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Abstract

High-frequency trading has transformed financial markets in recent years. We study

the consequences of this development using a model with multiple trading venues, costly

information acquisition, and several types of traders. An increase in trading speed

crowds out information acquisition by reducing the gains from trading against mis-

priced quotes. Thus, faster speeds have two effects on traditional measures of market

performance. First, the bid-ask spread declines, since there are fewer informational

asymmetries. Second, price efficiency deteriorates, since less information is available to

be incorporated into prices. A general tradeoff exists between low spreads and price

efficiency. We characterize the frontier of this tradeoff and evaluate several trading

mechanisms within this framework. The prevalent limit order book mechanism gen-

erally does not induce outcomes on this frontier. We consider two alternatives: first,

a small delay added to the processing of all orders except cancellations, and second,

frequent batch auctions. Both induce equilibrium outcomes on this frontier.
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1 Introduction

Financial markets have recently seen drastic improvements in speed by both traders and

exchanges. For example, The New York Stock Exchange has slashed the amount of time it

requires to process an order by two orders of magnitude, from one second in 2004 to five

milliseconds in 2009 (NYSE, 2004, 2009). Furthermore, the minimum feasible round-trip

travel time of communication between NASDAQ and the Chicago Mercantile Exchange,

which is a measure of trader speed, has declined from over 14.5 milliseconds in 2010 (Adler,

2012) to under 8.1 milliseconds today (McKay Brothers, 2014). In addition, another impor-

tant feature of modern trading is that it is dispersed across a large number of venues. Many

large-cap stocks are now traded at forty or more venues, a number that is much larger than

just a decade ago.

Given the multiplicity of trading venues, the recent improvements in speed have in-

creased the effectiveness of certain strategies used by high-frequency traders, one of which

we describe now. For reasons including variable network traffic, the time required to send

an order to an exchange is not perfectly predictable. Therefore, traders are unable to en-

sure simultaneous arrival of orders sent to several exchanges. If high-frequency traders are

sufficiently fast, they may observe the trade generated by the first order to arrive and react

on the other exchanges before the orders of the original trader arrive there. This practice

is referred to as order anticipation, and it has significantly affected outcomes in these mar-

kets.1 As a result of order anticipation, a typical modern trader who attempts to trade

against posted quotes on six or more exchanges does so successfully only 25 percent of the

time (Barclays, 2014).

Due to the sheer scale of these markets, order anticipation is responsible for large trans-

fers within the financial system. However, a perhaps more pressing concern deals with

price efficiency. If the victims of order anticipation are traders who conduct research into

1This practice has also been referred to as “front-running” in the media. However, in the context of
financial markets “front-running” is more appropriately applied to the illegal practice addressed in FINRA
Rule 5270, which prohibits a broker-dealer from trading for its own account while taking advantage of
knowledge of an imminent client block transaction. Order anticipation, on the other hand, is legal.

2



fundamentals, then order anticipation may reduce the profitability of that research. Less

research would then be conducted, divorcing stock prices from the fundamental value of the

underlying asset, which might generate further distortions in the wider economy.

In this paper, we present a theoretical model of order anticipation. We show that it

may indeed harm price efficiency, but a positive effect is that it may reduce transaction

costs, as measured by the bid-ask spread. We also use the model to evaluate the merits

of the limit order book, which currently governs the majority of trading on exchanges, as

well as some alternative trading mechanisms. The model features an asset that is traded

on multiple exchanges by three types of traders: an analyst, high-frequency traders, and

investors. The analyst, through costly research, may become privately informed about

the value of the asset. High-frequency traders may trade for profit by speculating or by

facilitating transactions with other traders. Investors arrive at the market with exogenous

liquidity motives to buy or sell one indivisible share, and they play the role of ordinary

traders.

In equilibrium, the analyst submits orders to all exchanges upon attaining information

about the value of the asset. However, random communication latency prevents these orders

from arriving simultaneously. After the first order arrives at an exchange, high-frequency

traders infer the analyst’s information and respond by engaging in order anticipation at the

remaining exchanges. In the equilibrium we identify, high-frequency traders sort into two

roles. One, the liquidity provider, facilitates trade by posting quotes at all exchanges; she

responds to the analyst’s trade by attempting to cancel her remaining mispriced quotes. The

others, stale-quote snipers, respond to the analyst’s trade by free-riding on his information

and attempting to trade in front of the analyst against the remaining mispriced quotes.

This gives rise to winner-take-all races on the remaining exchanges, which may be won by

either the analyst, the liquidity provider, or a stale-quote sniper.

As in Glosten and Milgrom (1985) and Budish, Cramton, and Shim (2013)—henceforth,

BCS—a central feature of the model is that the liquidity provider faces adverse selection:

the analyst and stale-quote snipers trade against her quotes only when those quotes are
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mispriced. To offset the losses from adverse selection, the liquidity provider must generate

revenue from trades with investors, which she does by setting a bid-ask spread. Worse

adverse selection must be compensated by a larger spread.

Using this model, we evaluate the consequences of the recent improvements in speed by

exchanges and traders. Speed improvements enable high-frequency traders to be more suc-

cessful at order anticipation, which reduces the amount of rent that the analyst can extract

by trading on a piece of information. By reducing the incentives to conduct research, faster

speeds lead to a lower equilibrium research intensity, which affects traditional measures of

market performance in two ways. First, the bid-ask spread declines. Intuitively, since less

research is being done, the liquidity provider is less exposed to adverse selection from the

analyst, so she can afford to demand a smaller spread. This prediction is in line with a

great deal of empirical evidence. Second, price efficiency diminishes, in the sense that prices

become less correlated with the fundamental value of the underlying asset. Intuitively, since

less research is being done, less information is available to be incorporated into prices. No-

tably, this second prediction highlights an omission by many empirical studies of the topic.

Those studies have documented that information, conditional on being incorporated into

prices, is incorporated more rapidly when exchanges and traders are faster. They have in-

terpreted this as evidence that speed improves price efficiency. Those studies, however, do

not control for the effect of speed on the amount of information that becomes incorporated

into prices. On the other hand, our model does consider this channel and finds that it

dominates the first, so that the net effect of speed improvements is to harm price efficiency.

To summarize, when trading is governed by the limit order book, speed improvements

give rise to a tradeoff: price efficiency diminishes, but the bid-ask spread declines. We

therefore proceed to study whether alternative trading mechanisms can be used to obtain

improvements with respect this tradeoff between spreads and price efficiency. The analysis

focuses on two specific proposals, one new to the literature and one familiar. First, we

propose adding a small delay to the processing of all orders except cancellations. Second,

we consider the performance of frequent batch auctions.
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The first proposal is to add a small delay between arrival at an exchange and processing

for all order types except cancellations. We refer to this as a selective delay. Intuitively, a

selective delay gives the liquidity provider the ability to cancel mispriced quotes before they

can be exploited by snipers. It therefore prevents stale-quote snipers from free-riding on

the information of the analyst, as they could with a limit order book. We also characterize

the frontier of the tradeoff between spreads and price efficiency by formulating and solving

a social planner’s problem. We find that by eliminating this free-riding, a selective delay

implements an equilibrium on the frontier of this tradeoff.

The second proposal is to replace continuous trading with frequent batch auctions,

which are uniform-price sealed-bid double auctions conducted repeatedly at discrete time

intervals. The batch auction proposal has received a great deal of recent attention, a notable

example being BCS. We follow them by considering within our model the performance

of frequent batch auctions in which batch intervals are “long” relative to communication

latency and synchronized across exchanges. Like a selective delay, frequent batch auctions

implement an equilibrium on the frontier of the tradeoff between spreads and price efficiency.

However, the frequent batch auction equilibrium features a higher spread and higher price

efficiency than the selective delay equilibrium. Intuitively, the batching not only prevents

stale-quote snipers from free-riding on the information of the analyst, but also prevents

the liquidity provider from canceling mispriced quotes before they can be exploited by the

analyst. Research therefore becomes more valuable for the analyst, which induces a higher

research intensity and higher price efficiency. On the other hand, the liquidity provider—

by being unable to practice order anticipation—faces more adverse selection and therefore

demands a larger spread.

The remainder of the paper is organized as follows. Section 2 discusses the related lit-

erature. Section 3 describes the model. Section 4 describes the equilibrium that prevails

when trading is governed by the limit order book mechanism, and it also assesses theo-

retically the consequences of the recent increases in trading speed. Section 5 characterizes

the outcomes prevailing under the two aforementioned alternative trading mechanisms and

5



discusses how they compare to the limit order book. Section 6 characterizes the frontier

of the tradeoff between spreads and price efficiency. Section 7 concludes. All proofs are

contained in Appendix A.

