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Abstract

We consider a seller who wishes to sell K goods by time T . Potential buyers enter IID
over time and are patient. At any point in time, profit is maximized by awarding the good
to the agent with the highest valuation exceeding a cutoff. These cutoffs are characterized
by a one-period-look-ahead rule and are deterministic, depending only on the number of
units left and the time remaining. The cutoffs decrease over time and in the inventory size,
with the hazard rate of sales increasing as the deadline approaches. In the continuous time
limit, the optimal allocation can be implemented by posted-prices with an auction at time
T . Unlike the cutoffs, the prices depend on the history of past sales.

1 Introduction

We consider a seller who wishes to sell K goods by time T . Potential buyers enter the market
over time with privately known values and, once they arrive, prefer to obtain the good sooner
rather than later. At each point in time, the seller thus chooses whether to sell today or incur
a costly delay and wait for new buyers - a tradeoff shared by many real-life problems. For
example, when an airline sells tickets for a flight, a car dealer tries to clear its inventory, or an
owner sells her house, they face the tradeoff between lowering the price today or waiting for
new entrants.

There is a substantial literature on revenue management that analyses how such sellers
should price over time (see the book by Talluri and van Ryzin (2004)). It is estimated that
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these techniques have led to a substantial increase in profits for airlines (Davis (1994)), retail-
ers (Friend and Walker (2001)) and car manufacturers (Coy (2000)). However, these models
typically assume that buyers are impatient, exiting the market if they do not immediately buy.
In this paper, we derive the optimal mechanism when buyers are patient and forward-looking.
This seems natural when considering markets such as airline tickets and cars, where buyers
can easily time their purchases. It is also becoming more important as buyers use price predic-
tion tools to aid such inter-temporal arbitrage (e.g. bing.com, where searches for flights results
contain predictions about changes in prices).1

The practical problems that we model have two key properties. First, the pricing problem
is non-stationary. In our examples, the good may expire at a fixed date (e.g. plane tickets, ad-
vertising slots), become much less valuable (e.g. seasonal clothing), or the number of interested
buyers may decline over time (e.g. a house). Second, once a buyer arrives, he prefers to pur-
chase the good sooner rather than later. In the case of clothing or a house, he has more days to
enjoy the good; in case of a flight or advertising slots, he has more time to plan complementary
activities such as hotels or production schedules.

In our model, we capture the non-stationary nature of the problem by assuming that the
good expires after time T (or equivalently, that there is no more entry after T ). Buyers arrive
stochastically over time according to an IID process; motivated by online markets, we assume
the number of entrants is not observed by other buyers. Upon entering, each buyer has unit
demand, draws a private value from a common distribution, and calculates whether to buy
today or wait at the risk of a stock-out. Finally, we model impatience by assuming symmetric
proportional discounting (we later allow for inventory costs).

We start our analysis in Section 3 with the one-unit case. We show the profit-maximizing
mechanism allocates the good to the agent with the highest valuation exceeding a cutoff. The
cutoffs are determined by a one-period-look-ahead policy, whereby the seller is indifferent be-
tween serving the cutoff type today and waiting one more period, potentially selling to a new
entrant.2 The optimal cutoffs are independent of the valuations of old buyers and take a very
stark form: they are constant in periods t < T , and drop sharply in period T to the static
monopoly price. As a result, a buyer who arrives at time t either buys immediately or waits
for the “fire-sale” in period T .

In discrete time, the optimal mechanism can be implemented using a sequence of second-
price auctions with deterministic reserve prices. Taking the continuous time limit, assuming
new buyers enter according to a Poisson process, the seller can use deterministic posted prices

1For evidence of forward looking behaviour see Zeithammer (2006) on eBay auctions, Hartmann (2006) on
golf rounds, Chevalier and Goolsbee (2009) on textbooks or Gowrisankaran and Rysman (2009) on camcorders.

2In a general dynamic program, the seller would be indifferent between serving the cutoff type today and
delaying. Under the one-period-look-ahead policy, the profits from delaying equal the profits from selling tomor-
row.
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and a fire-sale at date T . These prices fall faster than the rate of interest. Intuitively, the
prices are set so that the cutoff type is indifferent between buying today and waiting a little.
Since the agent forgoes one period’s enjoyment of the good, the price has to drop at least at
the speed of interest, but since he is also risking the arrival of new competition, the price has
to drop even more. Prices also fall faster as the deadline approaches and fall faster when the
buyer faces more competition from potential entrants. Observe that this implementation, via
posted prices and a fire-sale, works with very little information: the seller does not have to
observe when buyers arrive or have any idea of their values.

In Section 4, we suppose the seller has K-goods, with the one-unit case being the first
step of our inductive solution. When there are k units left, one can think of the units being
awarded sequentially within a period, with the kth unit being awarded to the remaining agent
with the highest valuation, subject to his valuation exceeding a cutoff xk

t . As in the one-unit
case, the optimal allocations are characterised by a one-period-look-ahead policy. In addition,
the cutoffs are deterministic, depending on the number of units and time remaining, but not
on the number of buyers, their values of when previous units were sold. Intuitively, when the
principal is indifferent between selling to the highest value agent and delaying, the decision to
delay does not affect when lower value agents buy. Hence raising these agents’ values raises
the profits from selling and delaying equally, and does not affect the cutoff type. Finally, the
optimal cutoffs fall over time and decrease in the number of remaining units. Intuitively, if the
seller delays awarding the kth unit by one period then she can allocate it to the highest value
entrant rather than the current leader. As the game proceeds, the current leader is increasingly
likely to be awarded the good eventually, decreasing the option value of delay and causing the
cutoff to fall over time. Similarly, when there are more goods remaining, the current leader is
more likely to be awarded the good eventually, again reducing the option value of delay and
causing the cutoff to fall in k.

In the continuous time limit, since cutoffs are deterministic, the optimal mechanism can be
implemented by a sequence of posted prices pk

t and a fire-sale for the remaining units at time
T . Unlike the cutoffs, the prices do depend on when previous units were sold. If they were
sold earlier, the current cutoff type has more potential competition, leading to higher prices.
Overall, the price-path exhibits a slow decline, with occasional upward jumps when sales occur.
When there is no sale, the price will fall because the cutoffs decline and the deadline approaches.
The rate of decline is then determined by rate at which the cutoff drops, the interest rate and
the probability the cutoff type will lose the good if he delays a little, either to an existing buyer
or a new entrant. When a sale does occur, the cutoff to allocate one of the remaining units
jumps upwards, as does the price.

We next consider three basic extensions of the model. In Section 5 we suppose time-
preference comes from inventory costs rather than proportional discounting. If the costs are
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(weakly) convex in time, the cutoffs and deterministic, (weakly) decline over time and are
therefore determined by a one-period-look-ahead policy. The supporting prices decline over
time, despite the lack of discounting, because a buyer who delays risks the good being bought
by a competing agent.

In Section 6 we study the effect of inter-temporal changes in the distribution of the number
of entrants. For example, a seller of a house may face a stock of pre-existing buyers as well
as a flow of entrants. We show that if the number of entrants falls over time, in the sense of
first-order stochastic dominance, then the seller’s option value of waiting also falls. As a result,
the cutoff values decrease over time, so that an agent who enters in period t may end up buying
in any of the subsequent periods. Conversely, if the number of entrants increases over time,
then the cutoffs rise until period T − 1, so that an agent who enters in period t either buys
immediately or waits until the final period. In this case, the one-period-look-ahead policy fails,
with the principal being indifferent between serving the cutoff type in period t and waiting until
the end of the game to serve this agent. In either case, we show how to implement the optimal
allocations with deterministic posted prices and a fire-sale at time T .

In contrast to the impatient buyer model (e.g. Vulcano, van Ryzin, and Maglaras (2002)),
we assume a buyer’s valuation at time t is independent of when he enters the market. In
Section 7, we bridge this gap and consider two models of partially patient agents. In the first,
agents’ values decline deterministically after they enter the market. When there is one unit
and constant entry, we show that cutoffs decline over time but that, because of the declining
valuations, an agent who enters at time t either buys immediately or waits until the final period.
These cutoffs can be implemented through posted prices and a biased auction in period T . The
second model allows buyers to exit randomly. Unlike our other results, the optimal cutoffs
depend on the valuations of all entering agents. As a result, they cannot be implemented
through simple posted-prices or auctions.

1.1 Literature

There are a number of papers that examine how to sell to patient buyers entering over time.
Our results are related to a classic result on “asset selling with recall” (e.g. Bertsekas (1995, p.
177)). Bertsekas derives the welfare-maximising policy with one good, when one agent enters
each period and his value is publicly known. We derive the profit-maximising policy for many
goods, when several agents enter each period and their values are privately known. We also
show how to implement the optimal mechanism in both continuous and discrete time.

Wang (1993) supposes that the seller has one object and that buyers arrive according to
a Poisson distribution and experience a fixed per–period delay cost. Wang shows that with
an infinite horizon, a profit-maximising mechanism is a constant posted-price. Gallien (2006)
characterises the optimal sequence of prices when agents arrive according to a renewal process
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over an infinite time horizon. Assuming inter-arrival times have an increasing failure rate,
Gallien proves that agents will buy when they enter the market (or not at all). In contrast to
both Wang (1993) and Gallien (2006), we find that the optimal mechanism may induce delay
of purchases on the equilibrium path.

Pai and Vohra (2008) consider a model without discounting where agents arrive and leave
the market over time, and partially characterize the profit-maximising mechanism. Mierendorff
(2009) considers a two-period version of a similar model and provides a complete character-
isation of the optimal contract.3 In a separate line of work, Said (2009) characterises the
optimal dominant strategy mechanism where agents are patient but goods are nonstorable, and
describes a dynamic open-auction implementation.

