Nonparametric estimation under Shape Restrictions

Jon A. Wellner

University of Washington, Seattle

Statistical Seminar, Frejus, France
August 30 - September 3, 2010
Outline: Five Lectures on Shape Restrictions

• L1: Monotone functions: maximum likelihood and least squares
• L2: Optimality of the MLE of a monotone density (and comparisons?)
• L3: Estimation of convex and k–monotone density functions
• L4: Estimation of log-concave densities: $d = 1$ and beyond
• L5: More on higher dimensions and some open problems
Outline: Lecture 2

- A: Local asymptotic minimax lower bounds
- B: Lower bounds for estimation of a monotone density
 Several scenarios
- C: Global lower bounds and upper bounds (briefly)
- D: Lower bounds for estimation of a convex density
- E: Lower bounds for estimation of a log-concave density
A. Local asymptotic minimax lower bounds

Proposition. (Two-point lower bound) Let \(\mathcal{P} \) be a set of probability measures on a measurable space \((\mathbb{X}, \mathcal{A})\), and let \(\nu \) be a real-valued function defined on \(\mathcal{P} \). Moreover, let \(l : [0, \infty) \to [0, \infty) \) be an increasing convex loss function with \(l(0) = 0 \). Then, for any \(P_1, P_2 \in \mathcal{P} \) such that \(H(P_1, P_2) < 1 \) and with

\[
E_{n,i}f(X_1, \ldots, X_n) = E_{n,i}f(X) = \int f(x) dP^n_i(x) \equiv \int f(x_1, \ldots, x_n) dP_i(x_1) \cdots dP_i(x_n),
\]

for \(i = 1, 2 \), it follows that

\[
\inf_{T_n} \max \left\{ E_{n,1}l(|T_n - \nu(P_1)|), E_{n,2}l(|T_n - \nu(P_2)|) \right\} \geq l \left(\frac{1}{4} |\nu(P_1) - \nu(P_2)| \{1 - H^2(P_1, P_2)\}^{2n} \right). \tag{1}
\]
A. Local asymptotic minimax lower bounds

Proof. By Jensen’s inequality

\[
E_{n,i}l(|T_n - \nu(P_i)|) \geq l(E_{n,i}|T_n - \nu(P_i)|), \quad i = 1, 2,
\]

and hence the left side of (1) is bounded below by

\[
l \left(\inf_{T_n} \max \{E_{n,1}|T_n - \nu(P_1)|, \ E_{n,2}|T_n - \nu(P_2)| \} \right).
\]

Thus it suffices to prove the proposition for \(l(x) = x \). Let \(p_1 \equiv \frac{dP_1}{d(P_1 + P_2)} \), \(p_2 \equiv \frac{dP_2}{d(P_1 + P_2)} \), and \(\mu = P_1 + P_2 \) (or let \(p_i \) be the density of \(P_i \) with respect to some other convenient dominating measure \(\mu \), \(i = 1, 2 \)).
A. Local asymptotic minimax lower bounds

Two Facts:

Fact 1: Suppose P, Q abs. cont. wrt μ,

$$H^2(P, Q) \equiv 2^{-1} \int \{\sqrt{p} - \sqrt{q}\}^2 d\mu = 1 - \int \sqrt{pq} d\mu \equiv 1 - \rho(P, Q).$$

Then

$$(1 - H^2(P, Q))^2 \leq 1 - \left\{ 1 - \int (p \wedge q) d\mu \right\}^2 \leq 2 \int (p \wedge q) d\mu.$$

Fact 2: If P and Q are two probability measures on a measurable space (X, \mathcal{A}) and P^n and Q^n denote the corresponding product measures on (X^n, \mathcal{A}_n) (of X_1, \ldots, X_n i.i.d. as P or Q respectively), then $\rho(P, Q) \equiv \int \sqrt{pq} d\mu$ satisfies

$$\rho(P^n, Q^n) = \rho(P, Q)^n. \quad (2)$$

Exercise. Prove Fact 1.

