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ABSTRACT

An interval-valued observation in a time period contains more information than a point-valued

observation in the same time period. Examples of interval data include the maximum and min-

imum temperatures in a day, the maximum and minimum GDP growth rates in a year, the

maximum and minimum asset prices in a trading day, the bid and ask prices in a trading period,

the long term and short term interests, and the 90%-tile and 10%-tile incomes of a cohort in a year,

etc. Interval forecasts may be of direct interest in practice, as it contains information on the range

of variation and the level or trend of economic processes. Moreover, the informational advantage

of interval data can be exploited for more e¢ cient econometric estimation and inference.

We propose a new class of autoregressive conditional interval (ACI) models for interval-valued

time series data. A minimum distance estimation method is proposed to estimate the parameters

of an ACI model, and the consistency, asymptotic normality and asymptotic e¢ ciency of the

proposed estimator are established. It is shown that a two-stage minimum distance estimator is

asymptotically most e¢ cient among a class of minimum distance estimators, and it achieves the

Cramer-Rao lower bound when the left and right bounds of the interval innovation process follow

a bivariate normal distribution. Simulation studies show that the two-stage minimum distance

estimator outperform conditional least squares estimators based on the ranges and/or midpoints

of the interval sample, as well as the conditional quasi-maximum likelihood estimator based on

the bivariate left and right bound information of the interval sample. In an empirical study on

asset pricing, we document that when return interval data is used, some bond market factors,

particularly the default risk factor, are signi�cant in explaining excess stock returns, even after

the stock market factors are controlled in regressions. This di¤ers from the previous �ndings (e.g.,

Fama and French (1993)) in the literature.

Key Words: Asymptotic normality, Asset Pricing, Autoregressive conditional interval models,

Interval time series, Mean squared error, Minimum distance estimation
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1. Introduction

Time series analysis has been concerned with modelling the dynamics of a stochastic point-

valued time series process. This paper is perhaps a �rst attempt to model the dynamics of a

stochastic interval-valued time series which exhibits both �range�and �level�characteristics of the

underlying process. A regular real-valued interval is a set of ordered real numbers de�ned by

y = [a; b] = fy 2 Rj a � y � b; where a; b 2 Rg. More generally, one can represent a certain
region in the n-dimensional Euclidean space by an interval vector, that is, a n-tuple of intervals;

see Moore, Kearfott and Cloud (2009). A stochastic interval time series is a sequence of interval-

valued random variables indexed by time t.

There exists a relatively large body of evidence of interval-valued data in economics and �nance.

In microeconomics, interval-valued observations are often used to provide rigorous enclosures of

the actual point data due to incomplete information (e.g., Manski 2007). In time series analy-

sis, however, interval data in a time period often contain richer information than point-based

observations in the same period since an interval number captures both the �range�(or �volatil-

ity�) and �level�(or �trend�) characteristics of the underlying process. A well-known example of

interval-valued time series processes is the daily temperatures, e.g., [YL;t; YR;t], where the left and

right bounds denote the minimum and maximum temperatures in day t respectively. In macro-

economics, the minimum and maximum annualized monthly GDP growth rates form an annual

interval-valued GDP growth rate data that indicates the range within which it varies in a given

year. In �nance, an interval can be an alternative volatility measure, due to its dual natures

in assessing the �uctuating range as well as the level of an asset price during a trading period,

e.g., Pt = [PL;t; PR;t]. In the study of the dynamics of bid-ask price spread of an asset, one can

construct an interval data [YL;t; YR;t] to present the bid-ask price spread, where YL;t and YR;t are

the ask and bid prices of the asset at time t. In asset pricing modelling, YL;t and YR;t denote the

risk-free and equity returns, respectively. Besides the interval-valued observations formed by the

minimum and maximum point observations, quantile-based data are also informative. In study

of income inequality, for example, the lowest 10% and highest 10% quantiles of the incomes of a

cohort can be used as a robust measure of income inequality.

Interval forecasts may be of direct interest in practice because, compared to point forecasts,

intervals contain rich information about the range of variation and the level of economic processes.

Engle and Russell (2009) argued that intraday �nancial time series reveal subtle characteristics,

e.g., irregular temporal spacing, strong diurnal patterns and complex dependence that present

obstacles for traditional forecasting methods. In addition, it is rather di¢ cult to accurately forecast

the entire sequence of intraday prices for one day ahead. Thus, interval modelling may be an
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alternate away to analyze intraday time series. Examples are interval forecasts of temperatures,

GDP growth rates, in�ation rates, bid and ask prices, as well as long-term and short term interest

rates in a given time period.

Since an interval observation in a time period provides more information than a point-valued

observation in the same time period, this informational advantage can be exploited for more

e¢ cient estimation and inference in econometrics. To elaborate this, let us consider volatility

modelling as an example, which has been a central theme in �nancial econometrics. Most studies

on volatility modelling employ point-based data, e.g., the daily closing price of an asset rather

than the interval data consisting of the maximum and minimum prices in a trading day. This is

the case for the popular GARCH and Stochastic Volatility (SV) models in the literature. Although

GARCH and SV models aim to study the dynamics of volatility of an asset price, the closing price

observations fail to capture the ��uctuation�information within a time period. A development in

the literature that improves upon GARCH and SV models is to use range observations, based on

the di¤erence between the maximum and minimum asset prices in a time period, which are more

informative than returns based on closing prices. Early models of this class include Parkinson

(1980) and Beckers (1983). Recently, Alizadeh, Brandt and Diebold (2002) have used range

observations of stock prices to obtain more e¢ cient estimation for SV models. See also Diebold

and Yilmaz (2009) for the use of range observations as measures for volatility. Chou (2005), on

the other hand, develops a class of Conditional Autoregressive Range (CARR) models to capture

the dynamics of the range of an asset price. Chou (2005) documents that CARR models have

better forecasts of volatility than GARCH models, indicating the gain of utilizing range data over

point-valued closing price data. However, an inherent problem of the CARR models is that using

range as a volatility measure is unable to simultaneously capture the dual empirical features, i.e.,

�range�and �level�. For example, the same range observations in di¤erent time periods yield the

same information for range, yet possible distinct price levels are ignored.

It is possible to capture the dual features of range and level by a bivariate point-valued model

for the left and right bounds of an interval process. Existing methods include modelling the two

univariate point-valued processes separately or joint modelling with vector autogression; see Maia

et al (2008), Arroyo (2010), Neto et al. (2008), Neto and Carvalho (2010) and the references

therein. However, a bivariate point-valued sample may not e¢ ciently make use of the information

of the underlying interval process; see Blanco-Ferández et al (2011). Furthermore, a certain region

which an interval vector presents, e.g., a squared box which a bivariate interval vector presents,

contains at least twice simultaneous equations as a single interval model, which may involve a

large number of unknown parameters.

To capture the dynamics of an interval process, to forecast an interval and to explore the
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potential gain of using interval time series data over using point-valued time series data, we propose

a new class of autoregressive conditional interval (ACIX thereof) models for interval-valued time

series processes, possibly with exogenous explanatory variables. We develop an asymptotic theory

for estimation, testing and inference. In addition to direct interest in interval forecasts by policy

makers and practitioners, the advantages of ACIX models over the existing volatility and range

models are at least twofold. First, it utilizes the information of both range and level contained in

interval data, and thus it is expected to yield more e¢ cient estimation and inference than point-

valued data. Consider a case in which the interest is to model the conditional range of the daily

price of some asset but there are more variations in the level sample than in the range sample.

Because range and level are generally correlated, it may not be e¢ cient to estimate parameters

in a range model by using the range information alone. Instead, one may obtain more e¢ cient

parameter estimation for an ACIX model with an interval sample, thus providing more accurate

forecasts for range.

A parsimonious ACIX model provides a simple and convenient uni�ed framework to infer the

dynamics of the interval population, which can also be used to derive some important point-based

time series models as special cases. For example, when interval data are transformed to the point-

valued �range�, the ACIX model then yields an ARMAX-type range model, which is an alternative

to Chou�s (2005) CARR model. Because our approach is based on the concept of extended

interval for which the left bound needs not to be smaller than the right bound, the aforementioned

advantages of our methodology also carry over to a large class of point-valued regression models,

where the regressand and regressors are de�ned as di¤erences between economic variables. See

Section 7 for an example of capital asset pricing modelling (Fama and French (1993)).

The remainder of this paper is organized as follows. Section 2 introduces basic algebra of

intervals, interval time series, and the class of ACIX models. In Section 3, we propose a minimum

distance estimation method and establish the asymptotic theory of consistency and normality of

the proposed estimators. We also show how various estimators for the point-based models can

be derived as special cases of the proposed minimum distance estimator. Section 4 derives the

optimal kernel function that yields the asymptotic most e¢ cient minimum distance estimator, and

proposes a feasible asymptotically most e¢ cient two-stage minimum distance estimator. Section

5 develops a Lagrange Multiplier test and a Wald test for the hypotheses on model parameters.

Section 6 presents a simulation study, comparing the performance of the proposed two-stage

minimum distance estimator with various parameter estimators in �nite samples. It is con�rmed

that more e¢ cient parameter estimation can be obtained when interval data rather than point-

valued data are utilized, and the proposed two-stage minimum distance estimator perform the best.

Section 7 is an empirical study of Fama-French�s (1993) asset pricing model, comparing the OLS
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estimator and the proposed two stage interval-based minimum distance estimator. We document

that the use of interval risk premium data yields overwhelming evidence that the default risk

factor is signi�cant in explaining excess stock returns even when stock risk factors are controlled,

a result that the previous literature and the OLS estimation fail to reveal (see Fama and French

1993). Section 8 concludes the paper. All mathematical proofs are collected in the Mathematical

Appendix.

2. Interval Time Series and ACIX Model

In this section, we �rst introduce some basis concepts and analytic tools for stochastic interval

time series. We then propose a parsimonious class of autoregressive conditional interval models

with exogenous explanatory variables (ACIX) to capture the dynamics of interval time series

processes. Both static and dynamic interval time series regression models are included as special

cases.

2.1 Preliminary

To begin with, we �rst de�ne an extended random interval.

De�nition 2.1: An extended random interval Y on a probability space (
;z; P ) is a measurable
mapping Y : 
 ! IR, where IR is the space of closed sets of ordered numbers in R, as Y (!) =

[YL(!); YR(!)], where YL(!); YR(!) 2 R for all ! 2 
 denote the left and right bounds of Y (!)
respectively, together with the following three compositions called addition, scalar multiplication

and di¤erence, respectively:

(i) Addition, symbolized by +, which is a binary composition in IR:

A+B = [AL +BL; AR +BR];

(ii) Scalar multiplication, symbolized by �, which is a symmetric function from R� IR to IR:

� � A = [� � AL; � � AR];

(iii) Di¤erence (Hukuhara (1967)), symbolized by �H , which is a binary composition in IR:

A�H B = [AL �BL; AR �BR]:

As a special case, a real-valued scalar a 2 R can be presented by a �degenerate interval�, or a

�trivial interval� such that a = [a; a]. An example of degenerate intervals is the zero interval:

A = [0; 0]. The mapping Y : 
 ! IR in De�nition 2.1 is �strongly measurable�with the �-�eld

generated by the topology induced by the Hausdor¤ metric dH ; see Li, Ogura, and Kreinovich
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(2002, De�nition 1.2.1 ). Speci�cally, for each interval X, we have Y �1(X) 2 z; where Y �1(X)
= f! 2 
 : Y (!) \X 6= �g is the inverse image of Y .
For each ! 2 
, Y (!) is a set of ordered real-valued numbers, changing continuously from

YL(!) to YR(!). To de�ne the probability distribution of an extended random interval Y , we

denote the Borel �eld of IR as B(IR). Given a B(IR)-measurable random interval Y , we de�ne a

sub-�-�eld zY by
zY = �

�
Y �1(�); � 2 B(IR)

	
;

where Y �1(�) = f! 2 
 : Y (!) 2 �g. Then zY is a sub-�-�eld of z with respect to which Y is

measurable. The distribution of a random interval Y is a probability measure P on B(IR) de�ned

by

FY (�) = P
�
Y �1(�)

�
; � 2 B(IR):

Consider as an example the interval in which the S&P 500 stock index in day t �uctuates as an

extended random interval Yt de�ned on the probability space (
;z; P ), and the outcome of the
experiment corresponds to a point ! 2 
. Then the measuring process is carried out to obtain an
interval in day t: Yt(!) = [YL;t(!); YR;t(!)]. Unlike a bivariate random vector X : 
X ! R2 of the

left and right boundaries of Y where X(!X) = (YL(!X); YR(!X))0 for !X 2 
X , the measurable
mapping Y : 
 ! IR is a univariate random set of ordered numbers in the space of IR. Unless

there exists a probability measure PX on B(R2) such that

PX
�
X�1(�X)

�
= P

�
Y �1(�)

�
,

for each �X 2 B(R2) and � 2 B(IR) such that YL(!X) = YL(!), YR(!X) = YR(!) and X�1(�X) =

f!X 2 
X : X(!X) 2 �Xg, modelling an interval population Y cannot be simply equated to joint
modelling a bivariate point-valued random vector for the left and right bounds of Y . The latter

approach may lead to some information loss because it may not retain all information in a set of

ordered numbers for each interval observation due to the fact that the two probability measures

are not identical.