There is also a classic literature studying the sequential allocation of goods to impatient
buyers. Karlin (1962) analyses the problem of allocating multiple goods to buyers who arrive
sequentially but only remain in the market for one period. In the optimal policy, a buyer is
awarded a unit if their valuation exceeds a cutoff. This cutoff is decreasing in the number of units
available and increasing in the time remaining. These results have been extended in a number
of ways. Derman, Lieberman, and Ross (1972) allow for heterogeneous goods. Albright (1974)
allows for random arrivals with positive discount rates. More recently, a number of studies
allow buyers’ valuations to be private information. Gershkov and Moldovanu (2009a) solve
the profit-maximising policy, while Gershkov and Moldovanu (2009b) allow the seller to learn
about the distribution of valuations over time, introducing correlations in buyers’ valuations.
Vulcano, van Ryzin, and Maglaras (2002) suppose N agents enter each period, and allow the
seller to hold an auction.

Finally, the paper is related to the durable goods literature. Stokey (1979) characterises
the optimal strategy for a seller with infinite supply who faces a fixed distribution of buyers.
Conlisk, Gerstner, and Sobel (1984) suppose a homogenous set of buyers enters each period,
while Board (2008) allows the entering generations to differ.

2 Model

Basics. A seller has K goods to sell. Time is discrete and finite, t ∈ {1, . . . , T}. Time-
preference comes from a common discount factor δ ∈ [0, 1).4 In Section 5 we show our results

3There are a number of papers on similar themes. Shen and Su (2007) summarize the operations research
literature. For example, Aviv and Pazgal (2008) suppose a seller has many goods to sell to agents who arrive
over time and are patient. Aviv and Pazgal restrict the seller to choosing two prices which are independent of
the past sales. In economics, Board (2007) assumes a seller sells a single unit to agents whose values vary over
time. Hörner and Samuelson (2008) consider a seller with no commitment power who sells a single unit to N
agents by setting a sequence of prices.

4Our results go through if δ = 1, replacing δτ with 1τ≤T in the proofs. High value buyers will still buy before
low value buyers because of the risk of stock-out.
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extend to inventory costs.

Entrants. At the start of period t, Nt agents/buyers arrive. We initially assume Nt is IID
random variable; this is generalised in Section 6. Nt is observed by the seller, but not by other
agents.5,6

Preferences. After he has entered the market, an agent wishes to buy a single unit. The agent
is endowed with a privately-known valuation, vi, drawn IID with density f(·), distribution F (·)
and support [v, v]. If the agent buys at time t for price pt, his utility is (v−pt)δt. Let vk

t denote
the kth highest order statistic of the agents entering at time t. Similarly, let vk

≤t denote the kth

highest order statistic of the agents who have entered by time t.

Mechanisms. Each agent makes report ṽi when he enters the market. A mechanism 〈Pi,t,TRi〉
maps agents’ reports into an allocation rule Pi,t describing the probability agent i is awarded a
good in period t, and a transfer TRi expressed in time-0 prices. A mechanism is feasible if (a)
Pi,t = 0 before the agent enters, (b)

∑
t Pi,t ∈ [0, 1]; (c)

∑
i

∑
t Pi,t ≤ K; and (d) Pi,t is adapted

to the seller’s information, so Pi,t can vary only with the reports of agents that have entered
by t.7

Agent’s Problem. Suppose agent i enters the market in period ti. Upon entering the market,
the agent chooses his declaration ṽi to maximise his expected utility,

ui(ṽi, vi) = E0


∑

s≥1

viδ
tPi,s(ṽi, v−i)− TRi(ṽi, v−i)

∣∣∣vi


 (2.1)

where Et denotes the expectation at the start of period t, before agents have entered the market.
A mechanism is incentive compatible if the agent wishes to tell the truth, and is individually
rational if the agent obtains positive utility.

Seller’s Problem. The seller chooses a feasible mechanism to maximise the net present value
5The assumption that the seller can observe Nt is for definiteness: the optimal allocation and implementation

are identical if the seller cannot observe Nt. The assumption that an agent cannot observe Nt is motivated by
anonymous markets, such as large retailers and online sellers. If Nt is publicly observed, the optimal alloca-
tions are unaffected although, when implementing this allocation, the optimal price at time t is a function of
{N1, . . . , Nt}. See footnote 11.

6For simplicity, we assume the buyer does not know the number of units remaining; when implementing the
optimal allocation, we attain the same profits when agents know the number of units available, so the seller does
not benefit from hiding his remaining inventory.

7This formulation ignores the correlation between allocations, for a fixed set of reports. We can model such
correlation by considering allocation function Pi,t(v, ω) ∈ {0, 1} where ω ∈ Ω is a random variable. Since the
optimal mechanism is deterministic, the correlation plays no role.
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of profits

ΠK
0 = E0

[∑

i

TRi(vi, v−i)

]
(2.2)

subject to incentive compatibility and individual rationality.

Some remarks regarding interpretation are pertinent. First, time T can be viewed is the
date at which the good expires (e.g. a plane ticket) or the last time agents enter the market,
since no sales will occur after this point. Second, we adopt a durable-goods utility specification,
interpreting the discount rate as the rate of time preference. If instead the discount rate is the
degree agents’ values fall over time (e.g. values for summer clothes will be lower in July than in
June), then utility is given by vδt− p̃t. Under this new specification, the analysis is unchanged
with prices given by p̃t = δtpt.

2.1 Preliminaries

When an agent enters the market, he chooses his declaration ṽi to maximise his utility (2.1).
As shown in Mas-Colell, Whinston, and Green (1995, Proposition 23.D.2), an allocation rule is
incentive compatible if and only if the discounted allocation probability

E0


∑

s≥1

δsPi,s(vi, v−i)


 (2.3)

is increasing in vi. Using the envelope theorem and integrating by parts, expected utility is
then

E0[ui(vi, vi)] = E0


∑

s≥1

δtPi,s
1− F (vi)

f(vi)




where we use the fact that an agent with value v earns zero utility in any profit-maximising
mechanism. Profit (2.2) equals welfare minus agents’ utilities,

ΠK
0 = E0


∑

i

∑

s≥1

Pi,sδ
sm(vi)


 (2.4)

where the marginal revenue of agent i is given by m(vi) := vi − (1−F (vi))/f(vi). Throughout
we assume m(v) is increasing in v, implying that the seller’s optimal mechanism is characterised
by cutoff rules, and allowing us to ignore the monotonicity constraint (2.3).

Suppose the seller has k goods at time t. Write continuation profits before the period-t
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entrants have entered by8

Πk
t := Et


∑

i

∑

s≥t

P̂i,sδ
s−tm(vi)


 . (2.5)

where P̂i,s is the allocation function given the principal has k goods in period t. Let the expected
continuation profits after period-t entrants have entered be denoted by Π̃k

t . When k = 1, we
omit the superscript.

3 Single Unit

We first derive the optimal solution when the firm has one unit to sell. By the principle of
optimality, the seller maximises continuation profits in every state. At time t, profit is

Πt = max
P̂i,t

Et

[∑

i

P̂i,tm(vi) +

(
1−

∑

i

P̂i,t

)
δΠt+1

]

= max
P̂i,t

Et

[∑

i

P̂i,t(m(vi)− δΠt+1)

]
+ Et[δΠt+1] (3.1)

Equation (3.1) implies that the good is allocated to maximise the flow profit minus the oppor-
tunity cost of allocating the good, δΠt+1. As a result, when the good is awarded, it will be
given to the agent with the highest marginal revenue (and the highest valuation).

We can now think of the highest current valuation, v, as a state variable. Let Πt(v) be the
profit just before entry in time t, so that

Πt(v) = Et

[
max{m(v),m(v1

t ), δΠt+1(max{v, v1
t })})

]
for t < T (3.2)

ΠT (v) = ET

[
max{m(v),m(v1

T ), 0}]

The following result shows that the optimal cutoffs can be characterised by a simple one-period-
look-ahead rule.

Proposition 1. Suppose K = 1 and Nt are IID. The optimal mechanism awards the good to the
agent with the highest valuation exceeding a cutoff. The cutoffs {xt} are uniquely determined

8While we call Πk
t continuation profits, this includes the impact of time t decisions on the willingness to pay

of agents who buy in earlier periods.
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by:

m(xt) = δEt+1[max{m(v1
t+1),m(xt)}] for t < T (3.3)

m(xT ) = 0

Consequently, the cutoffs are constant in periods t < T .

Proof. The proof is by induction. In period t = T , then m(xT ) = 0. In period t = T − 1, the
seller should be indifferent between selling to agent xT−1 today and waiting one more period
and getting a new set of buyers. Hence

m(xT−1) = δET [max{m(v1
T ),m(xT−1)}].

Continuing by induction, fix t and suppose xs, as defined by (3.3), are optimal for s > t. If
v < xt then

m(v) < δEt+1[max{m(v1
t+1), m(v)}]

so the seller strictly prefers to wait one period rather than sell to type v today. Conversely, if
v > xt then

m(v) > δEt+1[max{m(v1
t+1),m(v)}]. (3.4)

Since Nt is IID, (3.4) implies that v > xt+1 so type v will buy tomorrow if he does not buy
today. Hence

Πt+1(v) = Et+1[max{m(v1
t+1),m(v)}]

and (3.4) implies that the seller strictly prefers to sell to type v today rather than waiting.
Putting this together, xt is indeed the optimal cutoff.