Exercise. Prove Fact 2.
A. Local asymptotic minimax lower bounds

\[
\max \left\{ E_{n,1}|T_n - \nu(P_1)|, \ E_{n,2}|T_n - \nu(P_2)| \right\} \\
geq \frac{1}{2} \left\{ E_{n,1}|T_n - \nu(P_1)| + E_{n,2}|T_n - \nu(P_2)| \right\} \\
= \frac{1}{2} \left\{ \int |T_n(x) - \nu(P_1)| \prod_{i=1}^{n} p_1(x_i)d\mu(x_1) \cdots d\mu(x_n) \\
+ \int |T_n(x) - \nu(P_2)| \prod_{i=1}^{n} p_2(x_i)d\mu(x_1) \cdots d\mu(x_n) \right\} \\
geq \frac{1}{2} \left\{ \int [|T_n(x) - \nu(P_1)| + |T_n(x) - \nu(P_2)|] \prod_{i=1}^{n} p_1(x_i) \wedge \prod_{i=1}^{n} p_2(x_i)d\mu(x_1) \right\} \\
\geq \frac{1}{2} |\nu(P_1) - \nu(P_2)| \int \prod_{i=1}^{n} p_1(x_i) \wedge \prod_{i=1}^{n} p_2(x_i)d\mu(x_1) \cdots d\mu(x_n) \\
\geq \frac{1}{4} |\nu(P_1) - \nu(P_2)| \{1 - H^2(P_1^n, P_2^n)\}^2 \quad \text{by Fact 1} \\
= \frac{1}{4} |\nu(P_1) - \nu(P_2)| \{1 - H^2(P_1, P_2)\}^{2n} \quad \text{by Fact 2}.
\]
Several scenarios, estimation of $f(x_0)$:

S1 When $f(x_0) > 0$, $f'(x_0) < 0$.

S2 When $x_0 \in (a, b)$ with $f(x)$ constant on (a, b).
 In particular, $f(x) = 1_{[0,1]}(x)$, $x_0 \in (0, 1)$.

S3 When f is discontinuous at x_0.

S4 When $f^{(j)}(x_0) = 0$ for $j = 1, \ldots, k - 1$, $f^{(k)}(x_0) \neq 0$.
B. Lower bounds, monotone density

S1: $f_0(x_0) > 0$, $f'_0(x_0) < 0$. Suppose that we want to estimate $\nu(f) = f(x_0)$ for a fixed x_0. Let f_0 be the density corresponding to P_0, and suppose that $f'_0(x_0) < 0$. To apply our two-point lower bound Proposition we need to construct a sequence of densities f_n that are “near” f_0 in the sense that

$$nH^2(f_n, f_0) \to A$$

for some constant A, and

$$|\nu(f_n) - \nu(f_0)| = b_n^{-1}$$

where $b_n \to \infty$. Hence we will try the following choice of f_n. For $c > 0$, define

$$f_n(x) = \begin{cases} f_0(x) & \text{if } x \leq x_0 - cn^{-1/3} \text{ or } x > x_0 + cn^{-1/3}, \\ f_0(x_0 - cn^{-1/3}) & \text{if } x_0 - cn^{-1/3} < x \leq x_0, \\ f_0(x_0 + cn^{-1/3}) & \text{if } x_0 < x \leq x_0 + cn^{-1/3}. \end{cases}$$
B. Lower bounds, monotone density
B. Lower bounds, monotone density
B. Lower bounds, monotone density

It is easy to see that

\[n^{1/3}|\nu(f_n) - \nu(f_0)| = |n^{1/3}(f_0(x_0 - cn^{-1/3}) - f_0(x_0))| \]
\[\rightarrow |f'_0(x_0)|c \] \hspace{1cm} (3)

On the other hand some calculation shows that

\[H^2(p_n, p_0) = \frac{1}{2} \int_0^\infty [\sqrt{f_n(x)} - \sqrt{f_0(x)}]^2 dx \]
\[= \frac{1}{2} \int_0^\infty \frac{[\sqrt{f_n(x)} - \sqrt{f_0(x)}]^2[\sqrt{f_n(x)} + \sqrt{f_0(x)}]^2}{[\sqrt{f_n(x)} + \sqrt{f_0(x)}]^2} dx \]
\[= \frac{1}{2} \int_{x_0 + cn^{-1/3}}^{x_0 - cn^{-1/3}} \frac{[f_n(x) - f_0(x)]^2}{[\sqrt{f_n(x)} + \sqrt{f_0(x)}]^2} dx \]
\[\sim \frac{f'_0(x_0)^2 c^3}{4f_0(x_0) 3n}. \]
B. Lower bounds, monotone density