In De�nition 2.1, we do not impose the conventional restriction of YL � YR for regular inter-
vals that has been imposed in the interval computing literature (see Moore, Kearfott, and Cloud

(2009)). This is the reason we call Y as an extended interval. Our extension ensures the complete-

ness of IR and the consistency among the compositions introduced in De�nition 2.1. Let � = �1
and Yt = [1; 3], for example. Then the extension ensures that �Yt = �1� [1; 3] = [�1;�3] 2 IR.1

1Our notation embodies a convention we follow throughout: the scalar multiplication, e.g., � �A will be presented
as �A:
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This is not a regular interval. Furthermore, 8� 2 R; Yt 2 IR;

�Yt + (��)Yt = [�YL;t � �YL;t; �YR;t � �YR;t] = [0; 0];

which implies that a symmetric element with respect to the addition exists. Conversely,

[0; 0]�H (��)Yt = [0 + �YL;t; 0 + �YR;t] = �Yt:

The concept of extended interval together with Hukuhara�s di¤erence is useful and suitable

for econometric analysis of interval data. One example is the �rst di¤erence of some interval

process Xt:

Yt = Xt �H Xt�1 = [XL;t �XL;t�1; XR;t �XR;t�1] ;

which becomes a stationary interval process although the original series Xt is not. Hukuhara

introduced this di¤erence operation to deal with the fact that the regular interval space, i.e., with

the restriction YL;t � YR;t, is not a linear space due to the lack of a symmetric element with respect
to the addition operation, which is addressed by our extension of the interval space.

De�nition 2.1 also greatly extends the scope of applications of our methodology. For example,

it covers the case of an extended interval with the risk-free rate as the left bound and the market

portfolio return as the right bound, where the risk-free rate is not necessarily smaller than the

market portfolio return. See Section 7 for applications to asset pricing modelling.

The concept of extended random interval di¤ers from that of a con�dence interval in statis-

tical analysis, even if we impose the restriction YL � YR. The objective here is to learn about

the probability distribution of an �interval population�rather than a �point population�, and the

forecast aims at the �true interval�or the �conditional interval expectation�of the underlying sto-

chastic interval process. In contrast, the conventional con�dence interval of a point-valued time

series is to learn about the uncertainty or dispersion of a point population or its estimator given

a prespeci�ed con�dence level.

Next, we de�ne a stochastic interval time series process.

De�nition 2.2: A stochastic interval time series process is a sequence of extended random intervals

indexed by time t 2 Z � f0;�1;�2; :::g, denoted fYt = [YL;t; YR;t]g1t=�1.

A segment fY1; Y2; :::; YTg from t = 1 to T of the interval time series fYtg constitutes an
interval time series random sample of size T . A realization of this random sample, denoted as

fy1; y2; :::; yTg, is called an interval time series data set with size T . The main objective here is
to use the observed interval data to infer the dynamic structure of the interval time series process

fYtg and to use it for forecasts and other applications. For example, a leading object of interest
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is the conditional mean E(YtjIt�1); where It�1 = fYt�1; :::; Y1g is the information set available at
time t� 1.
Following Aumann�s (1965) de�nition of expectation of random sets, we now introduce the

expectation of extended random intervals.

De�nition 2.3: If Yt is an extended random interval on (
;z; P ), then the expectation of Yt is
an extended interval de�ned by

�t � E(Yt) =
�
E (f) jf : 
! R; f 2 L1; f 2 Yt a.s. [P ]

	
provided E (jYtj) <1 with jYtj = supfjyj, y 2 Yt(!)j.

In order to quantify the variation of a random interval Yt around its expectation �t, to de�ne

the autocovariance function of an interval time series process fYtg, and particularly to develop a
minimum distance estimation method for an interval time series model, we need a suitable distance

measure between intervals.

The basic idea of a distance measure between intervals is to consider the set of the absolute

di¤erences between all possible pairs of elements (points) of the intervals A and B, with respect to

a suitable weighting function. The Hausdor¤ metric dH (Munkres, 1999) has been widely used in

measuring the distance between random sets (e.g., Artstein and Vitale (1975), Puri and Ralescu

(1983, 1985), Cressie (1978), Hiai (1984), and Li, Ogura and Kreinovich (2002)). It is de�ned on

a normed space � as follows:

dH(A;B) = max

�
sup
a2A

inf
b2B

d(a; b); sup
b2B

inf
a2A

d(a; b)

�
;

where d(a; b) = ka� bk� is the norm de�ned on �, and A;B 2 %(�) which is the family of all
non-empty subsets of �. If � is a p-dimensional Euclidean space Rp, dH(A;B) can be written as

dH(A;B) = max

�
sup
a2A

d(a;B); sup
b2B

d(b; A)

�
= sup

u2Sp�1
jsA(u)� sB(u)j ; (2.1)

where Sp�1 = fu 2 Rp�1 : kukRp�1 = 1g is the unit sphere in Rp, and sA(u) is called a support

function of the set A de�ned as

sA(u) = sup
a2A

hu; ai , u 2 Rp�1; (2.2)

where h�:�i is an inner product. See Minkowsky (1911).
Eq.(2.1) indicates that dH only considers the least upper bound of the set of absolute di¤erences

between all pairs of support functions in p�1 directions of tangent planes with weight 1. As shown
in Näther (1997, 2000), the Fréchet expectation of a random set Yt is not with respect to dH . As
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a special case of random sets, the interval expectation E(YtjIt�1) is not the optimal solution of
the minimization problem, namely,

E(YtjIt�1) 6= arg min
A2IR

E
�
d2H(Yt; A(It�1))

�
:

Thus, dH is not a suitable metric to develop a minimum distance estimation method for time

series models of conditional expectation of an interval process.

Körner and Näther (2002) developed a distance measure called DK metric. For any pair of

sets A;B 2 zc(Rp),

DK(A;B) =

sZ
(u;v)2sp�1

[sA(u)� sB(u)] [sA(v)� sB(v)] dK(u; v);

where zc(Rp) is the space of convex compact sets, h�; �iK denote the inner product in Sp�1 with
respect to kernel K(u; v); and K(u; v) is a symmetric positive de�nite weighting function on Sp�1

which ensures that DK(A;B) is a metric for zc(Rp). When p = 1, the above random sets will be

referred to the extended random intervals, and the generalized zc(R) space is IR. For any pair
of extended intervals A;B 2 IR;

DK(A;B) =

sZ
(u;v)2s0

[sA(u)� sB(u)] [sA(v)� sB(v)] dK(u; v); (2.3)

where the unit space S0 = fu 2 R1; juj = 1g = f1;�1g is a set consisting of 1 and �1. Here, the
support function becomes

sA(u) =

�
supa2A fu � aju 2 S0g if AL � AR;
infa2A fu � aju 2 S0g if AR < AL;

=

�
AR u = 1;

�AL u = �1; (2.4)

and sA(u) = A if A is a degenerate interval as A = AL = AR.

The space of support functions sA(u) in Eq.(2.4) is linear, namely

sA+B = sA + sB;

s�A = �sA; for all � 2 R;

sA�B = sA � sB: (2.5)

The usual support function in Eq.(2.2) is sublinear since that s�A = �sA only holds for � � 0.

The extension of the regular interval space, which allows AL > AR for IR, ensures that it holds

for all � 2 R. When AL � AR, it is the usual support function as in Eq.(2.2). The result
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that sA�B = sA � sB shows that the support function of an extended interval produced from the

Hukuhara di¤erence between two intervals, is equal to the di¤erence between the corresponding

support functions of the two intervals. For more discussions on support functions, see Choi and

Smith (2003), Romanowska and Smith (1989), and Li, Ogura, and Kreinovich (2002, Corollary

1.1.10).

The kernel K(u; v) is a symmetric positive de�nite function such that for u; v 2 S0 = f1;�1g,8<:
K(1; 1) > 0;

K(1; 1)K(�1;�1) > K(1;�1)2;
K(1;�1) = K(�1; 1):

(2.6)

For A;B 2 IR, the mapping h�; �iK : IR ! R is a linear functional on IR:, with respect to any

kernel K satisfying Eq.(2.6). This is because that the support functions form an inner product

space (or unitary space), provided the inner product with respect to kernelK for each A;B;C 2 IR
satis�es the following operation rules:

hsA; sBiK = hsB; sAiK ;

hsA+B; sCiK = hsA; sCiK + hsB; sCiK ,

hs�A; sBiK = � hsA; sBiK , for all � 2 R,

hsA; sAiK � 0,

hsA; sAiK = 0 i¤ A = [0; 0]: (2.7)

The norm for A 2 IR with respect to kernel K is de�ned as the nonnegative square root of

hsA; sAiK ; 2 i.e.,
kAkK = DK(A; [0; 0]) = hsA; sAi1=2K ; (2.8)

and similarly,

kA�BkK = DK(A;B) = hsA�B; sA�Bi1=2K : (2.9)

The DK-metric has some desirable properties. Most importantly, sA(u) is an isometry between

IR and a cone of the Hilbert subspace endowed with the generic L2-type DK distance respect to

K(u; v), which implies the suitability for the least squares estimation method of time series models

for conditional mean of an interval process.

Lemma 2.1: Suppose A(It�1) is a measurable interval function of information set It�1: Then

E(YtjIt�1) = arg min
A2IR

E
�
D2
K(Yt; A(It�1))

�
: (2.10)

2Our notation embodies a convention we follow throughout: the support function sA(u) will be represented as
sA when u is not speci�ed with particular values, while the di¤erence A�H B will be represented as A�B.
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See Näther (1997, 2000) for a generalized result of random sets, but not in a time series context.

Numerically the DK(A;B) in Eq.(2.3) has a simple quadratic form and is easy to compute. It

follows from the de�nitions of sA(u) and K(u; v) that

D2
K(A;B) = K(1; 1) (AR �BR)2 +K(�1;�1)(AL �BL)2 � 2K(1;�1)(AR �BR)(AL �BL)

=

�
AR �BR
�(AL �BL)

�0 �
K(1; 1) K(1;�1)
K(�1; 1) K(�1;�1)

� �
AR �BR
�(AL �BL)

�
: (2.11)

Recall that the crucial criterion of a distance between intervals A and B is to consider the set

of the absolute di¤erences between all possible pairs of elements (points) of A and B, with a

proper weighting function to include the maximum amount of useful information contained in

intervals. However, Eq.(2.11) might lead to a misunderstanding that D2
K(A;B) only considers a

weighted average of distances between the two boundary points of intervals A and B, and ignores

the distances between interior points. Below we elaborate sA(u) and K(u; v) to gain insight into

the numerical equality in Eq.(2.11).

The support function sA(u) is an alternate representation of A 2 IR in terms of the positions
of two tangent planes, i.e., the left and right bounds, that enclose the interval A. Li, Ogura and

Kreinovich (2002, Corollary 1.2.8) verify that sA(u) of the extended random interval A de�ned on

(
;z; P ) is measurable, by which we can derive any point-valued random variableA(�)(!) 2 A(!) :

A(�)(!) = �sA(!)(1)� (1� �)sA(!)(�1) = �AR + (1� �)AL (2.12)

for � 2 [0; 1]. For instance, for each ! 2 
; � = 0, 1 and 0:5 yield the left and right bounds, and
the midpoint of A(!) respectively:

AL(!) � A(0)(!) = �sA(!)(�1);

AR(!) � A(1)(!) = sA(!)(1);

Am(!) � A(0:5)(!) =
1

2
sA(!)(1)�

1

2
sA(!)(�1): (2.13)

Bertoluzza et al. (1995) introduced a dW distance for intervals, which was later generalized to the

DK metric by Körner and Näther (2002). The dW distance is de�ned as

dW (A;B) =

sZ
[0;1]

(A(�) �B(�))2dW (�) , for all A;B 2 IR

where W (�) is a probability measure on the real Borel space ([0; 1]), B([0; 1]). The dW (A;B)

measure involves not only distances between extreme points with weights W (0) and W (1), but

also distances between interior points in the intervals with weights W (�), 0 < � < 1.

10



It is appealing that the DK metric as a generalization of the dW metric preserves this property

(González-Rodríguez et al. (2007)). The simpler expression of the DK metric in Eq.(2.11) than

dW (A;B) lies in the fact that it measures the distance between each pair of points in intervals A

and B in terms of the support functions,

�
A(�) �B(�)

�2
= [�AR + (1� �)AL � �BR � (1� �)BL]2

= �2 (AR �BR)2 + (1� �)2(AL �BL)2 + 2�(1� �) (AR �BR) (AL �BL) :

(2.14)

Instead of an integral for (A(�) � B(�))2 with respect to W (�), Eq.(2.14) suggests that the value
of K(u; v) for each pair of (u; v) 2 S0 can be interpreted as

K(1; 1) =

Z 1

0

�2dW (�);

K(1;�1) = K(�1; 1) =
Z 1

0

�(�� 1)dW (�);

K(�1;�1) =

Z 1

0

(1� �)2dW (�):

These identities suggest that the choice of kernel K is equivalent to the choice of some weighting

function W (�): Thus, although D2
K(A;B) can be simply computed by the distances between

extreme points with respect to kernel K(u; v), it is in essence an integral over the distances

between all pairs of points in intervals A and B with a weighting function W (�) implied by the

choice of K(u; v).

To gain further insight into the role of kernel K; we now explore some special choices of kernel

K(u; v) and discuss their implication on capturing the information contained in intervals. For

notational convenience, we denote a generic choice of a symmetric kernel K as K(1; 1) = a,

K(1;�1) = K(�1; 1) = b, K(�1;�1) = c, where a, b and c satisfy Eq.(2.6).

Case 1. (a; b; c) = (1
4
;�1

4
; 1
4
):

This kernel K corresponds to the choice of weighting function W (�) as a degenerate distribu-

tion: W (�) = 1 for � = 1
2
and 0 otherwise. The DK metric becomes

D2
K(A;B) = (A

m �Bm)2 ;

which measures the distance between midpoints of A and B: Note that kernel K is not positive

de�nite here.

Case 2. (a; b; c) = (1; 1; 1):

11



In this case, we have

D2
K(A;B) = (A

r �Br)2 ;

which measures the distance between ranges of A and B: Note that kernelK is not positive de�nite

here.