2 Related Literature

Our model fits into the branch of the literature that has focused on financial markets with

asymmetric information. Some models in this class are Copeland and Galai (1983), Glosten

and Milgrom (1985), Kyle (1985), Glosten (1994), and Back and Baruch (2004). More

recently, BCS demonstrate how similar forces arise in a limit order book when multiple

high-frequency traders react to the same piece of information.

Our model is also connected to the literature on information acquisition in financial

markets. Central to that literature is Grossman and Stiglitz (1980), who study the incentives

to engage in costly information acquisition, and the repercussions on price efficiency. In the

equilibrium of their model, prices adjust to reflect the information of the informed, but only

partially so.

The model of this paper lies at the confluence of these two literatures. It features an

asset that is traded on multiple limit order books by several types of traders, one of which

may pay a cost to acquire information. Using this model, we study how the incentives to

acquire information are affected by features of the microstructure of the trading environ-

ment, including the speed of exchanges and traders, the number of exchanges in operation,

and the mechanism that governs trading.

This paper is most closely related to Glosten and Milgrom (1985) and BCS, with two

primary differences. First, we explicitly model a fragmented financial system in which sev-

eral exchanges operate simultaneously. Many strategies used in practice by high-frequency

traders (e.g. order anticipation) hinge crucially on the presence of multiple exchanges. This

feature, therefore, allows these strategies to be explicitly modeled. Second, our model endo-

genizes the amount of information possessed by informed traders. This feature, therefore,
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allows price efficiency to depend upon the trading mechanism as well as parameters such

as the speeds of traders and exchanges.

Whereas prior models have tended to focus on either spreads or price efficiency in isola-

tion, our model endogenizes both quantities. We contribute to the literature by (i) demon-

strating the existence of a general tradeoff between these two quantities, (ii) characterizing

the frontier of this tradeoff, and (iii) evaluating several trading mechanisms within this

framework.

Others have studied very different models of high-frequency trading. For example, Biais,

Foucault, and Moinas (2013), Foucault, Hombert, and Roşu (2013), and Martinez and Roşu

(2013) present models in which high-frequency traders possess an informational advantage

over the liquidity provider, or the agent who makes the market. In our model, in contrast,

the liquidity provider is a high-frequency trader.2 Consequently, our model gives rise to

very different predictions about the effects of high-frequency trade. In particular, their

models predict that if high-frequency traders become faster or better informed, then adverse

selection increases and the market becomes less liquid. However, in our model, since the

liquidity provider is a high-frequency trader, the increase in speed helps her avoid adverse

selection from the analyst. We therefore obtain the opposite prediction: spreads decline

when high-frequency traders become faster.3

Additionally, several others have attempted to evaluate how the market would perform

under alternative trading mechanisms. Frequent batch auctions have received the most

attention, having been considered by BCS, as well as by others, including Madhavan (1992)

and Wah and Wellman (2013). Our findings are most easily compared with those of BCS.

In their model, batching reduces adverse selection from stale-quote snipers, which results in

smaller spreads. However, our model also features a second source of adverse selection: an

analyst who possesses private information. We show that batching actually increases this

2Our model is similar in this respect to Budish, Cramton, and Shim (2013). Note also that this feature
of the model is corroborated by empirical evidence, for example Menkveld (2013), who studies a large
high-frequency trading firm and finds that 78% of its trades are passive (i.e. liquidity providing).

3This conclusion is also supported by empirical evidence. Two notable examples are Hasbrouck and Saar
(2013) and Hendershott, Jones, and Menkveld (2011).
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source of adverse selection; moreover, this effect dominates so that batching leads to larger

spreads in our model. Furthermore, we also find that batching improves price efficiency.

3 Model

The model features an asset that may be traded in multiple limit order books by three

types of traders: an analyst, investors, and high-frequency traders. The details of the

model build primarily upon the BCS framework, with two primary differences. First, we

allow for multiple exchanges. Second, information arrives privately via costly research, as

opposed to via exogenous public revelation.

3.1 Trading environment

Time. Time evolves over the interval [0, T ]. We employ a continuous time construction,

in which we allow for infinitesimal time intervals. Specifically, we index points in time by

elements of the hyperreals, ∗R, which are an ordered field extension of the real numbers

that contain nonzero infinitesimals.4

Certain aspects of the model, such as the processing time of exchanges and the commu-

nication latency of traders, are defined to occur on timescales measured in infinitesimals.

This construction approximates the reality of incredibly fast speeds in modern markets.

Moreover, it allows for a clean model by formalizing the following notion: traders and ex-

changes are unable to react instantaneously to the arrival of information, yet are able to

react so quickly that additional information arrives before the reaction has completed with

only a negligible probability.

Asset. There is a single asset whose fundamental value at time t is vt. Trading begins

at t = 0, at which point the fundamental value v0 is public information. Trading ends at

4An infinitesimal ε ∈ ∗R is a number for which ∣ε∣ < 1
n
∀n ∈ N. The hyperreals are the objects used in a

branch of mathematics known as nonstandard analysis (Robinson, 1966; Goldblatt, 1998). A key result of
nonstandard analysis is the transfer principle, which states that a sentence is true over R if and only if a
corresponding sentence is true over ∗R. This is useful for us because it allows us to define random variables
and compute probabilities that involve the hyperreals in the natural way.
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t = T .5 During the interval [0, T ], vt evolves as a compound Poisson jump process with

arrival rate λjump ∈ R+.6 When a jump arrives, vt either increases or decreases by one, each

with equal probability.

Exchanges. There are X exchanges, each of which allows shares of the asset to be traded

throughout the interval [0, T ]. Shares are indivisible. After trading has ended, vT is made

public, and all traders with a net position in the asset are compensated at vT per share.

In the baseline model, each exchange is organized as a limit order book, the structure of

which is described below. We later consider alternative trading mechanisms. Order flow is

non-anonymous and is publicly observed after an infinitesimal delay of length δE ∈ ∗R+.7

Limit order book. The benchmark trading environment in the model is a limit order

book. A limit order book, at any point in time, is a collection of active limit orders. In what

follows, we refer to four types of orders. A limit order consists of (i) the number of shares

desired to transact, positive if the trader wishes to sell or negative if the trader wishes to

buy, (ii) a price, and (iii) a time until when the order stays in force. Limit orders, unless

otherwise specified, are assumed to be “good ‘til cancelled.” An immediate or cancel (IOC)

order is a limit order with a time in force of zero. A market order may be thought of as an

IOC order with a limit price of positive or negative infinity. A cancellation order instructs

the exchange to remove an active order from the book.

Orders are processed sequentially, in the order they are received. Incoming limit orders

are processed as follows. First, it is checked whether the incoming order specifies a price

that allows trade with any orders residing in the book. If so, then the order leads to a trade

5For example, the asset may be a company, and the times {0, T} may represent the dates of release of
quarterly earnings reports. Changes in vt may represent realizations of profits, which are not made public
until after the release of the next quarterly earnings report.

6Throughout we use R+ to denote the set {x ∈ R ∣ x > 0}. Similarly, ∗R+ = {x ∈ ∗R ∣ x > 0}.
7Depending upon the rules of the particular exchange, anonymous trading may or may not be allowed in

practice. At exchanges where the identities of traders are not immediately observable, traders use sophis-
ticated statistical methods to attempt to infer the true identities of anonymous traders. Therefore, while
the model does not directly apply to exchanges that allow anonymous trading, we believe our results to be
indicative of what would transpire in such an environment. Moreover, the assumption of non-anonymous
trading is not uncommon in the literature, for example Sannikov and Skrzypacz (2014).
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at the price of the order in the book. If no match is found then the order is added to the

book.

The bid is the highest price at which there exists an offer to buy. The ask is the lowest

price at which there exists an offer to sell. The mid-price is the average of the bid and ask.

The spread is the difference between the bid and ask. The spread is a measure of transaction

costs, and in this model determines the welfare of ordinary traders.

3.2 Traders

There are three types of traders: an analyst, investors, and high-frequency traders.8 The

analyst obtains private information about vt through costly effort. Investors wish to buy or

sell for exogenous reasons that may include hedging, saving, borrowing, or liquidity motives.

High-frequency traders facilitate trade with investors and the analyst. All traders are risk-

neutral, do not discount the future, and act to maximize the standard part of their expected

utility.9

Analyst. There is a single analyst. At each point in time t, he chooses a research intensity

rt ∈ [0,1] at the flow cost c(rt). Conditional on a jump of vt occurring at time t, the

analyst observes the jump with probability rt. We assume c(r) is continuous. The analyst’s

objective is to maximize profits net of research costs.

