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ABSTRACT

We examine optimal and other monetary policies in a linear-quadratic setup with a relatively general

form of model uncertainty, so-called Markov jump-linear-quadratic systems extended to include

forward-looking variables. The form of model uncertainty our framework encompasses includes:

simple i.i.d. model deviations; serially correlated model deviations; estimable regime-switching

models; more complex structural uncertainty about very different models, for instance, backward-

and forward-looking models; time-varying central-bank judgment about the state of model

uncertainty; and so forth. We provide an algorithm for finding the optimal policy as well as solutions

for arbitrary policy functions. This allows us to compute and plot consistent distribution forecasts---

fan charts---of target variables and instruments. Our methods hence extend certainty equivalence and

"mean forecast targeting" to more general certainty non-equivalence and "distribution forecast

targeting."
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1 Introduction

In recent years there has been a renewed interest in the study of optimal monetary policy under

uncertainty. Classical analyses of optimal policy consider only additive sources of uncertainty, where

in a linear-quadratic framework the well-known certainty-equivalence result applies and implies that

optimal policy is the same as if there were no uncertainty. Recognizing the uncertain environment

that policymakers face, recent research has considered broader forms of uncertainty for which

certainty equivalence no longer applies. While this may have important implications, in practice

the design of policy becomes much more difficult outside the classical linear-quadratic framework.

One of the conclusions of the Onatski and Williams [28] study of model uncertainty is that, for

progress to be made, the structure of the model uncertainty has to be explicitly modeled. In line

with this, in this paper we develop a very explicit but still relatively general form of model uncer-

tainty that remains quite tractable, using a so-called Markov jump-linear-quadratic (MJLQ) model,

where model uncertainty takes the form of different “modes” that follow a Markov process. Our

approach allows us to move beyond the classical linear-quadratic world with additive shocks, yet

remains close enough to the linear-quadratic framework that the analysis is transparent. We exam-

ine optimal and other monetary policies in an extended linear-quadratic setup, extended in a way

to capture model uncertainty. The forms of model uncertainty our framework encompasses include:

simple i.i.d. model deviations; serially correlated model deviations; estimable regime-switching mod-

els; more complex structural uncertainty about very different models, for instance, backward- and

forward-looking models; time-varying central-bank judgment–information, knowledge, and views

outside the scope of a particular model (Svensson [36])–about the state of model uncertainty; and

so forth. Moreover, while we focus on model uncertainty, our methods also apply to other linear

models with changes of regime which may capture boom/bust cycles, productivity slowdowns and

accelerations, switches in monetary and/or fiscal policy regimes, and so forth. We provide an algo-

rithm for finding the optimal policy as well as solutions for arbitrary policy functions. This allows

us to compute and plot consistent distribution forecasts–fan charts–of target variables and in-

struments. Our methods hence extend certainty equivalence and “mean forecast targeting,” where

only the mean of future variables matter (Svensson [36]), to more general certainty non-equivalence

and “distribution forecast targeting,” where the whole probability distribution of future variables

matter (Svensson [35]).1

1 The importance of the whole distribution of future target variables was recently emphasized by Greenspan [18]
at the 2005 Jackson Hole symposium, with reference to his [17] so-called risk-management approach:
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Certain aspects of our approach have been known in economics since the classic works of Aoki

[2] and Chow [8], who allowed for multiplicative uncertainty in a linear-quadratic framework. The

insight of those papers, when adapted to our setting, is that in MJLQ models the value function

remains quadratic in the state, but now with weights that depend on the mode. MJLQ models

have also been widely studied in the control-theory literature for the special case when there are no

forward-looking variables (see Costa and Fragoso [10], Costa, Fragoso, and Marques [11] (henceforth

CFM), do Val, Geromel, and Costa [14], and the references therein). More recently, Zampolli

[41] uses an MJLQ model to examine monetary policy under shifts between regimes with and

without an asset-market bubble, although still in a model without forward-looking variables. Blake

and Zampolli [4] provide an extension of the MJLQ model to include forward-looking variables,

although with less generality than in our paper and with the analysis and the algorithms restricted

to discretion equilibria.

Relative to this previous literature, our contribution is the development of a general approach

for handling MJLQ models that include forward-looking variables. This extension is key for policy

analysis under rational expectations, but the forward-looking variables make the model nonrecur-

sive. We show that the recursive saddlepoint method of Marcet and Marimon [26] can nevertheless

be applied to express the model in a convenient recursive way, and we derive an algorithm for

determining the optimal policy and value functions.

In addition to considering the optimal policy, we also consider the behavior of the model for

arbitrary time-varying or time-invariant instrument rules. This allows us to construct model-

consistent probability distributions —fan charts–of the variables relevant to policy makers for any

arbitrary instrument-rate path. Moreover, much of the literature in monetary policy analysis has

focused on “simple” instrument rules which are restricted to respond to only a subset of all available

information, with Taylor rules and various generalizations being most prominent. We show how to

derive optimal restricted instrument rules in our setting. Importantly, our approach is not restricted

to instrument rules; any given or optimal restricted policy rule, including targeting rules, can be

considered.

For most of the paper, we focus on the case where agents can directly observe the mode. While

In this [risk management] approach, a central bank needs to consider not only the most likely [rather:
mean] future path for the economy but also the distribution of possible outcomes about that path. The
decisionmakers then need to reach a judgment about the probabilities, costs, and benefits of various
possible outcomes under alternative choices for policy.

We agree with Feldstein [15] that Greenspan’s risk-management approach is best interpreted as standard expected-
loss minimization and we consider the risk-management approach and the approach of this paper as completely
consistent. See Blinder and Reis [5] for further discussion of possible interpretations of the risk-management approach.
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this may be plausible for some environments, such as for example when a new policy regime is

announced, in many cases it is more fitting to assume that the modes are not observable. When

the modes are not observable, we can represent the decision maker’s information as a probability

distribution over possible modes, and optimal policy will depend on that distribution. In this

paper, we analyze the special case where decision makers do not learn from endogenous variables,

but rather the future the subjective distribution over modes is entirely governed by the transition

probabilities. In this case, the value function remains quadratic in the state, but with weights that

depend now on the probability distribution over modes. We develop a simple method of solving

this case.

The more general case where decision makers infer from their observations the probability

of being in a particular mode is much more difficult to solve. The optimal filter is nonlinear,

which destroys the tractability of the MJLQ approach.2 Additionally, as in most Bayesian learning

problems, the optimal policy will also include an experimentation component. Thus, solving for the

optimal decision rules will be a more complex numerical task. Due to the curse of dimensionality, it

is only feasible in models with a relatively small number of state variables and modes. Confronted

with these difficulties, the literature has focused on approximations such as linearization or adaptive

control.3 While these issues are important, they remain outside the scope of the present paper.

The rest of the paper is organized as follows. In section 2, we lay out the model. In section

3, we discuss how different kinds of model uncertainty can be incorporated by our framework.

In section 4, we present examples based on two empirical models of the US economy: regime-

switching versions of the backward-looking model of Rudebusch and Svensson [30] and the forward-

looking New Keynesian model of Lindé [24]. In section 5, we show how probability distributions of

forecasts of relevant variables can be constructed for arbitrary time-varying instrument-rate paths

or functions. In section 6, we show how the same probability distributions can be constructed

for arbitrary time-invariant instrument rules and optimal restricted instrument rules. Here we

derive optimal generalized and mode-dependent Taylor-type rules in the Lindé model. In section

7, we show how the optimal policy and value functions can be expressed as a function of the

probability distribution of the modes, in the realistic case when these modes are not observable.

2 The optimal nonlinear filter is well-known, and it is a key component of the estimation methods as well (Hamilton
[19] and Kim and Nelson [22]).

3 In the first case, restricting attention to (sub-optimal) linear filters preserves the tractability of the linear-
quadratic framework. See CFM [11] for a brief discussion and references. In adaptive control, agents do not take into
account the informational role of their decisions. See do Val and Başar [13] for an application of an adaptive control
MJLQ problem in economics. In a different setting, Cogley, Colacito, and Sargent [9] have recently studied how well
adaptive procedures approximate the optimal policies.
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We then reconsider the examples from section 4 in the unobservable case, and find that the effects

of unobservability differ greatly across the two models. In section 8, we present some conclusions.

The appendices contain some technical details and extensions of the material in the text.

2 The model

We set up a relatively flexible model of an economy with a central bank, which allows for relatively

broad additive and multiplicative uncertainty as well as different relevant representations of the

central-bank information and judgment about the economy.

2.1 The baseline model

Consider the following model of an economy with a central bank:

Xt+1 = A11,t+1Xt +A12,t+1xt +B1,t+1it + Ct+1εt+1, (2.1)

EtHt+1xt+1 = A21,tXt +A22,txt +B2,tit, (2.2)

whereXt is an nX×1 vector of predetermined variables (the state) in period t (the first element may
be unity to incorporate nonzero intercepts in a convenient way), xt is an nx × 1 vector of forward-
looking variables in period t, it is an ni×1 vector of central-bank instruments (control variables) in
period t, and εt is an nX × 1 vector of zero-mean i.i.d. shocks realized in period t with covariance

matrix I. The forward-looking variables and the instruments are the nonpredetermined variables.4

The matrix A22,t is nonsingular, so equation (2.2) determines the forward-looking variables in period

t. There is no restriction in including the shock εt only in the equations for the predetermined

variables, since, if necessary, the set of predetermined variables can always be expanded to include

the shocks and the shocks this way indirectly enter into the equations for the forward-looking

variables. The expression Etqt+1 denotes the conditional expectation in period t of any random

variable qt+1 realized in period t + 1. The informational assumptions underlying the conditional

expectations operator Et are specified below.

The central bank has an intertemporal loss function in period t:

Et

∞X
τ=0

δτLt+τ , (2.3)

4 Predetermined variables have exogenous one-period-ahead forecast errors, whereas non-predetermined variables
have endogenous one-period-ahead forecast errors.
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where the period loss, Lt, satisfies

Lt ≡ Y 0tΛtYt,

where

Yt ≡ Dt

⎡⎣ Xt

xt
it

⎤⎦
is an nY × 1 vector of target variables and the weight matrix Λt is a symmetric and positive
semidefinite matrix. It follows that the period loss function satisfies

Lt ≡
⎡⎣ Xt

xt
it

⎤⎦0Wt

⎡⎣ Xt

xt
it

⎤⎦ , (2.4)

where the matrix Wt ≡ D0
tΛtDt is symmetric and positive semidefinite. The scalar δ is a discount

factor satisfying 0 < δ ≤ 1.5

The matrices A11,t, A12,t, B1,t, Ct, Ht, A21,t, A22,t, B2,t, Λt, Dt, and Wt (assumed to be of

appropriate dimension) are random and can each take n different values in period t, corresponding

to the n modes jt = 1, 2, ..., n in period t. We denote these values A11,t = A11jt , A12,t = A12jt , and

so forth. The modes jt follow a Markov process with constant transition probabilities:

Pjk ≡ Pr{jt+1 = k | jt = j} (j, k = 1, ..., n). (2.5)

While we focus throughout on the time-homogeneous case, it is straightforward to allow the modes

to depend directly on calendar time. Furthermore, P denotes the n×n transition matrix [Pjk] and

the 1 × n vector p ≡ (p1t, ..., pnt) (where pjt ≡ Pr{jt = j}, j = 1, ..., n) denotes the probability

distribution of the modes in period t, so

pt+1 = ptP.

Finally, the 1× n vector p̄ denotes the unique stationary distribution of the modes, so6

p̄ = p̄P .

The shocks εt and the modes jt are assumed to be independently distributed (although we

allow the impact on the economy of the shocks εt to depend on the modes jt through the matrix
5 When δ = 1, the loss function (2.3) normally becomes unbounded. To handle this case, we scale the intertemporal

loss function by 1−δ for δ < 1 and consider the loss function to be the limit limδ→1(1−δ)Et
∞

τ=0

δτLt+τ . See appendix

C for details.
6 We assume that the Markov chain is recurrent and aperiodic, so the stationary distribution is unique and does

not depend on the initial mode (Karlin and Taylor [21]). A simple sufficient condition is that the matrix Pm has all
elements positive for some m ≥ 1 (Ljungqvist and Sargent [25]).
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Cjt). However, this assumption is not restrictive. Mode-dependent additive shocks are actually

incorporated, since the fact that we allow one of the predetermined variables to be unity implies

that all our equations may have mode-dependent intercepts.7

In the beginning of period t, before the central bank chooses the instruments, it, the central

bank’s information set includes the history of the realizations of Xt, jt, εt, Xt−1, jt−1, εt−1, xt−1,

it−1, ... The central bank also knows the probability distribution of the innovation εt, the tran-

sition matrix P , and the n different values each of the matrices can take. Hence, the conditional

expectations operator, Et, refers to expectations conditional on that information. In section 7 we

consider an alternative situation, which in many cases is more realistic, where the mode jt is not

observable in period t, and hence policy in period t is based on the probability distribution pt of

the modes.

We consider the optimization problem of minimizing (2.3) in period t, subject to (2.1), (2.2),

(2.4), and Xt and jt given. In particular, we consider the optimization under commitment in a

timeless perspective (see Woodford [40] and Svensson and Woodford [39]).

2.2 Reformulation according to the recursive saddlepoint method

In order to apply the methods developed for similar models in control theory, we require that

the system be recursive. However, the presence of the forward-looking variables in (2.2) makes

the problem nonrecursive. Fortunately, the recursive saddlepoint method of Marcet and Marimon

[26] can be applied to reformulate the non-recursive problem with forward-looking variables as a

recursive saddlepoint problem (see Marcet and Marimon [26] for the general method and Svensson

[37] for the method applied to linear-quadratic problems).

More precisely, the problem of minimizing the intertemporal loss function in each period t under

commitment in a timeless perspective can be reformulated as the dual saddlepoint problem:

max
{γt+τ}τ≥0

min
{xt+τ ,it+τ}τ≥0

Et

∞X
τ=0

δτ L̃t+τ , (2.6)

with the dual period loss function,

L̃t+τ ≡
∙
X̃t+τ

ı̃t+τ

¸0
W̃jt+τ

∙
X̃t+τ

ı̃t+τ

¸
, (2.7)

7 Without significant loss of generality, we could assume that the ε shocks are discrete, εt ∈ {ε̄h}n̄h=1, and hence
depend on separate modes h = 1, ..., n̄ which may be correlated with the j modes. Then we could consider nn̄
generalized modes (j, h) (j = 1, ..., n, h = 1, ..., n̄) and incorporate the ε shocks in intercepts that depend on the
generalized modes. This way we could, without loss of generality, write the model without any explicit additive ε
shocks.
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subject to the dual model:

X̃t+τ+1 = Ãjt+τ+1X̃t+τ + B̃jt+τ+1 ı̃t+τ + C̃jt+τ+1εt+τ+1 (2.8)

for τ ≥ 0, where X̃t and jt are given. Here, the new nX̃ × 1 vector of predetermined variables X̃t

(nX̃ ≡ nX + nx) and the new nı̃ × 1 vector of instruments ı̃t (nı̃ ≡ nx + ni + nx) are defined as

X̃t ≡
∙

Xt

Ξt−1

¸
, ı̃t ≡

⎡⎣ xt
it
γt

⎤⎦ . (2.9)

The elements of the nx× 1 vector Ξt−1 are the Lagrange multipliers for the equations (2.2) for the
forward-looking variables in period t−1 from the optimization problem in that period. Hence, Ξt−1
captures the history dependence of the optimal policy under commitment in a timeless perspective

(see Woodford [40] and Svensson and Woodford [39]). The elements of the nx × 1 vector γt are
the Lagrange multipliers for equations (2.2) in period t, considered as control variables in period t.

Hence, we have

Ξt = γt (2.10)

as an additional dynamic equation, which is incorporated in (2.8).

