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Abstract

We examine how a firm’s changing environment and the information constraints of

its managers interact as determinants of the size of the firm’s administration. Following

the recent decentralized information processing literature, we assume that it takes

individual managers time to process information. A consequence is that it takes time

for a firm to aggregate information, even when this task is shared. This delay increases

with the amount of information that is aggregated, leading to the following trade-off:

the more data the firm samples each period (and hence the larger its managerial staff),

the more precisely it can estimate the state that its environment was in when the

sample was taken but the more the environment has changed by the time these data

are used to estimate the current state. We explore this trade-off for two computation

models and for both a benchmark case of costless managers and the case of costly

managers. When managers are costless, the size of the administrative staff increases

monotonically as the environment becomes more stable. In contrast, when managers

are costly, optimal managerial size first increases and then decreases as a function of

environmental stability.
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1 Introduction

A firm’s administration consists of many agents who collectively process information and
make decisions. These tasks involve aggregating information about a changing environment,
with delay even when this task is shared (decentralized). Optimal organizational structure
must be adapted to the changing nature of the environment and to human information
processing constraints.

Radner (1993), in a seminal paper, employs an explicit model of information processing
in order to study organization structure. A main theme is that decentralization of informa-
tion processing reduces delay but raises managerial costs. He observes that there remain
inexorable constraints on the use of recent information even when there is decentralization.

Van Zandt and Radner (2001) consider how these trade-offs affect the optimal scale of
firms. They show that firm size, as measured by the scope of activities or the number of
markets in which it participates (which determines the scale of the firm’s centralized decision
problem), may be limited by the inability to quickly aggregate information in order to keep
up with a changing environment.

This paper takes up a different exercise. We hold fixed a firm’s decision problem (and
hence its scale), but look at different information gathering and aggregation procedures.
The firm may choose to have a large administrative staff that aggregates large amounts of
information, thereby obtaining precise estimates of the state of the environment when the
information was collected, or to have a lean administration that aggregates fewer data but
therefore uses more recent data in its decisions.

The decision problem we consider is to forecast a single stochastic process. The firm can
gather and aggregate noisy observations of this process. We restrict attention to two classes
of policies. In policies without recall, the firm periodically gathers a sample and computes a
new forecast, at which point previously accumulated information is disregarded. In policies
with recall, the firm periodically gathers a sample and computes an update of the forecast,
thereby combining the new information with previous information. The parameters of these
policies are the size of each sample, the delay before a new forecast is computed from each
sample, and the interval between samples.

These parameters cannot be chosen freely but instead are constrained by the informa-
tion processing capabilities of the potential managers. Furthermore, different policies have
different managerial costs. Given a class of policies and a computation model, the organiza-
tion design problem is to choose a decision procedure that optimally trades off these policy
parameters and managerial costs. We characterize optimal organizations and how they vary
with the volatility of the environment.

We do this exercise for two computation models. The first is a PRAM, which is the
simplest model of decentralized information processing. It allows us to see the main trade-
offs but does not paint a clear picture of the structure of the organization. The second
is a variant of the periodic processing model in Radner (1993), with a constraint that the
processing be stationary in the sense that each sample of data is processed in the same way
by the same hierarchy. The properties of this information processing model are characterized
in Orbay (2001).

For each model, we first consider a benchmark case in which the cost of managers is zero.
We show that sample size and managerial size increase with the stability of the environment.
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As the environment becomes more stable, delay is less costly and hence sample size increases;
this results also in an increase in managerial size. This is consistent with the notion that
firms adopt leaner managements when faced with a rapidly changing environment. When the
managerial wage is positive, small managerial staffs are also optimal when the environment
changes very slowly. It is then possible to keep up with a slowly changing environment by
processing only a small amount of information and thereby economizing on managerial costs.
Larger hierarchies are optimal in the intermediate region, when the environment changes
quickly enough that there is value to processing more information each period but not so
quickly that aggregate information has little value because of delay.

2 Decision problem

We consider a firm (or other type of organization) whose randomly changing environment
is parameterized by a stochastic process {xt}∞t=0. The firm’s profit each period depends on
its decisions and on the state. As a reduced form, we assume that the key decision task is
to form an estimate x̂t of xt and that the firm’s expected profit in period t is a fixed level
minus the mean-squared error Lt ≡ E

[
(x̂t − xt)2

]
of the estimate (called the “loss”). The

estimate is calculated from data about the environment by a managerial staff whose cost
in period t is denoted Wt. The total cost Ct in period t is the decision-theoretic cost Lt

plus the managerial cost Wt. The managerial staff and information processing procedure
are chosen to minimize the long-run average value of {Ct}.