Now we can combine these two pieces with our two-point lower bound Proposition to find that, for any estimator T_n of $\nu(f) = f(x_0)$ and the loss function $l(x) = |x|$ we have

$$\inf_{T_n} \max \left\{ E_n n^{1/3} |T_n - \nu(f_n)|, E_0 n^{1/3} |T_n - \nu(f_0)| \right\}$$

$$\geq \frac{1}{4} \left| n^{1/3} (\nu(f_n) - \nu(f_0)) \right| \left\{ 1 - \frac{n H^2(f_n, f_0)}{n} \right\}^{2n}$$

$$= \frac{1}{4} \left| n^{1/3} (f_0(x_0 - cn^{-1/3}) - f_0(x_0)) \right| \left\{ 1 - \frac{n H^2(f_n, f_0)}{n} \right\}^{2n}$$

$$\rightarrow \frac{1}{4} |f'_0(x_0)| c \exp \left(-2 \frac{f'_0(x_0)^2}{12 f_0(x_0)} c^3 \right) = \frac{1}{4} |f'_0(x_0)| c \exp \left(-\frac{f'_0(x_0)^2}{6 f_0(x_0)} c^3 \right)$$
B. Lower bounds, monotone density

We now choose c to maximize the quantity on the right side. It is easily seen that the maximum is achieved when

$$c = c_0 \equiv \left(\frac{2f_0(x_0)}{f'_0(x_0)^2} \right)^{1/3}.$$

This yields

$$\lim_{n \to \infty} \inf \inf \max \left\{ E_n n^{1/3} |T_n - \nu(f_n)|, E_0 n^{1/3} |T_n - \nu(f_0)| \right\} \geq \frac{e^{-1/3}}{4} \left(2|f'_0(x_0)|f_0(x_0) \right)^{1/3}.$$

This lower bound has the appropriate structure in the sense that the (nonparametric) MLE of f, $\hat{f}_n(x_0)$ converges at rate $n^{1/3}$ and it has the same dependence on $f_0(x_0)$ and $f'_0(x_0)$ as does the MLE.
B. Lower bounds, monotone density

Furthermore, note that for \(n \) sufficiently large

\[
\sup_{f : H(f, f_0) \leq Cn^{-1/2}} E_f |T_n - \nu(f)| \geq \max \left\{ E_n n^{1/3} |T_n - \nu(f_n)|, E_0 n^{1/3} |T_n - \nu(f_0)| \right\}
\]

if \(C^2 > 2A \equiv 2f_0'(x_0)^2 c_0^3/(12f_0(x_0)) \), and hence we conclude that

\[
\lim \inf \inf_{n \to \infty} \inf_{T_n} \sup_{f : H(f, f_0) \leq Cn^{-1/2}} E_f |T_n - \nu(f)| \\
\geq \frac{e^{-1/3}}{4} \left(2|f_0'(x_0)|f_0(x_0) \right)^{1/3} \\
= \frac{e^{-1/3}}{4^{2/3}} \left(2^{-1}|f_0'(x_0)|f_0(x_0) \right)^{1/3}
\]

for all \(C \) sufficiently large.

Comparison of \(E|\mathbb{S}(0)| \) with \(\frac{e^{-1/3}}{4^{2/3}} = 0.284356 \). From Groenboom and Wellner (2001), \(E|\mathbb{S}(0)| = 2E|Z| = 2(.41273655) = 0.825473 \).
B. Lower bounds, monotone density

S2: $x_0 \in (a, b)$ with $f_0(x) = f_0(x_0) > 0$ for all $x \in (a, b)$. To apply our two-point lower bound Proposition we again need to construct a sequence of densities f_n that are “near” f_0 in the sense that $nH^2(f_n, f_0) \to A$ for some constant A, and $|\nu(f_n) - \nu(f_0)| = b_n^{-1}$ where $b_n \to \infty$. In this scenario we define a sequence of densities $\{f_n\}$ by

$$f_n(x) = \begin{cases}
 f_0(x), & x \leq a_n \\
 f_0(x) + \frac{c}{\sqrt{n}} \frac{b-a}{x_0-a} , & a_n < x \leq x_0 \\
 f_0(x) - \frac{c}{\sqrt{n}} \frac{b-a}{b-x_0} , & x_0 < x < \tilde{b}_n \\
 f_0(x), & b \geq b_n.
\end{cases}$$