The matrix W̃jt in (2.7) is constructed so the dual period loss L̃t satisfies

L̃t ≡ Lt − γ0t(A21jtXt +A22jtxt +B2jtit) +
1

δ
Ξ0t−1Hjtxt. (2.11)

The matrices Ãjt+1 , B̃jt+1 , and C̃jt+1 (partitioned conformably with X̃t and, for B̃jt+1 , also with ı̃t)

satisfy

Ãjt+1 ≡
∙
A11jt+1 0
0 0

¸
, B̃jt+1 ≡

∙
A12jt+1 B1jt+1 0
0 0 I

¸
, C̃jt ≡

∙
Cjt+1

0

¸
. (2.12)

2.3 Optimal policy and dynamics

The solution of the dual saddlepoint problem will result in a conditionally linear optimal policy

function with mode-dependent coefficients,

ı̃t = FjtX̃t (jt = 1, ..., n) (2.13)

and a dual conditionally quadratic value function with mode-dependent coefficients,

X̃tṼjtX̃t + w̃jt = max
{γt+τ}τ≥0

min
{xt+τ ,it+τ}τ≥0

Et

∞X
τ=0

δτ L̃t+τ , (jt = 1, ..., n) (2.14)

7



(see appendix B for details and a convenient algorithm for computing Ṽj and Fj for j = 1, ..., n).

The optimal policy function for the dual problem is also the solution to the original problem.

Consider the composite state (X̃t, jt) in period t, where ı̃t = FjtX̃t. The transition from this

composite state to the composite state (X̃t+1, jt+1) in period t+1 with ı̃t+1 = Fjt+1X̃t+1 will satisfy

X̃t+1 =Mjtjt+1X̃t + C̃jt+1εt+1,

where

Mjtjt+1 ≡ Ãjt+1 + B̃jt+1Fjt ,

and will, for given realization of εt+1, occur with probability Pjtjt+1 . This determines the optimal

distribution of future X̃t+τ , jt+τ , and ı̃t+τ (τ ≥ 1) conditional on (X̃t, jt).

Such conditional distributions can be illustrated by plots of future means, medians, and per-

centiles (fan charts). Plots of future means, medians, and percentiles can also be constructed for

individual chains of the modes, for instance, the median or mean chain corresponding to no model

uncertainty. The simplest way to generate such plots is by simulation, which we illustrate in some

examples below.

Note that the value function in (2.14) above corresponds to the dual period loss function and

the dual saddlepoint problem. The value function for the original problem of minimizing (2.3)

subject to (2.1), (2.2), and (2.4) under commitment in a timeless perspective with X̃t given is

X̃ 0
tVjtX̃t +wjt . (2.15)

The matrices Vj and the scalars wj for j = 1, ..., n, can be determined in the following way.

Let Fjt be partitioned conformably with xt, it, and γt,

Fjt ≡
⎡⎣ Fxjt

Fijt
Fγjt

⎤⎦ ,
and note that we have ⎡⎣ Xt

xt
it

⎤⎦ =
⎡⎣ I 0

Fxjt
Fijt

⎤⎦ X̃t.

It follows that we can write the period loss function as

Lt = X̃ 0
tW̄jtX̃t,

where

W̄jt ≡
⎡⎣ I 0

Fxjt
Fijt

⎤⎦0Wjt

⎡⎣ I 0
Fxjt
Fijt

⎤⎦ . (2.16)

8



For each j = 1, ..., n, the matrix Vj will then satisfy the Lyapunov equation:

Vj = W̄j + δ
X
k

PjkM
0
jkVkMjk, (2.17)

and the scalar wj will satisfy the equation:8

wj = δ
X
k

Pjk[tr(VkC̃kC̃
0
k) +wk]. (2.18)

The matrices Vj and the scalar wj can also be found in a more direct way from the matrices Ṽj

and the scalar w̃j . Note that, by (2.2), (2.11), and (2.10), the identity

X̃ 0
tVjX̃t + wj ≡ X̃ 0

tṼjX̃t + w̃j − 1
δ
Ξ0t−1HjFxjX̃t (j = 1, ..., n) (2.19)

must hold. We can write

1

δ
Ξ0t−1HjFxjX̃t ≡ 1

2δ
(Ξ0t−1HjFxjX̃t+X̃

0
tF

0
xjH

0
jΞt−1) ≡ X̃ 0

t

∙
0 1

2δF
0
xXjH

0
j

1
2δHjFxXj

1
2δ (HjFxΞj + F 0xΞjH

0
j)

¸
X̃t,

where Fxj is partitioned conformably with Xt and Ξt−1 as Fxj ≡ [FxXj FxΞj ]. Then, identification

of terms implies that wj and Vj are determined by

wj = w̃j (j = 1, ..., n),

Vj = Ṽj −
∙

0 1
2δF

0
xXjH

0
j

1
2δHjFxXj

1
2δ (HjFxΞj + F 0xΞjH

0
j)

¸
(j = 1, ..., n).

As discussed in CFM [11], mean square stability is an appropriate concept of stability for our

framework. Appendix D provides some details on the definition of mean square stability and shows

how the necessary and sufficient conditions for mean square stability derived in CFM [11] can be

applied to our framework.

3 Interpretation of model uncertainty in our framework

The assumption that the random matrices of coefficients take a finite number of values correspond-

ing to a finite number of modes allows us to use the convenient and flexible framework of MJLQ

systems–once we apply the recursive saddlepoint method of Marcet and Marimon to reformulate

the non-recursive model with forward-looking variables as a recursive model. By specifying different

configurations of modes and transition probabilities, we can approximate many different kinds of

model uncertainty.

8 Note that C̃kC̃
0
k is the covariance matrix of the shocks C̃kεt+1 to X̃t+1 when jt+1 = k (k = 1, ..., n). Note also

that wj will normally have a bounded solution only if δ < 1. See appendix C for how to handle the case δ = 1.
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• Both i.i.d. and serially correlated random coefficients of the model can be handled. This can

capture either generalized parameter uncertainty or different behavior in different modeled

regimes (such boom/bust states, and so forth).

• The modes can correspond to different structural models. The models can differ by having
different relevant variables, different number of leads or lags, or the same variable being

predetermined in one model and forward-looking in another. For example, one mode can

represent a model with forward-looking variables such as the New Keynesian model of Lindé

[24], another a backward-looking model such as that of Rudebusch and Svensson [30] (see

appendix E for details).

• The modes can correspond to situations when variables such as inflation and output have more
or less inherent persistence (are more or less autocorrelated), when the exogenous shocks have

more or less persistence (introduce a predetermined variable equal to the serially correlated

shock, letting it be an AR(1) process with a high or low coefficient), or when the uncertainty

about the coefficients or models is higher or lower.

• The modes can be structured such that they correspond to different central-bank judgments
about model coefficients and model uncertainty. Let jt = 1, ..., n correspond to n different

model modes (different coefficients, different variances or persistence of coefficient distur-

bances, or different variances of the εt shocks). Let kt = 1, ...,m correspond to m differ-

ent central-bank judgment modes, depicting some central-bank information about the model

modes. This can generally be modeled as a situation where the transition matrix for the

model modes depends on the judgment mode. Thus let the transition matrix for model modes

be P̃ (kt), and hence depend on kt. Let P 0 denote the transition matrix for the judgment

modes (assumed independent of the model modes). We can then consider a composite model-

judgment mode (jt, kt) in period t, with the transition probability from model-judgment mode

(h, k) in period t to mode (j, l) in period t+1 given by P̃ (k)hjP 0kl. For instance, the judgment

modes may correspond to different persistence of the model modes.

• The mode jt may be observed in period t, in which case optimal policy and the value function
is conditional on the mode jt, as shown above. Alternatively, and more realistically, we may

assume that the mode cannot be perfectly observed. Then we can represent the central bank’s

information in period t about the mode as the distribution pt of the modes. Then optimal
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policy and the value function in period t will depend on the distribution pt. This case is

considered in section 7.

• As noted in appendix A, we can combine multiplicative uncertainty about the modes with
the additive uncertainty about future deviations. This way we can simultaneously handle

central-bank judgment about future additive deviations as in Svensson [36] and central-bank

judgment about model modes as in this paper. For instance, we can handle situations when

there is more or less uncertainty about shocks farther into the future relative to those in the

near future.

Generally, aside from dimensional and computational limitations, it is difficult to conceive of a

situation for a policymaker that cannot be approximated in this framework.

4 Examples

In this section we present examples based on two empirical models of the US economy: regime-

switching versions of the backward-looking model of Rudebusch and Svensson [30] and the forward-

looking New Keynesian model of Lindé [24].

4.1 An estimated backward-looking model

In this section we consider the effects of model uncertainty in the quarterly model of the US

economy of Rudebusch and Svensson [30], henceforth RS. Using the same data set as in their

paper, we estimate a three-mode MJLQ model using Bayesian methods to locate the maximum of

the posterior distribution, and we compare the implications to the constant-coefficient version of

RS.

The key variables in the model are quarterly annualized inflation πt, the output gap yt, and the

instrument rate (the federal funds rate) it. The model has a Phillips curve and an aggregate-demand

relation of the following form:

πt+1 =
2X

τ=0

ατjπt−τ +

Ã
1−

2X
τ=0

ατj

!
πt−3 + α3jyt + cπjεπ,t+1, (4.1)

yt+1 = β1jyt + β2jyt−1 + β3j (̄ıt − π̄t) + cyiεy,t+1,

where j ∈ {1, 2, 3} indexes the mode, ı̄t ≡
P3

τ=0 it−τ/4 and π̄t ≡
P3

τ=0 πt−τ/4 are 4-quarter

averages, and the shocks επt and εyt are each independent standard normal random variables.
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Parameter Constant Mode 1 Mode 2 Mode 3
α0 0.6922 0.2402 0.4236 1.2387
α1 −0.1033 0.1654 −0.2219 -0.6911
α2 0.2786 1.0388 0.0714 0.5491
α3 0.1284 0.1514 0.2755 −0.0304
β1 1.1591 1.0015 1.0302 1.8943
β2 −0.2521 −0.0853 −0.1069 −1.0312
β3 −0.0990 −0.3244 0.0315 −0.1011
cπ 0.9962 1.5504 0.1798 0.1562
cy 0.8132 1.2696 0.1447 0.2365

Table 4.1: Estimates of the constant-coefficient and three-mode Rudebusch-Svensson model.

Table 4.1 reports our estimates of the peak of the posterior, with the OLS estimates of the

constant-coefficient version of the model for comparison. For the MJLQ model, we center our prior

distribution at the OLS estimates. Details of the estimation method and prior setting are given in

appendix F. Here we see that many of the coefficients differ substantially across modes. Perhaps

most notable is the large difference in volatility, as the standard deviations of the shocks (cπ and

cy) are from five to ten times larger in mode 1 than in the other two modes. In addition, the slope

of the Phillips curve, α3, ranges from a large positive response in mode 2 to a small negative value

in mode 3. Similarly, the slope of the IS curve, β3, ranges from a relatively large negative response

in mode 1 to a small positive one in mode 2. The large differences in these key model coefficients

lead to sharp differences in the optimal policy across modes, as we show below.

The estimated probabilities of being in the different modes are shown in figure 4.1. The plots

show both the filtered estimates, in which the distribution in period t is estimated using data

only up to t, as well as the smoothed estimates, in which the distribution in period t is estimated

using data for the whole sample. Clearly, there are more fluctuations in the filtered estimates than

in the smoothed ones, since by looking backward we can better assess the probability of being

in a particular regime. We see that, for the early part of the sample, the economy was mostly

assessed to be in the more volatile mode 1. From the early 1980s onward, the modes 2 and 3 were

more prominent, as the volatility moderated. The estimated transition matrix P and its implied

stationary distribution p̄ are

P =

⎡⎣ 0.8331 0.0921 0.0748
0.0305 0.9194 0.0501
0.0360 0.0541 0.9100

⎤⎦ , p̄ =
£
0.1652 0.4483 0.3866

¤
.

From the standpoint of these estimates, the early part of the sample is a bit of an aberration, as

mode 1 has the lowest weight in the stationary distribution. Thus, although similar episodes will
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Figure 4.1: Estimated probabilities of being in the different modes. Smoothed (full-sample) infer-

ence is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

re-occur in the model, they would tend to be balanced with longer periods of more tranquility.

We let the period loss function be

Lt = π2t + λy2t + ν(it − it−1)2. (4.2)

Hence, the vector of target variables is Yt ≡ (πt, yt, it− it−1)0 and the weight matrix Λ is a diagonal
matrix with the diagonal (1, λ, ν)0. We set the weights to λ = 1 and ν = 0.2. We set the discount

factor in the intertemporal loss function to δ = 1. We then solve for the optimal policy function,

it = FijXt, (j = 1, 2, 3),

where Xt ≡ (πt, πt−1, πt−2, πt−3, yt, yt−1, it−1, it−2, it−3)0, using the methods described above.
The optimal policy functions are given in table 4.2. In figure 4.2, we plot the distribution of the

impulse responses of inflation, the output gap, and the instrument rate to the two shocks in the

model. In particular, for 10,000 simulation runs, we first draw an initial mode of the Markov chain

from its stationary distribution, then simulate the chain for 50 periods forward, tracing out the

impulse responses. The figure plots the mean response at each date, along with 30% quantiles of
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the empirical distribution. More precisely, the dark, medium, and light grey band show 30%, 60%,

and 90% probability bands, respectively, with 5% of the distribution above the light gray band and

5% below. Also shown for comparison are the responses under the optimal policy for the estimated

constant-coefficient model given above.9

Mode πt πt−1 πt−2 πt−3 yt yt−1 it−1 it−2 it−3
Constant 0.9921 0.3465 0.4273 0.1381 1.7974 −0.4639 0.3713 −0.0899 −0.0456
Mode 1 1.4796 1.3130 1.0760 −0.2853 1.9834 −0.4890 −0.1723 −0.3271 −0.1834
Mode 2 −0.1510 −0.1739 −0.2132 −0.2077 −1.0595 −0.2824 0.3311 −0.0840 −0.0326
Mode 3 1.1526 0.0988 0.5878 0.0309 4.6475 −4.6851 −0.0205 −0.2364 −0.1245

Table 4.2: Optimal policy functions for the constant-coefficient and three-mode Rudebusch-

Svensson model.

Both the table and the figure illustrate that the model uncertainty leads to a change in the

nature of policy. Compared to the constant-coefficient model, most of the mass of the distribution

of the impulse responses lies closer to zero. This is particularly the case for the instrument-rate

responses. Thus our results here are in accord with the common intuition based on Brainard [6], that

model uncertainty should lead to less aggressive (that is, smaller in magnitude) policy responses.10

Interestingly, the probability distributions of responses are asymmetric, with the mean impulse

responses different from the median responses (the latter lie inside the dark gray bands). In many

cases, the tails of the distributions appear relatively wide. This is perhaps most noticeable in the

responses of inflation to the two shocks. Here again the bulk of the distribution lies below the

constant-coefficient model responses, but there is a significant right tail showing relatively large

and persistent effects of the initial shock. These results illustrate that with model uncertainty

policy makers must go beyond forecasting the means of target variables and consider the entire

forecast distributions, and our approach makes this process quite manageable.