Proposition 1 uniquely characterises the optimal cutoffs, and shows they are constant in
all periods prior to the last. The intuition is as follows. At the cutoff the seller is indifferent
between selling to the agent today and delaying one period and receiving another draw. This
indifference rule relies on the assumption that if type xt does not buy today, then he will buy
tomorrow. This is satisfied because the seller faces exactly the same tradeoff tomorrow and
therefore is once again indifferent between selling and waiting.

The optimal cutoffs are deterministic, depending on the number of periods remaining, but
not on the number of agents who have entered in the past and their valuations. While the value
of the second highest agent may affect the seller’s realised revenue, it does not alter the seller’s
expected revenue and hence the optimal cutoff. Since cutoffs are deterministic the seller can
implement the optimal mechanism without observing the number of arrivals, as we show below.
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Proposition 1 is very different from the optimal mechanism when buyers are impatient (e.g.
Vulcano, van Ryzin and Marglaras (2002)). In this case, the optimal cutoffs are fully forward-
looking, and fall over time as the seller becomes increasingly keen to sell the good. In contrast,
when agents are patient, the allocations are determined by a one-period-look-ahead rule.9

Finally, let us assess the welfare consequences of Proposition 1. Using an analogous proof,
one can show that the welfare-maximising mechanism awards the good to the agent with the
highest value exceeding a cutoff given by xW

t = Et+1[δ max{v1
t+1, x

W
t }] for t < T , and xW

T = 0.
If (1 − F (v))/vf(v) is decreasing in v, then the profit-maximising cutoffs exceed the welfare-
maximising cutoffs for all t, implying that a profit-maximising seller awards the good later than
is efficient (and sometimes never at all).10

3.1 Implementation through Sequential Second-Price Auctions

The optimal mechanism allocates the good to the agent with the highest valuation exceeding
a cutoff. Corollary 1 shows that this allocation can be implemented through a sequence of
second-price auctions with declining reserve prices.

Denote the cutoff in periods t < T by x∗ and let θ := δ Pr(v1
t < x∗) be an agent’s effective

discount rate, taking into account the possibility that, if he delays, the good may be sold to a
new entrant.

Corollary 1. Suppose K = 1 and Nt is IID. The profit-maximising allocation can be imple-
mented by a sequence of second-price auctions with deterministic reserve prices Rt satisfying
RT = m−1(0) and

Rt = (1− θT−t)x∗ + θT−tE0

[
max{v2

≤T , m−1(0)}∣∣N1 ≥ 1, v1
≤T = x∗

]
for t < T . (3.5)

Proof. See Appendix A.1.

The reserve prices are constructed so that the marginal agent is indifferent between buying
today and delaying. When making this calculation, we must condition on the buyer existing;
since Nt is IID, we assume the buyer enters in period 1.

The sequential second-price auction has several interesting features. First, while cutoffs are
constant in periods t < T , the reserve prices decline. When the an agent delays he forgoes one

9This assumes T is finite. When T = ∞, the cutoffs are determined by (3.3) and are therefore constant in
all periods. An agent therefore either buys immediately or never, and we can assume that buyers are impatient
without loss of generality (Gallien (2006)).

10Proof: Since (1− F (v))/vf(v) is decreasing in v, m(v)/v is increasing in v and m(v)/m(x) ≥ v/x for v ≥ x
if m(x) > 0. If xW

t > xt, then

1 = Et+1

[
δ max

{
m(v1

t+1)

m(xt)
, 1

}]
≥ Et+1

[
δ max

{
v1

t+1

xt
, 1

}]
> Et+1

[
δ max

{
v1

t+1

xW
t

, 1

}]
= 1

yielding the required contradiction.
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period’s enjoyment of the good, so the price has to drop at least at quickly as the discount
factor, but since he is also risking the arrival of new competition, the price has to fall faster.

Second, agents below x∗ abstain, even though their valuations may exceed the reserve price.
Such an agent wishes to delay in order to take advantage of the fire-sale in period T .

Third, the reserve prices are deterministic. Intuitively, if an agent has value above x∗, he
bids his value, either wins or loses the good, and the game ends. If an agent has value below
x∗, he abstains and does not reveal his valuation, so there is no new information arriving to the
market to affect the optimal reserve price.11

Fourth, the reserve prices depend on the expected number of agents who will enter in the
future. This means that as the distribution of Nt grows in the usual stochastic order then (a)
the cutoff x∗ rises, and (b) the probability of stocking out grows and x∗ −Rt shrinks.

Finally, while we assume that the seller uses a second-price auction, we could equally well
use a different auction format. One possibility is to use an English auction each period. As in
the second-price auction, an agent bids his value, conditional on participation. Given reserve
prices (3.5), type x∗ is again the lowest type participating. A second possibility is to use a
first-price auction in periods t < T and a second-price auction in period T , with the reserve
prices given by (3.5). In periods t < T , agents below x∗ abstain, while those above x∗ adopt an
increasing bidding strategy with b(x∗) = Rt. This implements the same allocation as sequential
second-price auctions and, by revenue equivalence, raises the same revenue. In period T , agents
have different beliefs about the distribution of types for new and old bidders, so a second-price
auction can be used to attain an optimal allocation (a first-price auction would not be efficient).

3.2 Implementation in Continuous Time

The optimal mechanism becomes particularly simple to implement as time periods become very
short. Suppose agents enter the market according to a Poisson process with arrival rate λ,12

and let r be the instantaneous discount rate. Taking the limit of equation (3.3), the optimal
allocation at t < T is given by

rm(x∗) = λE
[
max{m(v)−m(x∗), 0}] (3.6)

where v is distributed according to F (·). Equation (3.6) says the seller equates the flow profit
from the cutoff type (the left-hand-side) and the option value of waiting for a new entrant (the
right-hand-side). At time T , the optimal cutoff is given by m(xT ) = 0. See Figure 1 for an

11 This relies of the fact that one buyer cannot observe the arrival of others (as in online marketplaces). If
{N1, . . . , Nt} is publicly observed then the optimal allocations are identical and the reserve is Rt = (1−θT−t)x∗+
θT−tE0

[
max{v2

≤T , m−1(0)}
∣∣{N1, . . . , Nt}, v1

≤T = x∗
]
, which changes with the observed number of agents that

have arrived.
12In discrete time, this means Nt is distributed according to a Poisson distribution with parameter λ.
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Figure 1: Optimal Cutoffs and Prices with One Unit in Continuous Time. When there is one
unit, the optimal cutoffs are constant when t < T and drop at time T . The price path is decreasing
and concave, with an auction occurring at time T . In this figure, agents enter continuously with Poisson
parameter λ = 5 have values v ∼ U [0, 1], so the static monopoly price is 0.5. Total time is T = 1 and
the interest rate is r = 1/16.

illustration.
The optimal allocation can be implemented by a deterministic sequence of prices with a

fire-sale at time T . In the last period, the seller uses a second-price auction with reserve
RT = m−1(0). At time t < T the seller chooses a price pt, which makes type x∗ indifferent
between buying and waiting. The final “buy-it-now” price, denoted by pT = limt→T pt, is
chosen so type x∗ is indifferent between buying at price pT and entering the auction. That is,

pT = E0

[
max{v2

≤T ,m−1(0)}∣∣N0 = 1, v1
≤T = x∗

]

Note that the buyer conditions on his own existence; since arrivals are independent, we assume
that the buyer arrives at time 0 without loss of generality.

When t < T , type x∗ is indifferent between buying now and waiting dt. This yields

(x∗ − pt) = (1− rdt− λdt)(x∗ − pt+dt) + λdt(x∗ − pt+dt)F (x∗)

Rearranging and letting dt → 0,

dpt

dt
= −(x∗ − pt)

(
λ(1− F (x∗)) + r

)
.

Fixing the cutoffs, prices fall faster if (a) prices are lower, (b) the arrival rate is higher, (c)
there is a high probability a new arrival will buy the good, or (d) the interest rate is higher.

12



The first property implies that pt is convex in t, so prices fall faster as the deadline approaches
(see Figure 1).

4 Multiple Units

In this section we suppose the seller has K goods to sell. Using the principle of optimality, the
seller maximises continuation profits at each point in time. Consider period t and suppose the
seller has k units.

Lemma 1. The seller allocates goods to high value agents before low value agents.

Proof. Suppose in period t the seller sells to agent j but does not sell to agent i, where vi ≥
vj . To be concrete, suppose the seller eventually sells to agent i in period τ > t, where we
allow τ = ∞. Now suppose the seller leaves all allocations unchanged but switches i and j.
This increases profit by (1− δτ−t)(m(vi)−m(vj)), contradicting the optimality of the original
allocation.

Using Lemma 1, we need only keep track of the k highest remaining valuations. At the start
of time t suppose the seller has agents with valuations {y1, . . . , yk}, where yi ≥ yi+1. Profit is
described by the Bellman equation13

Π̃k
t (y

1, . . . , yk) = max
j∈{0,...,k}

[
j∑

i=1

m(yi) + δΠk−j
t+1 (yj+1, . . . , yk)

]

where Πk
t+1 := Et+1[Π̃k

t+1]. The Bellman equation says the seller receives the marginal revenue
from the units she sells today plus the continuation profits from the remaining units. The
seller’s optimal strategy is thus to sell the first object to the highest value agent, subject to his
value exceeding cutoff xk

t . She then sells the second object to the second highest value agent,
subject to his value exceeding cutoff xk−1

t , and so forth. We can thus think of the items being
awarded sequentially within a period.14

The following Lemma shows that when {xk
t } are decreasing in k we can treat each unit

separately, comparing the jth cutoff to the corresponding agent’s valuation.

Lemma 2. Fix t and suppose {xk
t } are decreasing in k. Then unit j is allocated to agent i at

time t if and only if
(a) vi exceeds the cutoff xj

t .
(b) vi has the (k − j + 1)th highest valuation of the currently present agents.