where

$$a_n \equiv \sup \{x : f_0(x) \geq f_0(x_0) + cn^{-1/2}(b-a)/(x_0-a)\}$$

$$b_n \equiv \inf \{x : f_0(x) < f_0(x_0) - cn^{-1/2}(b-a)/(b-x_0)\}.$$

The intervals (a_n, a) and (b, \tilde{b}_n) may be empty if $f(a-) > f(a+)$ and/or $f(b+) < f(b-)$ and n is large.
B. Lower bounds, monotone density
B. Lower bounds, monotone density

It is easy to see that

$$\sqrt{n}|\nu(f_n) - \nu(f_0)| = \sqrt{n}|f_n(x_0) - f_0(x_0)| = c \frac{b - a}{x_0 - a}$$ \hspace{1cm} (4)$$

On the other hand some calculation shows that

$$H^2(f_n, f_0) \sim \frac{c^2(b - a)^2}{4nf_0(x_0)} \left\{ \frac{1}{x_0 - a} + \frac{1}{b - x_0} \right\}$$

$$= \frac{c^2(b - a)^3}{4nf_0(x_0)(x_0 - a)(b - x_0)}.$$
Combining these two pieces with the two-point lower bound Proposition we find that, in scenario 2, for any estimator T_n of $\nu(f) = f(x_0)$ and the loss function $l(x) = |x|$ we have

$$\inf_T \max \left\{ E_n \sqrt{n} |T_n - \nu(f_n)|, E_0 \sqrt{n} |T_n - \nu(f_0)| \right\}$$

$$\geq \frac{1}{4} |\sqrt{n}(\nu(f_n) - \nu(f_0))| \left\{ 1 - \frac{nH^2(f_n, f_0)}{n} \right\}^{2n}$$

$$= \frac{1}{4c} \frac{b-a}{x_0-a} \left\{ 1 - \frac{nH^2(f_n, f_0)}{n} \right\}^{2n}$$

$$\rightarrow \frac{1}{4c} \frac{b-a}{x_0-a} \exp \left(- \frac{c^2(b-a)^3}{2f_0(x_0)(x_0-a)(b-x_0)} \right)$$

$$\equiv Ac \exp(-Bc^2)$$
B. Lower bounds, monotone density

We now choose c to maximize the quantity on the right side. It is easily seen that the maximum is achieved when $c = c_0 \equiv 1/\sqrt{2B}$, with $Ac_0 \exp(-Bc_0^2) = Ac_0 \exp(-1/2)$ and

$$c_0 = \left(\frac{f_0(x_0)}{(x_0-a)(b-x_0)(b-a)^3} \right)^{1/2}.$$

$$\lim\inf_{n \to \infty} \inf_{T_n} \max \left\{ E_n \sqrt{n} |T_n - \nu(f_n)|, E_0 \sqrt{n} |T_n - \nu(f_0)| \right\} \geq \frac{e^{-1/2}}{4} \sqrt{\frac{f_0(x_0)}{b-a}} \sqrt{\frac{b-x_0}{x_0-a}}.$$

Repeating this argument with the right-continuous version of the sequence $\{f_n\}$ yields a similar bound, but with the factor $\sqrt{(b-x_0)/(x_0-a)}$ replaced by $\sqrt{(x_0-a)/(b-x_0)}$.
B. Lower bounds, monotone density

By taking the maximum of the two lower bounds yields the last display with the right side replaced by

\[
\frac{e^{-1/2}}{4} \sqrt{\frac{f_0(x_0)}{b-a}} \max \left\{ \sqrt{\frac{b-x_0}{x_0-a}}, \sqrt{\frac{x_0-a}{b-x_0}} \right\}
\geq \frac{e^{-1/2}}{4} \sqrt{\frac{f_0(x_0)}{b-a}} \left\{ \sqrt{\frac{b-x_0}{x_0-a}} \cdot \frac{b-x_0}{b-a} + \sqrt{\frac{x_0-a}{b-x_0}} \cdot \frac{x_0-a}{b-a} \right\}.
\]