Case 3. a = c, jbj < a. Then by Eq.(2.11),

D2
K(A;B) =

a+ b

2
(Ar �Br)2 + 2(a� b) (Am �Bm)2 :

This measures the distance between the ranges Ar and Br, and the distance between the midpoints

Am and Bm, with weights a+b
2
and 2(a � b) respectively. If �1 < b

a
< 3

5
, (Am �Bm)2 receives a

larger weight than (Ar �Br)2; if 3
5
< 3

5
< 1, (Ar �Br)2 receives a larger weight than (Am �Bm)2;

and if b
a
= 3

5
, the squared di¤erences between ranges and between midpoints receive the same

weight.

Case 4. b = 0. Then by Eq.(2.11),

D2
K(A;B) = a (AR �BR)

2 + c (AL �BL)2 :

This measures the distance between the left bounds and the distance between the right bounds,

with weights a and c respectively. If 0 < a < c, (AL � AL)2 receives a larger weight than
(AR �BR)2; if 0 < c < a, (AR �BR)2 receives a larger weight than (AL �BL)2; and if 0 < a = c,
the squared di¤erences between left bounds and right bounds receive the same weight. The choice

of such a kernelK is equivalent to the choice of weighting functionW (�) which follows a Bernoulli

distribution with W (0) = c;W (1) = a; where a+ c = 1:

Case 5. Suppose a 6= c, b 6= 0, where a; b and c satisfy Eq.(2.6). Then by Eq.(2.11)

D2
K(A;B)

= a (AR �BR)2 + c(AL �BL)2 � 2b (AR �BR) (AL �BL)

=
a+ 2b+ c

2
(Ar �Br)2 + (a� 2b+ c) (Am �Bm)2 + (a� c) (Ar �Br) (Am �Bm) :

Here, D2
K(A;B) can capture information in the left bound di¤erence AL � BL, the right bound

di¤erence AR�BR; and their cross product (AR �BR) (AL�BL); or the information in the range
di¤erence Ar �Br; the level di¤erence Am �Bm; and their cross product (Ar �Br) (Am �Bm) :
The utilization of the cross product information will enhance estimation e¢ ciency, as will be seen

below.

2.2 Stationarity of an Interval Time Series Process
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To introduce the concept of weak stationarity for the interval time series process fYtg, we �rst
de�ne the autocovariance function of fYtg based on support function sA and kernel K.

De�nition 2.4: The jth-order autocovariance function of a stochastic interval time series process

fYtg, denoted 
t(j); is a scalar de�ned by


t(j) � cov(Yt; Yt�j) = E
D
sYt � s�t ; sYt�j � s�t�j

E
K
; j = 0;�1; :::;

where �t = E (Yt), and
D
sYt � s�t ; sYt�j � s�t�j

E
K
is the inner product with respect to the kernel

K(u; v) on S0 = f�1; 1g. In particular, the variance of Yt is


t(0) = E kYt � �tk
2
K = E

�
D2
K(Yt; �t)

�
= E



sYt � s�t ; sYt � s�t

�
K
;

and 
t(j) = 
t(�j) for all integers j, provided kernel K(u; v) is symmetric.
Note that 
t(j) has the form of covariance between two random intervals X and Z:

cov(X;Z) = E


sX � s�X ; sZ � s�Z

�
K
:

Thus 
t(j) could be interpreted as the covariance of Yt with its lagged value Yt�j. When fYtg is
a stochastic point-valued process, we have

E
D
sYt � s�t ; sYt�j � s�t�j

E
K
= E

�
(Yt � �t)(Yt�j � �t�j)

�
;

subject to the restriction that
R
(u;v)2S0 dK(u; v) = K(1; 1) +K(�1;�1) + 2K(1;�1) = 1; which

is consistent with the de�nition of the autocovariance function of a point-valued time series.

We now de�ne weak stationarity of a stochastic interval time series process.

De�nition 2.5: If neither the mean �t nor the autocovariance function 
t(j); for each j; of a

stochastic interval time series process fYtg depends on time t, then fYtg is DK-weakly stationary,

or DK-covariance stationary.

Suppose fYtg is a DK-weakly stationary interval process. Then a derived stochastic point-

valued process according to Eq. (2.12) is also weakly stationary. Given Eq.(2.13) and the interval

process Yt, we can obtain a bivariate point-valued process of the left and right bounds of Yt :(
Y
(0)
t = YL;t;

Y
(1)
t = YR;t;

the range (or di¤erence) of Yt as a measure of �volatility�

Y rt � Y 1t � Y 0t = sYt(1) + sYt(�1) = YR;t � YL;t;
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and the midpoint of Yt as a measure of �level�

Y mt � Y 0:5t = sYt

�
1

2

�
=
YL;t + YR;t

2
:

These point processes are in essence measurable linear transformations of Yt based on its support

function, and as a result, their probabilistic properties are determined by (
;z; P ) on which Yt is
de�ned. Thus fY rt g, fY mt g, and the bivariate point process f(YL;t; YR;t)0g are all weakly stationary
processes if Yt is DK-weakly stationary.

If 
(j) = 0 for all j 6= 0, we say that the DK-weakly stationary interval process fYtg is a DK-

weakly white noise process. This arises when fYtg is an independent and identically distributed
(i.i.d.) sequence. Of course, zero autocorrelation of fYtg across di¤erent lags does not necessarily
imply serial independence of fYtg ; as is the case with the conventional time series analysis:
Next we de�ne strict stationarity of a stochastic interval time series process.

De�nition 2.6: Let P1 be the joint distribution function of the stochastic interval time series

sequence fY1; Y2; :::g, and let P�+1 be the joint distribution function of the stochastic interval
time series sequence fY�+1; Y�+2; :::g. The stochastic interval time series process fYtg is strictly
stationary if P�+1 = P1 for all � � 1.

In accordance with De�nition 2.6, we could introduce the concept of ergodicity for a strictly

stationary interval process, which is essentially the same as that for a point-valued process. For

more discussion on ergodicity, see White (1999, De�nition 3.33).

2.3 Law of Large Numbers for DK-Weakly Stationary Interval Processes

The strong law of large numbers with the Hausdor¤ metric dH of i.i.d. random compact

subsets of �nite-dimensional Euclidean space Rd was �rst proved by Artstein and Vitale (1975),

and further studied by Cressie (1978), Hiai (1984), and Puri and Ralescu (1983, 1985). Li, Ogura,

and Kreinovich (2002) proved a strong law of large numbers for i.i.d. compact convex subsets of

a separable Banach space with the Hausdor¤ metric dH .

However, these limit theories are not available for the DK metric, particularly in a time series

context. Below, we prove the weak law of large numbers (WLLN) for both the �rst and second

moments of a stationary interval process.

Theorem 2.1. Let fYtgTt=1 be a random interval sample of size T from a DK-weakly stationary

interval process fYtg with E (Yt) = � for all t, E


sYt � s�; sYt�j � s�

�
K
= 
(j) for all t and

j, and
P1

j=�1 j
(j)j < 1 . Then Y T
p�! � as T ! 1, where Y T = T�1

PT
t=1 Yt is the

sample mean of fYtgTt=1 ; and the convergence is with respect to the DK metric in the sense that

limT!1 P
�
DK(Y T ; �) � �

�
= 0, for any given constant � > 0.
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Theorem 2.1 provides the conditions of ergodicity in mean for a stochastic interval time series

process, that is, when the autocovariance function 
(j) is absolutely summable, the sample mean

Y T converges to the population mean � of a DK-weakly stationary interval process fYtg. In
Theorem 2.1, the sample average Y T and the population mean � are both de�ned on IR, i.e., both

are interval-valued. When they are point-valued, we have

DK(Y T ; �) = dH(Y T ; �);

subject to
R
(u;v)2S0 dK(u; v) = 1. Thus, Theorem 2.1 coincides with the familiar weak law of large

numbers for a point-valued time series process, i.e., limT!1 P
���Y T � ��� � �� = 0 for each � > 0:

Next, we show that the sample autocovariance of a stationary interval process converges in

probability to its autocovariance.

Theorem 2.2. Let fYtgTt=1 be a random sample of size T from a stationary ergodic stochastic

interval time series process fYtg such that E kYtk4K < 1 for all t and j � 0. Suppose the

conditions of Theorem 2.1 hold. Then for each given j,

b
(j) � T�1 TX
t=j+1



sYt � sY T ; sYt�j � sY T

�
K

p�! 
(j)

as T !1; where Y T = T�1
PT

t=1 Yt is the sample mean of fYtg
T
t=1.

Theorem 2.2 provides su¢ cient conditions that a DK-weakly stationary interval process is

ergodic in second moments. Since the weighted inner product


sYt � sY T ; sYt�j � sY T

�
K
is a scalar,

the convergence in probability in Theorem 2.2 is with respect to either the dH or DK metric.

2.4 Autoregressive Conditional Interval Models

To capture the dynamics of a stochastic interval process fYtg, we propose a class of Autore-
gressive Conditional Interval (ACI) Models of order (p; q):

Yt = �0 + �0I0 +

pX
j=1

�jYt�j +

qX
j=1


jut�j + ut; (2.15)

or compactly,

B(L)Yt = �0 + �0I0 + A(L)ut

where �0, �j (j = 0; :::; p), 
j (j = 1; :::; q) are unknown scalar parameters, I0 = [�1
2
; 1
2
] is a unit

interval; �0+�0I0 = [�0� 1
2
�0; �0+

1
2
�0] is a constant interval intercept; A(L) = 1+

Pq
j=1 
jL

j and

B(L) = 1�
Pp

j=1 �jL
j, where L is the lag operator; ut is an interval innovation. We assume that

futg is a interval martingale di¤erence sequence (IMDS thereof) with respect to the information
set It�1, that is, E(utjIt�1) = [0; 0] a:s.
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The ACI(p; q) model is an interval generalization of the popular ARMA (p; q)model for a point-

valued time series process. It can be used to forecast intervals of economic processes, such as the

GDP growth rate, the in�ation rate, the stock price, the long-term and short-term interest rates,

and the bid-ask spread. This is often of direct interest for policy makers and practitioners. When

q = 0; Eq.(2.15) becomes an ACI(p; 0) model, analogous to an AR(p) model for a point-valued

time series:

Yt = �0 + �0I0 +

pX
j=1

�jYt�j + ut:

When p = 0; Eq.(2.15) becomes an ACI(0; q) model, analogous to an MA(q) model for a point-

valued time series:

Yt = �0 + �0I0 +

qX
j=1


jut�j + ut:

If all the roots of B(z) = 0 lie outside the unit circle, an ACI(p; q) process can be rewritten as a

distributed lag of fus; s � tg, which is an ACI(0,1) process,

Yt = B(L)�1(�0 + �0I0) +B(L)
�1A(L)ut

= B(1)�1(�0 + �0I0) +
1X
j=0

�jut�j;

where fajg is given by B(L)�1A(L) = �1j=0ajLj: On the other hand, if all the roots of A(z) = 0 lie
outside the unit circle, an ACI(p; q) model is an invertible process with ut expressed as the linear

summation of fYs; s � tg, which is an ACI(1; 0) process,

ut = A(L)�1B(L)Yt � A(L)�1(�0 + �0I0)

= �A(1)�1(�0 + �0I0) +
1X
j=0

�jYt�j;

where f�jg is given by B(L)�1A(L) = �1j=0�jLj:
The ACI(p; q) model of an interval process can be extended to the ACIX(p; q; s) model by

incorporating exogenous explanatory interval variables:

Yt = �0 + �0I0 +

pX
j=1

�jYt�j +

qX
j=1


jut�j +

sX
j=0

�0jXt�j + ut; (2.16)

whereXt = (X1t; :::; XJt)
0 is an exogenous stationary interval vector process, and �j = (�j;1; :::; �j;J)0

is the corresponding point-valued parameter vector. When q = 0, i.e., when there is no MA com-
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ponent, the ACIX(p; 0; s) model is an interval time series regression model:

Yt = �0 + �0I0 +

pX
j=1

�jYt�j +

sX
j=0

�0jXt�j + ut; (2.17)

where all explanatory interval variables are observable. This covers both static (with p = 0) or

dynamic (with p > 0) interval regression models.

ACIX(p; q; s) models can be used to capture temporal dependence in an interval process. In

particular, it can be used to capture some well-known empirical stylized facts in economics and

�nance, such as volatility (or range) clustering and level e¤ect (i.e., correlation between volatility

and level). For example, �1 > 0 indicates that a wide interval at time t is likely to be followed by

another wide interval in the next period.

Another advantage of modelling an ACIX(p; q; s) process is that one can derive some important

univariate point-valued ARMAX(p; q; s) models as special cases, provided the derived point models

are de�ned by the support function as in Eq.(2.12). For example, by Eq.(2.12) and taking the

di¤erence between Y (1)t and Y (0)t , the left and right bounds of an ACIX(p; q; s) model, we obtain

an ARMAX(p; q; s) type range model

Y rt = �0 +

pX
j=1

�jY
r
t�j +

qX
j=1


ju
r
t�j +

sX
j=0

�0jX
r
t�j + u

r
t ; (2.18)

where urt is a MDS such that E(u
r
t jIt�1) = E(uR;t � uL;tjIt�1) = 0 a:s, given E(utjIt�1) = [0; 0]

a:s. This delivers an alternative dynamic range model to Chou (2005) for modelling the range

dynamics of an asset price. The di¤erence is that the derived range model in Eq.(2.18), with an

ACIX(p; q; s) model as the data generating process, has an additive innovation while Chou (2005)

has a multiplicative innovation. Our approach has an advantage, that is, we can use an interval

sample, rather than the range sample only, to estimate more e¢ ciently the ACIX model even if

the interest is in range modelling.

Similarly, we can obtain an ARMAX(p; q; s) level model with � = 1
2
in Eq. (2.12):

Y mt = �0 +

pX
j=1

�jY
m
t�j +

qX
j=1


ju
m
t�j +

sX
j=0

�0jX
m
t�j + u

m
t ; (2.19)

where umt is a MDS such that E(u
m
t jIt�1) = E(12uL;t +

1
2
uR;tjIt�1) = 0 a:s, given E(utjIt�1) = 0

a:s.