The state of the environment is assumed to follow a random walk,

xt+1 = xt + vt ,(1)

where vt, the innovation term, has mean 0 and variance σ2
v and is uncorrelated with vt+s

for s �= 0. The parameter σ2
v is called the volatility of the environment.

In order to estimate the state, the firm collects samples of imperfect observations. Ob-
servation i in a sample gathered at time t is denoted by

yit = xt + εit .(2)

The measurement error εit has mean 0 and variance σ2
ε , and it is uncorrelated with other

measurement errors and with the stochastic process {xt} across all time periods.

Remark 1 The random walk given in equation (1) is not a stationary stochastic process.
Following a common practice, we consider a limiting case in which the unconditional variance
of xt goes to infinity. Formally, we could have the process run from t = −∞ and either
(a) specify a known starting value xt0 and let t0 → −∞; (b) let the unconditional variance
of x0 increase to infinity; or (c) replace the random walk by a stationary AR(1) process
xt = βxt−1 + vt and let β ↑ 1.

The samples are processed by the firm’s managers to form predictions according to a
decision procedure, which specifies both the policy that is computed and the way in which
it is computed by the managers. We restrict attention to two classes of cyclic policies with
linear estimators. The policies in each class are parameterized by the size n of each sample,
the delay d between when a sample is taken and when it is first incorporated into the
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estimate, and the interval k between samples. In Section 3, we define these parameterized
classes of policies and then calculate, for each (n, d, k), the long-run average loss L(n, d, k)
of the corresponding policy. In Sections 5 and 6, we describe two models of managerial
capabilities and of the computation of policies. Each computation model determines which
of these policies are feasible (computable) and what the minimum managerial cost W(n, d, k)
of each feasible policy is. The reduced form of the organization design problem, given a class
of policies and given a computation model, is to choose (n, d, k) from the set of feasible values
so as to minimize C(n, d, k) ≡ L(n, d, k) +W(n, d, k).

3 Policies

3.1 Overview

Our motive for restricting attention to limited classes of policies is the following. The
computation models in Sections 5 and 6 are quite flexible, so the sets of possible decision
procedures are vast and unstructured. By restricting the class of policies, we reduce the
design problem to a several-variable discrete optimization problem and obtain a tractable
formula for the loss of any allowable policy. Furthermore, for the computation model in
Section 6, we can assure that the computation procedures have a recognizable structure.

The policies we consider are linear estimators. Specifically, let Φt be the data used to
calculate x̂t. Then x̂t is the linear projection of xt on (1,Φt) and is the affine function of
Φt with the lowest mean-squared error; we denote this by Ê[xt |Φt ]. We use the well-known
formulae for linear projections and for the resulting mean-squared errors. (If the random
variables are Gaussian, then Ê[xt |Φt ] = E[xt |Φt ] and the linear estimator minimize the
expected loss conditional on Φt.)

3.2 Policies without recall

In a policy without recall, the management gathers a sample of size n every k periods,
computes an estimate from each sample in d periods, and then uses this estimate for k

periods (until a newer estimate is available).

Suppose that a sample ϕt = {y1t, y2t, . . . , ynt} of size n is gathered in period t. Consider
first the linear estimator of xt based on this sample. In the limiting case described in Remark
1, the formula for Ê[xt |ϕt ] converges to the sample average (1/n)

∑n
i=1 yit, which we denote

by yt, and the loss E
[
(xt − yt)2

]
converges to σ2

ε /n.

Suppose that ϕt is the data used to estimate xt+s, where s > 0. Given that the process
follows a random walk and that the innovations from t+ 1 to t+ s are not correlated with
ϕt, it follows that Ê[xt+s |ϕt ] = Ê[xt |ϕt ] = yt. The loss increases by the total variance
sσ2

v of the innovations that occur between when the sample is gathered and when its mean
is used as an estimate. Hence, if it takes d periods to compute the first estimate from ϕt

and if the estimate is used over a k-period planning cycle, then the average loss over the
planning cycle is

Lnr(n, d, k) ≡ 1
k

k−1∑
j=0

(
σ2

ε

n
+ (d+ j)σ2

v

)
=

σ2
ε

n
+

(
d+

k − 1
2

)
σ2

v .(3)
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(The superscript “nr” stands for “no recall”.) This describes the policy for all but the first
d periods, so this average is also the long-run average loss.

3.3 Policies with recall

A policy with recall is similar to a policy without recall except that x̂t equals the pro-
jection of xt on the last sample from which it is computed and on all preceding samples.
Owing to our statistical assumptions, this requires only a simple updating rule (an example
of a Kalman filter).