This lower bound has the appropriate structure in the sense that the MLE of \(f \), \(\hat{f}_n(x_0) \) converges at rate \(n^{1/2} \) and the limiting behavior of the MLE has exactly the same dependence on \(f_0(x_0) \), \(b-a \), \(x_0-a \), and \(b-x_0 \).
B. Lower bounds, monotone density

Theorem. (Carolan and Dykstra, 1999) If \(f_0 \) is decreasing with \(f_0 \) constant on \((a, b)\), the maximal open interval containing \(x_0 \), then, with \(p \equiv f_0(x_0)(b - a) = P_0(a < X < b) \),

\[
\sqrt{n}(\hat{f}_n(x_0) - f_0(x_0)) \xrightarrow{d} \sqrt{\frac{f_0(x_0)}{b-a}} \left\{ \sqrt{1 - pZ} + S\left(\frac{x_0 - a}{b - a}\right) \right\}
\]

where \(Z \sim N(0, 1) \) and \(S \) is the process of left-derivatives of the least concave majorant \(\hat{U} \) of a Brownian bridge process \(U \) independent of \(Z \).

Note that by using Groeneboom (1983)

\[
E\left| \sqrt{\frac{f_0(x_0)}{b-a}} \left\{ \sqrt{1 - pZ} + S\left(\frac{x_0 - a}{b - a}\right) \right\} \right| \\
\geq \sqrt{\frac{f_0(x_0)}{b-a}} \left| E\left| S\left(\frac{x_0 - a}{b - a}\right) \right| \right| \\
= \sqrt{\frac{f_0(x_0)}{b-a}} \left(\frac{2}{\pi (b-a)} \right) \left\{ \frac{(b-x_0)^{3/2}}{(x_0-a)^{1/2}} + \frac{(x_0-a)^{3/2}}{(b-x_0)^{1/2}} \right\}.
\]
S3: $f_0(x_0-) > f_0(x_0+)$. In this case we consider estimation of the functional $\nu(f) = (f(x_0+) + f(x_0-))/2 \equiv \bar{f}(x_0)$. To apply our two-point lower bound Proposition, consider the following choice of f_n: for $c > 0$, define

$$
\tilde{f}_n(x) = \begin{cases}
 f_0(x) & \text{if } x \leq x_0 \text{ or } x > b_n, \\
 f_0(x_0) + (x - x_0) \frac{f_0(b_n) - f_0(x_0)}{c/n} & \text{if } x_0 < x \leq b_n.
\end{cases}
$$

where $b_n \equiv x_0 + c/n$. Then define $f_n = \tilde{f}_n / \int_{0}^{\infty} \tilde{f}_n(y) dy$. In this case

$$
\nu(f_n) - \nu(f_0) = f_n(x_0) - f_0(x_0-) = \frac{\tilde{f}_n(x_0)}{1 + o(1)} - \frac{f_0(x_0+) + f_0(x_0-)}{2} = \frac{1}{2} (f_0(x_0-) - f_0(x_0+)) + o(1) \equiv d + o(1).
$$
B. Lower bounds, monotone density
B. Lower bounds, monotone density

Some calculation shows that

\[H^2(f_n, f_0) = \frac{cr^2}{n} (1 + o(1)) \]

where

\[r^2 = \left\{ \sqrt{f_0(x_0-)} - \sqrt{f_0(x_0+)} \right\}^2 \left\{ 3\sqrt{f_0(x_0-)} + \sqrt{f_0(x_0+)} \right\} \frac{\sqrt{f_0(x_0-)} + \sqrt{f_0(x_0+)}}{\sqrt{f_0(x_0-)} + \sqrt{f_0(x_0+)}}. \]

Combining these pieces with the two-point lower bound yields

\[
\inf_{T_n} \max \{ \mathbb{E}_n |T_n - \nu(f_n)|, \mathbb{E}_0 |T_n - \nu(f_0)| \} \\
\geq \frac{1}{4} |\nu(f_n) - \nu(f_0)| \left\{ 1 - \frac{nH^2(f_n, f_0)}{n} \right\}^{2n} \\
= \frac{1}{8} (f_0(x_0-) - f_0(x_0+)) (1 + o(1)) \left\{ 1 - \frac{cr^2(1 + o(1))}{n} \right\}^{2n} \\
\rightarrow \frac{d}{4} \exp(-cr^2) = \frac{d}{4e} \quad \text{by choosing} \quad c = 1/r^2.
\]
B. Lower bounds, monotone density