Finally, we can obtain a bivariate ARMAX(p; q; s) model for the boundaries of Yt :(
YLt = �0 � 1

2
�0 +

Pp
j=1 �jYL;t�j +

Pq
j=1 
juL;t�j +

Ps
j=0 �

0
jXL;t�j + uL;t;

YRt = �0 +
1
2
�0 +

Pp
j=1 �jYR;t�j +

Pq
j=1 
juR;t�j +

Ps
j=0 �

0
jXR;t�j + uR;t;

(2.20)
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where E (uL;tjIt�1) = E(uR;tjIt�1) = 0 a:s: given E (utjIt�1) = [0; 0] a:s: A similar result to

Eq.(2.20) can be obtained by combining Eq. (2.18) and Eq. (2.19), as a bivariate ARMAX model

for the midpoint and range processes.

3. Minimum Distance Estimation

We now propose a minimum distance estimation method for an ACIX(p; q; s) model. We �rst

impose a set of regularity conditions:

Assumption 1. fYtg is a strictly stationary and ergodic interval stochastic process withE kYtk4K <
1; and it follows an ACIX(p; q; s) process in (2.16), where the interval innovation ut is an IMDS
with respect to the information set It�1, that is, E(utjIt�1) = [0; 0] a:s., and Xt = (X1t; :::; XJt)

0

is an exogenous strictly stationary ergodic interval vector process.

Assumption 2. Put A(z) = 1 +
Pq

j=1 
jz
j and B(z) = 1 �

Pp
j=1 �jz

j. The roots of A(z) = 0

and B(z) = 0 lie outside the unit circle jzj = 1.
Assumption 3. (i) The parameter space � is a �nite-dimensional compact space ofRp+q+s+2. (ii)

�0 is an interior point in �; where �0 = (�0; �0; �1; :::; �p; 
1; :::; 
q; �
0
0; :::; �

0
s)
0 is the true parameter

vector value given in (2.16):

Assumption 4. The assumed initial values are Yt = bY0 for �p + 1 � t � 0, ut = bu0 for
�q + 1 � t � 0 and Xt = bX0 for �s � t � 0, where there exists 0 < C < 1 such that

E sup�2� jjbY0jj2K < C, E sup�2� kbu0k2K < C, E sup�2� jj bX0jj2K < C.
Assumption 5. The square matricesE

hD
s @
@�
ut(�)

; s @
@�0 ut(�)

E
K

i
andE

hD
s @
@�
ut(�)

; sut(�)

E
K

D
sut(�); s @

@�
ut(�)

E
K

i
are positive de�nite for � in a small neighborhood of �0.

3.1 Minimum DK-Distance Estimation

We now propose a DK-metric based estimation method for an ACIX(p; q; s) model. Given that

E(YtjIt�1) is the optimal solution to minimize E [D2
K(Yt; A)jIt�1], as is established in Lemma 2.1,

we will propose an estimation method that minimizes a sample analog of E [D2
K(Yt; A)jIt�1] : As an

advantage, our method does not require speci�cation of the distribution of the interval population.

Also, the proposed method provides a uni�ed framework that can generate various point-valued

estimators (e.g., conditional least squares estimators based on the range and/or midpoint sample

information) as special examples; see Section 3.2 below.

We de�ne the minimum DK-distance estimator as follows:

b� = argmin
�2�

bQT (�);

18



where T bQT (�) is the sum of squared norm of residuals of the ACIX(p; q; s) model in (2.16), namely
bQT (�) = 1

T

TX
t=1

qt(�); (3.1)

qt(�) = kut(�)k2K = D2
K [ut(�); 0] (3.2)

and

ut(�) = Yt �
"
(�0 + �0I0)�

pX
j=1

�jYt�j �
sX
j=0

�0jXt�j �
qX
j=1


jut�j(�)

#
: (3.3)

Since we only observe fYtg from time t = 1 to time t = T . Therefore we have to assume

some initial values for fYtg0t=�p+1 ; fXtg0t=�s+1 and fut(�)g
0
t=�q+1 in computing the values for the

unobservable interval error process fut(�)g:
We �rst establish consistency of b�:

Theorem 3.1. Under Assumptions 1, 2, 3(i) and 4, as T !1;

b� p! �0:

Intuitively, the statistic bQT (�) converges in probability to E[D2
K(Yt; Z

0
t�)] uniformly in � as

T ! 1: Furthermore, the true model parameter �0 is the unique minimizer of E[D2
K(Yt; Z

0
t�)]

given the IMDS condition on the interval innovation process futg: It then follows from the extreme
estimator theorem (e.g., White (1994)) that b� p! �0 as T !1:
Next, we derive the asymptotic normality of b�.

Theorem 3.2. Under Assumptions 1-5, as T !1;

p
T (b� � �0) L�! N(0;M�1(�0)V (�0)M�1(�0));

where V (�0) = E
h
@qt(�

0)
@�

@qt(�
0)

@�0

i
, M(�0) = �E

h
@2

@�@�0 qt(�
0)
i
, qt(�) is de�ned as in Eq.(3.2) and all

the derivatives are evaluated at �0.

The asymptotic variance of
p
T (b� � �0), i.e., M�1(�0)V (�0)M�1(�0), can be consistently esti-

mated, as shown below.

Theorem 3.3. Under Assumptions 1-5, as T !1;

cMT (b�) = � 1
T

TX
t=1

@2qt(b�)
@�@�0

p�!M(�0);

bVT (b�) = 1

T

TX
t=1

@qt(b�)
@�

@qt(b�)
@�0

p�! V (�0);
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where qt(�) is de�ned as in Eq.(3.2) and all the derivatives are evaluated at the estimator b� and
the assumed initial values for Yt; Xt; ut(�) with t � 0. Hence, as T !1;

cM�1
T (
b�)bVT (b�)cM�1

T (
b�)�M�1(�0)V (�0)M�1(�0)

p�! 0:

We note that the asymptotic variance of
p
Tb� cannot be simpli�ed even under conditional

homoskedasticity that var(utjIt�1) = �2K for an arbitrary kernel K.
When the ACIX(p; q; s) model becomes an ACIX(p; 0; s) model as in Eq.(2.17), namely, when

there is no MA component in the ACIX(p; q; s) model, the minimum DK-distance estimator b�
has a closed form that is in a similar spirit to the conventional OLS estimator. This is stated

below.

Corollary 3.1. Suppose Assumptions 1-5 hold, and fYtg follows the ACIX (p; 0; s) process in
Eq.(2.17). Then the minimum DK-distance estimator b� has the closed form

b� =
24 TX
t=1+max(p;s)



sZt ; s

0
Zt

�
K

35�1 TX
t=1+max(p;s)

hsZt ; sYtiK ;

where Zt = ([1; 1]; I0; Yt�1; :::; Yt�p; X 0
t; X

0
t�1; :::; X

0
t�s)

0: When T !1, b� p�! �0, and

p
T (b� � �0) L�! N(0; E�1

�

sZt ; s

0
Zt

�
K

�
E
�
hsZt ; sutiK



sut ; s

0
Zt

�
K

�
E�1

�

sZt ; s

0
Zt

�
K

�
):

Furthermore, as T !1,

T�1
TX

t=1+max(p;s)



sZt ; s

0
Zt

�
K

p�! E
�

sZt ; s

0
Zt

�
K

�
;

T�1
TX

t=1+max(p;s)

hsZt ; sbutiK 
sbut ; s0Zt�K p�! E
�
hsZt ; sutiK



sut ; s

0
Zt

�
K

�
;

where but = Yt � Z 0tb�:
3.2 Examples of Minimum DK-Distance Estimators

This section explores how the results in Theorems 3.1�3.3 can be used to derive various esti-

mators as special cases. Based on the estimated interval residuals fût(�)gTt=1; de�ne( bQLT (�) =PT
t=1 bu2L;t(�); bQRT (�) =PT

t=1 bu2R;t(�); bQLRT (�) =PT
t=1 buL;t(�)buR;t(�)bQrT (�) =PT

t=1 [burt (�)]2 ; bQmT (�) =PT
t=1 [bumt (�)]2 ; bQmrT (�) =PT

t=1 burt (�)bumt (�); (3.4)

where buL;t(�) and buR;t(�) are the left and right bounds of but(�) , burt (�) = buR;t(�) � buL;t(�) andbumt (�) = 1
2
buL;t(�)+ 1

2
buR;t(�) are the range and midpoint of but(�). Combining Eqs.(2.11) and (3.6),
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we obtain

bQT (�) = a bQRT (�) + c bQLT (�)� 2b bQLRT (�) (3.5)

=
a+ 2b+ c

4
bQrT (�) + (a� 2b+ c) bQmT (�) + (a� c) bQmrT (�):

Case 1: Conditional Least Squares Estimators Based on Univariate Point Data

Suppose we choose a kernel K with (a; b; c) = (1; 1; 1): Then

bQT (�) = bQrT (�r);
which is the sum of squared residuals of the conditional dynamic range model in Eq.(2.18). In

this case, the DK-minimum estimator solves

b�r = argmin
�2�

bQrT (�):
The estimator b�r cannot identify the level parameter �0, because b�r is based on the range sample
fY rt ; Xr

t g
T
t=1 ; which contains no level information of the interval process fYtg.

To estimate �0, we can use a kernel K with (a; b; c) = (1
4
;�1

4
; 1
4
): Then

bQT (�) = bQmT (�);
which is the sum of squared residuals of the conditional dynamic level (i.e., midpoint) model in

Eq.(2.19). In this case, the DK-minimum estimator solves

b�m = argmin
�2�

bQmT (�):
The estimator b�m can consistently estimate the level parameter �0; but it cannot identify the

scale parameter �0, because b�m is based on the midpoint sample fY mt ; Xm
t g

T
t=1 ; which contains no

range information of the interval process fYtg.
Given the �tted values for both range and mid-point processes, we can construct a one-step-

ahead predictor for interval variable Yt using information It�1:

bE(YtjIt�1) = �bY mt � 1
2
bY rt ; bY mt +

1

2
bY rt � ;

where bY mt and bY rt are one-step-ahead point predictors for Y mt and Y rt based on Eqs.(2.19) and

(2.18) respectively.

Both estimators b�r and b�m are convenient and they can consistently estimate partial parameters
in the ACIX(p; q; s) model. However, besides the failure in identifying level parameter �0 or scale
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parameter �0, these estimators are not expected to be most e¢ cient because they utilize the range

and level sample information separately.

Case 2: Constrained Conditional Least Squares Estimators Based on Bivariate Point Samples

Now we consider the choice of kernel K with a = c > 0 and b = 0: Then

1

a
bQT (�) = bQLT (�) + bQRT (�) = TX

t=1

�
û2L;t(�) + bu2R;t(�)� :

This is the sum of squared residuals of the bivariate ARMAXmodel in Eq. (2.20) for the left bound

YL;t and right bound YR;t of the interval process fYtg: Thus, the minimum DK-distance estimator

�̂ becomes the constrained conditional least squares estimator for the bivariate ARMAX(p; q; s)

model for the left and right bounds of Yt; it is consistent for all parameters �
0 in the ACIX model.

Given the �tted values for the bivariate ARMAX(p; q; s) model for YL;t and YR;t, we can also

construct a one-step-ahead predictor for interval variable Yt using information It�1:

bE(YtjIt�1) = hbYL;t; bYR;ti ;
where bYL;t and bYR;t are one-step-ahead point predictors for YL;t and YR;t based on Eq.(2.20).
Case 3: Constrained Quasi-Maximum Likelihood Estimators

The bivariate ARMAX(p; q; s) model for the (YL;t; YR;t)0 can also be consistently estimated

by the conditional constrained quasi-maximum likelihood method (CCQML) based on the bivari-

ate point-valued sample fYL;t; YR;tgTt=1. Assume that the bivariate innovation fuL;t; uR;tg0 follows
i.i.d.N(0;�0); where �0 is a 2� 2 unknown variance-covariance matrix.
The log-Gaussian likelihood function given the bivariate sample fYL;t; YR;tgTt=1 is given by

L̂(�;�) =
T

2
ln j��1j � 1

2

TX
t=1

(uL;t(�); uR;t(�)) �
�1(uL;t(�); uR;t(�))

0;

where uLt(�) and uR;t(�) are the left and right bounds of ut(�) de�ned in Eq. (3.3). Then the

CCQML estimator, �
�̂; �̂

�
= arg max

(�;�)2��R2�2
L̂(�;�);

consistently estimate the unknown parameter �0 given the IMDS condition that E(utjIt�1) = 0:
We note that

�L̂(�̂; �̂) = �̂11Q̂RT (�̂) + �̂22Q̂LT (�̂)� 2�̂12Q̂LRT (�̂);

where �̂ij is the (i; j)-th component of the variance-covariance estimator �̂: This looks rather

similar to the objective function Q̂T (�) in Eq. (3.5) of the minimum DK-distance estimator,
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with the kernel K = �̂. However, we cannot interpret the CCQML is a special case of the

minimum DK-distance estimator because for the minimum DK-distance estimation, the kernel

K is prespeci�ed, whereas for the CCQML, both � and � are unknown parameters and have

to be estimated simultaneously. We will examine the relative e¢ ciency between the minimum

DK-distance estimator and various alternative estimators for �
0.