Suppose first that a policy with recall has no computational delay. Let t be a period in
which a sample is taken, let ϕt be the sample gathered that period, and let ϕp

t denote all
previous samples. Let x̂n

t = Ê[xt |ϕt ] and x̂p
t = Ê[xt |ϕp

t ]; let Σn and Σp be the respective
mean-squared errors of these estimates. The errors of these estimates are uncorrelated (the
error for x̂n

t is the sum of the sample errors and the error for x̂p
t is the sum of previous

sample errors and previous innovations). Therefore, from the projection formulae,

Ê[xt |ϕn
t , ϕ

p
t ] =

Σn

Σp + Σn
x̂p

t +
Σp

Σp + Σn
x̂n

t ,(4)

and the mean-squared error is (ΣpΣn)/(Σp + Σn).

For period s as far back as t − k (when the previous sample was gathered), x̂p
t is also

the estimate of xs. Furthermore, as explained in Section 3.2, x̂n
t is the sample average of

ϕt. Hence, x̂t is calculated by summing yt = (1/n)
∑n

i=1 yit and then averaging

x̂t = (1− α)x̂t−k + αyt ,(5)

where α = Σp/(Σp + Σn).

Suppose that the loss is the same in each period in which a sample is gathered; let
Σ∗ be its steady-state value. Then Σ∗ = (ΣpΣn)/(Σp + Σn). Since the last sample was
gathered in period t − k, we have x̂p

t = Ê[xt−k |ϕp
t ]. Thus, the mean-squared error of x̂p

t

as an estimate of xt−k is also Σ∗; as an estimate of xt, the error of x̂p
t is augmented by

the variance of the intervening innovations, so Σp = Σ∗ + kσ2
v . We thus have the identity

Σ∗ = (Σ∗ + kσ2
v)Σ

n/(Σ∗ + kσ2
v +Σn), which simplifies to (Σ∗)2 + kσ2

vΣ
∗ − kσ2

vΣ
n = 0. The

positive solution to this quadratic equation is Σ∗ = (−kσ2
v +

√
(kσ2

v)2 + 4kσ2
vΣn)/2. This

expresses the steady-state loss Σ∗ of the zero-delay policy with recall as a function of the
loss Σn of the zero-delay policy without recall.

With computational delay d before new information is incorporated into the estimate,
the rule for updating the estimate is the same whereas the loss in each period in which new
information is incorporated is increased by dσ2

v . There is an additional loss of σ2
v for each

subsequent period of the planning cycle in which no new information is used. Recall from
Section 3.2 that Σn = σ2

ε /n. Hence, the average loss over the planning cycle is

Lr(n, d, k) ≡ 1
k

k−1∑
j=0

((−kσ2
v +

√
(kσ2

v)2 + 4kσ2
vσ

2
ε /n

)
/2 + (d+ j)σ2

v

)
(6)

=
(√

(k2/4 + kσ2
ε /(nσ2

v) + d− 1/2
)
σ2

v .

(The superscript “r” stands for “recall”.)
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Thus, Lr(n, d, k) is the limiting steady-state loss as the unconditional variance of xt goes
to infinity, as described in Remark 1. Because the estimation problem starts in period 0,
the average loss over the planning cycle is not at its steady-state value but rather converges
to it as t → ∞; nevertheless, Lr(n, d, k) is the long-run average loss.

4 Remarks on the methods for comparative statics

To derive our comparative statics results, we use a combination of numerical methods
and the analytic tools of “monotone comparative statics” developed in Topkis (1979), Vives
(1990), Milgrom and Roberts (1990), and Milgrom and Shannon (1994).

Here is a summary of these analytic tools. We have a cost-minimization problem
minz C(z; p), where z = (z1, . . . , zm) is a vector of (perhaps discrete) choice variables and
p = (p1, . . . , pn) is a vector of parameters. Let ψ(p) denote the solution correspondence.
We say that ψ(p) is increasing (resp., decreasing) when, for p′ ≥ p (resp., for p′ ≤ p), if
z ∈ ψ(p) and z′ ∈ ψ(p′) then inf{z, z′} ∈ ψ(p) and sup{z, z′} ∈ ψ(p′). (When ψ is singleton-
valued, this is the usual definition of a weakly increasing function.) The cost function C is
submodular in z if C(inf{z, z′}; p) + C(sup{z, z′}; p) ≤ C(z; p) + C(z′; p) for all z, z′ and p.
The function C has increasing (resp., decreasing) differences in z and p if C(z′; p) − C(z; p)
is an increasing (resp., decreasing) function of p for z′ ≥ z. If C is submodular in z and has
increasing (resp., decreasing) differences in z and p, then ψ is decreasing (resp., increasing)
in p.

For each result that relies on numerical tests, we replace the label “proof” by “numerical
test” and describe the test we have run. If the test is systematic and exhaustive, we label
the result as a “proposition”; if the test only calculates a limited number of examples, we
label the result as a “conjecture”.