4.2 An estimated forward-looking model

We now consider the effects of uncertainty in a model with both forward- and backward-looking

variables. The structural model is a mode-dependent simplification of the model of the US economy

9 The shocks are επ0 = 1 and εy0 = 1, respectively, for the two different columns in the figure. Thus the shocks
to inflation and the output gap in period 0 are mode dependent and equal to cπj and cyj (j = 1, 2, 3), respectively.
We initialize by drawing from the stationary distribution, so the distribution of modes in each period remains the
stationary distribution.
10 Of course, this is only a loose parallel, as the Brainard result need not apply for the type of uncertainty considered

here, especially since the policy is here allowed to be mode-dependent.
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Figure 4.2: Unconditional impulse responses to shocks under the optimal policy for the mode-

dependent Rudebusch-Svensson model. Solid lines: Mean responses. Dark/medium/light gray

bands: 30/60/90% probability bands. Dashed lines: Optimal responses for the constant-coefficient

model.

of Lindé [24] and is given by

πt = ωfjEtπt+1 + (1− ωfj)πt−1 + γjyt + cπjεπt, (4.3)

yt = βfjEtyt+1 + (1− βfj)
£
βyjyt−1 + (1− βyj)yt−2

¤− βrj (it −Etπt+1) + cyjεyt,

it =
¡
1− ρ1j − ρ2j

¢ ¡
γπjπt + γyjyt

¢
+ ρ1jit−1 + ρ2jit−2 + cijεit,

where an instrument rule is added to the Phillips curve and the aggregate-demand relation.11 Again,

j ∈ {1, 2, 3} indexes the mode, and the shocks επt, εyt, and εit are independent standard normal

random variables. We use the same data set as above, and again estimate a three-mode MJLQ

model along with a constant-coefficient model using Bayesian methods. Once again, we explicitly

state our prior settings in appendix F. We use the same prior for the structural coefficients in the

constant-coefficient and MJLQ cases, and the priors for the Markov chain coefficients are the same

11 Because of the forward-looking expectations in the model, estimation of the model requires that a policy rule
be specified.
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as in the RS model.

Parameter Constant Mode 1 Mode 2 Mode 3
ωf 0.4908 0.4644 0.3380 0.3198
γ 0.0081 0.0112 0.0786 0.0312
βf 0.4408 0.0889 0.2356 0.3911
βr 0.0048 0.0396 0.1395 0.0000
βy 1.1778 1.1119 1.1570 1.2312
ρ1 0.9557 1.1486 0.8525 0.7967
ρ2 −0.0673 −0.2340 −0.1172 0.0516
γπ 1.3474 1.2439 −0.0643 2.3427
γy 0.7948 0.5799 0.9717 −0.3101
cπ 0.5923 0.4861 0.7232 0.9801
cy 0.4162 0.4744 0.5083 0.6720
ci 0.9918 0.2995 0.3930 1.2341

Table 4.3: Estimates of the constant-coefficient and three-mode Lindé model.

Table 4.3 reports our estimates, with the estimates from the constant-coefficient version of

the model for comparison. Our constant-coefficient estimates are similar to those in Lindé [24],

with the main difference that we find much smaller estimates of γ and βr. At least some of the

difference may be due to our different data series and sample period. We again see that many

of the key structural coefficients change substantially across modes, particularly the instrument-

rule coefficients and shock standard deviations. For example, mode 3 has the largest shocks to all

variables, while mode 1 has the smallest. The instrument-rule coefficients γπ and γy in mode 1 are

relatively close to those of the constant-coefficient model, while in mode 3 the response to inflation,

γπ, is actually negative.

The estimated transition matrix P and its implied stationary distribution p̄ are given by

P =

⎡⎣ 0.9403 0.0340 0.0257
0.0625 0.8924 0.0451
0.0695 0.0576 0.8729

⎤⎦ , p̄ =
£
0.5229 0.2741 0.2030

¤
.

Thus mode 1 is the most persistent and has the largest mass in the invariant distribution. This is

consistent with our estimation of the modes as shown in figure 4.3. Again, the plots show both the

smoothed and filtered estimates. We see that mode 1 was experienced the most throughout much

of the sample, holding for most of the sample until 1970 and then most of time after 1985. The

volatile mode 3 held for much of the early 1970s and early 1980s, alternating with the intermediate

mode 2.

We again solve for the optimal policy function,

it = FijX̃t,
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Figure 4.3: Estimated probabilities of being the different modes. Smoothed (full-sample) inference

is shown with solid lines, while filtered (one-sided) inference is shown with dashed lines.

Mode πt−1 yt−1 yt−2 it−1 επt εyt Ξπ,t−1 Ξy,t−1
Constant 0.3552 1.0714 −0.2231 0.7853 0.6975 2.2437 0.0024 0.0182
Mode 1 0.8915 2.0766 −0.2338 0.5962 1.6644 2.2929 0.0037 0.0066
Mode 2 1.4625 1.6985 −0.2666 0.3271 2.2092 2.2216 0.0090 0.0393
Mode 3 0.8348 0.7955 −0.2085 0.8016 1.2273 1.4812 0.0006 0.0021

Table 4.4: Optimal policy functions of the constant-coefficient and three-mode Lindé model.

where X̃t ≡ (πt−1, yt−1, yt−2, it−1, επt, εyt,Ξπ,t−1,Ξy,t−1)0, using the methods described above. We
use the same loss function as for the backward-looking model. The optimal policy functions are

given in table 4.4. In figure 4.4, we plot the distribution of the impulse responses of inflation, the

output gap, and the instrument rate to the two structural shocks in the model. Again we consider

10,000 simulations of 50 periods, and plot the mean responses along with 30% probability bands

and the corresponding optimal responses for the constant-coefficient model.12

Again, the model uncertainty leads to a change in the nature of policy. Compared to the

constant-coefficient case, most of the mass of the distribution of impulse responses is consistent

12 Again, the shocks are επ0 = 1 and εy0 = 1, respectively, so the shocks to the inflation and output-gap equations
in period 0 are mode-dependent and equal to cπj and cyj (j = 1, 2, 3), respectively. The distribution of modes in
period 0 (and thereby all periods) is again the stationary distribution.

17



0 10 20 30 40 50
0

0.5

1

Response of π to π shock

Mean
Constant

0 10 20 30 40 50
−0.8
−0.6
−0.4
−0.2

0
Response of y to π shock

0 10 20 30 40 50

0

2

4

6
Response of i to π shock

0 10 20 30 40 50
0

0.2

0.4

Response of π to y shock

0 10 20 30 40 50

0

0.5

1

Response of y to y shock

0 10 20 30 40 50
0
1
2
3

Response of i to y shock

Figure 4.4: Unconditional impulse responses to shocks under the optimal policy for the mode-

dependent Lindé model. Solid lines: Mean responses. Dark/medium/light grey bands: 30/60/90%

probability bands. Dashed lines: Optimal responses for the constant-coefficient model.

with earlier peak effects of the shocks which more rapidly return to zero. This is particularly the

case for the instrument-rate responses, although the relative magnitudes differ somewhat with the

type of the shock. For shocks to the output gap, most of the mass of the instrument-rate response

distribution under model uncertainty lies below the response for the constant-coefficient model. For

shocks to inflation, most of the distribution is consistent with larger and more prompt instrument-

rate responses than for the constant-coefficient model. Once again, the distribution of the impulse

responses is asymmetric, with the mean responses different from the median responses (the latter

lie inside the dark gray bands), and again the tails of the distributions appear relatively wide.

As in the RS model above, this is perhaps most noticeable for the inflation responses, where the

center of the distribution lies below the constant-coefficient case but there is a relatively large right

tail showing more significant and persistent responses. However in the Lindé model, the long-run

behavior is better anchored as the distributions of responses in all cases collapse tightly around

zero after roughly thirty quarters.
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5 Arbitrary time-varying instrument rules and instrument paths

In this section we derive the dynamics of the system, including the distribution of forecasts of

relevant future variables, for arbitrary time-varying instrument rules. This includes time-varying

instrument paths such as a constant instrument rate for arbitrary (but finitely many) periods,

analogous to the constant-rate forecasts of the some central banks. We also specify the optimization

problem for instrument rules in a given class. Furthermore, as we shall note, although we explicitly

only deal with instrument rules, our method generalizes to arbitrary policy rules, including targeting

rules (Svensson and Woodford [39]).

5.1 Setup

Consider implementing an arbitrary time-varying instrument rule during period t = 0, 1, ..., T − 1
and implementing the optimal policy function from period T on. Let the arbitrary instrument rule

be conditionally linear but otherwise of the rather general form

it = FX̃tjt
X̃t + Fxtjtxt (0 ≤ t ≤ T − 1), (5.1)

where X̃t denotes the nX̃ × 1 vector (X 0
t,Ξ

0
t−1)0, FX̃tjt

and Fxtjt are (ni × nX̃) and (ni × nx)

matrices, respectively, which depend on both the period t and the mode jt. For added generality,

we also allow a possible response to the forward-looking variables, xt. Indeed, we could consider

any arbitrary policy rule, including targeting rules, of the form

EtH3,t+1,jt+1xt+1 = A31tjtX̃t +A32tjtxt +B3tjtit (0 ≤ t ≤ T − 1), (5.2)

where H3tj , A31tj , A32tj , and B3tj are potentially time-varying and mode-dependent matrices of the

appropriate dimension (in particular, having ni rows and giving rise to ni independent equations,

which is required to determine the instruments in each period).

If Fxtjt ≡ 0, (5.1) is an explicit instrument rule; that is, the instrument responds to predeter-
mined variables only.13 If Fxtjt 6≡ 0 (Fxtjt 6= 0 for some mode jt with positive probability), it is

an implicit instrument rule; that is, the instrument depends also on forward-looking variables. In

the latter case, there is a simultaneity problem, in that the instrument and the forward-looking

variables are simultaneously determined. Thus, an implicit instrument rule can be interpreted

as an equilibrium condition. As discussed in Svensson [36] and Svensson and Woodford [39], the

implementation of an implicit instrument rule is problematic, since in practice a central bank can
13 Note that policy functions and explicit instrument rules are the same.
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literally only respond to predetermined variables.14 We disregard these problems here, and consider

(5.1) as just another equilibrium condition added to equations (2.1) and (2.2).

We can write (5.1) in the more general form

0 = FX̃tjt
X̃t + Fı̃tjt ı̃t (0 ≤ t ≤ T − 1), (5.3)

where

Fı̃tjt ≡ [Fxtjt − Ini 0ni×nx ], (5.4)

where ı̃t ≡ (x0t, i0t, γ0t)0 as in (2.9). Assume that the policy function shifts permanently to the

optimal policy function (2.13) in period T .15 This is a reasonably general formulation. Since one of

the elements of Xt may be unity, (5.3) includes the case of an exogenous time-varying and mode-

dependent instrument level for the first T periods, including the case of a constant instrument

level.

It follows from section 2 that there exists Ṽj and w̃j (j = 1, ..., n) such that, for t ≥ T , the

intertemporal loss for the dual saddlepoint problem satisfies

X̃ 0
tṼjtX̃t + w̃jt ≡ maxγt

min
(xt,it)

{L̃t + δEt(X̃
0
t+1Ṽjt+1X̃t+1 + w̃jt+1)} (t ≥ T )

subject to

X̃t+1 = Ãjt+1X̃t + B̃jt+1 ı̃t + C̃jt+1εt+1 (5.5)

and X̃t given (X̃t, L̃t, ı̃t, Ãjt+1 , B̃jt+1 , and C̃jt+1 are defined as in (2.11) and (2.12)). Recall that

this dual intertemporal loss is associated with the dual loss function, not the original loss function.

The recursive saddlepoint method of Marcet and Marimon [26] provides a simple and compact

way to incorporate the fact that the equilibrium forward-looking variables xt and the Lagrange

multiplier Ξt−1 will be affected by the constraint (5.1). Working backward, for t = T−1, T−2, ..., 0,
we define Ṽtjt and w̃tjt recursively from the saddlepoint problems:

X̃ 0
tṼtjtX̃t+w̃tjt ≡ max

(γt,ϕt)
min
(xt,it)

(
L̃t + ϕ0t

³
−FX̃tjt

X̃t − Fı̃tjt ı̃t

´
+ δEt(X̃

0
t+1Ṽt+1,jt+1X̃t+1 + w̃t+1,jt+1)

)
(0 ≤ t ≤ T−1), (5.6)

subject to (5.3) and (5.5), where ṼTjt ≡ Ṽjt and w̃Tjt ≡ w̃jt . Here, ϕt can be interpreted as an

ni × 1 vector of Lagrange multipliers for the ni equations (5.3). Formally, (5.3) is added to the
14 In practice, because of a complex and systematic decision process (Brash [7], Sims [31], Svensson [34]), the

information modern central banks respond to is at least a few days old, and most of the information is one or several
months old.
15 Alternatively, the policy rule could shift to an arbitrary time-invariant policy rule for which a unique solution

exists.
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equations (2.2) and the Lagrange multiplier γt is augmented to (γ
0
t, ϕ

0
t)
0. Normally, the recursive

saddlepoint method would then involve augmenting the Lagrange multiplier Ξt−1 to (Ξ0t−1,Φ0t−1)0,

with the added dynamic equation

Φt = ϕt.

However, the augmented period loss is here

L̂t ≡ L̃t + ϕ0t
³
it − FX̃tjt

X̃t − Fxtjtxt

´
. (5.7)

Since the analogue of EtHt+1xt+1, the left side of (5.3), is zero, there is no term including Φ0t−1 aug-

mented to the period loss. Hence, we do not need to consider Φt−1 as an additional predetermined

variable here.16

The solution determines the time- and mode-dependent optimal policy function F̃tjt ,

ı̃t ≡
⎡⎣ xt

it
γt

⎤⎦ = F̃tjtX̃t ≡
⎡⎣ F̃xtjt

F̃itjt
F̃γtjt

⎤⎦ X̃t (0 ≤ t ≤ T − 1),

where of course it in ı̃t satisfies (5.1). The interesting part of the solution is

xt = F̃xtjtX̃t, (5.8)

and F̃xtjt and F̃itjtwill satisfy

F̃itjt ≡ FX̃tjt
+ FxtjtF̃xtjt .

There is also a solution for ϕt, ϕt = F̃ϕtjtX̃t, but that solution is not needed for the intertemporal

loss and the dynamics. It follows that the dynamics of X̃t satisfies

X̃t+1 = Mtjtjt+1X̃t + C̃jt+1εt+1 (0 ≤ t ≤ T − 1),
X̃t+1 = Mjtjt+1X̃t + C̃jt+1εt+1 (t ≥ T )

where

Mtjtjt+1 ≡ Ãjt+1 + B̃jt+1F̃tjt (0 ≤ t ≤ T − 1),
Mjtjt+1 ≡ Ãjt+1 + B̃jt+1F̃jt (t ≥ T ).

The intertemporal loss in period 0 for the dual period loss function (5.7) will be given by

X̃ 0
0Ṽ0j0X̃0 + w̃0j0 .

16 If we were considering the more general policy rule (5.2), the term EtH3,t+1,jt+1xt would require us to also
consider Φt−1 as an additional predetermined variable.
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However, this is not the intertemporal loss in period 0 for the original period loss function, (2.4).

In order to find that, note that the intertemporal loss for the optimal policy for t ≥ T will be given

by

X̃ 0
tVjtX̃t +wjt ,

where the matrix Vj will satisfy the Lyapunov function (2.17) and the scalar wj will satisfy (2.18).

For t = T − 1, T − 2, ..., 0, we can define Vtj and wtj recursively from the equations

W̄tj ≡
⎡⎣ I 0

F̃xtj
F̃itj

⎤⎦0Wj

⎡⎣ I 0

F̃xtj
F̃itj

⎤⎦ .
Vtj ≡ W̄tj + δ

X
k

PjkM
0
tjkVt+1,kMtjk,

wtjt ≡ δ
X
k

Pjk[tr(Vt+1,kC̃kC̃
0
k) + wt+1,k],

where VTj ≡ Vj and wTj ≡ wj .17

Then, the intertemporal loss in period 0 for the original period loss function (5.7) is

X̃ 0
0V0j0X̃0 + w0j0 .

This corresponds to the loss under commitment in a timeless perspective when the instrument is

restricted to fulfill (5.1) and shifts to the optimal policy in period T . That is, when the restriction

(5.1) is removed in period T and optimal policy is feasible, the commitment is not from scratch

in period T (in which case ΞT−1 would equal zero) but takes into account the previous Lagrange

multiplier ΞT−1. In principle, this formulation also allows us to consider nonzero Ξ−1 in period 0.

The method described above also works for the backward-looking case, in which case

L̃t ≡ Lt

and there are no variables γt, xt, and Ξt−1 (equivalently, they are identically equal to zero). Then

the intertemporal loss for the saddlepoint problem is equal to the intertemporal loss for the original

problem.