4. E¢ ciency and Two-Stage Minimum Distance
Estimation

The minimum DK-distance method provides consistent estimation for an ACIX model without

having to specify the full density of the interval population. Di¤erent choice of kernel K will

deliver di¤erent minimum DK-distance estimators for �
0, and all of them are consistent for �0,

provided kernel satis�es Eq. (2.6). As discussed earlier, di¤erent choices of K imply di¤erent

ways of utilizing the sample information of the interval process. Now, a question arises naturally:

What is the optimal choice of kernel K; if any? Below, we derive an optimal kernel that yields

a minimum DK-distance estimator with the minimum asymptotic variance among a large class

of kernel functions that satisfy Eq. (2.6). We �rst impose a condition on the interval innovation

process futg.

Assumption 6. The interval innovation process ut = [uL;t; uR;t] satis�es var(utjIt�1) = �2K <
1.

This is a conditional homoskedasticity assumption on futg: The i.i.d. condition for futg is a
su¢ cient but not necessary condition for Assumption 6.

Theorem 4.1: Under Assumptions 1-6, the choice of kernel Kopt(u; v) with

Kopt(1; 1) = var(uL;t);

Kopt(�1; 1) = Kopt(1;�1) = cov(uL;t; uR;t);

Kopt(�1;�1) = var(uR;t)

delivers a minimum DK-distance estimator

b� = argmin
�2�

1

T

TX
t=1

D2
Kopt [Yt; Z

0
t(�)�] ;

which is asymptotically most e¢ cient among all symmetric positive de�nite kernels K that satisfy
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Eq. (2.6), with the minimum asymptotic variance


opt = �E
�
@2

@�@�0
qt(�

0)jK = Kopt

�
= 2E

D
s @
@�
ut(�

0); s @
@�0 ut(�

0)

E
Kopt

:

To explore the intuition behind Theorem 4.1, we observe that when kernel Kopt is used, the

objective function of the minimum DK-distance estimator becomes

bQT (�) = var(uL;t) bQRT (�) + var(uR;t) bQLT (�)� 2cov(uL;t; uR;t) bQLRT (�):
Thus, Kopt downweighs the sample squared distance components that have larger sampling vari-

ations. Speci�cally, it discounts the sum of squared residuals of the right bound when the right

round disturbance uR;t has a large variance, and discounts the sum of squared residuals of the left

bound when the left bound disturbance uL;t has a large variance. The use of Kopt also corrects

correlations between the left and right bound disturbances. Such weighting and correlation cor-

rection are similar in spirit to the optimal weighting matrix in GLS. We note that the optimal

choice of kernel Kopt is not unique. For any constant c > 0, the kernel cKopt is also optimal.

The results of Theorem 4.1 do not apply when there exists conditional heteroskedasticity in

the sense that var(utjIt�1) = �2t (K) is a time-varying function. In this case, one could �rst obtain
a consistent estimator for the conditional variance var(utjIt�1); and then construct a feasible
adaptive DK-minimum distance estimator. We leave it for future study.

The optimal DK-distance estimator is not feasible because the optimal kernel Kopt; which

depends on the data generating process, is infeasible. However, we can consider a two-stage

minimum DK-distance estimation method: In Step 1, obtain a preliminary consistent estimatorb� of �0: For example, it can be a minimum DK-distance estimator with an arbitrary prespeci�ed

kernel K satisfying Eq.(2.6). We then compute the estimated residuals fût(�̂)g and construct an
estimator for the optimal kernel Kopt :

K̂opt = T�1
TX
t=1

"
û2L;t(�̂); ûL;t(�̂)ûR;t(�̂)

ûR;t(�̂)ûL;t(�̂); û
2
R;t(�̂)

#
:

This is consistent for Kopt: In Step 2, we obtain a minimum DK-distance estimator with the choice

of K = K̂opt : b�opt = argmin
�2�

1

T

TX
t=1

D2
K̂opt [Yt; Z

0
t(�)�] :

This two-stage minimum DK-distance estimator is asymptotically most e¢ cient among the class

of kernels satisfying Eq. (2.6), as is shown in Theorem 4.2 below.
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Theorem 4.2. Under Assumptions 1-6, as T !1; the two-stage minimum DK-distance estimator

p
T (b�optK � �0) p�! N(0;
opt);

where 
opt is the minimum asymptotic variance as given in Theorem 4.1.

Interestingly, when the left and right bounds uL;t and uR;t of the interval innovation ut follow an

i.i.d. bivariate normal distribution, the two-stage minimum DK-distance estimator �̂
opt
achieves

the Cramer-Rao lower bound. This is stated in Theorem 4.3.

Theorem 4.3: Suppose Assumptions 1-6 hold and fuL;t; uR;tg follows a bivariate Gaussian dis-
tribution. Then as T ! 1; the two-stage minimum DK-distance estimator b�optK achieves the

Cramer-Rao lower bound of the constrained MLE for the bivariate ARMAX (p; q; s) model for the

left and right bounds of the interval process fYtg.

We note that the constrained MLE for the bivariate ARMAX(p; q; s) model for the left and

right bounds of the interval process fYtg is not numerically identical to the two-stage minimum
DK-distance estimator �̂

opt
; although they are equally asymptotically e¢ cient.

When the bivariate process fuL;t; uR;tg does not follow a joint Gaussian distribution, the con-
strained conditional quasi-maximum likelihood estimator (CCQML) is generally not asymptot-

ically most e¢ cient, unless the dynamic information matrix equality holds. Furthermore, the

asymptotic variance of the CCQML estimator generally di¤ers from the asymptotic variance 
opt

of the two-stage minimum DK-distance estimator �̂
opt
: Note that the CCQML cannot be viewed

as a special case of the minimum DK-distance estimator with the choice of kernel �̂ because �0

and �0 are estimated simultaneously. In contrast, for two-stage minimum DK-distance estimator

�̂
opt
; the kernel �̂ is given, and �0 is the only unknown parameter. We will investigate the relative

e¢ ciency among �̂
opt
and other estimators via simulation.

5. Hypothesis Testing

In this section, we are interested in testing the hypothesis of interest:

H0 : R�
0 = r;

where R is a q� k nonstochastic matrix of full rank, q � k, r is a q� 1 nonstochastic vector, and
k is the dimension of parameter � in the ACIX(p; q; s) model of Eq.(2.16).
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We will propose a Lagrange Multiplier (LM) test and a Wald test based on the minimum

DK-distance estimation. We �rst consider the LM test. Consider the following constrained DK-

distance minimization problem b� = argmin
�2�

bQT (�);
subject to R� = r: De�ne the Lagrange function

LT (�; �) = bQT (�) + �0(r �RQ);
where � is the multiplier. Let e� and e� denote the solutions that maximize LT (�; �), that is,

(e�; e�) = argmin
�2�

LT (�; �):

Then we can construct a LM test for H0 based on e�:
Theorem 5.1: Suppose Assumptions 1-5 and H0 hold. De�ne

LM =
h
Te�0R0cMT (e�)Ri hR0cM�1

T (
e�)bVT (e�)cM�1

T (
e�)Ri�1 hR0cMT (e�)Re�i

where cMT (e�) and bVT (e�) are de�ned in the same way as cMT (b�) and bVT (b�) in Theorem 3.3 respec-

tively, with the constrained minimum DK-distance estimator e�. Then LM d�! �2q as T !1:
We note that the LM test only requires the minimum DK-distance estimation under H0.

Alternatively, we can construct a Wald test statistic that only involves the minimum DK-

distance estimation under the alternative hypothesis to H0 (i.e., without restriction).

Theorem 5.2: Suppose Assumptions 1-5 and H0 hold. De�ne a Wald test statistic

W =
h
T (Rb� � r)0i hRcM�1

T (
b�)bVT (b�)cM�1

T (
b�)R0i�1 h(Rb� � r)i

where b�, cMT (b�) and bVT (b�) are de�ned in the same way as cMT (b�) and bVT (b�) in Theorem 3.4.

Then, W d�! �2q as T !1:
TheWald testW is essentially based on the comparison between the unrestricted and restricted

minimum DK-distance estimators b� and e�, but the test statistic W only involves the unrestricted

parameter estimator b�.
Because we do not assume a probability distribution for the interval process fYtg; we cannot

construct a likelihood ratio test for the hypothesis H0 of interest here.

6. Simulation Study
We now investigate the �nite sample properties of CCLS, CCQML, minimumDK-distance and

two-stage minimum DK-distance estimators via a Monte Carlo study. We will consider two sets
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of experiments. In the �rst experiment, the interval data are generated from an ACI process. In

the second set of experiments, the interval data are constructed from a bivariate ARMA process.

6.1 ACI-Based Data Generating Processes

We �rst consider an ACI(1; 1) model as the data generating process (DGP):

Yt = �0 + �0I0 + �1Yt�1 + 
1ut�1 + ut; (6.1)

where parameter values �0 = (�0; �0; �1; 
1)
0 are obtained from the minimum DK-distance esti-

mates of the ACI(1; 1) model based on the real interval data of the S&P 500 daily index from

January 3, 1988 to September 18, 2009, and the kernel K used is K(1; 1) = K(�1;�1) = a,

K(1;�1) = K(�1; 1) = b, with b
a
= 3

5
. The minimum and maximum S&P 500 closing price values

of day t form the raw interval-valued observations in this period, denoted fP1; :::; PTg. Then we
convert the raw interval price sample data to be a DK-weakly stationary interval sample, denoted

fY1; :::; YTg, by taking the logarithm and Hukuhara di¤erence as Yt = ln(Pt) �H ln (Pt�1) : The
initial values of Yt and ut for t = 0 are set to be Y T and [0; 0] ; respectively. We obtain the

minimum DK-distance estimates and use them as the true parameter values in DGP (6.1). To

simulate the interval innovations futg in (6.1), we �rst compute the estimated model residuals

but = Yt �H (b�0 + I0b�0 + b�1Yt�1 + b
1but�1)
based on the S&P 500 data. We then generate futgTt=1 via the naive bootstrapping from fbutgTt=1,
with T = 100; 250; 500, and 1000, respectively. For each sample size T , we perform 1000 repli-

cations. For each replication, we estimate model parameters of an ACI(1,1) model using CLS,

CCQML, minimum DK-distance and two-stage minimum DK-distance methods. Two parameter

estimates of CLS are produced, i.e., b�r = (b�0; b�1; b
1) and b�m = (b�0; b�1; b
1), based on range and
midpoint data, respectively. We consider 4 kernels with the form of Kab with a = c; which yields

the constrained conditional least squares (CCLS) estimator b�CCLS for the bivariate model of the
left and right bounds of Yt in Eq.(2.20). We also consider 6 kernels with the form Kabc. The two-

stage minimum DK-distance estimator is obtained from a kernel Kabc with (a; b; c) = (10; 8; 16) in

the �rst stage. For the values of a, b and c of each kernel, see the tables below.

We compute the bias, standard deviation (SD), and root mean square error (RMSE) for each
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estimator:

Bias(b�i) =
1

1000

1000X
m=1

(b�(m)i � b�0i );
SD(b�i) =

"
1

1000

1000X
m=1

(b�(m)i � �i)2
#1=2

;

RMSE
�b�i� =

h
Bias2(b�i) + SD2(b�i)i1=2 ;

where �i = 1
1000

P1000
m=1

b�(m)i , and b�i = b�0; b�0; b�1; b
1, respectively.
Tables 1-4 report Bias, SD, and RMSE of b�m, b�r, b�QML, b� and b�opt respectively. Several

observations emerge. First, for all estimators, the RMSE converges to zero as the sample size

T increases. In particular, the minimum DK-distance estimator b� displays robust performance
for various kernels. Second, both the interval-based minimum DK-distance estimators, i.e., b� andb�opt, and the bivariate-point based CCQML estimator b�QML outperform b�r and b�m in terms of

RMSE. The two-stage minimum DK-distance estimator b�opt dominates the minimum DK-distance

estimator b� with most kernels, con�rming the e¢ ciency result in Theorems 4.1�4.2. The estimatorb�opt outperforms b�QML for all parameters in �
0 in terms of RMSE. Among other things, CCQML

has more unknown parameters in the parameter space than that of two-stage minimum DK-

distance estimation.

Lastly, comparing b�, b�opt and b�QML with b�m and b�r, the e¢ ciency gain over the CLS estimators
based on level or range samples separately is enormous as T becomes large. This is apparently due

to the fact that b� and b�opt utilize the level, range and their correlation information contained in the
interval data. On the other hand, while the estimators b�r and b�m can consistently estimate model
parameters, b�m is better than b�r. Data examination shows that this is due to more variations
in level of Yt rather than in range over time. This highlights the importance of utilizing level

information of asset prices even when interest is in modelling the range (or volatility) dynamics .

6.2 Bivariate Point-valued Data Generating Processes

We now investigate the relative performances of the minimum DK-distance estimators and

the CCQML estimator when the data generating processes are various bivariate point processes

with innovations (uL;t; uR;t)0 � i.i.d. f(0;�0), where f(0;�0) is a bivariate density function.

We then form interval sample data fYtgTt=1. Three densities for f(�; �) are considered� bivariate

normal, bivariate student-t with 5 degrees of freedom, and bivariate mixture with uL;t = a1"0t+"1t,

uR;t = a2"0t+"2t where "it follows i.i.d. EXP (1)�1 for i = 0; 1; 2, and they are jointly independent.
Di¤erent values of constants a1, a2 result in di¤erent �0 for the mixed distribution. For each

distribution, corr(uL;t; uR;t) = 0 and �0:6 are considered with T = 100, 250 and 500 replications.
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Speci�cally, we consider the following bivariate point process as the DGP:�
YL;t = �0 � 1

2
�0 + �1YL;t�1 + 
1uL;t�1 + uL;t;

YR;t = �0 +
1
2
�0 + �1YR;t�1 + 
1uR;t�1 + uR;t;

where parameter values �0 = (�0; �0; �1; 
1)
0 are obtained in the same way as in Section 6.1 based

on the actual S&P 500 data.