5 Computation procedures: PRAM

The policies outlined in Section 3 involve mainly addition, so we include only this op-
eration explicitly into our computation models. We consider first a simple model without
communication costs, called the PRAM, that has indeterminate organization structure; then
we study a variant of the hierarchical associative computation model of Radner (1993).

Remark 2 Because, as is common in economic theory, we have adopted a simple stylized de-
cision problem for actual complex management problems, we must adopt a correspondingly
simple computation model as a proxy for actual complex human information processing.
See Van Zandt (1999).

5.1 Computation model

The PRAM (parallel random access machine) is the simplest model of distributed com-
putation. We first define the possible operations on data and the time each one takes.
Computation then involves performing such operations on raw data and on partial results
from previous operations. It is a model of distributed computation because operations can
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be performed concurrently. The model implicitly suppresses communication costs and de-
lays, as if all managers had instant access to all data. As a consequence, the assignment of
managers to operations and the communication of information among managers is indeter-
minate. It is the structure of such information flows that typically is used to characterize
organizational structure in the decentralized information processing literature. However,
with the PRAM we can still use the amount of computation performed each period as a
measure of the size of the administrative staff.

We assume there is one operation, adding two numbers, which takes one period. Let w
be the managerial wage rate or cost per operation.

Remark 3 The assumption that an operation takes one period is merely a modeling deci-
sion that allows the calendar length of the discrete time unit to be the amount of time it
takes to perform an operation. An increase in processing speed corresponds to a reduction
in the calendar length of a period and therefore to a reduction in the per-period volatility
of the environment.

A PRAM can sum n numbers in �log2 n� periods as follows: The data are divided into
n/2 pairs, which are concurrently summed in one period. The (n/2) partial results are then
divided into pairs and summed in the next period, and so on. The number of data or partial
results is cut in half each period, and hence it takes �log2 n� periods to have a single partial
result left, which is the sum of the n numbers. This requires n − 1 operations and hence
has a managerial cost of (n − 1)w. If the PRAM adds the numbers in more than �log2 n�
periods, then fewer operations need to be performed concurrently but the total number of
operations remains n − 1. Since there are no communication costs, this increase in delay
does not reduce the managerial cost and hence is not efficient.

5.2 Decision procedures without recall

In a policy without recall, the computation task is to add n numbers every k periods.
As explained in Section 5.1, each sample can and should be summed in �log2 n� periods.
Hence, we can eliminate d as a parameter of the policies. Recycling notation, we denote the
loss by

Lnr(n, k) =
σ2

ε

n
+

(
�log2 n�+

k − 1
2

)
σ2

v .(7)

The managerial cost is (n−1)w for each sample and hence the average managerial cost over
the planning cycle is (n− 1)w/k. The overall cost function is thus

Cnr(n, k) =
σ2

ε

n
+

(
�log2 n� +

k − 1
2

)
σ2

v +
(n− 1)w

k
.(8)

In the benchmark case in which w = 0, it is optimal to sample each period (k = 1). The
resulting design problem is to choose n so as to minimize Lnr(n, 1) = σ2

ε /n + �log2 n�σ2
v .

We obtain the following conclusion: as the environment changes more quickly, it is better
to use fewer managers, thereby basing decisions on fewer, but more recent, data.
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Proposition 1 Consider PRAMs with no recall. Assume w = 0. Then Lnr(n, 1) has in-
creasing differences in n and σ2

v but has decreasing differences in n and σ2
ε . Therefore,

optimal sample size is decreasing in environmental volatility σ2
v and is increasing in the

noisiness σ2
ε of observations. Hence, the size of the managerial staff decreases as the envi-

ronment changes more quickly or observations become less noisy.

Proof. That the cost function has increasing differences in σ2
v but decreasing differences in

σ2
ε can be seen by the fact that ∂C(n, k)/∂n is increasing in σ2

v and decreasing in σ2
ε . Since

the number of operations performed per period is n − 1, a corollary is that the size of the
managerial staff increases with sample size. �

When w > 0, the sampling interval k is also a relevant decision variable.

Proposition 2 Consider PRAMs with no recall. Assume w > 0. Then Cnr(n, k) is sub-
modular in (n, k). Furthermore, Cnr(n, k) has decreasing differences in (n, k) and σ2

ε but
increasing differences in (n, k) and σ2

v. Therefore, optimal (n, k) is increasing in σ2
ε and

decreasing in σ2
v.

Proof. For testing submodularity of Cnr(n, k), we can omit any additive terms that do not
involve both n and k. This leaves only nw/k, which is easily seen to be submodular.

