µ
λ1 (1− F (w∗))

λ1 (1− F (w∗)) + δ

¶m−1 δ

λ1 (1− F (w∗)) + δ

To solve for these integrals, we use an induction argument together with the fact that for any
positive integer k

lim
t→0 t

ke−(λ1λ1(1−F (w
∗))+δ)t = 0

lim
t→∞ tke−(λ1λ1(1−F (w

∗))+δ)t = 0

This establishes the claim. ¥

Proof of Lemma 2: Theorem 4.1 in Bunge and Nagaraja (1991) shows that for an i.i.d.
sequence {Xm}Mm=1 where Xm has a continuous distribution and Prob(M = m) = (1− p)m−1 p,

Pr(N = n) =
p

1− p

(− ln p)n
n!

. Applying this yields the result that Pr(N = n) =
p

1− p

(− ln p)n
n!

.

Setting n = 1, differentiating this expression with respect to p yields

− ln p− (1− p)

(1− p)2
(8.1)

Using the inequality ln p ≤ p − 1, we can establish (8.1) is positive for all p > 0. Thus, the
expression for Pr(N = 1) is an invertible function of p. It trivially follows that we can identify p

from the distribution {Pr (N = n)}∞n=1 since it includes this value. ¥

Proof of Proposition 1: From lemma 2, we know that {Pr (N = n)}∞n=1 identifies p. We there-
fore need to show that given p and the distribution of Rn, we can identify the parent distribution
of Xm, which I denote by F (·). Define q ≡ 1 − p. Using Theorem 4.1 in Bunge and Nagaraja



(1991), the probability density for the first n records given at least n records in the sequence is
given by

h (r1, r2, ..., rn ∩N ≥ n) = f (rn)
n−1Y
i=1

qf (ri)

1− qF (ri)
(8.2)

where f (·) = dF (·). Integrating out r1 through rn−1 in (8.2) and using an induction argument,
we can show that the marginal density for rn+1where there are at least n+ 1 records is given by

h (rn ∩N ≥ n) =
[− ln (1− qF (rn))]

n−1

(n− 1)! f (rn)

Define the inverse cdf F−1 (x) for x ∈ (0, 1) as sup {y : F (y) ≤ x}. Using the change of variables
u = F (rn+1) and du = f (rn+1) drn+1, we have

Pr (Rn ≤ x | N ≥ n) =

R x
0 [− ln (1− qF (rn))]

n−1

(n− 1)! Pr (N ≥ n)
f (rn) drn

=

R F (x)
0 [− ln (1− qu)]n−1 du
(n− 1)! Pr (N ≥ n)

Since the right-hand side above is monotonic in F (x), we can indeed recover F (·) from the
conditional distribution of the n-th record as claimed. ¥

Proof of Lemma 3: As in the proof of Proposition 1, we use Theorem 4.1 in Bunge and
Nagaraja (1991) to derive the density function for the n-th record as

h (rn ∩N ≥ n) =
[− ln (1− qF (rn))]

n−1

(n− 1)! f (rn)

Using the change of variables u = F (rn+1) and du = f (rn+1) drn+1, the expected value of |Rn+1|
conditional on N > n is given by

E
³
|Rn+1|

¯̄̄
N > n

´
=

Z 1

0

¯̄
F−1 (u)

¯̄ [− ln (1− qu)]n

n! Pr (N > n)
du

≤ [− ln (1− q)]n

n! Pr (N > n)

Z 1

0

¯̄
F−1 (u)

¯̄
du

=
[− ln (1− q)]n

n!
E (|Xm|) <∞

Since E
³
|Rn|

¯̄̄
N > n

´
< E

³
|Rn+1|

¯̄̄
N > n

´
, the former is also finite. The lemma follows

from the fact that E (|Rn|) <∞ implies E (Rn) <∞. ¥

Proof of Proposition 2: Integrating out (8.2) yields the following densities:

h (rn+1, rn ∩N > n) = f (rn+1)
[− ln (1− qF (rn))]

n−1

(n− 1)!
qf (rn)

1− qF (rn)

h (rn ∩N > n) =
q − qF (rn)

1− qF (rn)

[− ln (1− qF (rn))]
n−1

(n− 1)! f (rn)