For each replication, we compute CCQML estimator b�QML, minimum DK-distance estimator b�
and two-stage minimumDK-distance estimator b�opt, in addition to the same kernels used in Section
6.1. We include the infeasible optimal kernel Kopt = �0 to obtain the infeasible asymptotically

most e¢ cient minimum DK-distance estimator b��0; this allows us to study the �nite sample
behaviors between b�opt and b�K�0

.

In assessing the closeness of b� and b�opt to b�QML (which becomes MLE when (uL;t; uR;t)0 follows

a bivariate Gaussian distribution), we compute the following RMSE ratios:

R(i) =
RMSE(b�i)

RMSE(b�QML;i)
and Ropt(i) =

RMSE(b�opti )
RMSE(b�QML;i)

:

We �rst report the RMSE ratios of minimum DK-distance estimator b� with di¤erent choices of
kernels, including b�CCLS that is obtained from a kernel K giving the same weight to the left and

right bounds of Yt, b�ab from a kernel with b
a
= 3

5
assigning the same weights to the midpoint and

range, b�abc from a kernel K with (a; b; c) = (10; 8; 19), two-stage minimum DK-distance estimatorb�optand infeasible asymptotically e¢ cient minimumDK-distance estimator b��0 withK = �0. Note

that when corr(uL;t, uR;t) = 0, b�CCLS coincides with b��0 since we specify �0 as an identity matrix
here.

Tables 5-8 report the values of R(i) and Ropt(i) of various minimum DK-distance estimators b�
and b�opt. For a bivariate point i.i.d. Gaussian (uL;t; uR;t), b�opt is asymptotically as e¢ cient as the
MLE b�ML for the bivariate model of the left and right bounds of Yt; indeed, their RMSE rations

are very close to 1. The two-stage minimum DK-distance estimator b�opt also signi�cantly improves
the e¢ ciency of b� with arbitrary choices of kernel. It con�rms the adaptive capability of Kopt in

correcting the ine¢ cient kernel in the �rst stage for minimum DK-distance estimation.

When (uL;t; uR;t)0 follows a Student-t or mixed distribution, b�opt is still the most e¢ cient in the
class of minimum DK-distance estimators, which is consistent with Theorem 4.2. Like in Section

6.1, b�opt has a smaller RMSE than b�QML;and the gain is more signi�cant with corr(uL;t; uR;t) =

�0:6 than with corr(uL;t; uR;t) = 0. In particular, the gain of b�opt over b�QML under asymmetric

bivariate mixed distributions are more signi�cant than under symmetric bivariate student�t dis-
tributions. This is because the departure of the student�t distribution from a bivariate normal
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relative to that of the mixed distribution is not very large, which leads to the smaller di¤erence in

RMSE. We also observe that b�opt outperforms b�CCLS when corr(uL;t; uR;t) = �0:6. This implies
that the conditional least squares estimator b�CCLS is not e¢ cient even under the bivariate point
valued date generating process. This is apparently due to the fact that b�CCLS ignores the (negative
correlation) between the left and right bounds. Finally, b�opt is almost the same e¢ cient as the
infeasible asymptotically e¢ cient estimator b��0 as T increases. This implies that the �rst stage
estimation has negligible impact on the e¢ ciency of �̂

opt
:

7. Empirical Application

In this section, we examine the explanatory power of bond market factors for excess stock

returns when stock market factors are present. Fama and French (1993) consider two bond market

factors, TERMt and DEFt, where TERMt is the di¤erence between the monthly long-term

government bond return LGt and the risk-free interest rate Rft, and DEFt is the di¤erence

between the return on a market portfolio of long-term corporate bonds LCt and LGt. Fama and

French (1993) �nds that these two bond market factors alone are signi�cant in explaining excess

stock returns. However, they �nd that the inclusion of three stock-factors (i.e., Rmt�Rft, SMBt,
HMLt) in regressions for stocks kill the signi�cance of TERMt and DEFt. There are at least

two possibilities for insigni�cance of TERMt and DEFt. The �rst is that the three stock market

factors contain all information in TERMt and DEFt, and thus the bond market factors become

insigni�cant when the stock market factors are included. The second possibility is that the OLS

estimator used in Fama and French (1993) is not e¢ cient because it does not exploit the level

information of asset returns and interest rates. In this case, it may become signi�cant if we use

the more e¢ cient two-stage minimum DK-distance estimator. Our aim here is to explore whether

the signi�cance of bond market factors will be wiped out by the stock-market factors by using the

interval CAPM model when a more e¢ cient estimation method is used.

Fama and French�s (1993) �ve-factor Capital Asset Pricing Model (CAMP) is

Rit �Rft = �0 + �1(Rmt �Rft) + �2SMBt + �3HMLt + �4TERM + �5DEF + "t; (7.1)

where Rt is a portfolio return, Rft is the risk-free interest rate, Rmt is the market portfolio return,

SMB is the the di¤erence between the return on the small portfolio and the return on the large

portfolio, HML is the di¤erence between the return on the high book-to-market portfolio and the

return on the low book-to-market portfolio, TERMt and DEFt are de�ned as above.

Given the de�nition of variables in the Fama and French (1993) model, (7.1) can be viewed as
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a �range�or �di¤erence�model of the following interval CAPM:

Yit = �0 + �0I0 + �1X1t + �2X2t + �3X3t + �4X4t + �5X5t + ut; (7.2)

where i = 1,..., 25, E(utjIt�1) = [0; 0], Yt = [Rft; Rt], X1t = [Rft; Rmt],

X2t =

�
1

3
(B=Lt +B=Mt +B=Ht);

1

3
(S=Lt + S=Mt + S=Ht)

�
;

X3t =

�
1

2
(S=Lt +B=Lt);

1

2
(S=Ht +B=Ht)

�
;

and X4t = [Rft; LGt], X5t = [LGt; LCt].

Using the monthly data from French�s website, we estimate model parameters �1, �2, �3, �4,

�5 by OLS based on the Fama and French (1993) model (7.1) and by the two-stage minimum

DK-distance estimator based on the interval CAPM model (7.2) for each portfolio. To obtain a

reliable standard error for each parameter estimator, we use the bootstrap method as the follow.

We �rst estimate the Fama and French (1993) model in (7.1) with OLS and the interval CAPM in

(7.1) with the minimum DK-distance method for each of the 25 portfolios, and use the obtained

parameter estimates as the true parameter values in the corresponding model. The estimation

is based on the monthly data with the same sample period as in Fama and French (1993). The

generations of the point innovations f"tgTt=1 for (7.1) and the interval innovation futg
T
t=1 for (7.2) is

the same as described in Section 6.1. We generate 500 bootstrap samples and obtain 500 bootstrap

estimates for each parameter, which are then used to compute the estimated standard error of each

parameter estimate and the associated t-test statistic. For each bootstrap sample, we estimate

model parameters using the OLS estimator for the Fama and French (1993) model, and obtain

estimate the interval version of the Fama and French (1993) model using the two-stage minimum

DK-distance estimator b�opt. For comparison, we also include minimum DK-distance estimators

with various choices of kernel K; and CCQML.

Table 9 reports the t-statistics for 5 groups of stock returns in terms of the book-to-market

quantiles, each of which includes 5 groups in terms of the size quantiles. For each combination of

two kinds of quantiles, we report the t-statistics of the OLS, and minimum DK-distance estimatesb�ab, b�abc and b�opt; as well as the CCQML �̂QML. The estimates for �0 in (7.2) are not reported

here, since the FF model does not include this level parameter.

Table 9 shows some interesting �ndings. First, b�ab, b�abc, b�QML and b�opt for most of the 25 stock
portfolios reveal strong evidence that the default risk factor DEF is signi�cant in capturing the

variation of excess stock returns, compared to the critical value of 1:96 at the 5% signi�cance level.

Generally, b�opt yields larger t-statistics than b�QML; and both of them have large t-statistics than
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OLS. On the other hand, there is not an overwhelming pattern for the e¤ect of TERM on excess

stock returns for 25 portfolios. Data inspection shows the risk-free rate Rft does not variate much

over time relative to the long-term government bond return LGt. As a consequence, the use of

interval bond factor X4t with about the same information as the di¤erenced TERM factor. In

contrast, the signi�cance of the two bond-market factors is still wiped out in the OLS regression on

stock returns, as has been documented in Fama and French (1993). Thus, our evidence con�rms

the invaluable �level� information contained in interval data compared to the point-valued data

used in Fama and French (1993) which only contains the �range�information only.

8. Conclusion

Interval-valued data are not uncommon in economics and econometrics. Compared to the

point-valued data, interval-valued data contains more information including both level and range

characteristics of the underlying stochastic process. This informational advantage can be exploited

for more e¢ cient estimation and inference, even if the interest is in range modelling. Interval

forecasts are also often of direct interest in many applications.

This paper is perhaps the �rst attempt to model interval-valued time series data. We introduce

an analytical framework for stationary interval-valued time series processes. To capture the dy-

namics of a stationary interval time series process, we propose a class of autoregressive conditional

interval (ACIX) models with exogenous variables and develop a class of minimum DK-distance

estimators. We establish the asymptotic theory for consistency, normality and e¢ ciency of the

proposed estimators and exploit the relationships among various estimators that utilizes the inter-

val sample information in di¤erent ways. In particular, we derive the optimal kernel function that

yields an asymptotically most e¢ cient estimator for an ACIX model among the class of symmetric

positive de�nite kernels, and propose an asymptotically e¢ cient two-stage minimum DK-distance

estimator. Simulation studies show that the two-stage minimum DK-distance estimator outper-

form various estimators such as the conditional least squares estimators that are based on the

range information and/or midpoint information of the interval sample, and the conditional qausi-

maximum likelihood estimator based on the bivariate model for the left and right bounds of the

interval process. In an empirical study on asset pricing, we document that unlike the conclusion

of Fama and French (1993), some bond market factors, particularly the default risk factor, are

signi�cant in explaining the variation of excess stock returns even after the stock market factors

are controlled. This highlights the gain of utilizing the level information of risk premium even

when the interest is in range or di¤erence modelling (i.e., excess risk premium).

The proposed ACIX models are the interval version of the ARMAX models for point-valued

time series data. More �exible nonlinear models for interval time series, such as Markov-Chain
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regime switching models, autoregressive threshold models, and smooth transition models, can also

be considered to capture nonlinear (e.g., asymmetric) features in the dynamic structure of station-

ary interval time series. On the other hand, the interval version of vector autoregression (VAR)

or VARMA models can be considered to explore cross-dependence between di¤erent time series

processes. Furthermore, one can consider nonstationary interval time series and the cointegrating

relationships between nonstationary interval time series. Also, the optimal kernel speci�cation

needs further study for model application. All of these will be explored in future research.
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TABLE 1. Bias, SD and RMSE of Estimates for Parameter �0 in ACI (1,1)

b�0(10�4)
T = 100 T = 250 T = 500 T = 1000

a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE

Kr N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A

Km �0:2444 2:6801 2:6912 0:4071 1:3415 1:4019 1:1184 0:9330 1:4565 0:4688 0:6446 0:7970

CQML �0:2657 2:3823 2:3971 0:3592 1:2203 1:2721 1:0741 0:7732 1:3235 0:4505 0:5451 0:7071

CCLS �0:2512 2:5193 2:5318 0:3867 1:3134 1:3691 1:0977 0:8682 1:3995 0:4487 0:5478 0:7081

10=2=10 �0:2347 2:5253 2:5362 0:3712 1:2564 1:3101 1:0924 0:8737 1:3989 0:4484 0:5668 0:7227

10=6=10 �0:2395 2:4510 2:4627 0:3680 1:2540 1:3069 1:0820 0:8274 1:3621 0:4605 0:5750 0:7367

10=8=10 �0:2344 2:5636 2:5743 0:3694 1:2334 1:2876 1:0951 0:8402 1:3803 0:4697 0:5795 0:7460

10=8=16 �0:2794 2:4169 2:4330 0:3576 1:2124 1:2640 1:0679 0:7677 1:3152 0:4508 0:5409 0:7041

10=8=17:5 �0:2985 2:5048 2:5225 0:3602 1:2129 1:2653 1:0783 0:8376 1:3654 0:4506 0:5392 0:7027

10=8=19 �0:2796 2:4242 2:4403 0:3588 1:2284 1:2797 1:0641 0:7643 1:3101 0:4523 0:5421 0:7060

10=6=6 �0:2438 2:4409 2:4531 0:3611 1:2251 1:2772 1:0766 0:7798 1:3293 0:4542 0:5481 0:7119

10=4=6 �0:2591 2:3690 2:3831 0:3516 1:2017 1:2521 1:0708 0:7713 1:3197 0:4479 0:5354 0:6981

10=2=6 �0:2494 2:3760 2:3891 0:3555 1:2028 1:2542 1:0688 0:7685 1:3164 0:4495 0:5361 0:6996

Kopt �0:2817 2:3445 2:3613 0:3404 1:2074 1:2545 1:0541 0:7661 1:3031 0:4471 0:5390 0:7003

Notes: (a) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(b) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr; CQML;CCLS; and Kopt denote the

estimates of b�m;b�r;b�CQML;b�CCLS and b�opt with special kernels, respectively.
(c) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications.