Details about the computation of F̃tjt and Ṽtjt are provided in appendix G.

17 Note that we could also determine Vtjt and wtjt relying on the analogue of the identity (2.19) for this case.
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5.2 Optimization

Let Ft ≡ {FX̃tjt
, Fxtjt}njt=1 for 0 ≤ t ≤ T − 1, and let F ≡ {Ft}T−1t=0 denote the time- and mode-

dependent policy functions for 0 ≤ t ≤ T − 1. We may assume that there is a feasible set F of

such policy functions, so F ∈ F . Then we can, in principle, consider choosing the policy functions
optimally according to

min
F∈F

{X̃ 0
0V0j0(F )X̃0 + w0j0(F )}, (5.9)

where the notation emphasizes that V0jt and w0jt will depend on F . With the policy problem

formulated this way, the optimal F would depend on X̃0 (including Ξ−1) and j0 as well as the

covariance matrix C̃kC̃
0
k of the shocks C̃kεt+1 to X̃t+1 in mode jt+1 = k (k = 1, ..., n). That is,

certainty equivalence does not necessarily hold for restricted classes of policy functions. If the class

of time- and mode-dependent policy functions is sufficiently big, it would include the optimal policy

function (2.13). If we were to add 1
δΞ−1Hj0x0 to the period loss function in period 0, the optimal

policy function would then be a solution to (5.9).

Note that, if F is such that Fxtjt 6= 0, the optimal F is generally not unique. The reason is that
for (5.8), if

it = FX̃tjt
X̃t + Fxtjtxt

is a solution, so is

it = FX̃tjt
X̃t + Fxtjtxt + ζ 0(xt − F̃xjtX̃t) = (FX̃tjt

− ζ 0F̃xjt)X̃t + (Fxtjt + ζ 0)xt

for any nx × 1 vector ζ.

6 Arbitrary time-invariant instrument rules and optimal restricted

instrument rules

In this section we derive the dynamics of the system, including the distribution of forecasts of

relevant future variables, for arbitrary time-invariant instrument rules. We also specify the opti-

mization problem for time-invariant instrument rules in a given class. While this is a special case of

the previous section, it is important in its own right and, in particular, allows a simpler algorithm.
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6.1 Setup

Consider an arbitrary time-invariant instrument rule,

it = FX̃jt
X̃t + Fxjtxt (jt = 1, ..., n), (6.1)

combined with (2.1) and (2.2). We can consider this as a special case of the time-varying instrument

rules in section 5, if we let FX̃tjt
= FX̃jt

and Fxtjt = Fxjt and apply the algorithm of that section

by iterating from t = T > t0 to t = t0 but instead of stopping at t0 = 0 letting t0 → −∞. In
practice, the iteration would stop when F̃tjt and Ṽtjt have converged to F̃jt and Ṽjt . Partitioning

F̃jt conformably with xt, it, and γt, we have

xt = F̃xjtX̃t,

it = FX̃jt
X̃t + FxjtF̃xjtX̃t ≡ F̃ijtX̃t,

X̃t+1 = Mjtjt+1X̃t + C̃jt+1εt+1 (jt = 1, ..., n).

This gives rise to a probability distribution of X̃t+τ , xt+τ , and it+τ (τ ≥ 0) conditional on X̃t

and jt. This solution will be associated with a value function for the original period loss function,

X̃ 0
tVjtX̃t +wjt .

6.2 Optimization

For a given restricted class F of instrument rules, we can consider the optimal restricted (time-

invariant) instrument rule F̂ , which minimizes an intertemporal loss function. This intertemporal

loss function could be the conditional loss in a given period, say period 0,

F̂ ≡ arg min
F∈F

{X̃ 0
0Vj0(F )X̃0 + wj0(F )},

where the notation takes into account that Vj0(F ) and wj0(F ) depend on F ∈ F . This would
make the optimal restricted time-invariant instrument rule depend on X̃0, j0, and the covariance

matrices C̃jC̃
0
j of the shocks C̃jεt+1 to X̃t+1 in mode j = 1, ..., n. Alternatively, the intertemporal

loss function could be the unconditional mean of the period loss function:

F̂ = arg min
F∈F

E[Lt].

Note that

E[Lt] = (1− δ)E[X̃ 0
tVjt(F )X̃t + wjt(F )].
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Furthermore, the unconditional and conditional intertemporal loss are approximately the same

when the intertemporal loss is scaled by 1− δ and δ is close to one,

lim
δ→1−

Et

∞X
τ=0

(1− δ)δτLt+τ = E[Lt] = lim
δ→1−

(1− δ)E[wjt ] = E[tr(VjtC̃jtC̃
0
jt)] =

X
j

p̄jtr(VjC̃jC̃
0
j),

where we recall that p̄ = (p̄1, ..., p̄n) is the stationary distribution of modes.

6.3 Optimal Taylor-type instrument rules in a forward-looking model

We now apply the methods outlined above to derive optimal Taylor-type instrument rules in the

estimated forward-looking model from section 4.2 above. In particular, we consider simple implicit

instrument rules of the general form (disregarding the implementation problems mentioned above):

it = fijtit−1 + fπjtπt + fyjtyt. (6.2)

This is a Taylor rule with interest-rate smoothing, whose coefficients may depend on the mode jt

in period t. As special cases, we consider mode-independent Taylor rules, where the coefficients are

constrained to be the same in all modes, and original Taylor rules without the smoothing coefficient

fi. We use the unconditional mean of the period loss, E[Lt], as the intertemporal loss function.

Note that, compared to (6.1), (6.2) implies a response to the predetermined variables Xt rather

than to X̃t ≡ (X 0
t,Ξ

0
t−1)0. That is, we need not consider the Lagrange multiplier Ξt−1. Then the

equilibrium solution will be of the simpler form

xt = GjtXt,

it = (FXjt + FxjtGjt)Xt ≡ FjtXt.

Xt+1 = (A11jt+1 +A12jt+1Gjt +B1Fjt)Xt + Cjt+1εt+1 ≡ Mjtjt+1Xt + Cjt+1εt+1,

and not involve Ξt−1. This allows us to use a somewhat simpler algorithm than that discussed

above. In appendix H, we discuss in more detail this simpler algorithm for the calculations of the

optimal time-invariant instrument rules and the associated losses.

The results are summarized in table 6.1, where we report the optimal response coefficients

of the different forms of the instrument rules for the constant-coefficient and MJLQ versions of

the model. Interestingly, we find that the optimal Taylor-type rules that are constrained to have

the same responses in all modes are more aggressive in the MJLQ model than in the constant-

coefficient model. This contrasts with the impulse responses for the optimal policy shown in table

4.4 above, where we found that the optimal policy in the MJLQ model had on average a slightly
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Mode it−1 πt yt Loss

Constant-coefficient model
Optimal policy function 11.10
- - 2.93 1.69 15.13
- 0.89 0.80 0.83 11.67

MJLQ model
Optimal policy function 14.62

All modes - 3.97 2.07 20.96
Mode 1 - 3.01 3.10
Mode 2 - 6.39 2.85 18.09
Mode 3 - 1.94 0.86
All modes 0.73 1.60 1.49 16.18
Mode 1 0.69 1.27 1.78
Mode 2 0.87 3.06 2.40 15.32
Mode 3 0.81 1.16 0.83

Table 6.1: Optimal Taylor-type instrument rules for the estimated three-mode Lindé model.

more aggressive inflation response but a more attenuated output-gap response than in the constant-

coefficient model. Similar conclusions apply for both the original and smoothed Taylor rules. This

increased aggressiveness is further illustrated in figure 6.1. The figure shows the loss in the constant-

coefficient and MJLQ models for mode-independent original and smoothed Taylor rules. For both

smoothed and original Taylor rules, the loss function is more sensitive to variations in the inflation

response coefficient of the policy rule. For both kinds of rules, performance in the MJLQ model is

enhanced by more aggressive responses.

These results suggest that constraining the rules to react in the same way in all modes may push

the optimal simple rules towards more aggressive responses. Moreover, as table 6.1 shows, the mode-

independent original Taylor rules are suboptimal by a fairly sizeable margin. This stands in contrast

to the constant-coefficient model, where the smoothed Taylor rule has a loss only slightly higher

loss than the fully optimal policy. Thus we also consider mode-dependent original and smoothed

Taylor rules, which are reported in the table. There we see that there is significant variation in

the responses across modes, with mode 3 having the weakest responses (particularly for the output

gap), while mode 2 has the strongest (particularly for the smoothed Taylor rules). In at least two

of the three modes, the rules are again more aggressive than in the constant-coefficient model.

Above we saw that the effects of uncertainty on policy, captured by comparison of the constant

coefficient model to the MJLQ model, had ambiguous effects on optimal policy. In contrast, when

the instrument rule is constrained to respond to fewer variables and not be history-dependent (that

26



−100 −100
−40 −40
−25 −25
−20 −20

−19

−19 −19

−18

−18

−18

−17

−17

−17

−16

−16

−16−15.5

−15.5

−15.2

Original Taylor Rule, Const.−coef. model

R
es

po
ns

e 
to

 in
fl

at
io

n

Response to output gap
0 1 2 3

1

2

3

4

5

−500 −500
−100 −100

−40
−40

−30

−30

−25

−25

−
24

−24

−2
3

−23

−22

−22

−21

Original Taylor Rule, MJLQ model

R
es

po
ns

e 
to

 in
fl

at
io

n

Response to output gap

−500 −500
−100 −100

−40

−40

−
30

−30

−25

−25

−2
4

−24

−2
3

−23

−2
2

−22

−21

0 1 2 3
1

2

3

4

5

−2
5

−2
0

−20

−
17

−17

−
16

−1
6

−16

−
15

−15

−15

−1
4

−14

−14−1
3

−
13

−13

−1
2.5

−12.5

−1
2

Smoothed Taylor Rule, f
i
 = 0.8, Const.−coef. model

R
es

po
ns

e 
to

 in
fl

at
io

n

Response to output gap
0 1 2 3

0.5

1

1.5

2

2.5

3

−
100

−4
0

−40

−2
5

−25

−2
1

−21

−21

−20

−2
0

−20

−19

−1
9

−19

−1
8

−
18

−18

−1
7

−17

−16.5

Smoothed Taylor Rule, f
i
 = 0.8, MJLQ model

R
es

po
ns

e 
to

 in
fl

at
io

n

Response to output gap
0 1 2 3

0.5

1

1.5

2

2.5

3

Figure 6.1: Contours of the loss function for the Lindé model under mode-independent Taylor-type

instrument rules. Left column: Constant-coefficient model. Right column: MJLQ model. Top row:

Original Taylor rules. Bottom row: Smoothed Taylor rules with fi = 0.8.

is, not respond to Ξt−1), uncertainty leads to more aggressive responses.

7 Unobservable modes

In this section we consider the case when the modes are not observable, showing how the optimal

policy and value functions can be expressed as a function of the probability distribution of modes.

Then we apply the results in our two estimated examples. As noted in the introduction, we do

not consider the case where policymakers update their subjective distribution over modes based on

observations. While this case is important, the learning which it implies introduces nonlinearities

which destroy the tractability of the MJLQ framework. Instead, we assume here that the subjective

distribution simply evolves according to the exogenous transition probabilities.

27



7.1 Optimal policy

Assume that central bank cannot observe the actual mode in period t and but believes that the

distribution of modes in period t is pt ≡ (p1t, ..., pnt). Conditional on pt in period t, the distribution
of the modes in period t+ τ is given by

pt+τ = ptP
τ (τ ≥ 0). (7.1)

With forward-looking variables, the dual model can be written

X̃t+1 = Ãjt+1X̃t + B̃jt+1 ı̃tjt + C̃jt+1εt+1,

where

ı̃tjt ≡
⎡⎣ xtjt

it
γtjt

⎤⎦ .
Note that it will only depend on pt and be independent of jt, since the instrument must reflect the

central bank’s information, whereas xt and γt will depend on both pt and jt. Appendix I shows

that the optimal policy function can be written

ı̃tjt ≡
⎡⎣ xtjt

it
γtjt

⎤⎦ =
⎡⎣ Fx(pt)jt

Fi(pt)
Fγ(pt)jt

⎤⎦ X̃t ≡ F (pt)jtX̃t.

The dynamics of the predetermined variables will follow

X̃t+1 =M(pt)jtjt+1X̃t + C̃jt+1εt+1,

where

M(pt)jk ≡ Ãk + B̃kF (pt)j .

The value function for the original problem can be written

X̃ 0
tV (pt)X̃t + w(pt).

Appendix I shows how the functions F (pt)j , V (pt), and w(pt) can be computed by modifying

the iterations specified in appendix B. Computing the functions F (pt)j and V (pt) for all feasible

values of pt requires standard function-approximation methods. However, as shown in appendix B,

computing the functions for a particular value pt = p̃t is straightforward.18

18 Consider the degenerate distributions, pt = ej where ej is the distribution where pj = 1, pk = 0 (k 6= j). That
is, pt = ej corresponds to the case when the mode j is observed in period t. Note that V (ej) 6= Vj and F (ej)j 6=
Fj , where Vj and Fj (j = 1, ..., n) denote the value function and optimal policy function matrices for the case when
the modes are observed in each period. The reason is that even if pt = ej and the mode is observed in this period,
the distribution of the modes in the next period will be pt+1 = ejP = (Pj1, Pj2, ..., Pjn) and the modes will not be
observed in the next period. In contrast, Vj and Fj are derived under the assumption that the modes are observed
in this period as well as every future period.
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Consider now the optimal decision of a central bank in a given period t, with a given realization

of the predetermined variables, X̃t, and a given probability distribution of the modes, pt. The

probability distribution of the modes τ periods ahead is then given by (7.1). It follows that the

optimal policy function for period t+ τ (τ ≥ 0) is time-varying and can be written

it+τ = Fi,t+τ X̃t+τ (τ ≥ 0),

where

Fi,t+τ ≡ Fi(ptP
τ ).

Hence, this situation is a special case of that discussed in section 5, where the policy function is time-

varying but independent of the mode. That is, the instrument rule in (5.1) satisfies FX̃,t+τ,jt+τ
≡

Fi,t+τ and Fx,t+τ,jt+τ ≡ 0.

7.2 Examples

In this section we reconsider the two examples from section 4 above, now under the assumption

that the modes are unobservable. We suppose that the central bank has an initial distribution over

the modes which is equal to the stationary distribution p̄. From equation (7.1), we see that the

stationary distribution is also the central bank’s distribution of the future modes. We then apply

the algorithms described in appendix I to find the optimal policies. As in the observable-mode

case, we represent the solutions via impulse responses from 10,000 simulations, drawing the initial

mode from the stationary distribution and tracing out the distribution as the modes vary (now in

an unobservable manner) over time.

Case πt πt−1 πt−2 πt−3 yt yt−1 it−1 it−2 it−3
Constant 0.9921 0.3465 0.4273 0.1381 1.7974 −0.4639 0.3713 −0.0899 −0.0456
Unobserved 1.1828 0.3610 0.7304 0.1861 1.9103 −1.0563 0.1538 −0.1573 −0.0758

Table 7.1: Optimal policy functions for the constant-coefficient and unobserved-mode versions of

the Rudebusch-Svensson model.

In table 7.1 we show the optimal policy functions for the constant-coefficient and unobservable-

mode versions of the RS model from section 4.1 above. In figure 7.1 we plot the impulse responses.

The distributions of the impulse responses are again asymmetric, with the mean impulse responses

different from the median ones. Compared to the observable-mode case in figure 4.2 above, we see

that the mean policy responses are longer lasting, if not noticeably more aggressive at the start.