For checking increasing or decreasing differences for a given parameter, we can omit any
additive terms that do not involve both the choice variables and the parameter. In the case
of σ2

ε , this leaves σ2
ε /n, which clearly has decreasing differences in n and σ2

ε . In the case of
σ2

v , this leaves (�log2 n�+ k/2)σ2
v , which clearly has increasing differences in (n, k) and σ2

v .
�

Proposition 2 does not tell us what happens to the size of the administrative staff as the
environment becomes more volatile. Recall that our proxy for the size of the staff is the
average amount (n−1)/k of managerial time used to calculate predictions. As σ2

v rises, both
n and k fall. Consider the extreme values. As σ2

v ↓ 0, it is possible to achieve approximately
zero loss with very few managers by choosing large n (to get an accurate estimate of the
state) but an even larger k (which reduces managerial costs but has little effect on the
loss because the environment is changing slowly). Therefore, as σ2

v ↓ 0, the managerial
costs and hence the size of the administrative staff must go to 0. On the other hand, as
the environment changes ever more quickly, sample size decreases to 1—at which point the
administrative cost is 0 (a single observation is drawn each period and this becomes the
estimate; there is no information processing).

Conjecture 1 Consider PRAMs without recall. Assume w > 0. The relationship between
σ2

v and managerial size is approximately an inverted U.

Numerical test: We calculate the optimal n and k as follows. The functional form for
C(n, k) is convex in k, so the optimal k for fixed n is the solution to the first-order condition
∂C/∂k = 0 (rounded either up or down). We thereby obtain cost as a function of n and
perform an exhaustive search over n, up to an upper bound determined by the condition
that a decrease in n from the optimum must cause the loss to increase. For several values
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Figure 1. Optimal sample size n (dashed), sampling interval k (dotted), and man-

agerial size n/k (solid) as a function of environmental volatility σ2
v, where σ2

ε = 1 and

w = .001. Scale: σ2
v → − log σ2

v; n → √
n; k → √

k; n/k → natural.

of w, we calculate optimal sample size n, sampling interval k, and managerial size (n− 1)/k
for − log σ2

v ranging from 1 to 10 in 400 increments of .025. We find a relationship similar
to that illustrated in Figure 1. �

Figure 1 shows an example of n, k, and n/k as a function of − log σ2
v for σ2

ε = 1 and
w = .001. Consistent with Proposition 2, n and k decrease monotonically with volatility.
Managerial size n/k varies nonmonotonically. Although it has an approximate U shape,
there are several local maxima. This is probably because of the rounding in delay �log2 n�.

5.3 Decision procedures with recall

Compared to a policy without recall, the computation of a policy with recall adds two
components that are due to the need to average each newly calculated sample average
with the current estimate, as in equation (5). Delay is increased by some amount dr, to
�log2 n� + dr, and the managerial time per sample is increased by some amount mr, to
n − 1 + mr. It is for this reason that the decision procedures with recall do not always
dominate decision procedures without recall, even though Lr(n, d, k) < Lnr(n, d, k) for all
n, d, and k.
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The long-run loss Lr(n, d, k) from equation (6) plus the long-run managerial cost can be
expressed as a function of n and k:

Cr(n, k) =
(√

k2/4 + kσ2
ε /(nσ2

v) + �log2 n�+ dr − 1/2
)
σ2

v + (n− 1 +mr)w/k .(9)

Consider the polar case in which w = 0. As with no recall, it is optimal to sample every
period so that k = 1. Cost as a function of n becomes

Lr(n, 1) =
(√

(1/4 + σ2
ε /(nσ2

v) + �log2 n�+ dr − 1/2
)
σ2

v .(10)

Proposition 3 Consider PRAMs with recall. The solution correspondence to minn Lr(n, 1)
is increasing in σ2

ε and decreasing in σ2
v.

Proof. Minimizing Lr(n, 1) is equivalent to minimizing
√

(1/4 + σ2
ε /(nσ2

v) + �log2 n�. A
solution must always be a power of 2, because otherwise increasing n by 1 causes the first
term to decrease but does not increase the second term (delay). Therefore, we restrict
n = 2z for z ∈ {0, 1, . . .} and rephrase the design problem as minz f(z;λ), where

f(z;λ) =
√

1/4 + λ2−z + z

and λ = σ2
ε /σ

2
v . Observe that

∂f

∂λ
=

1
2z+1

√
1/4 + λ2−z

=
1√

22z + λ2z+2
,

which is decreasing in z. Hence ∂2f/∂z∂λ < 0, and f has decreasing differences in z and
λ. It follows that the optimal z is an increasing correspondence of λ. (Submodularity holds
vacuously because the choice variable is one-dimensional.) Therefore, optimal n is increasing
in σ2

ε and decreasing in σ2
v . �

Now consider the case of a positive managerial wage. We can see from equation (9) that,
when the environment is nearly stable (σ2

v ≈ 0), all procedures achieve nearly zero loss.
This is different from policies without recall, because with recall any procedure is effectively
using an infinite amount of data. As the environment changes more slowly, many data from
one period and the same number of accumulated data from previous periods yield nearly the
same loss. Therefore, if managers are costly, then the optimal procedure should be the one
that has very low cost and hence low managerial size. On the other hand, if the environment
is extremely volatile, then the cost of delay dominates and optimal sample size must again
be 1.