TABLE 2. Bias, SD and RMSE of Estimates for �0 in ACI (1,1)b�0(10�4)
T = 100 T = 250 T = 250 T = 1000

a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE

Kr �0:9955 3:0874 3:2439 �0:4164 1:4739 1:5316 �0:1285 0:9769 0:9853 �0:0436 0:6091 0:6102

Km N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A N=A

CQML �0:8701 2:6894 2:8267 �0:4099 1:3943 1:4533 �0:1311 0:8321 0:8424 �0:0344 0:5611 0:5622

CCLS �0:9051 2:7350 2:8809 �0:4257 1:4680 1:5285 �0:1262 0:8351 0:8446 �0:0310 0:5660 0:5669

10=2=10 �0:9247 2:8410 2:9877 �0:4149 1:4129 1:4726 �0:1258 0:8431 0:8524 �0:0303 0:5662 0:5670

10=6=10 �0:9024 2:8262 2:9668 �0:4096 1:4204 1:4783 �0:1328 0:8514 0:8617 �0:0315 0:5817 0:5825

10=8=10 �0:9095 2:9480 3:0851 �0:3979 1:4372 1:4912 �0:1307 0:9091 0:9185 �0:0364 0:5838 0:5849

10=8=16 �0:8614 2:7421 2:8743 �0:3985 1:3815 1:4378 �0:1290 0:8311 0:8411 �0:0340 0:5617 0:5627

10=8=17:5 �0:8656 2:7661 2:8983 �0:4011 1:3816 1:4386 �0:1282 0:8289 0:8387 �0:0331 0:5633 0:5643

10=8=19 �0:8615 2:7690 2:8999 �0:4045 1:4038 1:4609 �0:1291 0:8267 0:8367 �0:0337 0:5647 0:5657

10=6=6 �0:8810 2:6996 2:8397 �0:4035 1:3844 1:4420 �0:1316 0:8297 0:8401 �0:0354 0:5644 0:5655

10=4=6 �0:8805 2:6806 2:8216 �0:4019 1:3806 1:4379 �0:1340 0:8278 0:8386 �0:0344 0:5612 0:5622

10=2=6 �0:9015 2:7442 2:8884 �0:4110 1:4060 1:4649 �0:1347 0:8357 0:8465 �0:0337 0:5644 0:5654

Kopt �0:8521 2:6601 2:7933 �0:3998 1:3662 1:4235 �0:1373 0:8267 0:8380 �0:0393 0:5618 0:5632

Notes: (a) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(b) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr; CQML;CCLS; and Kopt denote the

estimates of b�m;b�r;b�CQML;b�CCLS and b�opt with special kernels, respectively.
(c) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications..



TABLE 3. Bias, SD and RMSE of Estimates for �1 in ACI (1,1)

b�1(10�2)
T = 100 T = 250 T = 500 T = 1000

a=b=c Bias S:D RMSE Bias S:D RMSE Bias S:D RMSE Bias S:D RMSE

Kr 3:3167 12:6959 13:1219 1:8339 9:2751 9:4547 1:7655 11:8061 11:9374 1:5155 7:6049 7:7544

Km 2:7914 9:6545 10:0499 2:0051 8:2841 8:5233 1:1157 5:7954 5:9018 1:0054 7:0858 7:1567

CQML 1:4442 4:8959 5:1045 1:1878 3:3584 3:5623 0:6951 2:5448 2:6380 0:4484 1:8921 1:9445

CCLS 2:1260 7:3187 7:6213 1:5549 6:3869 6:5735 0:9379 4:0115 4:1197 0:5439 3:2607 3:3057

10=2=10 2:1730 8:7214 8:9880 1:3087 4:7696 4:9459 0:8060 4:1959 4:2726 0:5650 4:7373 4:7709

10=6=10 1:7548 6:1015 6:3489 1:3739 6:4817 6:6257 0:7111 4:2881 4:3467 0:7729 5:1305 5:1884

10=8=10 2:6150 10:6366 10:9533 1:4524 5:7874 5:9669 1:1199 6:2604 6:3598 1:0061 4:2246 4:3427

10=8=16 1:6027 5:4063 5:6388 1:0325 3:1755 3:3391 0:5714 2:1095 2:1855 0:4718 1:6899 1:7545

10=8=17:5 1:8857 8:3394 8:5499 1:0520 2:9983 3:1775 0:6714 3:5870 3:6493 0:4593 1:5850 1:6502

10=8=19 1:6029 5:8121 6:0291 1:2322 3:8259 4:0195 0:5014 1:9390 2:0027 0:5116 1:9221 1:9890

10=6=6 1:8598 5:8567 6:1449 1:1452 3:9028 4:0673 0:6328 2:0452 2:1409 0:6074 2:1654 2:2490

10=4=6 1:3525 4:6540 4:8465 0:9408 3:1199 3:2587 0:5693 2:0440 2:1218 0:4444 1:9204 1:9711

10=2=6 1:6464 5:6329 5:8686 1:1112 3:7431 3:9046 0:6017 2:3274 2:4039 0:4506 1:9171 1:9693

Kopt 1:4759 3:8888 4:1594 1:0640 2:7109 2:9123 0:5954 1:7252 1:8251 0:4791 1:4757 1:5516

Notes: (a) Notes: (a) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(b) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr; CQML;CCLS; and Kopt denote

the estimates of b�m;b�r;b�CQML;b�CCLS and b�opt with special kernels, respectively.
(c) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications

(d) Bias is in �1.



TABLE 4. Bias, SD and RMSE of Estimates for 
1 in ACI (1,1)b
1(10�2)
T = 100 T = 250 T = 500 T = 1000

a/b/c Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE Bias S.D RMSE

Kr 1:3155 11:1962 11:2732 0:9540 8:7449 8:7968 1:3237 11:7092 11:7837 1:3032 7:3769 7:4911

Km 0:9474 7:5063 7:5659 0:8086 7:1238 7:1695 0:6311 5:5730 5:6086 0:8032 7:0894 7:1347

CQML 0:0119 3:8593 3:8594 0:3591 2:5143 2:5398 0:2542 2:1876 2:2023 0:2390 1:7857 1:8016

CCLS 0:6861 5:3655 5:4092 0:6021 5:6838 5:7156 0:4957 3:6479 3:6814 0:3393 3:1898 3:2078

10=2=10 0:8254 7:2288 7:2758 0:4247 4:0132 4:0356 0:3595 3:9539 3:9702 0:3710 4:7699 4:7843

10=6=10 0:3976 4:6541 4:6710 0:5765 6:1216 6:1487 0:3275 4:1325 4:1454 0:5852 5:0710 5:1046

10=8=10 1:1149 9:4532 9:5187 0:6830 5:2189 5:2634 0:7946 6:0790 6:1307 0:8215 4:0581 4:1404

10=8=16 0:0414 4:0590 4:0592 0:1274 2:3714 2:3748 0:1520 1:9601 1:9660 0:2547 1:5249 1:5460

10=8=17:5 0:3295 7:5442 7:5514 0:1354 2:2202 2:2243 0:2504 3:5176 3:5265 0:2404 1:4375 1:4574

10=8=19 0:0339 4:3048 4:3049 0:2961 3:2550 3:2684 0:1059 1:9063 1:9283 0:2901 1:7531 1:7563

10=6=6 0:3309 4:3804 4:3929 0:4110 2:9218 2:9505 0:2118 1:8934 1:9052 0:4031 1:8694 1:9124

10=4=6 �0:0512 3:6302 3:6305 0:1862 2:5041 2:5110 0:1328 1:9850 1:9894 0:2586 1:7289 1:7482

10=2=6 0:2150 4:3349 4:3403 0:2654 2:9104 2:9224 0:1566 2:4103 2:4154 0:2663 1:7962 1:8158

Kopt 0:1942 2:2471 2:2555 0:2623 1:6412 1:6621 0:1756 1:4768 1:4872 0:2766 1:3554 1:3833

Notes: (a) ACI (1,1) Model: Yt= �0+�0I0+�1Yt�1+
1ut�1+ut:

(b) The kernel K used is of the form K(1; 1) = a, K(1;�1) = K(�1; 1) = b;and K(�1;�1) = c, and the values of a=b=c are
listed in the �rst column of the table. Km, Kr; CQML;CCLS; and Kopt denote the estimates of b�m;b�r;b�CQML;b�CCLS and b�opt with
special kernels, respectively.

(c) Bias, SD and the standard error of each parameter are computed based on 1000 bootstrap replications:



TABLE 5. Ratios of RMSE of Estimates for �0 in Bivariate Point Processesb�0
Normal corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6

T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS() 1:0437 1:0080 1:0175b�ab 1:0427 1:0133 1:0040 1:1034 1:0344 1:0419b�abc 1:0592 1:0132 1:0063 1:1166 1:0298 1:0432b�opt 1:0018 1:0003 1:0000 0:9966 0:9962 0:9975b�K�0
0:9972 0:9994 0:9996 0:9904 0:9957 0:9961

StudentT corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 1:0336 1:0440 1:0271b�ab 1:0040 1:0116 0:9975 1:2639 1:1385 1:0600b�abc 1:0031 1:0121 1:0033 1:2746 1:1497 1:0705b�opt 0:9952 0:9996 0:9993 0:9463 0:9675 0:9909b�K�0
0:9977 1:0002 1:0008 0:8959 0:9638 0:9932

Mixture corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 0:9696 0:9967 0:9992b�ab 0:9923 1:0040 0:9992 0:9860 0:9925 1:0019b�abc 0:9951 1:0042 0:9981 0:9804 1:0041 1:0053b�opt 0:9943 0:9990 0:9985 0:9689 0:9986 0:9977b�K�0
0:9952 1:0010 0:9985 0:9660 1:0001 0:9980

Notes: (a) b�ab and b�CCLS are from the kernel with the same weights for midpoint and range, and left and right bounds, respectively.b�abc is from the kernel with a=b=c = 10=8=19, b�opt is the two-stage minimum DK -distance estimator, and b�K�0
is the minimum

DK -distance estimator produced from �0 .

(b) Bivariate Normal, Student T (df=5) and Mixture densities for uLt and uRt with Corr(uLt; uRt) = 0 and �0:6 are considered
respectively. b�CCLS is b�K�0

as corr(uLt; uRt) = 0

(c) Ratio of each parameter are computed based on 1000 bootstrap replications.



TABLE 6. Ratios of RMSE of Estimates for �0 in Bivariate Point Processesb�0
Normal corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6

T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS() 1:0245 1:0047 1:0061b�ab 1:0346 1:0054 1:0119 1:0698 1:0210 1:0157b�abc 1:0419 1:0064 1:0159 1:0738 1:0215 1:0167b�opt 1:0008 0:9998 1:0000 0:9954 0:9956 0:9972b�K�0
0:9929 0:9992 0:9996 0:9898 0:9946 0:9973

StudentT corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 1:0211 0:9978 1:0033b�ab 1:0075 1:0104 1:0223 1:1100 1:0403 1:0214b�abc 1:0132 1:0150 1:0258 1:1116 1:0398 1:0190b�opt 0:9899 0:9968 0:9986 0:9585 0:9759 0:9937b�K�0
0:9898 0:9933 0:9976 0:9722 0:9757 0:9990

Mixture corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 0:9500 1:0059 0:9842b�ab 1:0096 1:0164 1:0213 0:9679 1:0173 0:9938b�abc 1:0085 1:0181 1:0220 0:9651 1:0178 0:9931b�opt 0:9915 0:9960 0:9975 0:9399 0:9933 0:9716b�K�0
0:9876 0:9988 0:9990 0:9363 0:9916 0:9703

Notes: (a) b�ab and b�CCLS are from the kernel with the same weights for midpoint and range, and left and right bounds, respectively.b�abc is from the kernel with a=b=c = 10=8=19, b�opt is the two-stage minimum DK -distance estimator, and b�K�0
is the minimum

DK -distance estimator produced from �0 .

(b) Bivariate Normal, Student T (df=5) and Mixture densities for uLt and uRt with Corr(uLt; uRt) = 0 and �0:6 are considered
respectively. b�CCLS is b�K�0

as corr(uLt; uRt) = 0

(c) Ratio of each parameter are computed based on 1000 bootstrap replications.



TABLE 7. Ratios of RMSE of Estimates for �1 in Bivariate Point Processesb�1
Normal corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6

T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS() 1:1576 1:0963 1:1890b�ab 1:1582 1:1238 1:1846 1:3805 1:2677 1:3872b�abc 1:2024 1:1395 1:2256 1:3945 1:2723 1:4012b�opt 1:0022 0:9990 1:0000 1:0044 0:9987 0:9916b�K�0
0:9843 0:9925 0:9980 0:9844 0:9946 0:9957

StudentT corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 1:0405 1:1057 1:1498b�ab 1:0814 1:1040 1:1337 1:2811 1:3202 1:3416b�abc 1:0994 1:1307 1:1618 1:3064 1:3234 1:3401b�opt 0:9493 0:9697 0:9807 0:8845 0:9468 0:9781b�K�0
0:9539 0:9621 0:9803 0:8399 0:9345 0:9785

Mixture corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 0:8817 0:8656 1:0118b�ab 1:0736 1:1181 1:1582 1:0034 1:1528 0:9855b�abc 1:0970 1:1440 1:1775 1:0016 1:1557 0:9923b�opt 0:9442 0:9649 0:9746 0:7991 0:8774 0:7446b�K�0
0:9403 0:9643 0:9768 0:8001 0:8790 0:7418

Notes: (a) b�ab and b�CCLS are from the kernel with the same weights for midpoint and range, and left and right bounds, respectively.b�abc is from the kernel with a=b=c = 10=8=19, b�opt is the two-stage minimum DK -distance estimator, and b�K�0
is the minimum

DK -distance estimator produced from �0 .