At any time t, the action space of the analyst is (i) a choice of research intensity, and

(ii) whether to submit any orders. We place two restrictions on orders that the analyst

may send. First, he is restricted to using IOC orders.10 Second, the analyst is restricted to

sending orders to buy (sell) only at times when there was an upward (downward) jump in the

8Investors are modeled as being similar to their counterparts in Budish, Cramton, and Shim (2013).
High-frequency traders are modeled as being similar to the market makers of Budish, Cramton, and Shim
(2013).

9In nonstandard analysis, the standard part of a number x ∈ ∗R is the unique real number whose difference
from x is an infinitesimal. In effect, we assume that agents treat events with infinitesimal probabilities as
though they have probability zero.

10This is a technical restriction, which ensures that the analyst does not provide liquidity, and it is standard
in the literature, for example Glosten and Milgrom (1985). Later, we impose the same technical restriction
on investors, which is also standard, for example Glosten and Milgrom (1985) and Budish, Cramton, and
Shim (2013).
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value of the security, which prevents him from engaging in trade-based market manipulation,

a practice that is prohibited in most countries.11

Investors. Investors arrive at Poisson rate λinvest ∈ R+, at which point they randomly

select one of the exchanges.12 With equal probability, an investor is either a “buyer,” who

wishes to buy one share, or a “seller,” who wishes to sell one share. From acquiring a

portfolio consisting of x shares and y dollars between the time of arrival and time T , a

buyer receives utility uB(x, y) = y + xvT + θ1{x = 1}, and a seller receives utility uS(x, y) =

y + xvT + θ1{x = −1}. That is, an investor’s utility is determined by his trading profits, in

addition to a utility bonus of θ if his trading need is satisfied.

The action space of an investor who arrives at time t, at any time t′ ≥ t, is whether to

send any orders. We place two restrictions on orders that investors may send. First, they

are restricted to using IOC orders. Second, an investor is restricted to sending orders to his

selected exchange.

High-frequency traders. There is an infinite number of high-frequency traders.13 Their

objectives are to maximize profits. At any time t, the action space of a high-frequency trader

is whether to submit any orders. High-frequency traders may use any type of limit order,

as well as cancellations.

Communication latency. Communication latency, which is the amount of time needed

for a trader to send an order to an exchange, is a random variable that is measured on

11In particular, trade-based market manipulation is illegal in the United States under Sections 10(b) and
9(a)(2) of the Securities Exchange Act of 1934, as well as SEC Rule 10b-5 (Nelemans, 2008). For example,
Section 10(b) states, “It is unlawful . . . [t]o use or employ, in connection with the purchase or sale of any
security . . . any manipulative or deceptive device or contrivance”(United States Code, 1934). Moreover, such
violations are often detected and punished. For example, Aggarwal and Wu (2006) identify 142 instances of
SEC litigation concerning trade-based market manipulation occurring between 1990 and 2001. Therefore,
this restriction may be thought of as coming from optimal behavior on the part of the analyst if at some
point in the future he would be audited and punished for manipulation.

12See Baldauf and Mollner (2014) for a similar model in which investors, rather than choosing exchanges
randomly, choose according to trading conditions at the various exchanges.

13In practice the number of high-frequency traders is quite large. For example, Baron, Brogaard, and
Kirilenko (2012) identify 65 separate high-frequency trading firms that actively trade the E-mini S&P con-
tract in August 2010. Furthermore, since each firm may employ several different high-frequency trading
algorithms, the effective number of competitors may be even higher.
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infinitesimal time scales.14 Formally, the amount of time required for a trader to send an

order to an exchange is drawn from a shifted exponential distribution. For the analyst, this

distribution has the minimum δA and mean δA+µA. For high-frequency traders, these values

are δH and δH + µH . For investors, these values are δI and δI + µI . These six parameters

are assumed to be infinitesimals that are “on the order of” some fixed positive infinitesimal

ε ∈ ∗R+ in the sense that they are neither infinitely larger nor infinitely smaller than ε.15

Let Li,x,t denote the amount of latency for an order submitted by trader i to exchange

x at time t. We assume the following correlation structure: Li,x,t = Li′,x′,t′ if i = i′, x = x′,

and ∣t − t′∣ is an infinitesimal; they are otherwise independent.16 That is, communication

latencies are independent except for messages sent by the same trader to the same exchange

at “almost” the same time.

3.3 Assumptions

Most results that follow rely on Assumptions 1 and 2, which are stated below. These

assumptions place restrictions on the parameter space, which are sufficient to guarantee the

existence of equilibria in which (i) investors trade, and (ii) the analyst trades each time he

observes a jump.

Assumption 1 (investor participation).
2λjumpX

λinvest + λjumpX
≤ 2θ.

Assumption 2 (analyst participation).
2λjumpX

λinvest + λjumpX
≤ 1.

Assumption 1 is sufficient to ensure that the equilibrium spread is not so large that it

exceeds 2θ and therefore crowds out all trades by investors. If the spread did exceed 2θ,

then the market would shut down due to adverse selection, as only informed trading would

occur.

14In practice, communication latency may not be perfectly predictable for several reasons, including the
amount of traffic in the network, equipment glitches, and static.

15An element a ∈
∗R is said to be infinitely larger than an element b ∈ ∗R iff a is nonzero and b

a
is an

infinitesimal. Similarly, a is said to be infinitely smaller than b iff b is nonzero and a
b

is an infinitesimal.
16In the language of non-standard analysis, when ∣t− t′∣ is an infinitesimal, t and t′ are said to be infinitely

close. The role of this assumption is to rule out the possibility that an order sent at time t could arrive after
an order sent by the same trader to the same exchange at some time t′ > t.
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Assumption 2 guarantees that the equilibrium spread is not larger than the size of a

jump, which is sufficient to ensure that the analyst finds it optimal to trade each time he

observes a jump. If the spread did exceed the size of a jump, then the analyst might prefer

to wait for several jumps to accumulate before trading, which would present technical issues

by breaking the stationary nature of the equilibrium.

4 Limit Order Book Equilibrium

In this section, we study the baseline model in which each exchange is organized as a limit

order book. We describe equilibrium trading behavior in this environment, and we discuss

the comparative statics of this equilibrium.

4.1 Equilibrium Description

This section considers equilibrium behavior of the analyst, investors, and high-frequency

traders within the limit order book environment. Theorem 1 characterizes the outcomes

that arise in equilibrium, focusing on two outcome variables: (i) the bid-ask spread, s∗LOB,

and (ii) the research intensity, r∗LOB. The equilibrium we identify is stationary, in which

these outcome variables are constant throughout [0, T ].

Theorem 1. Under Assumptions 1 and 2, there exists a Nash equilibrium of the limit order

book mechanism in which the spread, s∗LOB, and research intensity, r∗LOB, are constants given

by any solution to

s∗LOB =
2r∗LOBλjumpX

λinvest + r∗LOBλjumpX
(1)

r∗LOB ∈ arg max
r∈[0,1]

{rλjump [X − (X − 1)e−(δH+δE)/µA] (1 −
s∗LOB

2
) − c(r)} (2)

All proofs are deferred to Appendix A. While a complete description of the strategies

that support these outcomes in Nash equilibrium is given in the proof of this result, we

13



sketch these strategies here.17

Investors submit orders to buy or sell according to their private transaction motives.

They submit these orders immediately upon arrival and to their selected exchanges. The

analyst submits orders to buy or sell according to the directions of the jumps he observes.

He submits these orders immediately upon observing a jump and to all exchanges. While the

analyst’s orders are sent simultaneously to all exchanges, the randomness of communication

latency prevents these orders from arriving simultaneously, and high-frequency traders react

to the trade triggered by the first of a series of his orders. The way in which high-frequency

traders react resembles the way in which market makers react to public information in

BCS. The nature of their reaction is determined by which of two roles they play. One is the

“liquidity provider.” The rest are “stale-quote snipers.” The liquidity provider maintains

quotes of one unit at both the bid and the ask at all exchanges. She reacts to the first in

a series of orders from the analyst by attempting to cancel her remaining quotes, which

she now knows to be mispriced, and she also submits updated quotes. The stale-quote

snipers remain inactive until the first order in a series, at which point they free-ride on the

information of the analyst by attempting to trade in front of him against the remaining

mispriced quotes.

High-frequency traders react as soon as the exchange processes the first in a series

of orders sent by the analyst. The processing time of the exchange is δE . Furthermore,

an infinite number of high-frequency traders react, so one is sure to achieve the minimum

communication latency of δH at each exchange. Thus, the analyst receives fills for all orders

except those that arrive after the first order by δH + δE or more. When the analyst sends

orders to all X exchanges, he therefore expects to receive X − (X − 1)e−(δH+δE)/µA fills.