13When j = 0 the first term in the summation is zero.
14Formally, a cutoff xk

t is defined as the value of y1 such that the seller is indifferent between selling today
and waiting.
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Proof. Suppose agent i is allocated good j, then (a) and (b) are satisfied.
Suppose (a) and (b) are satisfied. Then there are (k− j) agents with higher valuations than

i. Since the cutoffs are decreasing in k, these valuations exceed their respective cutoffs. Hence
object j is allocated to agent i.

Proposition 2 shows the cutoffs are decreasing in k, and explicitly solves for the optimal
cutoffs. In the period t = T , the seller wishes to allocate the goods to the k highest value
buyers, subject to these values exceeding the static monopoly price. Hence,

m(xk
T ) = 0 for all k. (4.1)

Next, consider period t = T−1. If she allocates the kth good she gets m(xk
T−1). The opportunity

cost is to wait one period and award the good either to agent xk
T−1 or the kth highest new entrant.

Hence,15

m(xk
T−1) = δET−1

[
max{m(xk

T−1),m(vk
T )}

]
(4.2)

In periods t ≤ T −1, the seller is indifferent between selling to the cutoff type today and waiting
one more period. If she sells today, she only sells one unit since {xk

t } are decreasing in k. If she
waits, she sells at least one unit tomorrow by the one-period-look-ahead policy. We thus have:

m(xk
t ) + δEt+1

[
Π̃k−1

t+1 (v1
t+1, . . . , v

k−1
t+1 )

]
(4.3)

= δEt+1

[
max{m(xk

t ),m(v1
t+1)}

]
+ δEt+1

[
Π̃k−1

t+1 ({xk
t , v

1
t+1, . . . , v

k
t+1}2

k)
]
.

where the notation {xk
t , v

1
t+1, . . . , v

k
t+1}2

k represents the ordered vector of the 2nd to kth high-
est choices from {xk

t , v
1
t+1, . . . , v

k
t+1}. Notably, equation (4.3) is independent of the state

{y2, . . . , yk} for reasons explained below.

Proposition 2. Suppose the seller has K units to sell and Nt are IID. The optimal allocation
awards unit k at time t to the agent with the highest value exceeding a cutoff xk

t . The cutoffs
are characterised by equations (4.1), (4.2) and (4.3). These cutoffs are deterministic, and
decreasing in t and k.

Proof. See Appendix A.2 and A.3.

Proposition 2 has a number of important consequences. First, the cutoffs are uniquely
determined. Intuitively, the sooner an agent buys a good the more his value affects overall

15To be more formal, if y1 > vk
T , the seller loses y1(1− δ) by delaying. If y1 < vk

T , the seller loses y1 − δvk by
delaying. The seller is thus indifferent if y1 satisfies (4.2).
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profit. Hence the left hand sides of (4.2) and (4.3) have a steeper slope than the right hand
sides.

Second, the cutoffs are independent of the current state (y2, . . . , yk). Intuitively, at the
cutoff, the seller is indifferent between selling to y1 and waiting. In either case the allocation
to (y2, . . . , yk) is unaffected since, in any future state, this decision does not affect their rank
in the distribution of agents available to the seller. This fact is used in equation (4.3), where
we set yj = 0 for j ≥ 2. Moreover, since cutoffs are deterministic, we do not have to elicit the
values of agents and, in continuous time, can implement the optimal allocations through posted
prices (see below).

Third, the cutoffs increase when there are fewer units available (see Figure 2). Intuitively,
if the seller delays awarding the kth unit by one period then she can allocate it to the highest
value entrant, rather than agent y1. When there are more goods remaining, agent y1 is more
likely to be awarded the good eventually, reducing the option value of delay and decreasing the
cutoff.

Fourth, the cutoffs for the last unit are identical to the one unit case and are therefore
constant in periods t ≤ T − 1. The other cutoffs are decreasing over time (see Figure 2). The
intuition, as above, is based on the fact that if the seller delays awarding the kth unit by one
period then she can allocate it to the highest value entrant, rather than agent y1. As the game
progresses, agent y1 is more likely to be awarded the good eventually, reducing the option value
of delay and decreasing the cutoff. Figure 2 shows that the cutoffs decrease rapidly as t → T .
Figure 3 shows the corresponding hazard rate of sale. The hazard rate with one unit remaining
stays low until t = T , at which point it jumps to infinity (because of the fire sale). The hazard
rate with two units remaining is qualitatively similar: it is low initially and rapidly rises as we
approach T , and therefore still resembles a fire-sale.16

4.1 Implementation in Continuous Time

Suppose agents enter according to a Poisson process with parameter λ.17 In period T , the
optimal cutoffs are given by m(xk

T ) = 0. In period t < T , equation (4.3) becomes

rm(xk
t ) = λE

[
max{m(v)−m(xk

t ), 0}+ Πk−1
t

(
min{v, xk

t }
)−Πk−1

t (v)
]

(4.4)

where v is drawn from F (·). Equation (4.4) states the seller is indifferent between selling today
and delaying a little. The cost of delay is the forgone interest (the left-hand side); the benefit is
the option value of a new buyer entering the market (the right-hand side). When compared to
the single unit case (3.6), we see that delay leads to a higher marginal revenue tomorrow, if a

16We can also bound the kth unit cutoff from above and below in periods t < T by xk and xk as determined
by m(xk) = δEt+1[max{m(xk), m(v1

t+1)}] and m(xk) = δEt+1[max{m(xk), m(vk
t+1)}].

17Li (2009) extends our results by providing an implementation in discrete time.
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Figure 2: Optimal Cutoffs and Prices with Two Units. The left panel shows the optimal
cutoffs/prices when the seller has two units remaining. The right panel shows the optimal cutoffs/prices
when the the seller has one unit remaining. The three price lines illustrate the seller’s strategy when
it sells the first unit at times t = 0, t = 0.3 and t = 0.6. In this figure, agents enter continuously with
λ = 5 and have values v ∼ U [0, 1]. Total time is T = 1 and the interest rate is r = 1/16.
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Figure 3: Hazard Rates with Two Units This figure shows the probability the first/second unit is
sold at time t + dt, conditional on there being one/two units remaining at time t. We assume agents
enter continuously with Poisson parameter λ = 5 and have values v ∼ U [0, 1]. Total time is T = 1 and
the interest rate is r = 1/16.
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new agent enters, and a lower state variable in the continuation game. While the continuation
value depends on the values of the highest k − 1 agents, the difference in continuation values
only depends on the highest value (Lemma 4). This enables us to write Πk−1

t as a function of
one variable and, when computing the cutoffs, assume there is only one buyer present. Using
Lemmas 5–7, equation (4.4) implies that xk

t is uniquely determined, and decreasing in k and t.
When k = 1, x1

t is constant for all t < T , and jumps down discontinuously at t = T . For k ≥ 2,
Πk−1

t (v) → m(v) as t → T , so (4.4) implies that xk
t → m−1(0), as shown in Figure 2.

We can implement the optimal allocations with prices {pk
t } and a fire-sale at time T for the

last unit. We first wish to understand the limit of prices as t → T , giving us a boundary point.
For k ≥ 2, m(xk

t ) → 0 and hence the prices converge to m−1(0). For k = 1, the seller can use a
second-price auction with reserve m−1(0) at time T . When t < T , the price converges to

pT = E0

[
max{v2

≤T ,m−1(0)}∣∣v1
≤T = x∗, sT (x∗)

]

where x∗ is the constant cutoff with one unit remaining, and sT (x) denotes the last time the
cutoff went below x. Note that pT depends on when other agents purchased units. In particular,
the earlier those units were purchased, the more competition agent with type x∗ expects at time
T , and the higher is pT (see Figure 2).

In earlier periods, the prices are such that the cutoff type is indifferent between buying now
and waiting a little. If he waits, the price is a little lower; however the agent forgoes some
utility, and the good may be taken by a new buyer or a buyer with a slightly lower valuation.
Equating these terms yields18

dpk
t

dt
=

[
dxk

t

dt
(t− st(xk

t ))λf(xk
t )− λ(1− F (xk

t ))
] [

xk
t − pk

t − Uk−1
t (xk

t )
]
− r

(
xk

t − pk
t

)
(4.5)

where Uk−1
t (xk

t ) is the buyer’s utility at time t when there are k − 1 goods left, conditional on
v1
≤t = xk

t and the history of the price path.19 Fixing the cutoffs, prices fall faster if (a) the
arrival rate is higher, (b) there is a high probability a new arrival will buy the good, or (c)
the interest rate is higher, as in Section 3.2. In addition, equation (4.5) shows that prices fall
faster if (d) the cutoffs fall quickly, or (e) there is a high probability a second agent has a value
just below xt. This second effect means that prices drop faster if buyers think they have more
competition from existing buyers. Overall, the price path falls smoothly over time, but jumps
up with every sale.

18For a derivation see Appendix A.5.
19Note: Utilities can be expressed in terms of future allocations via the envelope theorem.
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5 Extension: Inventory Costs

In some applications the cost of delay is likely to be a function only of time, rather than
proportional to values. (e.g. floor space in a shop). Suppose these costs are given by a convex
function ct for t ∈ {1, . . . , T + 1} and let ∆ct := ct+1 − ct be the cost of a one period delay. A
buyer’s utility is given by (2.1), where we set δ = 1. Adapting (2.4), the firm’s profits are given
by

ΠK
0 = E0


∑

i

∑

s≥1

Pi,s[m(vi)− ct] +


K −

∑

i

∑

s≥1

Pi,s


 (−cT+1)




We can now state the analogue of Proposition 1.