Define ∆ = rn+1 − rn. By construction, ∆ ≥ 0. Using the law of iterated expectations, we have
E (∆ | N ≥ n) = E (E (∆ | rn,N > n))

= E

µZ ∞

0
∆ h (∆ | rn, N ≥ n) d∆

¶
where h (∆ | rn, N ≥ n) is the density of the difference between the n-th record and the n+ 1-th
record conditional on rn, and is given by

h (∆ | rn, N ≥ n) =
f (rn +∆)

1− F (rn)

Hence, the conditional expectation of ∆ is given by

E (∆ | rn,N ≥ n) =

Z ∞

0
∆
f (rn +∆)

1− F (rn)
d∆

≡ F (rn)
If we integrate the above expression over rn, we have

E (∆ | N > n) = E (F (rn)| N > n)

=

Z ∞

−∞
F (rn) h (rn ∩N > n)

Pr (N > n)
drn

=

Z ∞

−∞
F (rn) q − qF (rn)

1− qF (rn)

[− ln (1− qF (rn))]
n−1

(n− 1)! Pr (N > n)
f (rn) drn

=

Z ∞

−∞

·Z ∞

0
[1− F (rn +∆)] d∆

¸
q

1− qF (rn)

[− ln (1− qF (rn))]
n−1

(n− 1)! Pr (N > n)
f (rn) drn(8.3)

Now, suppose we have two functions F1 and F2 such that

E
³
R
(1)
n+1 −R(1)n | N > n

´
= E

³
R
(2)
n+1 −R(2)n | N > n

´
for n = 1, 2, 3, ... Then we haveZ ∞

−∞

·Z ∞

0
[1− F1 (rn +∆)] d∆

¸
(− ln (1− qF1 (rn)))

n−1

(n− 1)! (1− F1 (rn))

qf1 (rn)

1− qF1 (rn)
drn =Z ∞

−∞

·Z ∞

0
[1− F2 (rn +∆)] d∆

¸
(− ln (1− qF2 (rn)))

n−1

(n− 1)! (1− F2 (rn))

qf2 (rn)

1− qF2 (rn)
drn

Rewrite both integrals using the change of variables u = F (rn) to getZ 1

0

·Z ∞

0

£
1− F1

¡
F−11 (u) +∆

¢¤
d∆

¸
(− ln (1− qu))n−1

(n− 1)! (1− u)

q

1− qu
du =Z 1

0

·Z ∞

0

£
1− F2

¡
F−12 (u) +∆

¢¤
d∆

¸
(− ln (1− qu))n−1

(n− 1)! (1− u)

q

1− qu
du



Applying Lemma 3 in Lin (1987), we know that given a function ψ (·),Z 1

0
ψ (x) (− ln (1− x))n dx = 0

for all n = 1, 2, 3, ... if and only if ψ (x) = 0 almost surely. By a simple contradiction argument,
one can show that this implies that ψ (x) = 0 almost surely if and only ifZ 1

0
ψ (x) (− ln (1− qx))n dx = 0

Hence, for any u, it follows thatZ ∞

0

£
1− F1

¡
F−11 (u) +∆

¢¤
d∆ =

Z ∞

0

£
1− F2

¡
F−12 (u) +∆

¢¤
d∆

Let t = F−11 (u) +∆. Then it follows that for any u,"Z ∞

F−11 (u)
[1− F1 (t)] dt

#
=

"Z ∞

F−12 (u)
[1− F2 (t)] dt

#
Since F1 (·) and F2 (·) are continuous, nondecreasing, and bounded, it follows that they are both
differentiable almost everywhere. This, in turn, implies that F−11 (u) and F−12 (u) are differentiable
for almost every u ∈ (0, 1). Differentiating with respect to such u yields£

1− F1
¡
F−11 (u)

¢¤ d

du
F−11 (u) =

£
1− F2

¡
F−12 (u)

¢¤ d

du
F−12 (u)

Since F1
¡
F−11 (u)

¢
= F2

¡
F−12 (u)

¢
= u, it follows that for almost all u ∈ (0, 1),

d

du
F−11 (u) =

d

du
F−12 (u)

Integrating out yields
F−11 (u) = F−12 (u) + c

for some constant c, which establishes the claim. ¥

Deriving inequality (5.5) in text: Consider a sequence of i.i.d. random variables {Xm}Mm=1,
and any sequence of nonnegative numbers {∆m}Mm=2. Define