Furthermore, the analyst’s expected profit per fill is 1−s∗LOB/2; that is, the size of the jump

minus the half spread, which he must pay to the liquidity provider. Equation (2) in the

17It can be shown that the Nash equilibrium we identify also survives a continuous time version of the
perfect Bayesian equilibrium refinement, in which the other traders form beliefs about the analyst’s informa-
tion by observing his trades. When they observe an episode in which the analyst buys, then they infer that
he has observed an upward jump. Similarly, when they observe an episode in which the analyst sells, then
they infer that he has observed a downward jump. These beliefs are indeed consistent with the analyst’s
strategy, and all strategies are optimal given these beliefs.
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theorem therefore ensures that the analyst chooses research intensity optimally.

As in BCS, free entry into high-frequency trading leads us to focus on equilibria in which

the liquidity provider earns zero profits in expectation.18 Equation (1) in the theorem follows

from this zero-profit condition. At any instant, one of two things may set off a chain of

events that affect her profits: an investor may arrive or the analyst may observe a jump.

The arrival rate of investors is λinvest, and conditional on the arrival of an investor, the

liquidity provider earns the half-spread, s∗LOB/2. On the other hand, the arrival rate of

information to the analyst is r∗LOBλjump. Because she races against an infinite number of

stale-quote snipers, the liquidity provider is never able to cancel her mispriced quotes before

they are picked off. Therefore, conditional on information arriving, the liquidity provider

loses 1 − s∗LOB/2 on each exchange. The zero-profit condition of the liquidity provider is

therefore

λinvest
s∗LOB

2
− r∗LOBλjumpX (1 −

s∗LOB

2
) = 0. (3)

Notice that the equilibrium spread must be such that it balances the revenue from trading

with investors against the costs of adverse selection (i.e. trading losses to the analyst and

stale-quote snipers). Solving the zero-profit condition (3) for s∗LOB yields equation (1).

4.2 Comparative Statics

This section uses the characterization of equilibrium outcomes given in Theorem 1 to study

how these outcomes vary with the parameters of the model. This exercise provides an-

swers to policy-relevant questions such as “What happens when exchanges become faster?”,

“What happens when traders become faster?”, and “What happens when trade becomes

fragmented across more exchanges?”

18GETCO (KCG since its merger with Knight Capital Group in 2013) is a representative, significant global
player in high-frequency trading and in market making of equities. Its 2013 Form S-4 filing with the SEC
reveals that its net income decreased by 41.9 percent from $232.0 million in 2007 to $167.2 million in 2011
(KCG, 2013, p. 31). For Q2 2013, its market making division even posted a loss of $1.9 million compared
to a profit of 9.3 million in the previous year (KCG, 2013, Exhibit 99.2, p. 8). To the extent that excessive
profits accrued to high-frequency traders during the previous decade, they were short-lived.
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Formally, let S∗LOB and R∗
LOB denote the set of equilibrium spreads and research intensi-

ties that occur in equilibria of the form described in Theorem 1. The comparative statics of

these sets with respect to the parameters of the model are given by the following theorem,

and for additional convenience are also summarized in Table 1.

Theorem 2. Within the set of parameters that satisfy Assumptions 1 and 2, the limit

order book equilibrium sets of bid-ask spreads, S∗LOB, and research intensities, R∗
LOB, have

the following comparative statics (in the strong set order):

(i) S∗LOB is nondecreasing in δE, nondecreasing in δH , nonincreasing in µA, nonincreasing

in λinvest, nondecreasing in λjump, and nondecreasing in X.

(ii) R∗
LOB is nondecreasing in δE, nondecreasing in δH , nonincreasing in µA, nondecreasing

in λinvest, and nondecreasing in λjump.

Table 1: summary of predictions of Theorem 2

δE δH µA λinvest λjump X

S∗LOB + + − − + +

R∗
LOB + + − + +

Two particularly interesting sets of comparative statics are those with respect to the la-

tency of exchanges, δE , and the minimum latency of high-frequency traders, δH . According

to the theorem, a decrease in either parameter (i.e. an increase in speed) reduces equi-

librium research intensity. Intuitively, a decrease in either parameter leads to more order

anticipation, reducing the number of fills that the analyst receives. This reduces the incen-

tive to conduct research, leading to a lower equilibrium research intensity. Additionally, the

lower research intensity decreases adverse selection, which allows the liquidity provider to

quote a smaller spread. This conclusion is in line with the bulk of the empirical evidence

on the relationship between the spread and trading speeds.19

19Evidence in support of the prediction that improvements in high-frequency trading reduce the spread (or
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When the analyst’s communication latency becomes more dispersed—that is, when µA

increases—it becomes harder for the analyst to coordinate the arrivals of his orders. Fewer

of the analyst’s orders are therefore converted into fills, which disincentivizes research. A

lower research intensity decreases the adverse selection faced by the liquidity provider, who

quotes a smaller spread in response.

When the arrival rate of investors, λinvest, increases, adverse selection becomes relatively

less important, which allows the liquidity provider to quote a smaller spread. The smaller

spread also increases the profitability of each of the analyst’s trades, which incentivizes

higher research intensity.

When the arrival rate of jumps, λjump, increases, the benefits of research increase: for a

fixed level of research, the analyst observes more jumps. This incentivizes a higher research

intensity. There is then an increase in the rate of observed jumps, which raises the adverse

selection faced by the liquidity provider, who then quotes a larger spread in response.

Finally, another highly relevant set of comparative statics are those with respect to the

number of exchanges, X. According to the theorem, an increase in X increases the equilib-

rium spread but has an ambiguous effect on equilibrium research intensity. Intuitively, the

addition of another exchange increases the depth of the aggregate book, since the liquidity

provider must offer one share at both the bid and the ask at each exchange in order to serve

investors.20 This therefore increases the number of venues at which an informed trader

(either a directly informed analyst or an indirectly informed stale-quote sniper) may trade

after observing a jump. The liquidity provider therefore faces more costs from adverse selec-

tion, and she must charge a larger spread to compensate. On the other hand, the response

of research intensity to an increase in X is theoretically ambiguous, which is a result of two

competing effects. The direct effect of an increase in X is to create more opportunities for

more generally, improve liquidity) is found by Boehmer, Fong, and Wu (2014), Brogaard (2010), Brogaard,
Hagströmer, Nordén, and Riordan (2013), Hasbrouck and Saar (2013), Hendershott, Jones, and Menkveld
(2011), Malinova, Park, and Riordan (2013), and Menkveld (2013). Evidence in support of the prediction
that improvements in exchange speed reduce the spread is found by Easley, Hendershott, and Ramadorai
(2014) and Riordan and Storkenmaier (2012).

20That the addition of a trading venue increases the depth of the aggregate book is in line with empirical
evidence. For example, see Boehmer and Boehmer (2003), Fink, Fink, and Weston (2006), and Foucault
and Menkveld (2008).
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the analyst to trade on any piece of information, which tends to increase research intensity.

However, as previously argued, an increase in X also increases the spread. Larger spreads

make each trade less profitable for the analyst, so the indirect effect of an increase in X

tends to reduce research intensity.21

4.3 Price Efficiency

Another outcome of interest is price efficiency, or the extent to which prices reflect the

value of the underlying asset. Clearly, research intensity is an important determinant of

price efficiency, since a jump in the value of the asset can be incorporated into prices only if it

is observed. In fact, in the equilibria of the limit order book that are identified in Theorem 1,

a jump in the value of the asset is incorporated into prices after a non-infinitesimal amount

of time if and only if the jump was observed by the analyst.

Of the reasons the literature has advanced for the social value of price efficiency (cf.

Appendix C), none are affected in any significant way by price changes at the incredibly

small timescales on which communication latency is measured. An apt measure of the

aspects of price efficiency that are socially valuable is therefore the probability that a jump

is incorporated into prices after a non-infinitesimal amount of time, which is the research

intensity. Hence, it immediately follows from Theorem 2 that the socially valuable aspects

of price efficiency are negatively affected by improvements in the speed of exchanges and

high-frequency traders (i.e. decreases in δE and δH).

As argued, the socially valuable aspects of price efficiency depend upon price changes

on longer timescales, on which price efficiency can be summarized by research intensity.

However, when price changes on small timescales are considered, then price efficiency may

also depend directly upon other features of the trading environment, such as the speed of

exchanges and high-frequency traders. In particular, on very small timescales, improvements

in the speed of exchanges or high-frequency traders (i.e. decreases in δE or δH) have two

effects. First is the direct effect. Improvements in speed increase price efficiency, in the

21Several factors may influence which of the two effects dominates. For example, when δH is smaller, the
direct effect is smaller and the indirect effect is more likely to dominate.
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sense that jumps, conditional on being observed, are incorporated into prices sooner, which

improves price efficiency. Second is the indirect effect, through research intensity. By

Theorem 2, improvements in speed reduce the equilibrium research intensity, which harms

price efficiency since fewer jumps are observed. The net effect of an improvement of speed

on price efficiency is controlled by the relative magnitudes of these two effects. On longer

timescales the direct effect is zero, and the indirect effect dominates so that price efficiency

is summarized by research intensity. However, it is possible that the direct effect may

dominate on very small timescales.