Proposition 3. Suppose K = 1 and ct is convex. The optimal cutoffs xt are uniquely deter-
mined by

m(xt) = Et+1[max{m(v1
t+1),m(xt)}]−∆ct for t < T (5.1)

m(xT ) = −∆cT

These cutoffs are decreasing over time.

Proof. Since ∆ct is increasing in t the cutoffs, as defined by (5.1), are decreasing in t. The rest
of the proof is the same as Proposition 1.

In continuous time, these allocations can be implemented by a deterministic price sequence
pt and a fire-sale at date T .20 Suppose buyers enter with Poisson arrival rate λ and the inventory
cost function c(t) is differentiable, increasing and weakly convex.21 The optimal cutoff at time
t < T is given by

c′(t) = λE
[
max{m(v)−m(xt), 0}

]

where v is drawn according to F (·). At time T , the optimal cutoff is given by m(xT ) = −c′(T ).
The agent’s utility (2.1) is not affected by the inventory costs, so the implementation is

the same as before. At time T , the seller can use a second-price auction with reserve RT =
m−1(−c′(T )). The final “buy-it-now” price is given by

pT = E0

[
max{v2

≤T , m−1(−c′(T ))}∣∣N0 = 1, v1
≤T = xT

]

20In discrete time, the optimal cutoffs can be implemented through a sequence of second-price auctions with
deterministic reserve prices, as in Section 3.1.

21If c(t) has kinks then xt will sometimes jump down, requiring the use of an auction.
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where xT := limt→T xt. In earlier periods, prices are determined by

dpt

dt
= −(xt − pt)

(
−dxt

dt
λtf(xt) + λt(1− F (xt))

)

which is similar to equation (4.5).
For simplicity, we have assumed there is only one good. When K ≥ 1 and the per-unit

inventory cost ct is convex, the proof of Proposition 2 can be adapted to show the optimal
cutoffs xk

t are characterised by the one-period look ahead rule:22

m(xk
t ) + Et+1

[
Π̃k−1

t+1 (v1
t+1, . . . , v

k−1
t+1 )

]

= Et+1

[
max{m(xk

t ), m(v1
t+1)}

]
+ Et+1

[
Π̃k−1

t+1 ({xk
t , v

1
t+1, . . . , v

k
t+1}2

k)
]
−∆ct

for t < T , with m(xk
T ) = −∆cT . These cutoffs are deterministic and decreasing in t and k. In

continuous time, the optimal allocation can be implemented by posted prices plus an auction
for the last unit in period T . The continuous time cutoffs are determined by

c′(t) = λE
[
max{m(v)−m(xk

t ), 0}+ Πk−1
t

(
min{v, xk

t }
)−Πk−1

t (v)
]

where v is drawn from F (·). Prices are then determined by (4.5) with r = 0 and the auction
for the last unit as above.

6 Extension: Varying Entry

This section analyses the optimal mechanism when the expected number of entrants varies over
time. In Section 6.1 we suppose fewer agents enter over time, as the stock of potential entrants
is used up. In Section 6.2 we suppose more agents enter over time, as word of the market’s
existence spreads. This analysis forms a bridge between models with no entry (e.g. Harris and
Raviv (1981)) and the constant entry model in Section 3.

6.1 Decreasing Entry

We first show that, when entry is decreasing, the IID allocations and prices are easily gen-
eralized. In particular, the cutoffs are determined by a one-period-look-ahead policy and are
deterministic.

22The proof of Proposition 2 has to be slightly adjusted. First, equations (A.5) and (A.6) have to be adjusted
to include inventory costs; similarly equation (A.15) in Lemma 7. Second, in Lemmas 5-7, δτ should be replaced
by 1τ≤T .
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Proposition 4. Suppose K = 1 and Nt is decreasing in the usual stochastic order. Then the
optimal cutoffs are characterised by (3.3). These cutoffs are decreasing over time.

Proof. Since Nt is decreasing in the usual stochastic order, v1
t is decreasing in the usual stochas-

tic order and xt, as defined by (3.3), is decreasing in t. The rest of the proof is the same as
Proposition 1.

In continuous time, these allocations can be implemented by a deterministic price sequence
pt and a fire-sale at date T .23 Suppose buyers enter with Poisson arrival rate λt, which is
decreasing in t. The optimal cutoff at time t < T is given by

rm(xt) = λtE
[
max{m(v)−m(xt), 0}

]

where v is drawn according to F (·). At time T , the optimal cutoff is given by m(xT ) = 0.
At time T , the seller can implement the optimal allocation through a second-price auction

with reserve RT = m−1(0). The final “buy-it-now” price is given by

pT = E0

[
max{v2

≤T ,m−1(0)}∣∣N0 = 1, v1
≤T = xT

]

where xT := limt→T xt. In earlier periods, prices are determined by

dpt

dt
= −(xt − pt)

(
−dxt

dt

(∫ t

0
λτ dτ

)
f(xt) + λt(1− F (xt)) + r

)
(6.1)

which is similar to equation (4.5).
To illustrate, suppose a seller puts her house on the market. There is an initial stock of

buyers who have a high probability of seeing the newly listed house, plus a constant inflow
of new buyers (where T = ∞). In the optimal mechanism, there is an introductory period
where cutoffs and price fall quickly, with some buyers strategically waiting. In the limit, where
existing buyers see the new house immediately, the seller reduces prices instantly in the form
of a Dutch auction. After this introductory period, prices coincide with the cutoffs, and are
constant over time, so that no buyer ever delays.

For simplicity, we have assumed there is only one good. When K ≥ 1, Proposition 2 applies
to the decreasing entry case, and optimal cutoffs are characterised by equations (4.1), (4.2) and
(4.3).24 As before, these cutoffs are deterministic, and decreasing in t and k. In continuous
time, the optimal allocation can be implemented by posted prices plus an auction for the last

23In discrete time, the optimal cutoffs can be implemented through a sequence of second-price auctions with
deterministic reserve prices, as in Section 3.1. In order to do this, however, agents’ time of entry must not lead
to different beliefs about the number of competitors, which is satisfied if Nt comes from a Poisson distribution.

24Proof: Replace Lemma 7 with Lemma 7′ in Appendix A.4.
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unit in period T . The continuous time cutoffs are determined by (4.4), replacing λ with λt.
Similarly, the price path is determined by (4.5), again replacing λ with λt.

6.2 Increasing Entry

When the number of entrants increases over time, the one-period-look-ahead policy fails. Intu-
itively, because the number of entrants is rising, the seller wishes to increase the cutoff. If the
seller does not serve a cutoff type xt in period t, she will therefore not return to that agent until
period T . As a result the optimal allocations depend on the number of entrants in all future
periods, not just the adjacent period.

Recursively define the following functions:

πt(v) = Et

[
max{m(v1

t ), δπt+1(max{v, v1
t })}

]
for t < T (6.2)

πT (v) = ET

[
max{m(v), m(v1

T ), 0}]

This looks similar to equation (3.2), but is simpler because an agent who does not receive the
good at time t need not be considered again until period T .

Proposition 5. Suppose K = 1 and Nt is increasing in the usual stochastic order. Then the
optimal cutoffs are given by

m(xt) = δπt+1(xt) for t < T (6.3)

m(xT ) = 0.

These cutoffs are increasing over time, for t < T .

Proof. See Appendix A.6.

When the number of entrants increases over time, the optimal cutoffs (6.3) also increase.
As a result, an agent either buys when he enters the market or waits until the final period. This
means that, unlike the one-period-look-ahead policies in Propositions 1–4, the optimal cutoffs
depend on the future of the game. Consequently, today’s cutoff increases if either the game
becomes longer, or the future number of entrants rises.

In continuous time, these allocations can be implemented by a deterministic price sequence
pt and a fire-sale at date T .25 Suppose buyers arrive with Poisson arrival rate λt, which is
increasing in t. We can define functions corresponding to (6.2) using the end point πT (v) = v

25In discrete time, the optimal cutoffs can again be implemented through a sequence of second-price auctions
with deterministic reserve prices, as in Section 6.1.
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and the differential equation

rπt(v) =
dπt(v)

dt
+ λtE

[
max

{
m(v′), πt(max{v, v′})}− πt(v)

]
(6.4)

where v′ is the value of the new entrant and is drawn from F (·). Equation (6.4) says that asset
value of profits are determined by the increase in their value and the option value from new
entrants arriving. We can now define the optimal cutoffs. At time T , the optimal cutoff is given
by m(xT ) = 0. At time t < T , the optimal cutoff is given by m(xt) = πt(xt).

At time T , the seller can implement the optimal allocation through a second-price auction
with reserve RT = m−1(0). For t < T , the prices are determined so that buyer xt is indifferent
between buying in period t and waiting until the fire-sale. That is,

(xt − pt) = e−r(T−t) Pr(v1
≥t ≤ xt)E

[
xt −max{v2

≤T ,m−1(0)}∣∣N0 = 1, v1
≤T = xt

]
(6.5)

where v1
≥t is the highest order statistic of the buyers who have entered after time t. Let

ψt := e−r(T−t) Pr(v1
≥t ≤ xt) = e−r(T−t)e−(

∫ T
t λτ dτ)(1−F (xt)).

Note that ψt increases in t, and that ψT = 1. Prices are then given by

pt = (1− ψt)xt + ψtE[max{v2
≤T ,m−1(0)}|N0 = 1, v1

≤T = xt], (6.6)

Over time, the optimal posted prices will tend to rise and then fall. Intuitively, as t grows so the
cutoff increases, increasing the first term in (6.6). However, as t → T , the fire-sale at T comes
closer, decreasing agents willingness to delay and increasing the weight on the second term in
(6.6). If we take T → ∞, then the right hand side of (6.5) converges to zero and pt → xt for
all t. This follows from the fact that a buyer who delays at time t must wait until period T to
have another opportunity to buy.