We thus have the following proposition.

Proposition 4 Consider PRAMs with recall. Fix w > 0 and σ2
ε ≥ 0. There is a σ̄2

v > such
that, for σ2

v > σ̄2
v, sample size is n = 1 and hence managerial size is at most mr. As σ2

v ↓ 0,
managerial size converges to 0.

Proof. Consider a procedure with k = n = 1. The cost is then

(
√

1/4 + σ2
ε /σ

2
v + dr − 1/2)σ2

v +mrw .
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Any procedure with n > 1 has d ≥ 1 and hence a cost of at least (1 + dr)σ2
v . There is a σ̄2

v

such that, for σ2
v > σ̄2

v , this cost is larger than the cost for k = n = 1. Hence, for σ2
v > σ̄2

v ,
an optimal procedure has n = 1.

For any fixed n and k, the loss converges to 0 as σ2
v ↓ 0, so the total cost converges to

(n− 1+mr)w/k. Hence, (n− 1+mr)w/k is an approximate upper bound on total cost for
small σ2

v . This holds for all n and k; by letting k → ∞, this upper bound converges to 0.
The managerial cost of an optimal procedure must therefore converge to 0 as σ2

v ↓ 0, which
means that managerial size also converges to 0. �

6 Computation procedures: Stationary hierarchies

As an alternative computation model, we consider a variant of the model of associative
information processing in Radner (1993). Each manager can read and aggregate one report
(a raw datum or a partial result from another manager) in one period. For example, two
managers who wish to calculate the prediction x̂t without recall from a sample of size 10
can do so by each sequentially reading and aggregating five data and then having one of the
managers aggregate the partial result of the other manager, setting the estimate equal to
the sum of the data. This takes 6 periods, so those data must have been collected in period
t− 6.

This model has an implicit communication cost, because it takes one period to read any
report. Decentralizing information process therefore involves a trade-off: it reduces delay
but increases managerial costs. Hence, unlike in the PRAM model—where it was always
optimal to use the minimal delay for a given sample size—delay re-enters as an independent
design variable.

The communication cost also makes the communication structure determinate. If one
manager receives a message from another manager and adds it to his current partial result,
the reading and aggregation of the message takes one period. If instead two managers
send their partial results to a third manager, then the latter needs two periods to read and
aggregate the messages. Hence, the first communication flow is typically better.

The computation task for policies without recall is identical to the periodic processing
problem in Radner (1993), and the task for policies with recall is similar. As shown in
Van Zandt (1998), efficient organizations in Radner’s model are not hierarchical, because
communication costs can be reduced and throughput increased by having the cohorts pro-
cessed by different managers (and any one manager does not always process cohorts with
the same managers). Following Orbay (2001), we impose a stationarity assumption, which
requires that each sample be processed in the same way by the same hierarchy. One motiva-
tion for this assumption is that it captures the unmodeled communication costs that occur
when managers are constantly shifting their channels of communication. The administrative
staff thus consists of a fixed hierarchy of managers. We assume further that managers are
paid a salary and hence that the managerial cost is mw, where m is the number of managers
in the hierarchy and w is the per-period salary.

The stationarity assumption limits the frequency with which a hierarchy may collect data
from the environment. If the maximum amount of time any manager spends per sample is
k consecutive periods, then a stationary hierarchy can start processing a new sample and
compute a prediction every k periods but not more frequently. It is inefficient to collect
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samples less frequently, because there is no impact on managerial costs: managers end up
with more idle time but are paid salaries anyway.

With this computation model, a computation procedure is not merely an abstract algo-
rithm but rather a hierarchical organization; the parameters of the policy that a hierarchy
computes can be interpreted as parameters of the hierarchy. We introduce new terminology
that makes use of this interpretation. Since the time k between samples is the maximum
number of inputs any manager can read per sample, we call k the hierarchy’s span limit.
The sample size n is the amount of data the hierarchy can process per cohort, so we call it
the hierarchy’s capacity. The number m of managers is the size of the hierarchy. The delay
d of a policy is the hierarchy’s delay. Orbay (2001) characterizes the efficient frontier of such
stationary hierarchies with respect to these four parameters and provides an algorithm for
determining n as a function of (m, d, k) for points on the frontier; see Orbay (2001, Section
4) for details.