This corresponds to the following theorem for the MLE \hat{f}_n:

Theorem. (Anevski and Hössjer, 2002; W, 2007) If x_0 is a discontinuity point of f_0, $d \equiv (f_0(x_0-) - f_0(x_0+))/2$ with $f_0(x_0+) > 0$ and $\overline{f}(x_0) \equiv (f_0(x_0) + f_0(x_0-))/2$, then

$$\hat{f}_n(x_0) - \overline{f}_0(x_0) \rightarrow_d \mathbb{R}(0)$$

where $h \mapsto \mathbb{R}(h)$ is the process of left-derivatives of the least concave majorant \overline{M} of the process M defined by

$$M(h) = N_0(h) - d|h| \equiv \begin{cases}
N(f_0(x_0+)h) - f_0(x_0+)h - dh, & h \geq 0 \\
-N_0(f_0(x_0-)h) - f_0(x_0-)h + dh, & h < 0
\end{cases}$$

where N is a standard (rate 1) two-sided Poisson process on \mathbb{R}.
B. Lower bounds, monotone density
B. Lower bounds, monotone density

S4: \(f_0(x_0) > 0, f_0^{(j)}(x_0) = 0, j = 1, 2, \ldots, p-1, \) and \(f_0^{(p)}(x_0) \neq 0. \) In this case, consider the perturbation \(f_\epsilon \) of \(f_0 \) given for \(\epsilon > 0 \) by

\[
f_\epsilon(x) = \begin{cases}
 f_0(x) & \text{if } x \leq x_0 - \epsilon \text{ or } x > x_0 + \epsilon, \\
 f_0(x_0 - \epsilon) & \text{if } x_0 - \epsilon < x \leq x_0 \\
 f_0(x_0 + \epsilon) & \text{if } x_0 < x \leq x_0 + \epsilon.
\end{cases}
\]

Then for \(\nu(f) = f(x_0) \)

\[
\nu(f_\epsilon) - \nu(f_0) \sim \frac{|f_0^{(p)}(x_0)|}{p!} \epsilon^p,
\]

\[
H^2(f_\epsilon, f_0) \sim A_p \frac{|f_0^{(p)}(x_0)|^2}{f_0(x_0)} \epsilon^{2p+1} \equiv B_p \epsilon^{2p+1}
\]

where

\[
A_p \equiv \frac{2p^2}{(2p!)^2(2p^2 + 3p + 1)}.
\]
B. Lower bounds, monotone density
B. Lower bounds, monotone density

Choosing $\epsilon = cn^{-1/(2p+1)}$, plugging into our two-point bound, and optimizing with respect to c yields

$$\inf_{T_n} \max \left\{ \frac{n^p}{2p+1} E_n |T_n - \nu(f_n)|, \frac{n^p}{2p+1} E_0 |T_n - \nu(f_0)| \right\}$$

$$\geq \frac{1}{4} |\nu(f_n) - \nu(f_0)| \left\{ 1 - \frac{nH^2(f_n, f_0)}{n} \right\}^{2n}$$

$$\rightarrow \frac{1}{4} \frac{|f_0^{(p)}(x_0)|}{p!} c^p \exp \left(-2B_pc^{2p+1} \right)$$

$$= D_p \left(|f_0^{(p)}(x_0)| f_0(x_0)^p \right)^{1/(2p+1)}$$

taking $c = \left(\frac{p}{(2p+1)B_p} \right)^{1/(2p+1)}$

with

$$D_p \equiv \frac{1}{4p!} \cdot \left(\frac{p^p}{(2p+1)A_p^p} \right)^{1/(2p+1)} \exp(-p/(2p + 1)).$$
B. Lower bounds, monotone density

The resulting lower bound corresponds to the following theorem for \hat{f}_n:

Theorem. (Wright (1981); Leurgans (1982); Anevski and Hössjer (2002)) Suppose that $f_0^{(j)}(x_0) = 0$ for $j = 1, \ldots, p - 1$, $f_0^{(p)}(x_0) \neq 0$, and $f_0^{(p)}$ is continuous at x_0. Then

$$\frac{n^p}{(2p+1)}(\hat{f}_n(x_0 + n^{-1/(2p+1)}t) - f_0(x_0)) \to_d C_p S_p(t)$$

where S_p is the process given by the left-derivatives of the least concave majorant \hat{Y}_p of $Y_p(t) \equiv W(t) - |t|^{p+1}$, and where

$$C_p = \left(f_0(x_0)^p |f_0^{(p)}(x_0)|/(p + 1)! \right)^{1/(2p+1)}.$$

In particular

$$\frac{n^p}{(2p+1)}(\hat{f}_n(x_0) - f_0(x_0)) \to_d C_p S_p(0)$$

Proof. Switching + (argmax-)continuous mapping theorem.
B. Lower bounds, monotone density

Summary: The MLE \(\hat{f}_n \) is locally adaptive to \(f_0 \), at least in scenarios 1-4.

S1: rate \(n^{1/3} \); localization \(n^{-1/3} \); constants agree with minimax lower bound.

S2: rate \(n^{1/2} \); localization \(n^0 = 1 \), *none*; constants agree with minimax bound.

S3: rate \(n^0 = 1 \); localization \(n^{-1} \); constants agree(?).

S4: rate \(n^p/(2p+1) \); localization \(n^{-1}/(2p+1) \); constants agree.
Birgé (1986, 1989) expresses the global optimality of \(\hat{f}_n \) in terms of its \(L_1 \)–risks as follows:

Lower bound: Birgé (1987). Let \(\mathcal{F} \) denote the class of all decreasing densities \(f \) on \([0,1]\) satisfying \(f \leq M \) with \(M > 1 \). Then the minimax risk for \(\mathcal{F} \) with respect to the \(L_1 \) metric \(d_1(f,g) \equiv \int |f(x) - g(x)| \, dx \) based on \(n \) observations is

\[
R_M(d_1, n) \equiv \inf_{\hat{f}_n} \sup_{f \in \mathcal{F}} E_f d_1(\hat{f}_n, f).
\]

Then there is an absolute constant \(C \) such that

\[
R_M(d_1, n) \geq C \left(\frac{\log M}{n} \right)^{1/3}.
\]

Upper bound, Grenander: Birgé (1989). Let \(\hat{f}_n \) denote the Grenander estimator of \(f \in \mathcal{F} \). Then

\[
\sup_{f \in \mathcal{F}_M} E_f d_1(\hat{f}_n, f) \leq 4.75 \left(\frac{\log M}{n} \right)^{1/3}.
\]
C: Global lower and upper bounds (briefly)

Birgé’s bounds are complemented by the remarkable results of Groeneboom (1985), Groeneboom, Hooghiemstra, and Lopuhaa (1999). Set

\[V(t) \equiv \sup\{s : W(s) - (s - t)^2 \text{ is maximal}\} \]

where \(W \) is a standard two-sided Brownian motion process starting from 0.

Theorem. (Groeneboom (1985), GHL (1999)) Suppose that \(f \) is a decreasing density on \([0, 1]\) satisfying:

- A1. \(0 < f(1) \leq f(y) \leq f(x) \leq f(0) < \infty \) for \(0 \leq x \leq y \leq 1 \).
- A2. \(0 < \inf_{0 < x < 1} |f'(x)| \leq \sup_{0 < x < 1} |f'(x)| < \infty \).
- A3. \(\sup_{0 < x < 1} |f''(x)| < \infty \).

Then, with \(\mu = 2E|V(0)| \int_0^1 \frac{1}{2} |f'(x)f(x)|^{1/3} dx \),

\[n^{1/6} \left\{ n^{1/3} \int_0^1 |\hat{f}_n(x) - f(x)| dx - \mu \right\} \rightarrow_d \sigma Z \sim N(0, \sigma^2) \]

where \(\sigma^2 = 8 \int_0^\infty Cov(|V(0)|, |V(t) - t|) dt \).
D: Lower bounds: convex decreasing density

Now consider estimation of a convex decreasing density f on $[0, \infty)$. (Original motivation: Hampel’s (1987) bird-migration problem.) Since f' exists almost everywhere, we are now interested in estimation of $\nu_1(f) = f(x_0)$ and $\nu_2(f) = f'(x_0)$.