7 Extension: Partially Patient Agents

One limitation of our analysis is that we do not allow for heterogeneity in the timing of buyers’
demands. That is, a type-v agent who enters in period 1 has the same valuation in period t as
a type-v agent who enters in period t. This is a problematic assumption for some applications,
since buyers may exit the market (for example, a customer may buy another airline ticket),
or buyers’ valuations may decline relative to the entrants (for example, a customer’s value for
a seasonal piece of clothing declines after his vacation). In this section we consider these two
perturbations of the model: In Section 7.1 we suppose buyers’ values decline deterministically
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relative to those of new entrants; In Section 7.2 we assume that buyers exit stochastically.
These results highlight the difficulties these considerations create and bridge our results with
the analysis of impatient agents (e.g. Vulcano, van Ryzin, and Maglaras (2002)).

7.1 Declining Values

For the first model, assume that an agent with value v who enters in period t and buys in period
s receives utility

δsβs−tv (7.1)

where β ∈ [0, 1]. When β = 1 this coincides with the model in Section 3; when β = 0 this
coincides with the model of impatient agents. Following the derivation in Section 2, profits are
given by

Π0 = E0


∑

i

∑

s≥1

Pi,sδ
sβs−tim(vi)




It will be convenient to think of the state variable as the highest marginal revenue, m̂, rather
than the highest valuation. Recursively define the following functions:

πt(m̂) = Et

[
max{m(v1

t ), δπt+1(max{βm̂,m(v1
t )})}

]
for t < T (7.2)

πT (m̂) = ET

[
max{βm̂,m(v1

T ), 0}]

This looks similar to equation (3.2), but is simpler because, if the seller delays at time t then
she does not return to that buyer until period T .

Proposition 6. Suppose K = 1, Nt is IID, and agents have declining values (7.1). At time
t < T , the optimal mechanism awards the good to the highest value agent who enters in time t,
if this value exceeds a cutoff xt defined by

m(xt) = δπt
t+1(m(xt)). (7.3)

These cutoffs have the property that m(xt) ≥ m(xt+1) ≥ βm(xt) for t < T − 1. At time T ,
the good is awarded to the agent with the highest discounted marginal revenue, βT−tim (vi),
providing it is positive.

Proof. See Appendix A.7.

Proposition 6 tells us that, when agents are only partially patient, the one-period-look-ahead
policy fails to hold. In particular, an agent either buys when he enters the market or waits
until period T . As in models with impatient agents, the cutoffs fall over time as the seller’s
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options shrink. However, since the seller can always return to an old agent, the rate of decline
is bounded below by β.

From equation (7.2) one can see that the seller’s profits are increasing in β. That is, the
seller prefers agents to be forward looking. While it may seem counterintuitive that allowing
inter-temporal arbitrage benefits the seller, delay allows the seller to merge buyers from different
cohorts and obtain a more efficient allocation. This suggests that if the seller can run an optimal
mechanism, she should embrace price prediction sites such as bing.com, rather than viewing
them as a threat to inter-temporal price discrimination.

We now turn to implementation. In period t < T , the optimal mechanism awards the
good to the entrant with the highest value exceeding the cutoff. If the generalized failure rate
vf(v)/(1−F (v)) is creasing in v then m(xt+1) ≥ βm(xt) implies that xt+1 ≥ βxt so the time-t
cutoff type will not wish to buy at time t + 1. As a result, we can implement the optimal
mechanism via simple second-price auctions with appropriate reserve prices, despite the new
and old entrants being asymmetric. Similarly, in continuous time the optimal mechanism can
be implemented via posted prices.

At time T , the optimal mechanism allocates the good to the agent with the highest βT−tim (vi)
while a second-price auction would allocate it to the one with the highest βT−tivi. If the gen-
eralized failure rate is decreasing in v, βT−t1v1 = βT−t2v2 implies βT−t1m(v1) ≥ βT−t2m(v2)
for t2 > t1. As a result, allocation is biased towards agents who enter the market earlier. Intu-
itively, allocating the object to an older buyer gives away fewer information rents because they
have a higher valuation relative to their cohort. We can thus implement the optimal allocation
by having agents register with the seller when they arrive in the market. The seller can then
give a “discount voucher” to an agent who arrives early. For example, if v ∼ U [0, 1] then the
seller should give an agent who registers in period t a discount of (1− βT−t)/2.26

7.2 Disappearing Buyers

Another natural way to model the heterogeneity in agents’ timing decisions is to allow buyers to
exit probabilistically over time. If entry and exit times are private information of the buyers, the
optimal mechanisms are very complicated, as discussed by Pai and Vohra (2008) and Mierendorff
(2009). Even if we simplify the model to assume that agents have no private information
about their exit times and assume each agent exits the game with probability ρ, the optimal
allocations become much more complicated. In particular, the following example illustrates
that the striking feature of our model — that the optimal cutoffs are deterministic — does not
hold in a general model with random exits.

Suppose time is discrete, T = 2 and K = 1. Suppose there are two entrants in period
26Proof: The seller wishes award the good to the agent who maximises βT−t(2v− 1), or equivalently vβT−t +

(1− βT−t)/2.
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t = 1 and one more entering at T = 2, and values are distributed uniformly over [0, 1], so that
m (v) = 2v − 1. Solving for optimal cutoffs, x2 = 1

2 and x1 is given by:

m (x1) = δEv3 [max{m (x1) , m (v3)}] (7.4)

Next, suppose agents independently exit with probability ρ.27 How does the optimal mech-
anism change? Without loss, suppose that v1 ≥ v2. Then it is optimal to sell the good to agent
1 if and only if

m (v1) ≥ δEv3

[
(1− ρ)max {m (v1) ,m (v3)}+ ρ (1− ρ)max {m (v2) ,m (v3) , 0}+ ρ2 max {0,m (v3)}

]

This expression is much more complicated than (7.4) because we need to take into account the
risk of losing either of the two agents. Importantly, the possibility that agent 1 will exit and
agent 2 will stay, makes the decision of whether to award the good to agent 1 today depend on
the value of agent 2! For δ = 1 and ρ = 1

9 the optimal cutoff for agent 1 as a function of agent
2 value is:

x1 (v2)





≈ 0.91 for v2 > 0.91
= 9

8 − 1
24

√
79− 64v2

2 for v2 ∈ [0.5, 0.91]
≈ 0.79 for v2 < 0.5

Hence the optimal cutoffs depend on the values of all players that have entered, and are not
deterministic. While we can implement such an allocation through a direct revelation mecha-
nism, it seems unlikely that any natural indirect mechanism, such as auctions or posted prices,
will work.

8 Conclusion

We have characterized the optimal mechanism for a seller who wishes to sell K goods to
buyers who enter the market over time and are patient. We have also shown that the optimal
mechanism is deterministic and can be implemented by a sequence of prices with an auction
for the final good at time T .

A major motivation for the paper was to introduce forward-looking buyers into a standard
revenue management model. When compared to a model with myopic buyers, this change has
three major consequences: first, cutoffs are determined by a simple one-period-look-ahead rule
rather than a fully forward-looking optimal stopping problem; second, prices depend on the
history of sales, since this affects the competition faced by current buyers; third, the seller
should hold an auction at the end (or reduce prices rapidly) to harvest delaying buyers. The

27If exits are perfectly correlated (e.g. the good expires) then the expiration probability can be incorporated
into the discount rate, and the analysis of Sections 3–4 is unchanged.
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importance of these differences depends on the environment. The assumption of myopic buyers
is without loss if entry is IID and either there are infinite periods (Gallien (2006)), or markets
are large (Segal (2003)), since a constant price is optimal under either scenario. This means
that properly modelling patient buyers is most important where the seller’s options decline over
time, or where the market is small. It suggests, for instance, that airline companies should be
more concerned with forward-looking customers on their small flights than on their large ones.

26



A Omitted Proofs

A.1 Proof of Corollary 1

In period t = T , the optimal reserve price is RT = m−1(0) and it is a weakly dominant strategy
for an agent to bid his valuation, bT (v) = v.

Consider period t < T . As we verify below, if we set Rt according to (3.5) then an agent
with type x∗ is indifferent between buying today and delaying, conditional on having the highest
valuation. Since δ < 1, types v ≥ x∗ prefer to buy today and bid at least Rt, while types v < x∗

prefer to delay and do not bid. For an agent who bids above the reserve price, it is a weakly
dominant strategy to bid his valuation.

We now verify the appropriate reserve price is defined by (3.5). Consider period T − 1 and
suppose v1

≤T−1 = x∗. The reserve is determined by the indifference condition

(x∗ −RT−1) = δE0

[(
x∗ −max{v2

≤T−1, v
1
T ,m−1(0)})1v1

T <x∗
∣∣N1 ≥ 1, v1

≤T−1 = x∗
]
. (A.1)

Rearranging (A.1), the reserve price is

RT−1 = (1− θ)x∗ + θE0

[
max{v2

≤T−1, v
1
T ,m−1(0)}∣∣N1 ≥ 1, v1

≤T−1 = x∗, v1
T < x∗

]

= (1− θ)x∗ + θE0

[
max{v2

≤T ,m−1(0)}∣∣N1 ≥ 1, v1
≤T = x∗

]
. (A.2)

Next, consider period t ≤ T − 2. Type x∗ should indifferent between buying and waiting.
If he buys in period t he pays the reserve price, Rt; if he waits, we assume he buys in period
t + 1, since x∗ is constant.28 Hence the period-t reserve is determined by the AR(1) equation

(x∗ −Rt) = δE0[(x∗ −Rt+1)1v1
t+1<x∗

∣∣N1 ≥ 1, v1
≤t = x∗] (A.3)

Rearranging (A.3),
Rt = (1− θ)x∗ + θRt+1 (A.4)

Using (A.2) and (A.4) the reserve price is given by (3.5).