This conclusion—that improvements in speed are harmful to the aspects of price effi-

ciency that are of social value—highlights an omission by many empirical studies on the

subject, which have reached the opposite conclusion. For example, Hendershott, Jones,

and Menkveld (2011) and Riordan and Storkenmaier (2012) study episodes in which there

were improvements in, respectively, the speed of high-frequency traders and the speed of

exchanges. They find that price changes become less correlated with trades after the up-

grade, which is evidence that liquidity providers become better at adjusting their mispriced

quotes before others can trade against them, and therefore that available information is

incorporated into prices faster. They then interpret this evidence as indicating that prices

are more efficient under the faster speeds that prevail after the upgrade.22 This evidence is

exactly the direct effect predicted by our model. However, it does not account for the indi-

rect channel, which is how speeds affect the amount of information that ultimately becomes

available. Since our analysis suggests that the indirect channel dominates—and moreover

goes in the opposite direction—it may not be correct to interpret this evidence in the way

that they do.

22In addition, other empirical papers to conclude that faster traders or faster exchanges are beneficial
to price efficiency include Carrion (2013), Chaboud, Chiquoine, Hjalmarsson, and Vega (2013), Boehmer,
Fong, and Wu (2014), Brogaard (2010), Brogaard, Hendershott, and Riordan (2014), and Hendershott and
Moulton (2011).
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5 Alternative Trading Mechanisms

Dissatisfaction with current outcomes has ignited a wide-ranging policy debate involving

industry experts, regulators, and academics. Those involved in this debate have proposed or

considered a number of trading mechanisms as alternatives to the limit order book. In this

section we evaluate the performance of two alternative trading mechanisms—one new to

the literature and one familiar—within the context of our model. First, we propose adding

a small delay to the processing of all orders except cancellations. Second, we consider the

performance of frequent batch auctions.

5.1 Selective Delay

One alternative trading mechanism is to implement what we refer to as a selective delay.

Under a selective delay, exchanges process cancellations upon arrival, but process all other

order types only after a small delay. This is in contrast to a limit order book, in which

orders are processed in the order received. Similar proposals have also been advanced by

industry participants.23 Yet to our knowledge, we are the first to study this mechanism in

the literature.

The specific proposal that we consider in this section is the following. All exchanges

process cancellations immediately. However, all other order types are processed only after a

delay. To have the desired effect, this delay should be small, yet should exceed the maximum

difference in reaction time that may occur between two high-frequency traders responding

to the same event.24 In the language of this paper, this corresponds to a delay whose length

is an infinitesimal that is infinitely larger than ε. That is, the length of the delay should be

23Several industry participants have advocated for similar types of delays. For example, Aequitas Innova-
tions, which is planning to enter as a stock exchange serving the Canadian market, is considering a delay of
randomized duration of between 3 and 9 milliseconds (Aequitas, 2013). In addition, the incumbent, TMX
Group, has recently announced similar plans for one of their platforms, the Alpha Exchange. They are con-
sidering a delay of randomized duration of between 5 and 25 milliseconds (Alpha Exchange, 2014). Finally,
in an open letter to the SEC, Peterffy (2014) advocates for a delay of randomized duration of between 10
and 200 milliseconds. While all these proposals advocate for randomization in the delay as an additional
means of blunting the advantages of speed, randomization does not lead to additional benefits in our model,
and a deterministic duration suffices.

24Budish, Cramton, and Shim (2014) indicate that this may be about 100 microseconds in practice.
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“one order of magnitude larger” than communication latency.

The limit order book allows stale-quote snipers to engage in order anticipation, in which

they free-ride on the information of the analyst. As shown formally in Corollary 7, this free-

riding is a wedge, which prevents the limit order book from implementing an outcome on

the frontier of the tradeoff between spreads and price efficiency. However, a selective delay

eliminates this free-riding by allowing the liquidity provider’s cancellations to be processed

before any stale-quote snipers can successfully trade against a mispriced quote. In doing

so, the selective delay mechanism implements an outcome on the frontier of this tradeoff.

Theorem 3 characterizes the outcomes that arise in equilibrium under a selective delay

whose length is an infinitesimal infinitely larger than ε. As before, the theorem focuses on

two outcome variables: (i) the bid-ask spread, s∗SD, and (ii) the research intensity, r∗SD.

Theorem 3. Under Assumptions 1 and 2, there exists a Nash equilibrium of the selective

delay mechanism in which the spread, s∗SD, and research intensity, r∗SD, are constants given

by any solution to

s∗SD =
2r∗SDλjump [X −

µA
µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r∗SDλjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]
(4)

r∗SD ∈ arg max
r∈[0,1]

{rλjump [X −
µA

µA + µH
(X − 1)e−(δH+δE)/µA](1 −

s∗SD
2

) − c(r)} (5)

The strategies that support these outcomes in Nash equilibrium are roughly as follows.

As in the limit order book, investors submit orders to buy or sell according to their trading

desires, and the analyst submits orders to buy or sell according to the directions of the jumps

he observes. Also as before, one high-frequency trader plays the role of liquidity provider,

and reacts to the first in a series of orders from the analyst by attempting to cancel her

remaining mispriced quotes. In contrast to the limit order book, there are no stale-quote

snipers. This is because the selective delay eliminates the possibility that a high-frequency

trader could snipe a mispriced quote before it is cancelled by the liquidity provider.

The liquidity provider reacts as soon as the exchange processes the first in a series of
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orders sent by the analyst. The processing time of the exchange is δE , and the minimum

communication latency of the liquidity provider is δH . Thus, the analyst receives fills for all

orders that arrive within δH + δE of the first order. For orders that arrive after that, their

probability of being filled is determined by the dispersion of the analyst’s communication

latency relative to that of the liquidity provider. When the analyst sends orders to all X

exchanges, he therefore expects to receive X −
µA

µA+µH (X −1)e−(δH+δE)/µA fills. Furthermore,

the analyst’s expected profit per fill is 1 − s∗SD/2. Equation (2) in the theorem therefore

ensures that the analyst chooses research intensity optimally.

As in the limit order book, the equilibrium is one in which the liquidity provider earns

zero profits. The liquidity provider’s revenue from investors is λinvests
∗
SD/2. These must

be balanced by the costs of adverse selection. Since there are no stale-quote snipers in

this equilibrium, the liquidity provider faces adverse selection only from the analyst. Her

zero-profit condition is therefore

λinvest
s∗SD
2

− r∗SDλjump [X −
µA

µA + µH
(X − 1)e−(δH+δE)/µA](1 −

s∗SD
2

) = 0, (6)

which yields equation (4) in the theorem.

As shown in Section 6, a selective delay implements a point on the frontier of the

tradeoff between the spread and price efficiency. As an aside, variants of the selective delay

mechanism also perform well in the BCS model. In that model, if the delay is positive

but less than a certain threshold, then a selective delay implements the equilibrium spread

that they achieve with “short” batch intervals.25 Furthermore, if the delay exceeds that

threshold, then a selective delay implements the equilibrium spread that they achieve with

“long” batch intervals.

25In the language of their model, the threshold is δslow − δfast. A subtlety is that for the purposes of that
model, the delay should be applied only to orders that would trigger an immediate trade (rather than for
all non-cancellation orders). This is to eliminate the possibility of an investor arriving before the liquidity
provider can post new quotes. Note that this possibility is not a concern in this paper because the delay is
only for an infinitesimal amount of time. Furthermore, because it would in practice be simpler to condition
the delay on the order type rather than on both the order type and the state of the book in conjunction, we
would in practice advocate for the proposal described in the main text: delaying all non-cancellation orders.
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5.2 Frequent Batch Auctions

Frequent batch auctions are a policy intervention that has recently received a great deal of

attention, notably from BCS, and also from several others.26 Frequent batch auctions are

uniform-price sealed-bid double auctions conducted repeatedly at discrete time intervals.27

Batch auctions differ from the limit order book along several dimensions, most notably in

that they break the continuous nature of trading.

In this section, we consider the batch auction design most closely in line with the BCS

proposal. They advocate a batch length that is “long” relative to communication latency.

The natural analogue of this in the language of this paper is a batch length, which is an

infinitesimal that is infinitely larger than ε. Additionally, we focus on batch auctions that

are synchronized across exchanges, which they also identify as an attractive property.28

Like a selective delay, frequent batch auctions also eliminate the informational free-

riding that stale-quote snipers do when they engage in order anticipation. They thereby also

implement an outcome on the frontier of the tradeoff between spreads and price efficiency.