However most of the center of the distribution is consistent with smaller responses, with the mean
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Figure 7.1: Unconditional impulse responses to shocks under the optimal policy for the unobserved-

mode version of the Rudebusch-Svensson model. Solid lines: Mean responses. Dark/medium/light

grey bands: 30/60/90% probability bands. Dashed lines: Optimal responses for constant coeffi-

cients.

reflecting the very wide tails. Further, although the impulse-response distributions become rela-

tively concentrated around zero over time, the tails remain quite wide after the full 50 quarters

shown. Since the coefficients of the mode-dependent optimal policy functions change dramati-

cally across modes, being restricted to mode-independent (although distribution-dependent) policy

functions limits the possibility to stabilize the economy and generates wider distributions.

Case πt−1 yt−1 yt−2 it−1 επt εyt Ξπ,t−1 Ξy,t−1
Constant 0.3552 1.0714 −0.2231 0.7853 0.6975 2.2437 0.0024 0.0182
Unobserved 1.0987 1.7439 −0.2497 0.4788 1.7987 2.1787 0.0059 0.0194

Table 7.2: Optimal policy functions of the constant-coefficient and unobserved-mode versions the

Lindé model.

In table 7.2 we show the optimal policy functions for constant-coefficient and the unobservable-

mode versions of the Lindé model from section 4.2 above. In figure 7.2 we plot the impulse responses.
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Figure 7.2: Unconditional impulse responses to shocks under the optimal policy for the unobserved-

mode version of the Lindé model. Solid lines: Mean responses. Dark/medium/light grey bands:

30/60/90% probability bands. Dashed lines: Optimal responses for constant coefficients.

As for the backward-looking model above, unobservability of the modes has some effects on the

distribution of impulse responses in this forward-looking model. Comparing to figure 4.4 above, we

see that, although the mean and median policy responses are similar in the two cases, the tails are

wider for responses to inflation shocks, whereas they are tighter for output-gap shocks. As we have

seen above, the optimal policy in the observable-mode case reacts more strongly in some of the

modes (particularly in mode 2) and hence the different distributions in the observable-mode case

reflects the variation in the policy across modes. In the unobservable-mode case, the optimal policy

averages across modes. This averaging leads to slower convergence of the distributions over time,

although not to the same sustained dynamics as in the backward-looking model. Apart from the

other differences across the forward and backward-looking models, it seems, also when the modes

cannot be observed, that expectations play a key role in stabilizing the economy.
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8 Conclusions

This paper demonstrates that the Markov jump-linear-quadratic (MJLQ) framework is a very flexi-

ble and powerful tool for the analysis and determination of optimal policy under model uncertainty.

It provides a very tractable way of handling the absence of certainty equivalence that is an impor-

tant aspect of model uncertainty. Our approach builds on the control-theory literature, for instance,

Costa, Fragoso, and Marques [11], which has explored many properties of the MJLQ framework.

That literature uses recursive methods and does not consider forward-looking variables. However

the forward-looking variables characteristic of rational expectations make the models nonrecursive.

We show that the recursive saddlepoint method of Marcet and Marimon [26] can be applied to this

problem which allows us to use recursive methods, and hence to solve relatively general models.

We show that our framework can incorporate a large variety of different configurations of un-

certainty. We provide algorithms to derive the optimal policy and value functions. We apply the

framework to two examples: regime-switching variants of two empirical models of the US econ-

omy, the backward-looking model of Rudebusch and Svensson [30] and the forward-looking New

Keynesian model of Lindé [24]. We also show how the dynamics of the model can be specified

for arbitrary time-varying or time-invariant policy functions, including exogenous instrument paths

such as a constant instrument rate, and we discuss how to optimize over restricted instrument

rules. Finally, we show how the framework an be adapted to a situation with unobservable modes,

arguably the most realistic situation for policy. In the examples we study, we find some substantial

deviations from certainty equivalence. In some cases, we find support for the common intuition

that uncertainty should make policy more cautious, but this is not a general result. Overall, our

results illustrate the importance of considering the entire distribution of future outcomes.

The MJLQ framework makes it possible to provide advice on optimal monetary policy for a

large variety of different configurations of model uncertainty. The framework also makes it possible

to incorporate different kinds of central-bank judgment–information, knowledge, and views outside

the scope of a particular model–about the kind and degree of model uncertainty. Furthermore, the

framework can incorporate the kind of central-bank judgment about additive future deviations–

add factors–that is discussed in Svensson [36] and Svensson and Tetlow [38].

While the particular examples we study in this paper are informative, they are only a small

sample of the applications which can be analyzed with our approach. In addition to the further

examples outlined above and sketched in the paper, some natural applications would embed the
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different specifications of fully specified dynamic stochastic general equilibrium models as modes

in the MJLQ setting. We could thus incorporate uncertainty about the structure of the economy,

such as different forms of price or wage setting (as discussed in Levin, Onatski, Williams, and

Williams [23]). Alternative specifications could also capture uncertainty about the low-frequency

behavior of the key driving processes, which could describe potential productivity slowdowns (as

in, for example, Kahn and Rich [20]) or moderations in overall volatility (as in McConnell and

Perez-Quiros [27] and Stock and Watson [33]). This would help address a drawback of our results

so far, that the different modes are not readily interpretable in terms of fundamentals. Instead,

by having the modes represent different structural models there will be natural restrictions on the

parameters and how they co-move. This would allow us to study monetary policy with unknown

and potentially time-varying structural models.

Overall, our results point to some important changes from approaches considering additive

uncertainty. In the “mean forecast targeting” applications in Svensson [36] and Svensson and

Tetlow [38], certainty equivalence is preserved, since the uncertainty is restricted to additive future

stochastic deviations in the model’s equations. With certainty equivalence, only the means of

future variables matter for policy, and optimal policy can be derived as if there were no uncertainty

about those means. Furthermore, the optimal mean projection of future target variables and

the instrument can be calculated in one step, and those projections–including the optimal mean

instrument path– are the natural objects for policy discussion. There is no need to use recursive

methods, and there is no need to specify the optimal policy function for the policy makers (the

explicit policy function is also a high-dimensional vector that is not easy to interpret). Instead, the

policy discussion can be conducted with the help of computer-generated graphs of projections of the

target variables and the instrument under alternative assumptions, weights in the monetary-policy

loss function, and central-bank judgments.

In the absence of certainty equivalence, mean forecast targeting is in principle no longer suf-

ficient. The whole distribution of future target variables matters for policy, and the optimal in-

strument decision should in principle take this into account. The optimal policy plan should be

chosen such that the whole distribution, rather than the mean, of the future target variables “looks

good.” The central bank should engage in “distribution forecast targeting” rather than mean fore-

cast targeting. The application of the MJLQ framework in this paper to model uncertainty and

certainty non-equivalence indicates that recursive methods and the explicit policy function are rela-

tively more useful for the derivation of the optimal policy than under certainty equivalence, perhaps
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even necessary. Still, the resulting distributions of future target variables and instruments under

alternative assumptions can conveniently be illustrated and presented to policy makers in the form

of graphs, although graphs of distributions rather than of means.
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Appendix

A Incorporating central-bank judgment

In order to incorporate (additive) central-bank judgment as in Svensson [36], consider the model

Xt+1 = A11,t+1Xt +A12,t+1xt +B1,t+1it + Ct+1zt+1, (A.1)

EtHt+1xt+1 = A21,tXt +A22,txt +B2,tit, (A.2)

where zt, the (additive) deviation, is a an exogenous nz × 1 vector stochastic process. Assume that
zt satisfies

zt+1 = εt+1 +
TX
j=1

εt+1,t+1−j

for given T ≥ 0, where (ε0t, εt 0)0 ≡ (ε0t, ε0t+1,t, ..., ε0t+T,t)0 is a zero-mean i.i.d. random (T + 1)nz × 1
vector realized in the beginning of period t and called the innovation in period t. For T = 0,

zt+1 = εt+1 is a simple i.i.d. disturbance. For T > 0, the deviation is a version of a moving-average

process.

The dynamics of the deviation can be written∙
zt+1
zt+1

¸
= Az

∙
zt
zt

¸
+

∙
εt+1
εt+1

¸
,

where zt ≡ (Etz0t+1,Etz0t+2, ...,Etzt+T )0 can be interpreted as the central bank’s (additive) judgment
in period t and the (T + 1)nz × (T + 1)nz matrix Az is defined as

Az ≡
⎡⎣ 0nz×nz Inz 0nz×(T−1)nz
0(T−1)nz×nz 0(T−1)nz×nz I(T−1)nz
0nz×nz 0nz×nz 0nz×(T−1)nz

⎤⎦ ≡ ∙ 0 Az21

0 Az22

¸
;

in the second identity Az is partitioned conformably with zt and zt. Hence zt is the central bank’s

mean projection of future deviations, and εt can be interpreted as the new information the central

bank receives in period t about those future deviations.19

It follows that the model can be written in the state-space form (2.1) and (2.2) as⎡⎣ Xt+1

zt+1
zt+1

⎤⎦ = Â11,t+1

⎡⎣ Xt

zt
zt

⎤⎦+ Â12,t+1xt + B̂1,t+1it + Ĉt+1

∙
εt+1
εt+1

¸
,

EtHt+1xt+1 = Â21,t

⎡⎣ Xt

zt
zt

⎤⎦+A22,txt +B2,tit,

19 The graphs in Svensson [36] can be seen as impulse responses to εt.
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where

Â11,t+1 ≡
⎡⎣ A11,t+1 0 Ct+1Az21

0 0 Az21

0 0 Az22

⎤⎦ , Â21,t+1 ≡
⎡⎣ A21,t+1

0
0

⎤⎦ ,
B̂1,t+1 ≡

⎡⎣ B1,t+1
0
0

⎤⎦ , Ĉt+1 ≡
⎡⎣ 0 Ct+1

Inz 0
0 Inz

⎤⎦ ,
and the new predetermined variables are (X 0

t, z
0
t, z

t 0)0.

B An algorithm for the value function and optimal policy function

Consider the dual saddlepoint problem of (2.6) in period t, subject to (2.7), (2.8), and X̃t given.

Let us use the notation Zt = Zjt for any matrix Z that is a function of the mode jt, and let the

matrix W̃t = W̃jt be partitioned conformably with X̃t and ı̃t as

W̃t ≡
∙
Qt Nt

N 0
t Rt

¸
.

We use that the value function for the dual problem will be quadratic and can be written

X̃ 0
tṼtX̃t + w̃t,

where Ṽt is a matrix and w̃t a scalar. It will satisfy the Bellman equation

X̃ 0
tṼtX̃t + w̃t = max

γt
min
(xt,it)

n
X̃ 0
tQtX̃t + 2X̃

0
tNtı̃t + ı̃0tRtı̃t + δEt(X̃

0
t+1Ṽt+1X̃t+1 + w̃t+1)

o
,

where X̃t+1 is given by (2.8) and Et refers to the expectations conditional on X̃t and jt.

The first-order condition with respect to ı̃t is

X̃ 0
tNt + ı̃0tRt + δX̃ 0

tEtÃ
0
t+1Ṽt+1B̃t+1 + δı̃0tEtB̃

0
t+1Ṽt+1B̃t+1 = 0,

which can be written

Jtı̃t +KtX̃t = 0,

where

Jt ≡ Rt + δEtB̃
0
t+1Ṽt+1B̃t+1, (B.1)

Kt ≡ N 0
t + δEtB̃

0
t+1Ṽt+1Ãt+1. (B.2)

This leads to the optimal policy function

ı̃t = FtX̃t, (B.3)
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where

Ft ≡ −J−1t Kt. (B.4)

Furthermore, the value function satisfies

X̃ 0
tṼtX̃t ≡ X̃ 0

tQtX̃t + 2X̃
0
tNtFtX̃t + X̃ 0

tF
0
tRtFtX̃t + δX̃ 0

tEt[(Ã
0
t+1 + F 0tB̃

0
t+1)Ṽt+1(Ãt+1 + B̃t+1Ft)]X̃t.

This implies

Ṽt = Qt +NtFt + F 0tN
0
t + F 0tRtFt + δEt[(Ã

0
t+1 + F 0tB̃

0
t+1)Ṽt+1(Ãt+1 + B̃t+1Ft)],

which can be simplified to the Riccati equation

Ṽt = Qt + δEtÃ
0
t+1Ṽt+1Ãt+1 −K 0

tJ
−1
t Kt. (B.5)

Equations (B.1), (B.2), and (B.5) show how Ṽt+1 = Ṽjt+1 for jt+1 = 1, ..., n is mapped into Ṽt = Ṽjt

for jt = 1, ..., n.

Iteration backwards of (B.4) and (B.5) from any constant positive semidefinite matrix Ṽ should

converge to stationary matrices functions Fj and Ṽj (j = 1, ..., n), where Ṽj satisfies the Riccati

equation (B.5) with (B.1) and (B.2).

Taking account of the finite number of modes, we have

Fj ≡ −J−1j Kj

Jj ≡ Rj + δ
nX

k=1

PjkB̃
0
kṼkB̃k

Kj ≡ N 0
j + δ

nX
k=1

PjkB̃
0
kṼkÃk,

Ṽj = Qj + δ
nX

k=1

PjkÃ
0
kṼkÃk −K 0

jJ
−1
j Kj (j = 1, ..., n), (B.6)

where Pjk is the transition probability from jt = j to jt+1 = k.

The scalars w̃j solve the equations

w̃j = δ
X
k

Pjk[tr(ṼkC̃kC̃
0
k) + w̃k].

Thus determining the optimal policy function (B.3) reduces to solving a system of coupled

algebraic Riccati equations (B.6). In order to solve this system numerically, we adapt the algorithm

of do Val, Geromel, and Costa [14]. In a very similar problem, they show how the coupled Riccati

equations can be uncoupled for numerical solution.20

20 In their problem, the matrices A and B next period are known in the current period, so the averaging in the
Riccati equation is only over the Vj matrices.
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The algorithm consists of the following steps:

1. Define Âj =
p
PjjÃj , B̂j =

p
PjjB̃j and initialize Ṽ 0j = 0, j = 1, . . . , n.

2. Then at each iteration l = 0, 1, . . . , for each j define:

Q̂j = Qj + δ
X
k 6=j

PjkÃ
0
kṼ

l
kÃk

R̂j = Rj + δ
X
k 6=j

PjkB̃
0
kṼ

l
kB̃k

N̂j = Nj + δ
X
k 6=j

PjkÃ
0
kṼ

l
kB̃k.

Then for each j solve the standard Riccati equation for the problem with matrices (Âj , B̂j , Q̂j ,

R̂j , N̂j). Note that these are uncoupled since Ṽ l
k is known. Call the solution Ṽ l+1

j .

3. Check
Pn

j=1 kṼ l+1
j − Ṽ l

j k. If this is lower then a tolerance, stop. Otherwise, return to step 2.

do Val, Geromel, and Costa [14] show that the sequence of matrices Ṽ l
j converges to the solution

of (B.6) as l → ∞. In order to understand the algorithm, recall that, in the standard linear-
quadratic regulator (LQR) problem (Anderson, Hansen, McGrattan, and Sargent [1] and Ljungqvist

and Sargent [25]), we have

F ≡ −J−1K
J ≡ R+ δB0V B

K ≡ N 0 + δB0V A,

V = Q+ δA0V A−K 0J−1K.

If we can redefine the matrices so the equations conform to the standard case, we can use the

standard algorithm for the LQR problem to find Fj and Vj . The above definitions allow us to write

Fj ≡ −J−1j Kj ,

Jj ≡ R̂j + δB̂0jṼjB̂j ,

Kj ≡ N̂ 0
j + δB̂0jṼjÂj ,

Ṽj = Q̂j + δÂ0jṼjÂj −K 0
jJ
−1
j Kj (j = 1, ..., n),

so we can indeed use the standard algorithm.