As in the preceding section, we consider a benchmark case in which managers are costless.
Hierarchies should then have the maximum capacity n for fixed d and k. Such hierarchies
are said to be maximal. Orbay (2001) shows that the number M(d, k) of managers and the
capacity N(d, k) of a maximal hierarchy with delay d and span limit k is given recursively
by

N(0, k) = 1 , N(d, k) =
min(d,k)∑

i=1

N(d− i, k) ;(11)

M(0, k) = 0 , M(d, k) = 1 +
min(d,k)∑

i=1

M(d− i, k) .(12)

For the recursion, N(d, k) and M(d, k) are defined for all positive values of d and k, but a
hierarchy must have d ≥ k.

6.1 Hierarchies without recall

Consider stationary hierarchies that compute policies without recall. Suppose first that
w = 0, so that optimal hierarchies are maximal. The reduced-form loss to be minimized is
Lnr(d, k) = σ2

ε /N(d, k) + (d+ (k − 1)/2)σ2
v .

We obtain an analog to Proposition 1 as follows.

Proposition 5 Consider hierarchies without recall. Assume w = 0. Optimal size and delay
decrease with environmental volatility σ2

v and increase with observation error σ2
ε . The same

is approximately true for span limit.

Numerical test: The solution to mind,k Lnr(d, k) depends only on the ratio σ2
ε /σ

2
v . There-

fore, we can normalize σ2
ε = 1 and test how d, k, and M(d, k) depend on σ2

v . For each σ2
v ,

we numerically minimize Lnr(d, k). We do this for initial increments of 0.1 in the value
of log σ2

v ; near values of σ2
v at which d or k changes, we calculate the solution for smaller

increments. In the numerical results, d and M(d, k) are monotone; k is nearly monotone
except at a few values of σ2

v . Figure 2 shows d, k, and M(d, k) as a function of σ2
v . �
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Proposition 6 Consider hierarchies without recall. Assume w = 0. Optimal hierarchy size
grows to infinity as the environmental volatility σ2

v converges to 0.

Proof. In the limit, Lnr(d, k) = σ2
ε /N(d, k) when σ2

v = 0. Thus, the loss decreases with the
hierarchy’s capacity. For maximal hierarchies, the number of managers increases without
bound as a function of capacity. �

When managers are costly, we write cost as

Cnr(m,n, d, k) = σ2
ε /n+ (d+ (k − 1)/2)σ2

v +mw ,

with parameters restricted to the feasible values for stationary hierarchies. We once again
obtain a nonmonotone relationship between volatility and managerial size, and managerial
size converges to 1 as σ2

v ↓ 0.

Proposition 7 Consider hierarchies with no recall. Assume w > 0 and σ2
ε > 0. If σ2

v > σ2
ε

then the optimal hierarchy consists of a single manager who processes one observation each
period, so k = d = n = 1. For small σ2

v, the optimal hierarchy also has one manager and
hence k = d = n, but n → ∞ as σ2

v → 0.

Proof. An efficient hierarchy with a single manager processes a cohort of size n in n periods
and processes a new sample every n periods. Thus, once m = 1, we have k = d = n.

Consider such a one-manager hierarchy. If the sample size is 1, then the cost is σ2
ε +σ

2
v+w.

Any other hierarchy has a delay of at least 2 (and k ≥ 1 and m ≥ 1), so its cost is at least
2σ2

v + w. The first hierarchy has a lower cost if σ2
v > σ2

ε .

Consider a one-manager hierarchy that processes samples of size n. The cost for this
policy converges to σ2

ε /n + w as σ2
v ↓ 0. Therefore, σ2

ε /n + w is an approximate upper
bound on total cost for small σ2

v . This holds for all n; by letting n → ∞, this upper bound
converges to w. Hence the managerial cost of optimal procedures must converge to w as
σ2

v ↓ 0. This is possible only if n → ∞ and m → 1. �

Conjecture 2 Consider hierarchies with no recall. Assume w > 0. Optimal hierarchy size
has the following approximate relationship to environment volatility σ2

v : hierarchy size first
increases and then decreases as σ2

v increases from zero.

Numerical test: We test this for several values of w and σ2
ε by solving for the optimal

hierarchy for 100 evenly spaced values of − log σ2
v . The calculation of the optimal hierarchy

uses the characterization of the efficiency frontier in Orbay (2001). The optimization finds
only local optima, but for each case we start the search from four different points and verify
that it yields the same solution. Figure 3 shows d, k, and logm as a function of σ2

v for
σ2

ε = 1 and w = 0.001. �

6.2 Optimal hierarchies with recall

As with the PRAM, we give a reduced-form treatment of the change in the computation
task that results from recall. The updating of the estimate from newly calculated sample
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v when managers are

costless. Graph shows sample size n (dashed, log2 scale), sampling interval k (dotted,

natural scale), and hierarchy size m (solid, log2 scale). Sampling error σ2
ε is normalized

to 1.