However, batch auctions of this nature also prevent the liquidity provider from engaging in

order anticipation; that is, they preventing her from canceling mispriced quotes. The reason

is that with batch auctions, the first of the analyst’s orders to arrive generates a trade not

immediately, but only at the end of the current batch interval. With batch lengths that

are infinitely larger than ε, this allows the analyst’s orders to arrive at all exchanges before

any trade occurs. There is therefore no scope for any high-frequency traders to react, which

allows the analyst to convert all his orders into fills. As shown formally in Theorem 5, this

incentivizes a higher research intensity than the other trading mechanisms. Furthermore,

the higher research intensity increases the adverse selection faced by the liquidity provider,

26Other papers that promote frequent batch auctions include Madhavan (1992) and Wah and Wellman
(2013). Additionally, batch auctions have received mention from policymakers in, for example, SEC (2010),
Foresight (2012), Schneiderman (2014), and White (2014).

27For a more detailed exposition of the batch auction design, see Section 7.1 of Budish, Cramton, and
Shim (2013). The same authors discuss implementation details in Budish, Cramton, and Shim (2014).

28“[T]he following [is an] attractive property: traders [...] have information about the time t − 1 auction
outcomes from all locations (e.g. Chicago, New York, London, Tokyo), and have information about the time
t auction outcomes from no locations” (Budish, Cramton, and Shim, 2014).
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who responds by setting a larger spread than under the other mechanisms.

Theorem 4 characterizes the outcomes that arise in equilibrium under frequent batch

auctions that are synchronized across exchanges and have a batch length that is an infinitesi-

mal infinitely larger than ε. As before, the theorem focuses on two outcome variables: (i) the

bid-ask spread, s∗FBA, and (ii) the research intensity, r∗FBA.

Theorem 4. Under Assumptions 1 and 2, there exists a Nash equilibrium of the frequent

batch auction mechanism in which the spread, s∗FBA, and research intensity, r∗FBA, are con-

stants given by any solution to

s∗FBA =
2r∗FBAλjumpX

λinvest + r∗FBAλjumpX
(7)

r∗FBA ∈ arg max
r∈[0,1]

{rλjumpX (1 −
s∗FBA

2
) − c(r)} (8)

The strategies that support these outcomes in Nash equilibrium are roughly as follows.

As with the limit order book, investors submit orders to buy or sell according to their

trading desires, and the analyst submits orders to buy or sell according to the directions of

the jumps he observes.

As with the limit order book, equation (8) in the theorem ensures that the analyst

chooses research intensity optimally. Also as before, the equilibrium is one in which the

liquidity provider earns zero profits. As with the limit order book, the liquidity provider

is never able to cancel her mispriced quotes before they are picked off. The zero-profit

condition of the liquidity provider is therefore again

λinvest
s∗FBA

2
− r∗FBAλjumpX (1 −

s∗FBA

2
) = 0,

which yields equation (7) in the theorem.

It should be noted that in this model, the outcomes prevailing with frequent batch

auctions could also be implemented in a less intrusive way with a “universal delay.” That is,

by requiring exchanges to wait for an interval before announcing their trades but otherwise
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maintaining the limit order book mechanism. Formally, if δE were an infinitesimal that

is infinitely larger than ε, then inspection of Theorem 1 reveals that the limit order book

would deliver the batch auction equilibrium outcome identified in Theorem 4.

Moreover, there are several reasons to think that this alternative would be preferable

to frequent batch auctions. First, by virtue of being so near the status quo, it would be

easier to implement and therefore also less likely to suffer from glitches, loopholes, or other

complications.29 Second, there are some legal questions pertaining to whether it is possible

for frequent batch auctions to operate simultaneously on multiple exchanges in a way that

satisfies laws as they are currently written, particularly Regulation NMS in the United

States. Third, frequent batch auctions require synchronization across exchanges, which

might be difficult to implement in practice since exchanges are competitors. On the other

hand, a delay in the processing of orders could be implemented in a decentralized way.

5.3 Comparison of Equilibria

We have so far characterized the outcomes that prevail in equilibrium under three trading

mechanisms: (i) the limit order book, (ii) a selective delay, and (iii) frequent batch auctions.

This section compares these outcomes. We find that a selective delay results in a higher

research intensity than the limit order book. Additionally, frequent batch auctions result

in the largest spread and the highest research intensity of the three mechanisms.

Formally, let S∗SD and R∗
SD denote the set of equilibrium spreads and research intensities

that occur in a equilibria of the form described in Theorem 3. Similarly, let S∗FBA and R∗
FBA

denote the set of equilibrium spreads and research intensities that occur in equilibria of the

form described in Theorem 4. The way in which these sets compare to each other and to

the corresponding sets for the limit order book are as described in the following result.

Theorem 5. Under Assumptions 1 and 2, the equilibrium spread and research intensity

29Delaying the announcement of trades would be quite easy to implement by, for example, forcing an-
nouncements to travel through additional lengths of fiber-optic cable. A similar scheme is already used in
practice by the alternative trading system IEX, which implements a 350-microsecond delay by simply forcing
all incoming orders to travel through 38 miles of coiled cable before proceeding to their matching engine
(IEX Group, 2014).
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prevailing under the limit order book, selective delay, and frequent batch auction mechanisms

can be ranked in the following way (in the strong set order):

S∗FBA ≥ S∗SD ∪ S
∗
LOB

R∗
FBA ≥ R∗

SD ≥ R∗
LOB

The intuition for the equilibrium research intensity being higher under a selective delay

than under the limit order book is as follows. In the limit order book, stale-quote snipers

free-ride on the information of the analyst. However, a selective delay eliminates this

free-riding and allows the analyst to capture more of the gains from information, which

incentivizes a higher research intensity. However, the ranking of equilibrium spreads under

these two trading mechanisms is ambiguous. This is due to two competing channels. A

selective delay may reduce adverse selection by eliminating stale-quote sniping, but on the

other hand it may increase adverse selection by raising the intensity of the analyst’s research.

Intuition for the ordering among the equilibrium outcomes of frequent batch auctions

and the other mechanisms is as follows. Frequent batch auctions enable the analyst to

convert all his orders into fills. They therefore maximize the gains from research and induce

the highest level of research intensity. However, frequent batch auctions also maximize

the adverse selection faced by the liquidity provider: research intensity—therefore also the

arrival rate of informed orders—is at its highest, and in addition she is never able to cancel

a mispriced quote. The liquidity provider therefore responds by quoting the largest spread.

An interesting contrast between our findings and those of BCS is the following. In

their model, frequent batch auctions reduce the spread, and in fact batch auctions with

“long” batch intervals implement a spread of zero. However, in our model frequent batch

auctions implement the largest spread. The crucial difference between the two models, which

generates this divergence, is the source of information. In BCS, information is exogenous

and publicly revealed to all traders. Batching then helps a liquidity provider adjust her

mispriced quotes before they are picked off. On the contrary, in the model of this paper,
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information is endogenous and privately revealed to the analyst. Batching then has the

opposite effect: it prevents a liquidity provider from inferring the the analyst’s information

and adjusting her mispriced quotes before they are picked off.

6 Optimal Outcomes

In this section, we characterize a “possibilities frontier” of feasible outcomes. In effect,

outcomes are evaluated according to two criteria: the bid-ask spread and price efficiency.

There exists a tradeoff between these two criteria. We characterize the frontier of this

tradeoff by formulating and solving a social planner’s problem. The selective delay and

frequent batch auction outcomes lie on this frontier. The limit order book outcome in

general does not.

6.1 Performance Criteria

We use two criteria to evaluate the performance of a trading mechanism: the utility of

investors and price efficiency. There are, of course, other criteria that could be used to

evaluate performance, for example those that also involve the utility of high-frequency

traders and the analyst. However, we choose to focus on investor utility and price efficiency

because they are the aspects of our model that tie most closely to the stated objectives of

most regulatory bodies.30

Investor utility. Investor protection is the primary stated goal of the main regulatory

bodies of these markets. For example, the SEC states that its mission is “to protect in-

vestors, maintain fair, orderly, and efficient markets, and facilitate capital formation,” and

stresses that “as more and more first-time investors turn to the markets to help secure their

futures, pay for homes, and send children to college, our investor protection mission is more

30For example, the SEC has affirmed, “Where the interests of long-term investors and short-term profes-
sional traders diverge, the Commission repeatedly has emphasized that its duty is to uphold the interests of
long-term investors” (SEC, 2010). Nevertheless, many of our results about investor utility also pertain to
total utility.
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compelling than ever” (SEC, 2013). For posted-price mechanisms, investor utility and the

bid-ask spread are equivalent criteria in the model, since they are related through U = θ− s
2 .