Note that the above algorithm is easily modified to solve the Lyapunov equation (2.17) for the

matrix Vj for the true value function of the original problem.
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C A unit discount factor

The expected discounted losses (2.3) and (2.6) are normally bounded only for δ < 1. More precisely,

wj (j = 1, ..., n) in (2.15) is normally bounded only for δ < 1. The case δ = 1 can be handled by

scaling the intertemporal loss function by 1−δ for δ < 1 and then consider the limit when δ → 1, as

mentioned in footnote 5. That is, we can replace the intertemporal loss function in (2.3) and (2.6)

by Et(1− δ)
∞P
τ=0

δτLt+τ and Et(1− δ)
∞P
τ=0

δτ L̃t+τ , respectively. In particular, we can write (2.15) as

(1− δ)X̃ 0
tVjtX̃t + δwj ≡ minEt(1− δ)

∞X
τ=0

δτLt+τ . (C.1)

Then, Vj (j = 1, ..., n) still satisfies (2.17), whereas wj now satisfies

wj(δ) =
X
k

Pjk{(1− δ)tr[Vk(δ)C̃kC̃
0
k] + δwk(δ)} (j = 1, ..., n), (C.2)

where our notation emphasizes that wj and Vj depend on δ.

From (C.1), we see that

lim
δ→1−

minEt(1− δ)
∞X
τ=0

δτLt+τ = wj(1) (j = 1, ..., n).

Furthermore, from (C.2), we see that

wj(1) =
X
k

Pjkwk(1) (j = 1, ..., n),

so the vector [w1(1), ..., wn(1)]
0 is an eigenvector for the eigenvalue 1 of the transition matrix P . By

our assumptions on the Markov chain in footnote 6, the Markov chain is fully regular, so the only

such eigenvector is (1, ..., 1) (and scalar multiples thereof) (Gantmacher [16]). Therefore, wj(1) is

independent of j:

wj(1) = w (j = 1, ..., n)

for some scalar w.

For δ < 1, we multiply (C.2) by p̄j and sum over j. This givesX
j

p̄jwj(δ) =
X
j

X
k

p̄jPjk{(1−δ)tr[Vk(δ)C̃kC̃
0
k]+δwk} = (1−δ)

X
k

p̄ktr[Vk(δ)C̃kC̃
0
k]+δ

X
k

p̄kwk(δ).

Letting w̄(δ) ≡Pj p̄jwj(δ), we see that

w̄(δ) =
X
k

p̄ktr[Vk(δ)C̃kC̃
0
k].
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We conclude that in the limit, when δ → 1, the expected minimum loss is given by

wj(1) = w̄(1) =
X
k

p̄ktr[Vk(1)C̃kC̃
0
k] (j = 1, ..., n)

and is independent of X̃t and jt. Intuitively, for δ → 1, current losses become insignificant relative

to expected losses far into the future, and then the stationary distribution p̄ applies. Therefore,

the expected discounted loss becomes independent of both the current predetermined variables and

the current mode, even though the optimal policy function depends on the current mode (when the

modes are observable) or the distribution of the current modes (when the modes are unobservable,

as in section 7 and appendix I).

D Mean square stability

Costa, Fragoso, and Marques [11, chapter 3] (CFM) provide a discussion of stability for MJLQ

systems. An appropriate concept of stability for our purpose is mean square stability, which is

defined as follows:

Consider the system

Xt+1 = ΓθtXt,

for t = 0, 1, ..., where Xt ∈ RnX , θt ∈ Θ ≡ {1, ..., N} is a Markov process with transition probabil-
ities Pjk = Pr{θt+1 = k | θt = j} (j, k ∈ Θ), transition matrix P = [Pjk], and Γθ is an nX × nX

matrix that depends on θ ∈ Θ, and X0 ∈ RnX and θ0 ∈ Θ are given. The system is mean square

stable (MSS) if, for any initial X0 ∈ RnX and θ0 ∈ Θ, there exist a vector μ ∈ RnX and an nX×nX

matrix Q independent of x0 and θ0 such that ||E[Xt]− μ|| → 0 and ||E[XtX
0
t]−Q|| → 0 when

t→∞.
CFM [11, theorem 3.9] provide six equivalent necessary and sufficient conditions for mean square

stability. The following necessary and sufficient condition is appropriate for our purpose:

Define the matrices C and N by

C ≡ P 0 ⊗ In2X
,

N ≡ diag(Γθ ⊗ Γθ) ≡

⎡⎢⎢⎢⎢⎣
Γ1 ⊗ Γ1 0 · · · 0

0 Γ2 ⊗ Γ2 . . .
...

...
. . . . . . 0

0 · · · 0 ΓN ⊗ ΓN

⎤⎥⎥⎥⎥⎦ .
The system above is MSS if and only if the spectral radius (the supremum of the modulus of the

eigenvalues) of the matrix CN is less than unity.
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Applying CFM’s definition of and conditions for mean square stability requires a simple redef-

inition of the modes in our framework. Start from the system

Xt+1 =Mjtjt+1Xt,

where t = 0, 1, ..., Xt ∈ RnX , jt ∈ {1, ..., n}, P = [Pjk], Pjk = Pr{jt+1 = k | jt = j}, and X0 and

j0 are given. This system differs from CFM’s system in that the matrix Mjtjt+1 depends on the

realization of the modes in both period t and period t+ 1.

Define the new composite mode θt ≡ (jt, jt+1), which can take N = n2 values, and consider a

Markov chain for θt with transition probabilities Pθκ ≡ Pr{θt+1 = κ ≡ (k, l) | θt = θ ≡ (j, k)}. We
note that the transition probability from θt = (j, k) to θt+1 = (k, l) does not depend on j but only

on k and l. Furthermore, it is simply Pkl, so

P(j,k),(k,l) = Pkl (j, k, l = 1, ..., n).

Thus, we can consider the new system

Xt+1 =MθtXt,

where θt is a Markov chain that can take n2 different values and has a transition matrix P with the
transition probabilities Pθtθt+1 defined above. Then the results of CFM on MSS apply directly, and

we only need to define Γθ, P, C, andN using the n2-mode composite Markov chain for θt ≡ (jt, jt+1)
instead of just the n-mode chain for jt.

E Alternative models with different predetermined and forward-

looking variables

Our MJLQ framework allows us to consider situations when the modes j = 1, ..., n correspond to

alternative structural models, including not only when some coefficients are zero or nonzero but

also when a variable is predetermined in one model and forward-looking in another. This allows

us include optimal policy when it is known what structural model is true in the current period but

there is uncertainty about the true structural model in the future.21

21 If the current model is not observed, we would have to include Bayesian learning of the subjective probabil-
ity distribution over models and encounter problems of experimentation versus “adaptive” loss minimization [give
reference(s)].
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In order to see this, consider a particular simple example, when there are two modes, j = 1, 2,

with transition matrix P = [Pjk], j, k = 1, 2. Let j = 1 corresponds to a model with an acceleration

Phillips curve (the AP model),

πt+1 = πt + αyt + ε1,t+1,

and let j = 2 corresponds to a New Keynesian Phillips curve (the NK model),

Etπt+1 = πt − κyt − ε2,t,

where ε1t and ε2t are i.i.d. with zero means. Thus, inflation, πt+1 is predetermined in AP model and

forward-looking in the NK model. Regard the output gap, yt, as the control variable, for simplicity.

Let πt denote actual inflation in period t, and introduce the two variables π1t and π2t, where π1t

is predetermined and denotes inflation in the AP model (AP inflation) and π2t is forward-looking

and denotes inflation in the NK model (NK inflation). Actual actual inflation then satisfies

πt = θtπ1t + (1− θt)π2t,

where θt = 1 in mode 1 and θt = 0 in mode 2. We thus have

π1,t+1 = πt + αyt + ε1,t+1,

Etπt+1 = π2t − κyt − ε2t, (E.1)

where we assume that, in the AP model, current actual inflation affects future AP inflation and,

in the NK model, the expected future actual inflation affects current NK inflation.

We want to write this model as (2.1) and (2.2) by suitable definitions of Xt, xt, it, and εt, and

the matrices. The trick is to treat actual inflation, πt, as a non-predetermined variable even though

this is not the case when the AP model is true. This works, because an additional predetermined

variable identical to an existing predetermined variable can always be introduced as a trivial non-

predetermined variable by adding an equation in the block of equations for the forward-looking

variables. Suppose that the new variable, yt, is identical to an existing predetermined variable,

X1t, say. Then we can just add the equation

0 = X1t − yt,

to that block, where the left side has zero instead of a linear combination of expected future forward-

looking variables. Generally, a new variable that is a linear combination of current predetermined
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and forward-looking variables can always be introduced as a new forward-looking variable in this

way.

Observe that

Etπt+1 = Et[θt+1π1,t+1 + (1− θt+1)π2,t+1]

= Etθt+1(πt + αyt) + Et(1− θt+1)π2,t+1

and use this to substitute for Etπt+1 in (E.1). Let Xt ≡ (π1t, ε2t)0, xt ≡ (π2t, πt)0, and it ≡ yt.

Then we can write the model in the form (2.1) and (2.2) as

Xt+1 =

∙
1 0
0 0

¸
Xt +

∙
0 0
0 0

¸
xt +

∙
α
0

¸
it +

∙
ε1,t+1
ε2,t+1

¸

Et

∙
1− θt+1 0

0 0

¸
xt+1 =

∙
0 −1
θt 0

¸
Xt +

∙
0 1− Etθt+1

1− θt −1
¸
xt +

∙ −κ− αEtθt+1
0

¸
it.

F Details of the estimation

Here we lay out the details of the priors we use in our Bayesian estimation.

For the RS model in section 4.1, we base our prior for the MJLQ case on our OLS estimates.

The priors are identical across modes. In particular, the priors for the vectors of coefficients [αi]

and [βi] are each multivariate normal distributions, with mean given by the OLS point estimates

and a covariance matrix given by the covariance matrix of the estimates scaled up by a factor of

4. For the parameters of the transition matrix P of the Markov chain, we take independent beta

distributions (subject to the constraint that the rows sum to one). We let the diagonal elements

have mean 0.9 and standard deviation 0.08, while the off-diagonals have means 0.05 and standard

deviations 0.05. For the variances of the shocks, we assume an inverse gamma prior distribution

with two degrees of freedom.

For the Lindé model in section 4.2, we take independent priors for the different structural

coefficients, again with the priors being identical across modes. For the coefficients ωf and βf ,

we assume a beta distribution with mean 0.5 and standard deviation 0.25. The other structural

coefficients have normal distributions, with γ ∼ N(0.1, 0.05), βr ∼ N(0.15, 0.075), βy ∼ N(1.5, 0.5),

ρ1 ∼ N(0.9, 0.2), ρ1 ∼ N(0.2, 0.2), γπ ∼ N(1.5, 0.5), and γy ∼ N(0.5, 0.5). Again for the variances

of the shocks, we assume an inverse gamma prior distribution with two degrees of freedom. The

prior over the Markov chain transition matrix is the same as in the RS model.
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G Details for arbitrary time-varying instrument rules

For t = 0, ..., T − 1, introduce the new (nı̃ + ni)× 1 vector of instruments,

ı̂t ≡
∙

ı̃t
ϕt

¸
,

and write the model

X̃t+1 = Ãjt+1X̃t + B̂jt+1 ı̂t + C̃jt+1εt+1,

where the new nX̃ × (nı̃ + ni) matrix B̂jt+1 satisfies

B̂jt+1 ≡
£
B̃jt+1 0nX̃×ni

¤
.

Partition the (nX̃ + nı̃)× (nX̃ + nı̃) matrix W̃jt conformably with X̃t and ı̃t as

W̃jt =

∙
Qjt Njt

N 0
jt

Rjt

¸
.

Furthermore, write the augmented period loss as

L̂t ≡
∙
X̃t

ı̂t

¸0 "
Qjt N̂tjt

N̂ 0
tjt

R̂tjt

# ∙
X̃t

ı̂t

¸
,

where the new nX̃ × (nı̃ + nx) and (nı̃ + nx)× (nı̃ + nx) matrices N̂jt and R̂jt satisfy, respectively,

N̂tjt ≡
h
Njt −F 0X̃tjt

/2
i
, R̂tjt ≡

∙
Rjt −F 0ı̃tjt/2

−Fı̃tjt/2 0nı̃×nı̃

¸
.

Then, the first-order condition for an optimum of the Bellman equation will, in the standard

way, result in a time- and mode-dependent optimal policy function

ı̂t = F̂tjtX̃t (0 ≤ t ≤ T − 1, 0 ≤ jt ≤ n),

which is defined in a compact way as

F̂tjt ≡ −J−1tjt
Ktjt ,

where Jtjt and Ktjt are defined recursively from Ṽt+1,jt as

Jtjt ≡ R̂tjt + δEtB̂
0
jt+1 Ṽt+1,jt+1B̂jt+1 = R̂tjt + δ

X
k

PjtkB̂
0
kṼt+1,kB̂k,

Ktjt ≡ N̂ 0
tjt + δEtB̂

0
jt+1 Ṽt+1,jt+1Ãjt+1 = N̂ 0

tjt + δ
X
k

PjtkB̂
0
kṼt+1,kÃk.

44



Substitution of this optimal policy function in the Bellman equation results in the recursive equation

for Ṽtjt ,

Ṽtjt = Qjt + δEtÃ
0
jt+1Ṽt+1,jt+1Ãjt+1 −K 0

tjtJ
−1
tjt

Ktjt = Qjt + δ
X
k

PjtkÃ
0
kṼt+1,kÃk −K 0

tjtJ
−1
tjt

Ktjt .

Finally, the optimal policy function F̃tjt for t = 0, ..., T −1 can be identified by partitioning F̂tjt
conformably with ı̃t and ϕt,

F̂tjt ≡
∙

F̃tjt
Fϕtjt

¸
.

H Details for arbitrary time-invariant instrument rules

Consider the case when the time-invariant instrument rule can be written

it = FXjtXt + Fxjtxt (jt = 1, ..., n), (H.1)

and the instrument rate hence does not respond to Ξt−1. In that case, we can use a simpler

algorithm than letting t → −∞ in the algorithm described in appendix G. If there is a unique

solution associated with a specified instrument rule, it will determine the forward-looking variables

as a linear function of the predetermined variables,

xt = GjtXt.

Given a quadratic intertemporal loss function, this will also determine a value of the loss function

of the form

X 0
tVjtXt +wjt .

In order to specify an algorithm for finding Gj , Vj , and wj , suppose the instrument rule can be

written as (H.1). Consider period t+ 1, and assume that G(t+1)jt+1
in

xt+1 = G
(t+1)
jt+1

Xt+1 (jt+1 = 1, ..., n),

is known in period t. This will imply

EtHjt+1xt+1 = EtHjt+1G
(t+1)
jt+1

Xt+1

=
X
k

PjkHkG
(t+1)
k [(A11k +B1kFXj)Xt + (A12k +B1kFxj)xt]

= (A21j +B2jFXj)Xt + (A22j +B2jFxj)xt.
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We can then solve for xt in period t,

xt = G
(t)
j Xt,

where

G
(t)
j ≡

"
A22j +B2jFxj −

X
k

PjkHkG
(t+1)
k (A12k +B1kFxj)

#−1

·
"X

k

PjkHkG
(t+1)
k (A11k +B1kFXj)− (A21j +B2jFXj)

#
.

It follows that, starting with a guess G0j , the iteration for l = 0, 1, ..., according to

Gl+1
j =

"
A22j +B2jFxj −

X
k

PjkHkG
l
k(A12k +B1kFxj)

#−1

·
"X

k

PjkHkG
l
k(A11k +B1kFXj)− (A21j +B2jFXj)

#
,

will hopefully make Gl
j converge to the correct Gj ,

xt = GjXt. (H.2)

This then implies

Xt+1 =MjkXt + Ckεt+1,

where

Mjk ≡ A11k +A12kGj +B1k(FXj + FxjGj).