A.2 Proof of Proposition 2

At time t = T and t = T − 1 the cutoffs are given by (4.1) and (4.2), as argued in the text. We
now claim that {xk

t } are deterministic and decreasing in t and k. This is true for the last two
periods. We now continue by induction.

28Since the cutoffs are constant, we can equally well assume that, if type x∗ waits at time t, then he waits
until the period t = T .
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Figure 4: Proof of Proposition 2. This figure shows the order of cutoffs in induction step, where
an arrow from (k − 1, t) to (k − 1, t + 1) indicates that xk−1

t ≥ xk−1
t+1 . We know the relations indicated

by dark arrows hold, and wish to prove the relations indicated by dashed arrows. Cases (a) and (b)
correspond to the two ways these inequalities may not hold.

Definitions. At time t, suppose the state is (y1, y2, . . . , yk). If the seller sells one unit today
then continuation profit is

Πk
t (sell 1 today) = m(y1) + δΠk−1

t+1 (y2, . . . , yk)

= m(y1) + δEt+1

[
Π̃k−1

t+1 ({y2, . . . , yk, v1
t+1, . . . , v

k
t+1}1

k−1)
]

(A.5)

If the seller sells one or more units tomorrow then she will obtain

Πk
t (sell tomorrow) = δEt+1

[
max{m(y1), m(v1

t+1)}
]
+ δEt+1

[
Π̃k−1

t+1 ({y1, y2, . . . , yk, v1
t+1, . . . , v

k
t+1}2

k)
]

(A.6)

Denote the difference function by

∆Πk
t (y

1, . . . , yk) = Πk
t (sell 1 today)−Πk

t (sell tomorrow).

As shown in Lemma 4 in Appendix A.3, ∆Πk
t is independent of {y2, . . . , yk}, so we can write

it as a function of y1 only.

Monotonicity in k and t. Since selling the last unit is identical to selling a single unit,
the cutoffs are determined by (3.3) and obey x1

t ≥ x1
t+1. We now proceed by induction (see

Figure 4). By contradiction, let k ≥ 2 be the smallest number that either (a) xk
t > xk−1

t or (b)
xk

t < xk
t+1. If there are multiple t’s that satisfy either condition, pick the higher number. 29

Case (a). Consider good k in period t. We have

xk
t > xk−1

t ≥ xk−1
t+1 ≥ xk

t+1, (A.7)

so the kth cutoff is decreasing in t. At the cutoff the seller is indifferent between selling today
and waiting. If she sells today she earns Πk

t (sell today) ≥ Πk
t (sell 1 today). If she waits then

29Since xk−1
t ≥ xk−1

t+1 ≥ xk
t+1, these two cases are mutually exclusive.
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(A.7) implies that she chooses to sell good k tomorrow and Πk
t (wait) = Πk

t (sell tomorrow). The
indifference condition therefore implies that, at the cutoff,

∆Πk
t (x

k
t ) ≤ 0. (A.8)

Consider the cutoff for good k−1 in period t. Since {xj
t}j<k are decreasing in k, Πk−1

t (sell today) =
Πk−1

t (sell 1 today). Since xk−1
t ≥ xk−1

t+1 , Πk−1
t (wait) = Πk−1

t (sell tomorrow). As a result,

∆Πk−1
t (xk−1

t ) = 0. (A.9)

We therefore conclude that

0 ≥ ∆Πk
t (x

k
t ) > ∆Πk

t (x
k−1
t ) ≥ ∆Πk−1

t (xk−1
t ) = 0. (A.10)

yielding the required contradiction. In equation (A.10), the first inequality comes from (A.8).
The second comes from xk

t > xk−1
t and Lemma 5, which says that ∆Πk

t (x) is strictly increasing
in x. The third inequality comes from Lemma 6, which says that ∆Πk

t (x) is increasing in k.
The final equality comes from (A.9).

Case (b). Consider good k in period t. We have

xk
t < xk

t+1 ≤ xk−1
t+1 ≤ xk−1

t

so {xj
t}j≤k are decreasing in k. At the cutoff the seller is indifferent between selling today and

waiting. If the seller sells today she earns Πk
t (sell today) = Πk

t (sell 1 today), since {xj
t}j≤k are

decreasing in k. If she waits then she obtains Πk
t (wait) ≥ Πk

t (sell tomorrow). The indifference
condition implies that, at the cutoff,

∆Πk
t (x

k
t ) ≥ 0 (A.11)

Consider the cutoff for good k in period t+1. Since {xj
t}j≤k are decreasing in k, Πk

t+1(sell today) =
Πk

t+1(sell 1 today). Since xk
t+1 ≥ xk

t+2, Πk
t+1(wait) = Πk

t+1(sell tomorrow). As a result,

∆Πk
t+1(x

k
t+1) = 0. (A.12)

We therefore conclude that

0 ≤ ∆Πk
t (x

k
t ) < ∆Πk

t (x
k
t+1) ≤ ∆Πk

t+1(x
k
t+1) = 0. (A.13)

yielding the required contradiction. In equation (A.13), the first inequality comes from (A.11).
The second comes from xk

t < xk
t+1 and Lemma 5, which says that ∆Πk

t (x) is strictly increasing
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in x. The third inequality comes from Lemma 7, which says that ∆Πk
t (x) is increasing in t.

The final equality comes from (A.12).

Summary. Given that {xk
t } are decreasing in k and t the optimal cutoffs are given by

∆Πk
t (x

k
t ) = 0. Using Lemma 4 we can assume yj = 0 for j ≥ 2 and write this as (4.3).

A.3 Lemmas for Proof of Proposition 2

Lemma 3. Fix t and suppose {xk
s}s≥t+1 are decreasing in k. Suppose y1 ≥ y2 ≥ . . . ≥ yk, and

let yj−1 ≥ ỹ1 ≥ yj. Then the difference

Π̃k
t+1(y

1, y2, . . . , yk)− Π̃k
t+1(ỹ

1, y2, . . . , yk)

is independent of {yj , . . . , yk}.

Proof. Suppose the state is (y1, y2, . . . , yk) and pick i ≥ j. Since cutoffs are decreasing in k,
Lemma 2 says the good is allocated to value yi if and only if (a) given previous allocations
(including those within the period), yi has the highest value; and (b) yi exceeds the current
cutoff. Since this rule only depends on the rank of yi, the allocation rule is the same as
in state (ỹ1, y2, . . . , yk). Hence the difference in continuation profits is independent of yi, as
required.

Lemma 4. Fix t and suppose {xk
s}s≥t+1 are decreasing in k. Then ∆Πk

t (y
1, . . . , yk) is inde-

pendent of {y2, . . . , yk}.

Proof. Case 1. Suppose y1 ≥ v1
t+1. Then

Πk
t (sell 1 today) = m(y1) + δEt+1

[
Π̃k−1

t+1 ({y2, . . . , yk, v1
t+1, . . . , v

k
t+1}1

k−1)
]

Πk
t (sell tomorrow) = δm(y1) + δEt+1

[
Π̃k−1

t+1 ({y2, . . . , yk, v1
t+1, . . . , v

k
t+1}1

k−1)
]

Hence ∆Πk
t = (1− δ)m(y1), which is independent of {y2, . . . , yk}.

Case 2. Suppose y1 < vk
t+1. Then

Πk
t (sell 1 today) = m(y1) + δEt+1

[
Π̃k−1

t+1 (v1
t+1, v

2
t+1 . . . , vk−1

t+1 )
]

Πk
t (sell tomorrow) = δEt+1

[
m(v1

t+1)
]
+ δEt+1

[
Π̃k−1

t+1 (v2
t+1 . . . , vk

t+1)
]

Hence ∆Πk
t is independent of {y2, . . . , yk}.
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Case 3. Suppose vj−1
t+1 > y1 ≥ vj

t+1 for j ∈ {2, . . . , k}. Then

Πk
t (sell 1 today) = m(y1) + δEt+1

[
Π̃k−1

t+1 (v1
t+1, v

2
t+1 . . . , vj−1

t+1 , {y2, . . . , yk, vj
t+1, . . . , v

k
t+1}1

k−j)
]

Πk
t (sell tomorrow) = δEt+1[m(v1

t+1)] + δEt+1

[
Π̃k−1

t+1 (y1, v2
t+1 . . . , vj

t+1, {y2, . . . , yk, vj
t+1, . . . , v

k
t+1}1

k−j)
]

Since {xk
s}s≥t+1 are decreasing in k, we can apply Lemma 3, implying that ∆Πk

t is independent
of (y2, . . . , yk).

Lemma 5. ∆Πk
t (y

1) is strictly increasing in y1.

Proof. Using equation (A.5),

d

dy1
Πk

t (sell 1 today) = m′(y1)

Using equation (A.6) and the envelope theorem,

d

dy1
Πk

t (sell tomorrow) = m′(y1)δτk
1 (y1)−t

where τk
1 (y1) is the time y1 buys when he’s in first position at time t and there are k goods to

sell. The result follows from the fact that τk
1 (y1) > t and δ < 1.

Lemma 6. Fix t and suppose {xk
s}s≥t+1 are decreasing in k. Then ∆Πk

t (y
1) is increasing in

k.