We let D_2 denote the class of all convex decreasing densities on \mathbb{R}^+. Note that every $f \in D_2$ can be written as a scale mixture of the triangular (or Beta(1, 2)) density: if $f \in D_2$, then

$$f(x) = \int_0^\infty 2y^{-1}(1 - x/y)_+dG(y)$$

for some (mixing) distribution G on $[0, \infty)$. This corresponds to the fact that monotone decreasing density $f \in D \equiv D_1$ can be written as a scale mixture of the Uniform$(0, 1)$ (or Beta$(1, 1)$) density: if $f \in D_1$, then

$$f(x) = \int_0^\infty y^{-1}1_{[0,y]}(x)dG(y)$$

for some distribution G on $[0, \infty)$.

Statistical Seminar, Fréjus 2.38
D: Lower bounds: convex decreasing density

Scenario 1: Suppose that $f_0 \in D_2$ and $x_0 \in (0, \infty)$ satisfy $f_0(x_0) > 0$, $f''_0(x_0) > 0$, and f''_0 is continuous at x_0.

To establish lower bounds, consider the perturbations \tilde{f}_ϵ of f_0 given by

$$\tilde{f}_\epsilon(x) = \begin{cases}
 f_0(x_0 - \epsilon c_\epsilon) + (x - x_0 + \epsilon c_\epsilon)f'_0(x_0 - \epsilon c_\epsilon), & x \in (x_0 - \epsilon c_\epsilon, x_0 - \epsilon), \\
 f_0(x_0 + \epsilon) + (x - x_0 - \epsilon)f'_0(x_0 + \epsilon), & x \in (x_0 - \epsilon, x_0 + \epsilon), \\
 f_0(x), & \text{elsewhere};
\end{cases}$$

where c_ϵ is chosen so that \tilde{f}_ϵ is continuous at $x_0 - \epsilon$. Now define f_ϵ by

$$f_\epsilon(x) = \tilde{f}_\epsilon(x) + \tau_\epsilon(x_0 - \epsilon - x)1_{[0,x_0-\epsilon]}(x)$$

with τ_ϵ chosen so that f_ϵ integrates to 1.

Statistical Seminar, Fréjus 2.39
D: Lower bounds: convex decreasing density
D: Lower bounds: convex decreasing density
Now

\[|\nu_1(f_\epsilon) - \nu_1(f_0)| = |f_\epsilon(x_0) - f_0(x_0)| \sim \frac{1}{2} f_0^{(2)}(x_0) \epsilon^2 (1 + o(1)), \]

\[|\nu_2(f_\epsilon) - \nu_2(f_0)| = |f_\epsilon'(x_0) - f_0'(x_0)| \sim f_0^{(2)}(x_0) \epsilon (1 + o(1)), \]

and some further computation (Jongbloed (1995), (2000)) shows that

\[H^2(f_\epsilon, f_0) = \frac{2 f_0^{(2)}(x_0)^2}{5 f_0(x_0)} \epsilon^5 (1 + o(1)). \]

Thus taking \(\epsilon \equiv \epsilon_n = cn^{-1/5} \), writing \(f_n \) for \(f_{\epsilon_n} \), and using our two-point lower bound proposition yields

\[\liminf_{n \to \infty} \inf_{T_n} \max \left\{ E_n n^{2/5} |T_n - \nu_1(f_n)|, E_0 n^{2/5} |T_n - \nu_1(f_0)| \right\} \]

\[\geq \frac{1}{4} \left(\frac{f_0^2(x_0) f_0^{(2)}(x_0)}{2 \cdot 8^2 \epsilon^2} \right)^{1/5}, \]

and ...
D: Lower bounds: convex decreasing density

\[\lim_{n \to \infty} \inf_{T_n} \max \left\{ E_n n^{1/5} |T_n - \nu_2(f_n)|, E_0 n^{1/5} |T_n - \nu_2(f_0)| \right\} \geq \frac{1}{4} \left(\frac{f_0(x_0) f_0''(x_0)^3}{4e} \right)^{1/5}. \]

We will see that the MLE achieves these rates and that the limiting distributions involve exactly these constants tomorrow.

Other Scenarios?

S2: \(f_0 \) triangular on \([0, 1]\)?
 (Degenerate mixing distribution at 1.)

S3: \(x_0 \in (a, b) \) where \(f_0 \) is linear on \((a, b)\)?

S4: \(x_0 \) a “bend” or “kink” point for \(x_0: f'_0(x_0-) < f'_0(x_0+) \)?

S5: \(\cdots \)?