Clearly, G ≡ {Gj} and M ≡ {Mjk} will be functions of F ≡ {(FXj , Fxj)}.
Let the period loss function be

Lt =

⎡⎣ ∙ Xt

xt

¸
it

⎤⎦0 ∙ Q N
N 0 R

¸⎡⎣ ∙ Xt

xt

¸
it

⎤⎦ . (H.3)

Given (H.1), (H.2), and (H.3), we can define the matrix

W̄j ≡
⎡⎣ ∙

I
Gj

¸
FXj + FxjGj

⎤⎦0 ∙ Q N
N 0 R

¸⎡⎣ ∙
I
Gj

¸
FXj + FxjGj

⎤⎦ ,
in which case the period loss satisfies

Lt = X 0
tW̄jXt.
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It follows that the value function corresponding to the intertemporal loss function

Et

∞X
τ=0

δτLt+τ

will satisfy

X 0
tVjXt + wj = X 0

tW̄jXt + δ
X
k

Pjk[X
0
tM

0
jkVkMjkXt + tr(VkCkC

0
k) + wk].

Hence, the matrix Vj will satisfy the Lyapunov equation

Vj = W̄j + δ
X
k

PjkM
0
jkVkMjk (j = 1, ..., n),

and wj will satisfy

wj = δ
X
k

Pjk[tr(VkCkC
0
k) +wk] (j = 1, ..., n).

Note that we can, for each j, define

Ŵj ≡ W̄j + δ
X
k 6=j

PjkM
0
jkVkMjk

M̂jj =
p
δPjjMjj ,

and then solve the more standard Lyapunov equation

Vj = Ŵj + M̂ 0
jjVjM̂jj (j = 1, ..., n).

Clearly, V ≡ {Vj} will be a function of F and δ, and w ≡ {wj} will be a function of F , δ and Σ.
Let p̄j (j = 1, ..., n) denote the stationary distribution of the states, and let V̄ ≡

P
j p̄jVj and

w̄ ≡Pj p̄jwj denote the unconditional means of Vj and wj . We note that

w̄ =
δ

1− δ

X
k

p̄ktr(VkCkC
0
k).

Suppose that the intertemporal loss function is 1− δ times the one above,

Et

∞X
τ=0

(1− δ)δτLt+τ ,

and suppose that we consider the limit when δ → 1,

lim
δ→1

Et

∞X
τ=0

(1− δ)δτLt+τ = E[Lt].
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In that case, the intertemporal loss function is just the unconditional mean of the period loss

function, E[Lt]. Furthermore, the unconditional mean of 1− δ times the value function above will

be

(1− δ){E[X 0
tVjtXt] + w̄} = (1− δ)E[X 0

tVtXt] + δ
X
k

p̄ktr(VkCkC
0
k).

We see that, when δ → 1, the first term on the right side goes to zero, and we conclude that, in

the limit,

E[Lt] =
X
k

p̄ktr[Vk(F, 1)CkC
0
k],

where we also explicitly note that Vk depends on F and δ.

Suppose the instrument rule is restricted to a given class F of instrument rules

F ∈ F .

The optimal instrument rule in this class, F̂ , can now be defined as

F̂ ≡ arg min
F∈F

X
k

p̄ktr[Vk(F, 1)CkC
0
k].

It will obviously depend on CkC
0
k, the covariance matrix of the shock Ckεt+1. Hence, certainty

equivalence does generally not hold for optimal restricted instrument rules.

I Details with unobservable modes

I.1 Unobservable modes and forward-looking variables

Consider the dual saddlepoint problem with X̃t given, unobservable modes, and the distribution pt

of modes in period t. For notational convenience, it is practical to change the order of variables in

the dual instrument vector, put the instrument first, and denote it by ı̂tj ,

ı̂tj ≡
⎡⎣ it

xtj
γtj

⎤⎦ .
We note that it will only depend on pt and be independent of j, whereas xtj and γtj will depend

on both pt and j. Instead of the dual matrix W̃j , we then define the dual matrix Ŵj accordingly

and partition it conformably with X̃t and ı̂tj as

Ŵj ≡
"
Qj N̂j

N̂ 0
j R̂j

#
.
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The value function for the dual problem will be quadratic in X̃t and can be written

X̃ 0
tṼ (pt)X̃t + w̃(pt),

where Ṽ (pt) is a symmetric positive semidefinite matrix and w̃(pt) is a scalar. It will satisfy the

Bellman equation

X̃ 0
tṼ (pt)X̃t + w̃(pt) = min

it

X
j

ptjmax
γtj

min
xtj

(
X̃ 0
tQjX̃t + 2X̃

0
tN̂j ı̂tj + ı̂0tjR̂j ı̂tj

+ δ
P

k Pjk[X̃
0
t+1,kṼ (ptP )X̃t+1,k + w̃(ptP )]

)
,

where

X̃t+1,k = ÃkX̃t + B̂k ı̂tj + C̃kεt+1

and the matrix B̂k is used instead of B̃k and has columns ordered according to ı̂tj .

The first-order conditions with respect to it and x̃tj ≡ (x0tj , γ0tj)0 are, respectively,

X
j

ptj

"
X̃ 0
tN̂·ij + ı̂0tjR̂·ij + δ

X
k

Pjk(X̃
0
tÃ
0
k + ı̂0tjB̂

0
k)Ṽ (ptP )B̂·ik

#
= 0,

X̃ 0
tN̂·x̃j + ı̂0tjR̂·x̃j + δ

X
k

Pjk(X̃
0
tÃ
0
k + ı̂0tjB̂

0
k)Ṽ (ptP )B̂·x̃k = 0 (j = 1, ..., n),

where N̂j , R̂j and B̂k are partitioned conformably with it and x̃tj as

N̂j ≡
£
N̂·ij N̂·x̃j

¤
, R̂j ≡

£
R̂·ij R̂·x̃j

¤ ≡ ∙ R̂iij R̂ix̃j

R̂x̃ij R̂x̃x̃j

¸
, B̂k ≡

£
B̂·ik B̂·x̃k

¤
.

We can rewrite the first-order conditions as

X
j
ptj

"
N̂ 0
·ijX̃t + R̂iijit + R̂ix̃jx̃tj + δ

X
k

PjkB̂
0
·ikṼ (ptP )(ÃkX̃t + B̂·ikit + B̂·x̃kx̃tj)

#
= 0,

N̂ 0
·x̃jXt + R̂x̃ijit + R̂x̃x̃jx̃tj + δ

X
k

PjkB̂
0
·x̃kṼ (ptP )(ÃkX̃t + B̂·ikit + B̂·x̃kx̃tj) = 0 (j = 1, ..., n).

It is then apparent that the first-order conditions can be written compactly as

J(pt)

⎡⎢⎢⎢⎣
it
x̃t1
...

x̃tn

⎤⎥⎥⎥⎦+K(pt)X̃t = 0, (I.1)

where

J(pt) ≡

⎡⎢⎢⎢⎣
Jii(pt) Ji1(pt) · · · Jin(pt)
J1i(pt) J11(pt) 0 0
... 0

. . . 0
Jni(pt) 0 0 Jnn(pt)

⎤⎥⎥⎥⎦ ,
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Jii(pt) ≡
X
j

ptj

"
R̂iij + δ

X
k

PjkB̂
0
·ikṼ (ptP )B̂·ik

#
,

Jij(pt) ≡ ptj

"
R̂ix̃j + δ

X
k

PjkB̂
0
·ikṼ (ptP )B̂·x̃k

#
(j = 1, ..., n),

Jji(pt) ≡ R̂x̃ij + δ
X
k

PjkB̂
0
·x̃kṼ (ptP )B̂·ik (j = 1, ..., n),

Jjj(pt) ≡ R̂x̃x̃j + δ
X
k

PjkB̂
0
·x̃kṼ (ptP )B̂·x̃k (j = 1, ..., n),

K(pt) ≡

⎡⎢⎢⎢⎢⎣
P

j ptj

h
N̂ 0
·ij + δ

P
k PjkB̂

0
·ikṼ (ptP )Ãk

i
N̂ 0
·x̃1 + δ

P
k P1kB̂

0
·x̃kṼ (ptP )Ãk

...
N̂ 0
·x̃n + δ

P
k PnkB̂

0
·x̃kṼ (ptP )Ãk

⎤⎥⎥⎥⎥⎦ .
This leads to the optimal policy function

⎡⎢⎢⎢⎣
it
x̃t1
...

x̃tn

⎤⎥⎥⎥⎦ = F̌ (pt)X̃t ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Fi(pt)
Fx(pt)1
Fγ(pt)1
...

Fx(pt)n
Fγ(pt)n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
X̃t,

where

F̌ (pt) ≡ −J(pt)−1K(pt).

Hence, we can write

ı̂tj ≡
⎡⎣ it

xtj
γtj

⎤⎦ =
⎡⎣ Fi(pt)

Fx(pt)j
Fγ(pt)j

⎤⎦ X̃t ≡ F̂ (pt)jX̃t (j = 1, ..., n).

Furthermore, the value function for the dual saddlepoint problem satisfies

X̃ 0
tṼ (pt)X̃t ≡

X
j

ptj

(
X̃ 0
tQjX̃t + 2X̃

0
tN̂jF̂ (pt)jX̃t + X̃ 0

tF̂ (pt)
0
jR̂jF̂ (pt)jX̃t

+ δ
P

k PjkX̃
0
t[Ã

0
k + F̂ (pt)

0
jB̂

0
k]Ṽ (ptP )[Ãk + B̂kF̂ (pt)j ]X̃t

)
.

This implies the following Riccati equation for Ṽ (pt):

Ṽ (pt) =
X
j

ptj

(
Qj + N̂jF̂ (pt)j + F̂ (pt)

0
jN̂

0
j + F̂ (pt)

0
jR̂jF̂ (pt)j

+ δ
P

k Pjk[Ã
0
k + F̂ (pt)

0
jB̂

0
k]Ṽ (ptP )[Ãk + B̂kF̂ (pt)j ]

)
.

In terms of our standard dual instrument vector, ı̃tj , the policy function is

ı̃tj ≡
⎡⎣ xtj

it
γtj

⎤⎦ =
⎡⎣ Fx(pt)j

Fi(pt)
Fγ(pt)j

⎤⎦ X̃t ≡ F (pt)jX̃t. (I.2)
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The value function for the original problem with X̃t given is

X̃ 0
tV (pt)X̃t + w(pt),

where the matrix function V (pt) and the scalar function w(pt) are determined in the following way:

Note that we have ⎡⎣ Xt

it
xt

⎤⎦ =
⎡⎣ I 0

Fi(pt)
Fx(pt)j

⎤⎦ X̃t,

X̃t+1 =M(pt)jkX̃t + C̃kεt+1,

M(pt)jk ≡ Ãk + B̂kF̂ (pt)j .

It follows that we can write the period loss as

Lt = X̃ 0
tW̄ (pt)jX̃t,

where

W̄ (pt)j ≡
⎡⎣ I 0

Fi(pt)
Fx(pt)j

⎤⎦0 Ŵj

⎡⎣ I 0
Fi(pt)
Fx(pt)j

⎤⎦ . (I.3)

The matrix function V (pt) will then satisfy the Lyapunov function

V (pt) =
X
j

ptj

"
W̄ (pt)j + δ

X
k

PjkM(pt)
0
jkV (ptP )M(pt)jk

#
, (I.4)

and the function w(pt) will satisfy the equation22

w(pt) = δ
X
j

X
k

ptjPjk[tr(V (ptP )C̃kC̃
0
k) +w(ptP )]. (I.5)

I.2 An algorithm for the model with forward-looking variables

Consider an algorithm for determining F (pt)j and V (pt) in (I.2) and (I.4), respectively, for a given

distribution of the modes in period t, pt. In order to get a starting point for the iteration, we

assume that the modes become observable T +1 periods ahead, that is, in period t+T +1. Hence,

from that period on, the relevant solution is given by the matrices Fj and Ṽj , where Fj is the

optimal policy function and Ṽj is the value-function matrix for the dual saddlepoint problem with

observable modes determined by the algorithm in appendix B. We consider these matrices and the

horizon T as known, and we will consider an iteration for τ = T, T − 1, ..., 0 that determines F (pt)j
22 Note that C̃kC̃

0
k is the covariance matrix of the shocks C̃kεt+1 to X̃t+1 when jt+1 = k (k = 1, ..., n).
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and thereby V (pt) as a function of T . The horizon T will then be increased until F (pt)j and V (pt)

converges.23

Let pt+τ,t for τ = 0, ..., T and given pt be determined by (7.1), and let Ṽ T+1 denote the mode-

dependent matrices Ṽk (k = 1, ..., n) (or any arbitrary symmetric positive semidefinite matrix).

Then, for τ = T, T − 1, ..., 0, let the mode-dependent matrix F τ
j and the mode-independent matrix

Ṽ τ be determined recursively by

Jτii ≡
X
j

pt+τ,j

"
R̂iij + δ

X
k

PjkB̂
0
·ikṼ

τ+1B̂·ik

#
,

Jτij ≡ pt+τ,j

"
R̂ix̃j + δ

X
k

PjkB̂
0
·ikṼ

τ+1B̂·x̃k

#
(j = 1, ..., n),

Jτji ≡ R̂x̃ij + δ
X
k

PjkB̂
0
·x̃kṼ

τ+1B̂·ik (j = 1, ..., n),

Jτjj ≡ R̂x̃x̃j + δ
X
k

PjkB̂
0
·x̃kṼ

τ+1B̂·x̃k (j = 1, ..., n),

Jτ ≡

⎡⎢⎢⎢⎣
Jτii Jτi1 · · · Jτin
Jτ1i Jτ11 0 0
... 0

. . . 0
Jτni 0 0 Jτnn

⎤⎥⎥⎥⎦ ,

Kτ ≡

⎡⎢⎢⎢⎢⎣
P

j pt+τ,j

h
N̂ 0
·ij + δ

P
k PjkB̂

0
·ikṼ

τ+1Ãk

i
N̂ 0
·x̃1 + δ

P
k P1kB̂

0
·x̃kṼ

τ+1Ãk
...

N̂ 0
·x̃n + δ

P
k PnkB̂

0
·x̃kṼ

τ+1Ãk

⎤⎥⎥⎥⎥⎦ ,

F̌ τ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎣

F τ
i

F τ
x1

F τ
γ1
...

F τ
xn

F τ
γn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= − (Jτ )−1Kτ ,

F̂ τ
j ≡

⎡⎣ F τ
i

F τ
xj

F τ
γj

⎤⎦ (j = 1, ..., n),

Ṽ τ =
X
j

pt+τ,j

(
Qj + N̂jF̂

τ
j + F̂ τ 0

j N̂ 0
j + F̂ τ 0

j R̂jF̂
τ
j

+ δ
P

k Pjk[Ã
0
k + F̂ τ 0

j B̂0k]Ṽ
τ+1[Ãk + B̂kF̂

τ
j )]

)
.

23 It is obviously not necessary to assume that the modes become observable in some future period. We could
instead let the iteration start far in the future with an arbitrary symmetric positive definite matrix instead of Ṽj .
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For τ = 0, ..., T , let

W̄ τ
j ≡

⎡⎣ I 0
F τ
i

F τ
xj

⎤⎦0 Ŵj

⎡⎣ I 0
F τ
i

F τ
xj

⎤⎦ ,
Mτ

jk ≡ Ãk + B̂kF̂
τ
j .

Let V T+1 denote the mode-dependent value-function matrix Vj for the original problem with

forward-looking variables and observable modes. For τ = T, T−1, ..., 0 define the mode-independent
matrix V τ recursively as

V τ =
X
j

pt+τ,j

"
W̄ τ

j + δ
X
k

PjkM
τ 0
jkV

τ+1Mτ
jk

#
.

This procedure will give F̂ 0j and V 0 as functions of T . We let T increase until F̂ 0j and V 0 have

converged. Then, the optimal policy function F (pt)j and the matrix V (pt) are given by

F (pt)j ≡
⎡⎣ Fx(pt)j

Fi(pt)
Fγ(pt)j

⎤⎦ =
⎡⎣ F 0xj

F 0i
F 0γj

⎤⎦ ,
V (pt) = V 0.