Z =

½
max {X2 +∆2, ...,XM +∆M} if M ≥ 2

−∞ if M = 1

We now use the fact that E (ω1 | N = 1) ≡ E (X1 | X1 ≥ Z). However,

E (X1 | X1 ≥ Z) = Ez [E (X1 | X1 ≥ z)]

≥ Ez [E (X1)]

= E (X1)

Since E (R1) = E (X1), the claim follows. ¥



Table 1: Summary  Statistics
for Entire Sample

# of individuals 6,284

individual characteristics:
mean median

     age 24.6 25.0
     years of potential experience 8.3 9.0
     years of education 12.7 12.0

# of jobs 44,593

job characteristics:

     % jobs ending voluntarily 0.35
     % jobs ending involuntarily 0.50
     % jobs censored/not classified 0.15

     average job tenure (uncensored) 1.05
     average wage (1992 dollars) $7.00
     median wage (1992 dollars) $5.40

Source: National Longitudinal Survey of Youth, author tabulations. Statistics above are for the full sample, i.e.
for all jobs reported in each year.



Table 2: Estimating Returns to Tenure γ 

linear returns to tenure

within-job wage experience tenure
growth effect effect
β1 + γ β1 γ

0.0794 0.0740 0.0054
0.0065 0.0061 0.0024

1 year 2 years 5 years 7 years 10 years

implied returns to tenure 0.0054 0.0108 0.0271 0.0380 0.0542
0.0024 0.0049 0.0122 0.0171 0.0245

implied returns to experience 0.0723 0.1411 0.3270 0.4337 0.5680
0.0058 0.0109 0.0226 0.0274 0.0300

quadratic returns to tenure

within-job wage experience tenure tenure 
growth effect effect squared
β1 + γ1 β1 γ1 γ2 

0.0826 0.0661 0.0165 -0.0016
0.0065 0.0067 0.0024 0.00048

The regressions above follow the two-step method outlined in Topel (1991). The first stage regresses annual within-job real
wage growth (in 1992 dollars using the implicit GDP deflator) on a ∆X (= constant) and ∆X2. This is the same regression in
column (1) of Table 4, where β1+γ corresponds to the coefficient on ∆X. The second stage regresses the log real wage net of
the estimated (β1+ γ)T + β2X

2 on initial experience and individual fixed-effects. The coefficient on initial experience
corresponds to the estimate of β1, and the difference corresponds to the estimate of γ above. Standard errors for β1 and γ are
adjusted to reflect estimation error in the first-stage regressor, using the stacking and weighting procedure in Altonji and
Williams (1998). Returns to tenure and experience in the middle of the table are based on estimates for γ, β, and β2. In the
bottom panel, the first stage regression is amended to allow for a ∆T2 term, which is then subtracted from the log real wage at
the second stage.



Table 3: Estimates for p

Sample p Standard Implied
size error λ1/δ 

All 22,135 0.4823 0.0031 1.074

   Educ < 12 6,515 0.5008 0.0055 0.997
   Educ = 12 6,648 0.4797 0.0058 1.085
   Educ ∈ (13,15) 5,436 0.4504 0.0062 1.220
   Educ > 16 3,536 0.5049 0.0082 0.981

Estimates for p are derived using maximum likelihood in accordance with Proposition 2 in the text.
Sample size corresponds to the number of jobs that end in an involuntary job change used to estimate p.
The standard error is the asymptotic standard error. The implied ratio in the last column is computed
according to the formula p = (1+λ1/δ)-1.



Table 4: The Wage Gains of Voluntary 
Job Changers, by n 

sample size (1) (2) (3)
exponential

∆X -- 0.0767 0.0809 0.0816
0.0046 0.0050 0.0050

∆X2 
-- -0.0016 -0.0018 -0.0018

0.0002 0.0002 0.0002

D12 2,443 0.0900
0.0094

D23 982 0.0711
0.0137

D34 452 0.0799 0.0806
0.0200 0.0072

D45 204 0.0168
0.0331

D56 75 0.0799
0.0520

# obs 27,712 31,868 31,868
stayers 27,712 27,712 27,712
changers 0 4,156 4,156

Test of particular functional forms:

     Exponential F (4, 31861) = 1.31 Prob > F  = 0.2639
     Normal F (4, 31861) = 3.12 Prob > F  = 0.0140

The dependent variable is the annual growth rate of real wages. The independent variables are the growth ∆EXP, which
is identically equal to 1, ∆X2, which is equal to 2 X - 1, and a set of dummy variables Dn,n+1 equal to 1 if the worker
moved from his n-th job to his n+1-th job. The column labeled sample size denotes the number of workers in my
sample who voluntarily left their n-th job for each value of n. Column (1) estimates the coefficients on ∆X and ∆ X 2

using job stayers only. Column (2) adds job changers and estimates the coefficients on the dummy variables as well.
Column (3) estimates the same regression as in column (2) assuming the coefficients on all the dummy variables are
equal, which from the text is true if and only if the log wage offer distribution is exponential. The coefficient reported
in column (3) corresponds to the inverse hazard of this exponential distribution. The numbers below the coefficient
denote robust standard errors. The F -statistics in the bottom panel are the robust Wald-statistics that test constraints on
the coefficients on the dummy variables in column (2). The exponential case compares column (3) to column (2), while
the normal case involves an alternative set of linear restrictions on the coefficients on the dummy variables. 



Table 5: The Wage Losses of Involuntary 
Job Changers, by n 

sample size (1) (2)
exponential

∆X -- 0.0837 0.0849
0.0062 0.0050

∆X2 -- -0.0020 -0.0020
0.0002 0.0002

D11 2,767 0.0029
0.0094

D21 873 0.0843
0.0153

D31 305 0.0904 0.0816
0.0278 0.0130

D41 137 0.0942
0.0432

D51 50 0.0754
0.0726

# obs 31,844 31,844
stayers 27,712 27,712
changers 4,132 4,132

Test of particular functional forms:

     Exponential             F (4, 31837) = 1.24 Prob > F  = 0.2895
     Normal              F (4, 31837) = 1.08 Prob > F  = 0.3622

The dependent variable is the annual growth rate of real wages. The independent variables are ∆X and ∆X2 as in
Table 4, and a set of dummy variables Dn,n+1 equal to 1 if the worker moved from his n-th job to his n+1-th job. The
column labeled sample size denotes the number of workers who involuntarily left their n-th job for each value of n.
Column (1) reports the results of this regression, while column (2) estimates the same regression as in column (1)
with a particular set of linear restrictions on the coefficients of the dummy variables that are true if and only if the
log wage offer distribution is exponential. The coefficient reported in column (2) corresponds to the inverse hazard
of this exponential distribution. The numbers below the coefficient denote robust standard errors. The F -statistic
in the bottom panel are the robust Wald-statistics that test constraints on the coefficients on the dummy variables in
column (2). The exponential case compares column (2) to column (1), while the normal case involves an alternative
set of linear restrictions on the coefficients on the dummy variables. 



Table 6: Estimates for Upper Bounds
on Returns to Tenure

(1) (2) (3) (4) (5)

n πn E(Rn | N>n) - E(R1) Tn γn standard 
error

1 0.0029 0.0000 1.28 0.001 0.004

Assuming log offer distribution is exponential with mean 0.0816

2 0.0843 0.0475 1.66 0.014 0.006

3 0.0904 0.0797 1.52 0.004 0.011

4 0.0942 0.1036 1.70 -0.003 0.016

5 0.0754 0.1224 1.39 -0.020 0.030

Column (1) reports the average net wage loss for workers who are laid off from their n-th job in an
employment cycle. These correspond to the cofficients reported in column (1) of Table 5. Column (2)
reports the average value of the n-th record conditional on there being at least n records net of the average
value of the first record as computed from an exponential distribution with mean 0.0816 and where the
number of observations is geometric with success probability 0.48. Column (3) reports the average tenure on
the n-th job for workers who left that job involuntarily. Column (4) constructs the bound on returns to tenure
based on workers who were laid off from their n-th job. It is equal to the difference between column (1) and
column (2), divided by one plus the value in column (3). The derivation of this formula is described in the
text. Column (5) reports the asymptotic standard error for the estimator in column (4). For n = 1, the bound
holds for any distribution. For n > 2, the bound applies only if the offer distribution is exponential with mean
0.0816.