Price efficiency. Another criterion that is often used to gauge the performance of a

market is price efficiency, or the extent to which market prices reflect the fundamental

value of the underlying assets. For example, Fama (1970) states, “the ideal is a market

in which prices . . . at any time ‘fully reflect’ all available information.” Although price

efficiency is not innately valuable to the traders in our model, the literature has identified

a number of channels through which price efficiency is a positive externality of financial

exchanges, valuable to non-traders. For example, higher price efficiency may enable a

firm’s board of directors to provide managers with better incentives and thereby ameliorate

an agency problem. Additionally, higher price efficiency may provide better feedback to

firm managers, enabling them to make better decisions. A more detailed discussion of the

benefits of price efficiency is given in Appendix C.

6.2 Social Planner Problem

We now outline the social planner’s problem, which is stated formally in the next section.

Roughly speaking, the social planner evaluates outcomes according to the criteria discussed

in Section 6.1: investor utility and price efficiency. While there are no prices in this abstract

formulation, price efficiency is measured by the analyst’s observation of jumps.

The social planner is allowed to allocate resources (shares of the asset and dollars) among

the agents, and is also allowed to recommend a research intensity to the analyst. However,

there are informational constraints, since the planner cannot observe the analyst’s research

intensity. Thus, to incentivize the analyst, the planner must make the allocation a function

of the analyst’s reports.

This framework allows the social planner to optimize over a wide range of trading

mechanisms, including a limit order book, a selective delay, and frequent batch auctions.

It also allows for other possibilities, such as “infrequent batch auctions,” in which trade is
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allowed to occur only a small number of times.

To be more precise, the social planner’s objective includes two criteria: (i) the expected

value of aggregate investor utility, and (ii) the expected number of jumps that are unob-

served by the analyst. The social planner maximizes a welfare function that puts weight

α ∈ [0,1] on the first criterion (which enters positively) and weight 1 − α on the second

criterion (which enters negatively).

In addition, the social planner faces several constraints: (i) budget balance; (ii) ex-ante

individual rationality for investors; (iii) ex-ante individual rationality for high-frequency

traders; (iv) time T individual rationality for the analyst: conditional on any history, the

expected value of the analyst’s portfolio at time T , just before vT is announced, must be

nonnegative;31 (v) effort choice incentive compatibility for the analyst: the analyst must

always find it optimal to follow the instructions of the social planner with respect to research

intensity; and (vi) truthful reporting incentive compatibility for the analyst: the analyst

must always find it optimal to report the jumps he observes.

6.3 Formalities

For readers who are interested in the mathematical details, a formal statement of the social

planner’s problem is contained in this section. The next section characterizes properties of

solutions to the problem.

We first establish some notation, which is needed to formalize the social planner’s prob-

lem. Let J+t and J−t denote, respectively, the set of times in the interval [0, t] at which the

analyst observes upward and downward jumps. Let Jt = (J+t , J
−
t ) and ṽt = v0 + ∣J+t ∣ − ∣J−t ∣.

Let Ĵ+T and Ĵ−T denote, respectively, the set of times in the interval [0, T ] at which the

analyst reports observing upward and downward jumps. By the “no market manipulation”

31We impose time T individual rationality for the analyst, as opposed to ex-ante individual rationality, to
prevent the social planner from levying a lump sum tax on the analyst equal to his expected profits. We do
so because only realized capital gains are taxed in practice. Note that the analyst’s portfolio may contain
“lottery tickets” that pay off after vT is announced, and we do not require the value of the analyst’s portfolio
to be nonnegative after resolution of the lottery. Therefore, this constraint should not be interpreted as an
inability of the analyst to take on debt (i.e. limited liability), but instead as an inability of the social planner
to tax the analyst on gains that he may not earn.
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assumption, the analyst is restricted to reports of the form Ĵ+T ⊆ J+T and Ĵ−T ⊆ J−T . Let

ĴT = (Ĵ+T , Ĵ
−
T ) and v̂T = v0 + ∣Ĵ+T ∣ − ∣Ĵ−T ∣. In addition, let IBt and ISt denote, respectively, the

set of times in the interval [0, t] at which an investor arrives with a desire to buy or to sell.

Let It = (IBt , I
S
t ).

We consider contracts between the social planner, the analyst, investors, and high-

frequency traders. These contracts specify a research intensity for the analyst as a function

of time. In addition, they may specify payments, as functions of ĴT and IT to the analyst,

the investors who arrive, and high-frequency traders. These payments may be in the form of

either shares of the security, dollars, or both. Because agents do not discount, it is without

loss of generality to think of these payments as occurring at time T (i.e. just before vT is

announced). At this point in time, the expected value of a share of the security, conditional

on all available information, is ṽT .

Let xA(ĴT , IT ) and yA(ĴT , IT ) denote, respectively, the number of shares and the num-

ber of dollars paid to the analyst if ĴT is reported and investors arrive according to IT .

Let xB,t(ĴT , IT ) and yB,t(ĴT , IT ) denote the corresponding quantities for an investor who

arrives at time t with a desire to buy. Similarly, let xS,t(ĴT , IT ) and yS,t(ĴT , IT ) denote

the corresponding quantities for an investor who arrives at time t with a desire to sell.

Finally, let xH,h(ĴT , IT ) and yH,h(ĴT , IT ) denote the corresponding quantities for the hth

high-frequency trader.

A formal statement of the social planner’s problem is then

max
r,xA,yA,xH,h,yH,h
xB,t,yB,t,xS,t,yS,t

{α(
λinvest

2
∫

T

0
Er [xB,t(JT , IT )ṽT + yB,t(JT , IT ) + θ1{xB,t(JT , IT ) = 1}] dt

+
λinvest

2
∫

T

0
Er [xS,t(JT , IT )ṽT + yS,t(JT , IT ) + θ1{xS,t(JT , IT ) = −1}] dt)

−(1 − α)∫
T

0
λjump[1 − r(t)]dt}

subject to the constraints

(BB–1) ∀JT ∀IT , xA(JT , IT )+ ∑
t∈IBT

xB,t(JT , IT )+∑
t∈IST

xS,t(JT , IT )+
∞
∑
h=1

xH,h(JT , IT ) = 0
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(BB–2) ∀JT ∀IT , yA(JT , IT )+ ∑
t∈IBT

yB,t(JT , IT )+ ∑
t∈IST

yS,t(JT , IT )+
∞
∑
h=1

yH,h(JT , IT ) = 0

(IR–B) ∀t, Er [xB,t(JT , IT )ṽT + yB,t(JT , IT ) + θ1{xB,t(JT , IT ) = 1}] ≥ 0,

(IR–S) ∀t, Er [xS,t(JT , IT )ṽT + yS,t(JT , IT ) + θ1{xS,t(JT , IT ) = −1}] ≥ 0,

(IR–H) ∀h, Er [xH,h(JT , IT )ṽT + yH,h(JT , IT )] ≥ 0,

(IR–A) ∀JT ∀IT , xA(JT , IT )ṽT + yA(JT , IT ) ≥ 0,

(IC–1) at all t ∈ [0, T ] and conditional on any Jt and any It, the analyst finds it

optimal to conduct research with intensity r(t),

(IC–2) ∀JT ∀IT , the analyst finds it optimal to report ĴT = JT .

6.4 Outcome Frontier

We now characterize properties of solutions to the social planner’s problem. This char-

acterization is useful because it enables an evaluation of how various trading mechanisms

perform within the tradeoff between investor utility and price efficiency. We find that the

selective delay and frequent batch auction equilibria are on the frontier of this tradeoff.

However, the limit order book outcome in general is not.

The outcome of a contract consists of two quantities, which are rescalings of the two

quantities that enter the social planner’s objective: (i) average expected utility of investors,

denoted by U , and (ii) average research intensity, denoted by r. The frontier is the union

of outcomes of contracts that solve the social planner’s problem for some α ∈ [0,1]. This

section characterizes the frontier.

To obtain a clean characterization of the frontier, we require some additional regularity

conditions on the cost of research function. We assume continuous differentiability, strict

convexity, and convexity of rc′(r). The latter is used to ensure that the social planner

prefers to implement a research intensity that is a constant function of time.32

32This condition is relatively mild and would be satisfied by most natural parametrizations of the cost
function. Also note that the condition c′′′(r) ≥ 0 is sufficient to ensure that it holds.
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Assumption 3. c(r) is continuously differentiable, strictly convex, and rc′(r) is convex.