I.3 Unobservable modes without forward-looking variables

When the model is backward-looking, the Bellman equation is,

X 0
tV (pt)Xt +w(pt) = min

it

½
X 0
tQ(pt)Xt + 2X

0
tN(pt)it + i0tR(pt)it

+ δ
P

j

P
k ptjPjk[X

0
t+1,kV (ptP )Xt+1,k + w(ptP )]

¾
,

where

W (pt) ≡
∙

Q(pt) N(pt)
N(pt)

0 R(pt)

¸
≡
X
j

ptjWj ≡
X
j

ptj

∙
Qj Nj

N 0
j Rj

¸
, (I.6)

Xt+1,k = AkXt +Bkit + Ckεt+1.

The first-order condition with respect to it is

X 0
tN(pt) + i0tR(pt) + δ

X
j

X
k

ptjPjk[X
0
tA
0
kV (ptP )Bk + i0tB

0
kV (ptP )Bk] = 0

and can be written

J(pt)it +K(pt)Xt = 0, (I.7)

where

J(pt) ≡ R(pt) + δ
X
j

X
k

ptjPjkB
0
kV (ptP )Bk,
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K(pt) ≡ N(pt)
0 + δ

X
j

X
k

ptjPjkB
0
kV (ptP )Ak].

This leads to the optimal policy function

it = F (pt)Xt,

where

F (pt) = −J(pt)
−1K(pt).

This implies the following Riccati equation for V (pt):

V (pt) = Q(pt) +N(pt)F (pt) + F (pt)
0N(pt)0 + F (pt)

0R(pt)F (pt)

+ δ
X
j

X
k

ptjPjk[A
0
k + F (pt)

0B0k]V (ptP )[Ak +BkF (pt)]

= Q(pt) + δ
X
j

X
k

ptjPjkA
0
kV (ptP )Ak −K(pt)

0J(pt)−1K(pt).

The scalar w(pt) solves the equation:

w(pt) = δ
X
j

X
k

ptjPjk[tr(V (ptP )CkC
0
k) +w(ptP )].

I.4 An algorithm for the backward-looking model

For the backward-looking model, the algorithm can be written

JT ≡
X
j

pt+T,j

"
Rj + δ

X
k

PjkB
0
kVkBk

#
, (I.8)

KT ≡
X
j

pt+T,j

"
N 0
j + δ

X
k

PjkB
0
kVkAk

#
, (I.9)

V T =
X
j

pt+T,j

"
Qj + δ

X
k

PjkA
0
kVkAk

#
− (KT−1)0(JT−1)−1KT−1. (I.10)

Given this, consider the iteration for τ = T − 1, ..., 0,

Jτ ≡
X
j

pt+τ,j

"
Rj + δ

X
k

PjkB
0
kV

τ+1Bk

#
, (I.11)

Kl ≡
X
j

pt+τ,j

"
N 0
j + δ

X
k

PjkB
0
kV

l+1Ak

#
, (I.12)

V l =
X
j

pt+τ,j

"
Qj + δ

X
k

PjkA
0
kV

l+1Ak

#
− (Kl)0(J l)−1Kl. (I.13)
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Then, T should be increased until V 0 converges. Then24

V (pt) = V 0,

F (pt) = − (J0)−1K0.

J Optimization under discretion

Here we also specify the equilibrium under discretionary optimization, that is, when the central

bank cannot commit but reoptimizes each period. Oudiz and Sachs [29] derive an algorithm for

the solution of this problem when there is no model uncertainty (and with H = I). This algorithm

is further discussed in Backus and Driffill [3], Currie and Levin [12], Söderlind [32], and Svensson

[37]. The algorithm is here adapted to the MJLQ framework. Blake and Zampolli [4] also provide

an algorithm for the discretion equilibrium in the MJLQ framework.

Consider the central bank’s decision problem to choose it in period t to minimize the intertem-

poral loss function (2.3) under discretion, that is, subject to (2.1), (2.2), and Xt and jt given.25

Furthermore, the central bank anticipates that it will reoptimize in period t+ 1. That reoptimiza-

tion will result in the instruments and the forward-looking variables in period t+1 being functions

of the predetermined variables and the mode in period t+ 1 according to

it+1 = Ft+1,jt+1Xt+1 (jt+1 = 1, ..., n), (J.1)

xt+1 = Gt+1,jt+1Xt+1 (jt+1 = 1, ..., n). (J.2)

The reoptimization will also result in value of the problem in period t+ 1,

X 0
t+1Vt+1,jt+1Xt+1 +wt+1,jt+1 (jt+1 = 1, ..., n).

For any t, we here let Ft ≡ {Ftj}nj=1, Gt ≡ {Gtj}nj=1, and Vt ≡ {Vtj}nj=1 denote the set of matrices
Ftj (j = 1, ..., n), Gtj (j = 1, ..., n), and Vtj (j = 1, ..., n), respectively. We assume that the set of

matrices Ft+1, Gt+1, and Vt+1 in period t+1 are known by the central bank in period t. We will see

that optimization in period t will then determine the set of matrices Ft, Gt, and Vt in period t as a

function of the set of matrices Gt+1 and Vt+1. This specifies a mapping of (Gt+1, Vt+1) to (Gt, Vt).

24 A related paper is do Val and Başar [13], who consider the problem of “receding horizon control.” They introduce
a terminal payoff, and at each date t they solve a finite-horizon optimization problem looking ahead T periods given
the current probability distribution. The action taken at the current date is then the first optimal choice in the
solution of the finite horizon problem. Then the distribution is updated and the problem repeats.
25 That is, we assume that the modes are observable. The algorithm is easily modified to the case when the modes

are unobservable.
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We are looking for a fixed point of this mapping. We denote the fixed point by G ≡ {Gj}nj=1 and
V ≡ {Vj}nj=1.

First, by (J.2) and (2.1) we have,

EtHt+1xt+1 = EtHt+1Gt+1Xt+1

= EtHt+1Gt+1(A11,t+1Xt +A12,t+1xt +B1,t+1it)

(where EtHt+1Gt+1Xt+1 denotes
Pn

k=1 PjtkHkGt+1,kXt+1,k conditional on a given jt = 1, ..., n and

Xt+1,k refers to the realization of Xt+1 when jt+1 = k). Combining this with (2.2) gives

EtHt+1Gt+1(A11,t+1Xt +A12,t+1xt +B1,t+1it) = A21,tXt +A22,txt +B2,tit.

Solving for xt gives

xt = ĀtjtXt + B̄tjtit (jt = 1, ..., n), (J.3)

where

Ātj ≡ (A22j − EtHt+1Gt+1A12,t+1)
−1(EtHt+1Gt+1A11,t+1 −A21,t), (J.4)

B̄t ≡ (A22j − EtHt+1Gt+1A12,t+1)
−1(EtHt+1Gt+1B1,t+1 −B2,t) (J.5)

(we assume that A22,t − EtHt+1Gt+1A12,t+1 is invertible). Using (J.3) in (2.1) then gives

Xt+1 = Ãt+1Xt + B̃t+1it + Ct+1εt+1, (J.6)

where

Ãt+1 ≡ A11,t+1 +A12,t+1Āt, (J.7)

B̃t+1 ≡ B1,t+1 +A12 t+1B̄t. (J.8)

Third, using (J.3) in (2.4) gives

Lt =

∙
Xt

it

¸0 ∙
Qt Nt

N 0
t Rt

¸ ∙
Xt

it

¸
, (J.9)

where

Qt ≡ WXX,t +WXx,tĀt + Ā0tW
0
Xx,t + Ā0tWxx,tĀt, (J.10)

Nt ≡ WXx,tB̄t + Ā0tWxx,tB̄t +WXi,t + Ā0tWxi,t, (J.11)

Rt ≡ Wii,t + B̄0tWii,tB̄t + B̄0tWxi,t +W 0
xi,tB̄t, (J.12)
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and Wt is partitioned conformably with Xt, xt, and it,

Wt ≡
⎡⎣ WXX,t WXx,t WXi,t

WxX,t Wxx,t Wxi,t

WiX,t Wix,t Wii,t

⎤⎦ .
Fourth, the value of the problem in period t is associated with the symmetric positive semidef-

inite matrix Vt and the scalar wt, and it satisfies the Bellman equation

X 0
tVtjXt + wtj ≡ min

it

©
Ltj + δE[X 0

t+1Vt+1Xt+1 +wt+1 | jt = j]
ª

(j = 1, ..., n), (J.13)

subject to (J.6) and (J.9). Indeed, the problem has been transformed to a MJLQ problem without

forward-looking variables, albeit with time-varying coefficients. The first-order condition is, by

(J.9) and (J.13),

0 = X 0
tNtj + i0tRtj + δE[X 0

t+1Vt+1B̃t+1 | jt = j]

= X 0
tNtj + i0tRtj + δE[(X 0

tÃ
0
t+1 + i0tB̃

0
t+1)Vt+1B̃t+1 | jt = j] (j = 1, ..., n).

The first-order condition can be solved for the policy function,

it = FtjtXt (jt = 1, ..., n), (J.14)

where

Ftj ≡ −J−1tj Ktj , (J.15)

Jtj ≡ Rtj + δE[B̃0t+1Vt+1B̃t+1 | jt = j],

Ktj ≡ N 0
tj + δE[B̃0t+1Vt+1Ãt+1 | jt = j]

(we assume that Jtj is invertible). Using (J.14) in (J.3) gives

xt = GtjtXt (jt = 1, ..., n),

where

Gtj ≡ Ātj + B̄tjFtj . (J.16)

Furthermore, using (J.14) in (J.13) and identifying terms result in

Vtj ≡ Qtj +NtjFtj + F 0tjN
0
tj + F 0tjRtjFtj + δE[(Ãt+1 + B̃t+1Ft)

0Vt+1(Ãt+1 + B̃t+1Ft) | jt = j]

≡ Qtj + δE[Ã0t+1Vt+1Ãt+1 | jt = j]−K 0
tjJ

−1
tj Ktj (j = 1, ..., n). (J.17)
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Thus, the above equations (J.4), (J.5), (J.7), (J.8), (J.10)—(J.12), (J.15), (J.16), and (J.17))

define a mapping from the set of matrices (Gt+1, Vt+1) to the set of matrices (Gt, Vt). This

mapping also determines the set of matrices Ft. The discretion equilibrium is a fixed point

(G,V ) ≡ {Gj , Vj}nj=1 of the mapping and a corresponding F ≡ {Fj}nj=1. The fixed point can
be obtained as the limit of (Gt, Vt) when t→ −∞.

The details of this algorithm can be completed in the same way as for our other algorithms.

The algorithm is easily generalized to the case when the modes are not observable.
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[13] do Val, João B.R., and Tamer Başar (1999), “Receding Horizon Control of Jump Linear

Systems and a Macroeconomic Policy Problem,” Journal of Economic Dynamics and Control

23, 1099—1131.

[14] do Val, João B.R, José C. Geromel, and Oswaldo L.V. Costa (1998), “Uncoupled Riccati

Iterations for the Linear Quadratic Control Problem of Discrete-Time Markov Jump Linear

Systems,” IEEE Transactions on Automatic Control 43, 1727—1733.

[15] Feldstein, Martin (2004), “Innovations and Issues in Monetary Policy: Panel Discussion,”

American Economic Review 94 (May) 41—43.

[16] Gantmacher, Felix R. (1959), The Theory of Matrices, Volume II, Chelsea Publishing Company,

New York.

[17] Greenspan, Alan (2004), “Risk and Uncertainty in Monetary Policy,” American Economic

Review 94 (May) 33—40.

[18] Greenspan, Alan (2005), “Reflections on Central Banking,” in The Greenspan Era: Lessons for

the Future, a symposium sponsored by the Federal Reserve Bank of Kansas City, forthcoming,

www.federalreserve.gov.

[19] Hamilton, James D. (1994), Time Series Analysis, Princeton University Press.

[20] Kahn, James A. and Robert W. Rich (2004) “Tracking the New Economy: Using Growth

Theory to Detect Changes in Trend Productivity,” working paper, Federal Reserve Bank of

New York.

[21] Karlin, Samuel, and Howard M. Taylor (1975), A First Course in Stochastic Processes, 2nd

edition, Academic Press, San Diego, CA.

[22] Kim, Chang-Jin and Charles R. Nelson (1999), State-Space Models with Regime Switching,

MIT Press, Cambridge, MA.

[23] Levin, Andrew T., Alexei Onatski, John C. Williams, and Noah Williams (2005), “Monetary

Policy Under Uncertainty in Micro-Founded Macroeconometric Models,” working paper for

the 2005 NBER Macroeconomics Annual.

60



[24] Lindé, Jesper (2002), “Estimating New-Keynesian Phillips Curves: A Full Informa-

tion Maximum Likelihood Approach,” Sveriges Riksbank Working Paper Series No. 129,

www.riksbank.se.

[25] Ljungqvist, Lars, and Thomas J. Sargent (2005), Recursive Macroeconomic Theory, 2nd edi-

tion, MIT Press, Cambridge, MA.

[26] Marcet, Albert, and Ramon Marimon (1998), “Recursive Contracts,” working paper,

www.econ.upf.edu.

[27] McConnell, Margaret M. and Gabriel Perez-Quiros (2000) “Output Fluctuations in the United

States: What Has Changed since the Early 1980’s?”, American Economic Review 90, 1464—76.

[28] Onatski, Alexei, and Noah Williams (2003), “Modeling Model Uncertainty,” Journal of the

European Economic Association 1, 1087—1022.

[29] Oudiz, Gilles, and Jeffrey Sachs (1985), “International Policy Coordination in Dynamic Macro-

economic Models,” in William H. Buiter and Richard C. Marston, eds., International Economic

Policy Coordination, Cambridge University Press, Cambridge.

[30] Rudebusch, Glenn D., and Lars E.O. Svensson (1999), “Policy Rules for Inflation Targeting,”

in John B. Taylor (ed.), Monetary Policy Rules, University of Chicago Press.

[31] Sims, Christopher A. (2002), “The Role of Models and Probabilities in the Monetary Policy

Process,” Brookings Papers on Economic Activity 2:2002, 1—62.

[32] Söderlind, Paul (1999), “Solution and Estimation of RE Macromodels with Optimal Policy,”

European Economic Review 43, 813—823.

[33] Stock, James H. and Mark W. Watson (2002) “Has the Business Cycle Changed and Why?”

in Mark Gertler and Ken Rogoff, eds., NBER Macroeconomics Annual 2002, MIT Press,

Cambridge.

[34] Svensson, Lars E.O. (2001a), Independent Review of the Operation of Monetary Policy in New

Zealand: Report to the Minister of Finance, www.princeton.edu/∼svensson.

[35] Svensson, Lars E.O. (2001b), “Price Stability as a Target for Monetary Policy: Defining

and Maintaining Price Stability,” in Deutsche Bundesbank, ed., The Monetary Transmis-

61



sion Process: Recent Developments and Lessons for Europe, Palgrave, New York, 60—102,

www.princeton.edu/∼svensson.

[36] Svensson, Lars E.O. (2005a), “Monetary Policy with Judgment: Forecast Targeting,” Inter-

national Journal of Central Banking 1, 1—54, www.ijcb.org.

[37] Svensson, Lars E.O. (2005b), “Optimization under Commitment and Discretion, the Re-

cursive Saddlepoint Method, and Targeting Rules and Instrument Rules: Lecture Notes,”

www.princeton.edu/∼svensson.

[38] Svensson, Lars E.O., and Robert J. Tetlow (2005), “Optimal Policy Projections,” International

Journal of Central Banking, forthoming, www.princeton.edu/∼svensson.

[39] Svensson, Lars E.O., and Michael Woodford (2005), “Implementing Optimal Policy through

Inflation-Forecast Targeting,” in Bernanke, Ben S., and Michael Woodford, eds., Inflation

Targeting, University of Chicago Press, www.princeton.edu/∼svensson.

[40] Woodford, Michael (2003), Interest and Prices: Foundations of a Theory of Monetary Policy,

Princeton University Press.

[41] Zampolli, Fabrizio (2005), “Optimal Monetary Policy in a Regime-Switching Economy: The

Response to Abrupt Shifts in Exchange-Rate Dynamics,” working paper, Bank of England.

62