(b) Bivariate Normal, Student T (df=5) and Mixture densities for uLt and uRt with Corr(uLt; uRt) = 0 and �0:6 are considered
respectively. b�CCLS is b�K�0

as corr(uLt; uRt) = 0

(c) Ratio of each parameter are computed based on 1000 bootstrap replications:



TABLE 8. Ratios of RMSE of Estimates for 
1 in Bivariate Point Processesb
1
Normal corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6

T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 1:1442 1:1319 1:1650b�ab 1:1568 1:1518 1:1625 1:3324 1:3044 1:3445b�abc 1:1869 1:1734 1:1961 1:3438 1:3078 1:3567b�opt 1:0004 0:9986 1:0000 1:0002 0:9990 0:9953b�K�0
0:9905 0:9907 0:9959 0:9539 0:9593 0:9809

Student T corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 1:0713 1:1626 1:1874b�ab 1:0905 1:0951 1:1318 1:2935 1:3548 1:3696b�abc 1:1155 1:1169 1:1578 1:3176 1:3529 1:3740b�opt 0:9420 0:9707 0:9797 0:9173 0:9889 0:9635b�K�0
0:9399 0:9674 0:9785 0:8827 0:9824 0:9613

Mixture corr(uLt; uRt) = 0 corr(uLt; uRt) = �0:6
T = 100 T = 250 T = 500 T = 100 T = 250 T = 500b�CCLS 0:9308 1:0579 0:9817b�ab 1:0939 1:1105 1:1648 1:0629 1:2171 1:1130b�abc 1:1229 1:1402 1:1744 1:0639 1:2141 1:1222b�opt 0:9391 0:9570 0:9717 0:8452 0:9089 0:8423b�K�0
0:9408 0:9588 0:9741 0:8470 0:9058 0:8417

Notes. (a) b�ab and b�CCLS are from the kernel with the same weights for midpoint and range, and left and right bounds, respectively.

b�abc is from the kernel with a=b=c = 10=8=19, b�opt is the two-stage minimum DK -distance estimator, and b�K�0
is the minimum

DK -distance estimator produced from �0 .

(b) Bivariate Normal, Student T (df=5) and Mixture densities for uLt and uRt with Corr(uLt; uRt) = 0 and �0:6 are considered
respectively. b�CCLS is b�K�0

as corr(uLt; uRt) = 0

(c) Ratio of each parameter are computed based on 1000 bootstrap replications.



TABLE 9. t-statistics for 5-Factor CAPM
BE/ME Quantile Group Low BE/ME Quantile Group 2

Small OLS b�CCLS b�ab b�abc b�QML
b�opt OLS b�CCLS b�ab b�abc b�QML

b�opt
�0 �3:69 �1:03 �1:04 �1:04 �1:04 �1:04 �1:06 �1:17 �1:18 �1:18 �1:18 �1:17
�1 39:79 8:39 9:03 9:68 10:21 10:68 46:57 8:60 9:43 10:25 11:16 11:41

�2 35:19 8:22 8:31 10:27 14:62 19:79 45:16 7:89 8:04 10:27 17:37 20:98

�3 �5:76 �6:99 �6:56 �8:32 �12:23 �16:05 3:28 �5:93 �5:55 �7:30 �12:55 �14:83
�4 �2:21 �0:61 �0:64 �0:65 �0:65 �0:67 �2:50 �0:43 �0:45 �0:46 �0:47 �0:48
�5 �1:54 �3:35 �2:74 �4:05 �5:37 �5:81 �2:86 �3:44 �2:92 �4:31 �5:84 �6:08

2 �0 �1:45 �1:10 �1:10 �1:10 �1:10 �1:10 �0:27 �1:28 �1:29 �1:29 �1:29 �1:27
�1 50:19 9:63 10:26 10:93 11:88 12:17 56:87 9:97 10:88 12:05 13:51 13:82

�2 32:39 6:79 6:83 8:32 14:83 18:71 36:38 6:23 6:32 8:81 19:38 21:10

�3 �13:10 �6:30 �5:90 �7:38 �13:57 �16:71 0:89 �4:82 �4:51 �6:72 �14:80 �16:04
�4 �1:05 �0:04 �0:04 �0:04 �0:05 �0:06 �0:62 �0:11 �0:12 �0:24 �0:24 �0:25
�5 �2:33 �3:01 �2:37 �3:64 �5:78 �6:07 �1:08 �2:52 �2:07 �3:12 �5:43 �5:57

3 �0 �0:37 �1:21 �1:21 �1:21 �1:21 �1:20 1:45 �1:40 �1:41 �1:41 �1:41 �1:37
�1 53:22 10:75 11:44 12:20 13:62 13:72 48:27 11:22 12:21 13:25 15:15 15:15

�2 23:27 5:42 5:44 6:63 15:93 18:26 21:97 4:51 4:57 5:81 19:88 20:84

�3 �12:87 �5:22 �4:88 �6:12 �15:00 �16:96 1:35 �3:43 �3:20 �4:20 �14:43 �15:08
�4 �0:36 0:00 0:00 0:01 0:00 �0:02 0:76 0:25 0:27 0:27 0:28 0:27

�5 �0:93 �2:17 �1:68 �2:66 �5:22 �5:32 �0:36 �1:83 �1:47 �2:38 �5:19 �5:32
4 �0 1:70 �1:29 �1:29 �1:30 �1:30 �1:27 �2:09 �1:51 �1:52 �1:52 �1:52 �1:49

�1 50:28 12:14 12:81 13:58 15:46 15:42 45:92 12:83 13:83 14:92 17:47 17:52

�2 10:32 3:53 3:53 4:24 15:45 16:21 8:33 2:14 2:16 2:70 20:14 20:30

�3 �14:44 �3:96 �3:69 �4:56 �17:00 �17:77 0:55 �1:61 �1:49 �1:94 �14:69 �14:80
�4 0:32 0:37 0:39 0:40 0:41 0:41 0:86 0:47 0:49 0:50 0:58 0:58

�5 �1:54 �1:61 �1:20 �1:95 �5:23 �5:22 �0:72 �1:14 �0:88 �1:48 �6:89 �7:03
Big �0 3:32 �1:42 �1:43 �1:43 �1:43 �1:38 �0:31 �1:63 �1:64 �1:89 �1:89 �1:84

�1 51:25 14:57 15:09 15:80 19:79 19:66 51:01 15:05 15:89 16:63 20:16 20:49

�2 �7:96 �0:14 �0:14 �0:16 �1:23 �1:21 �6:94 �1:58 �1:58 0:48 2:76 2:79

�3 �15:67 �1:41 �1:31 �1:57 �15:16 �14:90 �0:32 1:21 1:14 3:34 21:49 21:39

�4 0:90 0:31 0:32 0:33 0:39 0:38 �0:50 0:30 0:31 0:61 0:70 0:71

�5 0:88 0:73 0:53 0:83 3:01 2:99 �1:39 0:19 0:14 �1:25 �2:73 �2:92

Notes: (a) FF�s 5-Factor CAPM: ERit= �0+�1EM t+�2SMBt+�3HMLt+�4TERM t+�5DEF t+"t, with OLS. Interval CAPM:

Yt= �0+�0I0+�1X1t+�2X2t+�3X3t+�4X4t+�5X5t+ut, QML and minimum Dk-distance estimation, where i = 1;..; 25:

(b) b�CCLS is from the CCLS estimator for the left and right bounds , b�ab is from the kernel with the same weights for midpoint

and range, b�abc is from the kernel with a=b=c = 10=8=19, b�QML and b�opt are the QML and the two-stage minimum DK -distance estimator.
OLS denote the estimators of the F-F 5-factor model.

(c) The standard error of each parameter estimate is compared based on 500 bootstrap replications.



TABLE 9. [Continued] t-statistics for 5-Factor CAPM
BE/ME Quantile Group 3 BE/ME Quantile Group 4

Small OLS b�CCLS b�ab b�abc b�QML
b�opt OLS b�CCLS b�ab b�abc b�QML

b�opt
�0 �1:23 �1:28 �1:28 �1:28 �1:28 �1:27 1:26 �1:36 �1:37 �1:37 �1:37 �1:35
�1 53:51 8:93 9:90 10:85 12:04 12:15 52:48 9:20 10:30 11:38 12:76 12:80

�2 46:59 7:39 7:56 9:87 19:26 21:75 47:03 7:06 7:25 9:65 20:70 22:50

�3 9:72 �5:09 �4:77 �6:42 �12:57 �13:98 14:39 �4:40 �4:12 �5:67 �12:09 �13:01
�4 �0:15 �0:20 �0:21 �0:22 �0:22 �0:24 �1:38 �0:64 �0:68 �0:70 �0:72 �0:74
�5 �0:29 �2:69 �2:32 �3:43 �4:73 �4:87 0:82 �2:34 �2:04 �3:01 �4:12 �4:23

2 �0 2:58 �1:39 �1:40 �1:40 �1:40 �1:37 2:86 �1:58 �1:59 �1:59 �1:59 �1:56
�1 54:15 10:14 11:22 12:30 13:95 13:95 56:81 10:98 12:31 13:66 15:81 15:79

�2 34:86 5:77 5:89 7:69 20:67 21:98 30:51 4:37 4:49 6:05 23:78 24:25

�3 8:85 �3:81 �3:56 �4:81 �12:96 �13:70 17:00 �1:92 �1:78 �2:50 �9:97 �10:16
�4 1:61 0:41 0:44 0:46 0:47 0:46 3:57 0:58 0:62 0:64 0:68 0:69

�5 �0:67 �2:35 �1:98 �3:07 �5:01 �5:15 2:11 �1:27 �1:09 �1:70 �2:98 �3:13
3 �0 0:02 �1:56 �1:56 �1:56 �1:56 �1:53 2:39 �1:72 �1:73 �1:73 �1:73 �1:65

�1 46:61 11:56 12:81 14:08 16:37 16:37 51:57 12:36 13:84 15:35 19:24 19:37

�2 18:83 3:69 3:77 4:96 23:23 23:55 17:29 2:15 2:20 2:96 25:16 25:19

�3 9:77 �1:86 �1:73 �2:36 �11:34 �11:50 17:20 0:21 0:21 0:28 2:58 2:56

�4 2:00 0:54 0:58 0:60 0:65 0:66 3:05 0:64 0:69 0:71 0:97 0:97

�5 0:37 �1:44 �1:20 �1:93 �4:18 �4:36 1:66 �0:69 �0:59 �0:94 �2:74 �2:78
4 �0 0:49 �1:67 �1:68 �1:68 �1:68 �1:57 1:07 �1:80 �1:81 �1:81 �1:81 �1:75

�1 45:41 13:21 14:47 15:80 19:67 19:66 46:39 13:25 14:74 16:27 19:76 19:87

�2 7:80 1:10 1:11 1:44 19:29 19:20 8:31 0:11 0:10 0:14 0:92 0:91

�3 8:61 0:25 0:24 0:31 4:74 4:65 16:21 2:16 2:03 2:78 20:99 20:87

�4 1:30 0:63 0:67 0:69 0:95 0:95 4:53 1:54 1:64 1:68 2:11 2:14

�5 �0:50 �0:87 �0:70 �1:16 �5:59 �5:57 0:66 �0:37 �0:31 �0:51 �1:42 �1:47
Big �0 �0:44 �1:74 �1:75 �1:75 �1:75 �1:72 �0:65 �1:96 �1:97 �1:97 �1:97 �1:95

�1 38:59 15:56 16:49 17:57 20:64 20:73 52:41 15:87 17:13 18:47 20:98 21:09

�2 �7:28 �3:24 �3:24 �3:95 �17:92 �17:83 �7:83 �4:82 �4:87 �6:10 �14:98 �14:89
�3 5:52 3:28 3:06 3:81 17:46 17:40 17:53 6:38 5:94 7:64 18:91 18:81

�4 0:47 0:60 0:62 0:63 0:67 0:66 �0:62 �0:03 �0:03 �0:03 �0:05 �0:06
�5 �0:76 0:80 0:61 0:98 3:17 3:16 �0:14 1:11 0:89 1:38 2:64 2:66



TABLE 9. [Continued] t-statistics for 5-Factor CAPM
BE/ME Quantile Group High

Small OLS b�CCLS b�ab b�abc b�QML
b�opt

�0 1:02 �1:48 �1:48 �1:48 �1:48 �1:46
�1 51:01 9:28 10:54 11:79 13:31 13:34

�2 46:60 6:86 7:11 9:75 21:73 23:58

�3 20:76 �3:51 �3:29 �4:68 �10:32 �11:08
�4 �1:92 �0:80 �0:86 �0:89 �0:92 �0:96
�5 0:36 �2:45 �2:20 �3:17 �4:14 �4:28

2 �0 1:25 �1:70 �1:70 �1:71 �1:71 �1:67
�1 57:83 11:12 12:66 14:23 16:67 16:74

�2 32:13 4:21 4:36 6:05 24:54 25:18

�3 23:54 �0:96 �0:89 �1:30 �5:53 �5:65
�4 �0:95 �0:22 �0:24 �0:24 �0:30 �0:35
�5 �1:07 �2:09 �1:85 �2:80 �4:47 �4:79

3 �0 0:53 �1:76 �1:77 �1:77 �1:77 �1:73
�1 45:46 11:66 13:27 14:90 17:75 17:91

�2 21:51 3:01 3:11 4:31 20:72 21:02

�3 21:28 0:26 0:26 0:35 1:75 1:76

�4 1:42 0:88 0:95 0:98 1:14 1:18

�5 �2:48 �2:30 �2:03 �3:10 �5:50 �5:87
4 �0 0:64 �1:88 �1:89 �1:89 �1:89 �1:84

�1 44:92 13:27 14:93 16:63 20:16 20:49

�2 9:74 0:35 0:35 0:48 2:76 2:79

�3 17:23 2:53 2:37 3:34 21:49 21:39

�4 1:22 0:55 0:59 0:61 0:70 0:71

�5 �0:47 �0:92 �0:79 �1:25 �2:73 �2:92
Big �0 �1:90 �2:08 �2:08 �2:09 �2:09 �2:07

�1 36:22 15:38 17:00 18:64 21:13 21:28

�2 �1:37 �4:09 �4:19 �5:45 �11:94 �11:87
�3 17:03 7:07 6:59 8:83 19:51 19:39

�4 �2:18 �0:28 �0:29 �0:29 �0:32 �0:33
�5 �2:62 �0:80 �0:68 �1:03 �1:62 �1:64


	Han_Hong_Wang_ACI_20120924_ai.pdf
	Han_Hong_Wang_ACI_Tables_0924_all2.pdf