Figure 1: Expected Record Gaps
for Different Parent Distributions
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    Figure 2: Summary Statistics for n 

Figure 1a: Proportion of observations where no value for n was assigned

Figure 1b: Share of all observations with n  > 1 for each level of n
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Figure 3: Actual vs. Predicted Wage Loss
for Involuntary Job Changers

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

1 5432

exp dist

n

upper 95% 
confidence bound

lower 95% 
confidence bound

normal dist



References

[1] Altonji, Joseph and Robert Shakotko, 1987. “Do Wages Rise with Job Seniority?” Review of

Economic Studies, July, 54 (3), p437-59.

[2] Altonji, Joseph and Nicolas Williams, 1997. “Do Wages Rise with Job Seniority? A Reassess-

ment” Mimeo, Northwestern University.

[3] Altonji, Joseph and Nicolas Williams, 1998. “The Effects of Labor Market Experience, Job

Seniority, and Job Mobility on Wage Growth” Research in Labor Economics, 17, p233-276.

[4] Arnold, Barry, N. Balakrishnan and H. Nagaraja, 1992. A First Course in Order Statistics.

New York: John Wiley and Sons.

[5] Arnold, Barry, N. Balakrishnan and H. Nagaraja, 1998. Records. New York: John Wiley and

Sons.

[6] Athey, Susan and Philip Haile, 2002. “Identification in Standard Auction Models” Economet-

rica, November, 70(6), p2107-40.

[7] Barlevy, Gadi, 2002. “The Sullying Effect of Recessions” Review of Economic Studies, January,

69 (1), p65-96.

[8] Beaudry, Paul and John DiNardo, 1991. “The Effect of Implicit Contracts on the Movement

of Wages over the Business Cycle: Evidence from Micro Data” Journal of Political Economy,

August, 99(4), p665-88.

[9] Bontemps, Christian, Jean-Marc Robin, and Gerard van den Berg, 2000. “Equilibrium Search

with Continuous Productivity Dispersion: Theory and Nonparametric Estimation” Interna-

tional Economic Review, May, 41(2), p305-358.

[10] Bowlus, Audra, Nicholas Kiefer, and George Neumann, 2001. “Equilibrium Search Models and

the Transition from School to Work” International Economic Review, May, 42(2), p317-43.

[11] Bowlus, Audra and Jean-Marc Robin, 2004. “Twenty Years of Rising Inequality in US Lifetime

Labor Income Values” Review of Economic Studies, July, 71(3), p709-742.

[12] Bunge, John and H. Nagaraja, 1991. “The Distributions of Certain Record Statistics from a

Random Number of Observations” Stochastic Processes and Their Applications, 38, p167-83.

[13] Burdett, Kenneth and Dale Mortensen, 1998. “Wage Differentials, Employer Size, and Unem-

ployment” International Economic Review, 39, p257-273.



[14] Chandler, K. N., 1952. “The Distribution and Frequency of Record Values” Journal of the

Royal Statistical Society, Series B, 14, p220-8.

[15] Flinn, Christopher, 1986. “Wages and Job Mobility of Young Workers” Journal of Political

Economy 94(3, Part 2), pS88-S110.

[16] Flinn, Christopher, 2002. “Labour Market Structure and Inequality: a Comparison of Italy

and the U.S.” Review of Economic Studies, July, 69 (3), p611-45.

[17] Flinn, Christopher, 2004. “Minimum Wage Effects on Labor Market Outcomes Under Search,

Bargaining, and Endogenous Contact Rates” Mimeo, New York University.

[18] Flinn, Christopher and James Heckman, 1982. “NewMethods for Analyzing Structural Models

of Labor Force Dynamics” Journal of Econometrics, January, 18(1), p115-68.

[19] Glick, Ned, 1978. “Breaking Records and Breaking Boards” American Mathematical Monthly,

85(1), p2-26.

[20] Guerre, Emmanuel, Isabelle Perrigne, and Quang Vuong, 2000. “Optimal Nonparametric

Estimation of First-Price Auctions” Econometrica, November, 68(3), p525-74.

[21] Gupta, Ramesh, 1984. “Relationships Between Order Statistics and Record Values and Some

Characterization Results” Journal of Applied Probability, June, 21(2), p425-430.

[22] Kirmani, S. N. U. A. and Beg, M. I., 1984. “On characterization of distributions by expected
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