means can always be delegated to a new manager who performs no other operations. We
thus assume that the number of managers increases by 1 and that the updating introduces a
delay dr. This introduces a loss drσ

2
v and a managerial cost w, which are independent of the

other design variables. These costs therefore affect the comparison between hierarchies with
recall and hierarchies without recall, but not the ranking withing the class of hierarchies
with recall. To simplify notation, we suppress such costs. The overall cost is thus

Cr(m,n, d, k) ≡
(√

(k2/4 + kσ2
ε /(nσ2

v) + d− 1/2
)
σ2

v + wm .(13)

In the benchmark case of w = 0, hierarchies are maximal and the cost is only the loss,
which we express as a function of d and k:

Lr(d, k) ≡
(√

(k2/4 + kσ2
ε /(N(d, k)σ2

v) + d− 1/2
)
σ2

v .(14)

Proposition 8 Consider hierarchies with recall. Assume w = 0. Optimal size, delay, and
span limit will decrease with environmental volatility σ2

v.

Numerical test: The solution to mind,k Lr(d, k) depends only on the ratio σ2
ε /σ

2
v . There-

fore, we can normalize σ2
ε = 1 and test how d, k, andM(d, k) depend on σ2

v . The calculations
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proceed as described for Proposition 5. Figure 4 shows d, k, and M(d, k) as a function of
σ2

v . �

Proposition 9 Consider hierarchies with recall. Assume w = 0. If σ2
v > σ2

ε /2, then
the optimal hierarchy has one manager who processes one observation each period so that
n = d = k = 1.

Proof. Minimizing Lr(n, d, k) is equivalent to minimizing

L̂(n, d, k) =
√

(k2/4 + kσ2
ε /(N(d, k)σ2

v) + d .

Consider a hierarchy with one manager who processes one observation each period, so that
n = d = k = 1. Then L̂(1, 1, 1) =

√
1/4 + σ2

ε /σ
2
v + 1. Any other hierarchy has delay

of at least 2, so L̂(·) is at least
√

1/4 + 2 = 5/2. The first hierarchy is thus optimal if√
1/4 + σ2

ε /σ
2
v + 1 < 5/2. This simplifies to σ2

v > σ2
ε /2. �

Now consider the case of a positive managerial wage. We obtain an analog to Propo-
sition 4. When the environment is very stable, all hierarchies achieve nearly zero loss and
the optimal hierarchy should be that which minimizes cost; it has just one manager. When
the environment is highly volatile, the cost of delay dominates and optimal hierarchy must
again consist of a single manager.

Proposition 10 Consider hierarchies with recall. Assume w > 0 and σ2
ε > 0. If σ2

v > σ2
ε /2,

then the optimal hierarchy has size 1 and consists of a single manager who processes one
observation each period (n = d = k = 1). For small σ2

v, hierarchy size is 1 and n = d = k.

Proof. If σ2
v > σ2

ε /2 then, according to Proposition 9, a single-manager hierarchy that
processes one observation each period has strictly lower loss than any other hierarchy. Since
it also has the lowest managerial cost, it is optimal.

By equation (13), for all hierarchies the loss converges to 0 as σ2
v ↓ 0. Thus, for small

σ2
v , the optimal hierarchy must have the lowest managerial cost and hence must have size

1. �

This suggests an inverted-U relationship between volatility and managerial size, which
we confirm in several examples.

Conjecture 3 Consider hierarchies with recall. Assume w > 0. As environmental volatility
increases from zero, optimal hierarchy size first increases and then decreases.

Numerical test: We test this for several values of w and σ2
ε by solving for the optimal

hierarchy for 100 evenly spaced values of − log σ2
v ; see Conjecture 2 for details. Figure 5

shows d, k, and logm as functions of σ2
v for σ2

ε = 1 and w = 10−5. The general inverted-U
shape is preserved across simulations. �
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7 Summary

We have found several relationships between managerial size and environmental volatil-
ity. For the benchmark case in which w = 0, managerial size decreases monotonically as
volatility rises. This is due to the following trade-off: higher sample size increases the preci-
sion of estimates for when the sample was taken but also increases delay before the estimate
is used; the loss due to this delay increases when the environment is more volatile. However,
when w > 0, the relationship between volatility and managerial size is nonmonotonic. When
volatility is very high and hence delay incurs a high loss, sample size and thus managerial
size is small. As volatility initially decreases, delays incurs a lower cost, so sample size and
managerial size increase. However, increasing environmental stability also causes the value
of frequent sampling to decrease, which pushes in the direction of smaller managerial size.
For sufficiently low volatility, this effect dominates and optimal managerial size begins to
decrease as the environment becomes more stable.

These results are confirmed both for policies with recall and for policies without recall,
as well as for the PRAM and stationary hierarchies computation models.
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