Proof. Let {y1, . . . , yk} and {ỹ1, . . . , ỹk} be arbitrary vectors, where yj ≥ ỹj for each j. Using
equation (2.5),

Π̃k
t+1(y

1, . . . , yk)− Π̃k
t+1(ỹ

1, . . . , ỹk) ≥ Π̃k
t+1(y

1, . . . , yk−1, ỹk)− Π̃k
t+1(ỹ

1, . . . , ỹk−1, ỹk)

= δ−(t+1)

∫ {y1,...,yk−1}

{ỹ1,...,ỹk−1}
(m′(z1)δτk

1 (z1), . . . ,m′(zk−1)δτk
k−1(zk−1))d(z1, . . . , zk−1)

≥ δ−(t+1)

∫ {y1,...,yk−1}

{ỹ1,...,ỹk−1}
(m′(z1)δτk−1

1 (z1), . . . , m′(zk−1)δτk−1
k−1 (zk−1))d(z1, . . . , zk−1)

= Π̃k−1
t+1 (y1, . . . , yk−1)− Π̃k−1

t+1 (ỹ1, . . . , ỹk−1) (A.14)

The first line comes from the fact that yk ≥ ỹk. The second line use the envelope theorem,
where τk

j is the stopping time of the agent in the jth position when there are k objects for sale.
The third line follows from the fact that stopping times increase when the seller has one less
object since {xk

s}s≥t+1 are decreasing in k. The final line again uses the envelope theorem.
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Looking at equations (A.5) and (A.6), observe that the vector

{y2, . . . , yk, v1
t+1, . . . , v

k−1
t+1 }1

k−1

is pointwise larger than the vector

{y1, y2, . . . , yk, v1
t+1, . . . , v

k−1
t+1 }2

k.

The result follows from equation (A.14).

Lemma 7. Fix t and suppose {xk
s}s≥t+1 are decreasing in s and k. Then ∆Πk

t+1(y
1) ≥

∆Πk
t (y

1).

Proof. If y1 ≥ v1
t+1 then ∆Πk

t (y
1) = (1 − δ)m(y1) is independent of t, as shown in Lemma

4. We thus assume y1 < v1
t+1. Lemma 4 implies that the values below y1 do not affect

∆W k
t (y1, . . . , yk), so we can set yj = 0 for j ≥ 2. For shorthand, write

Π̃k−1
t+1 (z) := Π̃k−1

t+1 (z, v2
t+1 . . . , vk−1

t+1 ).

By definition of ∆Πk
t we thus have,

∆Πk
t (y

1) = m(y1)− δEt+1[m(v1
t+1)] + δEt+1[Π̃k−1

t+1 (v1
t+1)− Π̃k−1

t+1 (ỹ1)] (A.15)

where ỹ1 := max{y1, vk
t+1}. Using the envelope theorem,

Π̃k−1
t+1 (v1)− Π̃k−1

t+1 (ỹ1) = δ−1

∫ v1
t+1

ỹ1

m′(z)δτk−1(z)−t dz

where τk(z) is the time the object is allocated to type z, holding {v2
t+1, . . . , v

k−1
t+1 } constant. As

t increases the cutoff xk
t decreases and τk(z)− t falls. Hence δτk(z)−t and Π̃k−1

t+1 (v1
t+1)− Π̃k−1

t+1 (ỹ1)
increases. Since Nt is IID, ∆Πk

t increases, as required.

A.4 Extending Proposition 2 to Decreasing Entry

Lemma 7′. Fix t and suppose {xk
s}s≥t+1 are decreasing in s and k. Then ∆Πk

t+1(y
1) ≥

∆Πk
t (y

1).

Proof. Let v̂j
t+2 be the order statistics at time t + 2 if the number of bidders Nt+2 were drawn
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from the distribution of entrants at time t + 1. Define

∆Π̂k
t+1(y

1) = m(y1) + δEt+2

[
Π̃k−1

t+2 ({y2, . . . , yk, v̂1
t+2, . . . , v̂

k
t+2}1

k−1)
]

− δEt+2

[
max{m(y1),m(v̂1

t+2)}
]
+ δEt+2

[
Π̃k−1

t+2 ({y1, y2, . . . , yk, v̂1
t+2, . . . , v̂

k
t+2}2

k)
]

where we have replaced vj
t+2 with v̂j

t+2, for j ∈ {1, . . . , k}. Since Nt is decreasing in the usual
stochastic order, v̂j

t+2 exceeds vj
t+2 in the usual stochastic order. Since each entrant buys earlier

under “sell tomorrow”, this change increases Πk
t (sell tomorrow) more than Πk

t (sell 1 today).
Hence ∆Πk

t+1(y
1) ≥ ∆Π̂k

t+1(y
1).30

We now prove that ∆Π̂k
t+1(y

1) ≥ ∆Πk
t (y

1). Since v̂j
t+2 and vj

t+1 have the same distribution,
we can assume that v̂j

t+2 = vj
t+1 for each j. As in the proof of Lemma 7, consider the case

where y1 < v1
t+1 and let ỹ1 = max{y1, vk

t+1}. We then have,

∆Πk
t (y

1) = y1 − δEt+1[m(v1
t+1)] + δEt+1[Π̃k−1

t+1 (v1
t+1)− Π̃k−1

t+1 (ỹ1)].

Using the envelope theorem,

Π̃k−1
t+1 (v1)− Π̃k−1

t+1 (ỹ1) = δ−1

∫ v1
t+1

ỹ1

m′(z)δτk−1(z)−t dz

where τk(z) is the time the object is allocated to type z, holding {v2
t+1, . . . , v

k−1
t+1 } constant. Since

the cutoff types are decreasing in k, agent z buys the first time (a) he has the highest valuation,
and (b) his type exceeds the cutoff. Since (a) future order statistics are decreasing in t, and (b)
future cutoffs decrease in t, τk(z)− t decreases in t. Hence δτk(z)−t and Π̃k−1

t+1 (v1
t+1)− Π̃k−1

t+1 (ỹ1)
increases in t. Since v̂1

t+2 and v1
t+1 have the same distribution, ∆Π̂k

t+1(y
1) ≥ ∆Πk

t (y
1), as

required.

A.5 Derivation of Equation (4.5)

Suppose the highest agent at time t, y1, has value equal to the cutoff, xk
t . Let y2 be the value of

the second highest agent, and denote its distribution function conditional on the entire history
of cutoffs by Ht. Cutoffs are decreasing over time so if y1 delays, agent y2 may buy. Given that
arrivals are independent, this occurs with probability

1− Pr(y1 ≤ xk
t+dt|y1 = xk

t , Nt = 1) = 1−Ht(xk
t+dt).

30This is analogous to Lemma 6.
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Note that Ht(xk
t ) = 1 and the density is

ht(xk
t ) = Pr(y2 = xk

t | past cutoffs) = λ(t− st(xk
t ))f(xk

t )

where st(x) is the last time the cutoff went below x. Prices are determined by the cutoff type’s
indifference condition,

(xk
t − pk

t ) = (1− rdt− λdt)
[
xk

t − pk
t+dt

]
Ht(xk

t+dt) + (1− rdt− λdt)Uk−1
t (xk

t )
[
1−Ht(xk

t+dt)
]

+ (λdt)(xk
t − pk

t+dt)F (xk
t ) + (λdt)Uk−1

t (xk
t )(1− F (xk

t ))

Rearranging and letting dt → 0 yields (4.5).

A.6 Proof of Proposition 5

In period T , the seller awards the good to the agent with the highest value, subject to his
marginal revenue exceeding zero, implying that m(xT ) = 0. We next claim that xt are weakly
increasing for t < T . Suppose, by contradiction, that there exists t < T −1 such that xt > xt+1.
Then the cutoff xt is given by

m(xt) = δEt+1[max{m(xt),m(v1
t+1)}] (A.16)

This follows from the fact that type xt will buy in period t + 1 if he does not buy in period t.
Now consider period t+1 and suppose the seller faces a buyer of value xt+1. If the seller delays
she obtains at least δEt+2[max{m(xt+1),m(v1

t+2)}]. Indifference therefore implies that

m(xt+1) ≥ δEt+2[max{m(xt+1),m(v1
t+2)}] (A.17)

Since Nt is increasing in the usual stochastic order, v1
t+2 is larger than v1

t+1 in the usual stochastic
order, so (A.16) and (A.17) imply xt+1 ≥ xt, yielding a contradiction.

Fix t < T . If the seller sells to type xt, she obtains m(xt). If the seller delays, she obtains
δπt+1(xt), as defined by (6.2), where we use the fact that xt will not buy in period t+1 because
the cutoffs are increasing. The seller is indifferent between selling to type xt and delaying,
yielding (6.3), as required.

A.7 Proof of Proposition 6

We first show that for t < T − 1, m(xt+1) ≥ βm(xt). By contradiction, let t be the last time
this inequality is not satisfied, so m(xt+1) < βm(xt). It follows that, if the seller chooses not to
sell to type xt at time t then she will sell at time t + 1. Hence the time-t cutoff is determined
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by

m(xt) = δEt+1[max{βm(xt),m(v1
t+1)}] (A.18)

where the left-hand side is the payoff today, and the right-hand side is the payoff from delaying
using the fact that m(xt+1) < βm(xt). At time t + 1 the cutoff satisfies

m(xt+1) ≥ δEt+2[max{βm(xt+1),m(v1
t+2)}] (A.19)

where the right-hand side is lower bound on the value from delaying. From (A.18) and (A.19),
m(xt+1) ≥ m(xt), which contradicts the assumption that m(xt+1) < βm(xt).

Since m(xt+1) ≥ βm(xt), we know that if type xt does not obtain a good in period t then
he will not obtain one until period T . The resulting indifference equation yields equation (7.3).

Finally, since the seller can always choose allocate the good by period T − 1, the profit
function obeys πt(v) ≥ πt+1(v). Equation (7.2) thus implies that xt decreases over time.
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