We now state the main result of this section, Theorem 6, which provides an elegant

characterization of the frontier. Given the complexity of the social planner’s problem, the

simplicity of this characterization is somewhat striking. Intuitively, the constraints of the

problem can be combined in such a way that they distill to a single tradeoff: the analyst

can be incentivized to conduct research, but only if he is paid with resources taken from

investors. It is this tradeoff that determines the frontier.

Theorem 6. Let r̄ = max{r ∈ [0,1] ∶ rc′(r) ≤ θλinvest}. Under Assumption 3, an outcome

(r,U) is on the frontier if and only if research intensity is a constant r ∈ [0, r̄] and the

average expected utility of investors is U = θ −
rc′(r)
λinvest

.

In words, an outcome is on the frontier if research intensity is not too high, and if

investor utility is related to research intensity in a particular way. This relationship is

downward sloping, so that there exists a tradeoff between these two quantities. Intuitively,

the incentives required to implement a high research intensity are costly and must be funded

through a “tax” on investors. Furthermore, there is a limit to the amount that the social

planner can tax investors, which implies an upper bound on the research intensity that can

be incentivized.

While a complete proof is in Appendix A, an outline of the argument is as follows. We

begin by relaxing several constraints. We then demonstrate that the frontier of the relaxed

problem is as described in the statement of the theorem. A key step in this process uses a

result from Holmström and Milgrom (1987) to characterize the (IC–1) constraint in such a

way that the dynamic problem collapses to a static one. Finally, we verify that this is the

frontier of the original problem by identifying, for any point described in the statement of

the theorem, a contract that both implements that point and satisfies all the constraints of

the original problem.
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6.5 Trading Mechanisms and the Frontier

In this section, we study whether the previously considered trading mechanisms implement

outcomes on the frontier. We find that the selective delay and frequent batch auction

outcomes lie on the frontier. However, the limit order book outcome in general does not.

Corollary 7 formalizes these statements. Parts (i) and (ii) of the corollary state that

both a selective delay and frequent batch auctions implement outcomes on the frontier.

Part (iii) states that the limit order book does not, unless there is only a single exchange or

exchanges are very slow relative to communication latency. These results depend upon the

following assumption, which roughly states that it would be infinitely costly for the analyst

to ensure observation of all jumps.

Assumption 4. limr→1 c(r) = ∞.

Corollary 7. Under Assumptions 1, 2, 3, and 4,

(i) the selective delay mechanism implements an outcome on the frontier,

(ii) the frequent batch auction mechanism implements an outcome on the frontier, and

(iii) the limit order book mechanism implements an outcome on the frontier if and only if

either X = 1 or δE is infinitely larger than ε.

We prove these results by comparing the equilibria characterized by Theorems 1, 3 and

4 against the frontier characterized by Theorem 6.

When there are multiple exchanges and δE is not infinitely larger than ε, the limit

order book equilibrium involves stale-quote snipers free-riding on the information of the

analyst. This free-riding contributes to adverse selection, which raises the spread, without

providing incentives to conduct research. This wedge therefore prevents the limit order book

equilibrium from being on the frontier. However, when there is a single exchange or when

δE is infinitely larger than ε, there is no free-riding (in fact there is no order anticipation at

all) and the limit order book equilibrium does lie on the frontier. Moreover, there is never
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free-riding with either a selective delay or with frequent batch auctions, and the equilibria

of both mechanisms lie on the frontier.

Furthermore, if a policymaker is free to adjust the number of exchanges in operation,

then both a selective delay and frequent batch auctions can be used to implement much of

the frontier. Corollary 8 demonstrates that, by adjusting the number of exchanges, either a

selective delay or frequent batch auctions can be used to implement all points on the frontier

except, perhaps, for a region involving very high research intensities. For the purposes of

this result, we do not restrict the number of exchanges to the integers. If, however, we did

impose this restriction, then these trading mechanisms could still be used to implement a

rich set of points on the frontier, especially if the social planner were also free to adjust

other parameters of the model, such as the speed of exchanges, δE . This result can be

interpreted as a partial converse to the first two parts of Corollary 7.

Corollary 8. Let r̄′ = max{r ∈ [0,1] ∶ rc′(r) ≤ λinvest min{1
2 , θ}}. If (r,U) is an outcome

on the frontier in which r ∈ [0, r̄′], then under Assumptions 3 and 4,

(i) there exists X ′ ≥ 0 such that (r,U) is the equilibrium outcome of the selective delay

mechanism with X ′ exchanges, and

(ii) there exists X ′′ ≥ 0 such that (r,U) is the equilibrium outcome of the frequent batch

auction mechanism with X ′′ exchanges.

It should be noted that in our formulation, investors possess no demand for immediacy.

That is, they receive a utility bonus of θ if their desire to transact is satisfied at any point

before time T , regardless of the exact time at which that occurs. In practice, investors are

likely to prefer transacting sooner. However, a delay cost would not substantially detract

from the performance of either a selective delay or frequent batch auctions because they

both allow investors to transact with only infinitesimal delays. On the other hand, a delay

cost could substantially detract from the performance of other types of trading mechanisms,

such as infrequent batch auctions. Thus, incorporating delay costs into the model would
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only strengthen the result about the desirability of the selective delay and frequent batch

auction mechanisms.

6.6 Comparative Statics

The frontier consists of the feasible outcomes that are optimal for some weighting of the

objectives. This section describes how the optimal point on the frontier varies with the

parameters of the model, as well as with the social planner’s weights.

Formally, let U∗
OPT and R∗

OPT denote the set of average expected utilities of investors

and the set of average research intensities that prevail under solutions to the social planner’s

problem. The comparative statics of these sets are given by the following result, and for

additional convenience are also summarized in Table 2.

Proposition 9. Under Assumption 3, the sets of optimal average investor utility, U∗
OPT,

and average research intensity, R∗
OPT have the following comparative statics (in the strong

set order):

(i) U∗
OPT is nondecreasing in α, nondecreasing in λinvest, nonincreasing in λjump, and

nondecreasing in θ; and

(ii) R∗
OPT is nonincreasing in α, nondecreasing in λinvest, nondecreasing in λjump, and

nondecreasing in θ.

Table 2: summary of predictions of Proposition 9

α λinvest λjump θ

U∗
OPT + + − +

R∗
OPT − + + +

As α increases, the social planner places more weight on investor utility and less weight

on price efficiency (or equivalently, on research). The optimal point on the frontier therefore

shifts accordingly. An increase in λjump raises the marginal return of research, since there are
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more jumps to be observed. The social planner responds by increasing research intensity.

This must also reduce investor utility, since funding of the additional research requires

investors to be “taxed” at a higher level. Finally, an increase in either λinvest or θ raises

the total gains from trade available in the economy, which allows both investor utility and

research intensity to rise.

Proposition 9 indicates that one trading mechanism may not be appropriate for all

securities. For example, it may be desirable to tailor trading mechanisms differently for

securities for which the benefits of price efficiency (cf. Appendix C) are small or large (i.e.

high or low α). Similarly, it may be desirable to tailor trading mechanisms differently for

thickly and thinly traded securities (i.e. high and low λinvest) or for volatile and nonvolatile

securities (i.e. high and low λjump).

7 Conclusion

Each month, financial markets facilitate trillions of dollars of transactions. Even small

changes in technology or the trading mechanism may therefore have considerable implica-

tions, and as such deserve careful analysis. The model presented in this paper provides a

framework that enables an evaluation of both the consequences of recent changes—such as

increase in speed by both exchanges and traders—and the effects of several regulatory shifts

currently being debated.

The model predicts two main consequences of an increase in speed by either traders

or exchanges: lower spreads and lower price efficiency. The analysis of alternative trading

mechanisms focuses on two specific proposals: the addition of a selective delay, applied

to all orders except cancellations, and the implementation of frequent batch auctions. We

find that both alternatives implement equilibria that lie on the frontier of the tradeoff

between spreads and price efficiency. In that sense, they represent an improvement over the

limit order book mechanism, which, despite being the current industry practice, does not

generally implement an equilibrium on this frontier.
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A Proofs

Proof of Theorem 1. The proof proceeds in three parts. First, we argue that there exists
at least one solution to (1) and (2). Second, we describe the equilibrium strategies of the
traders. Third, we verify that no trader has a profitable deviation.

Part One (Existence): R∗
LOB, the set of research intensities that appear in any solution to

(1) and (2), is the intersection of RLOB(r̂), given below, with the forty-five degree line:

RLOB(r̂) = arg max
r∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

rλjumpλinvest [X − (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjumpX
− c(r)

⎫⎪⎪
⎬
⎪⎪⎭

By definition, minRLOB(0) ≥ 0 and maxRLOB(1) ≤ 1. By the maximum theorem
(Berge, 1963), RLOB(r̂) is upper hemicontinuous. Thus, the intermediate value theorem
implies that it intersects the forty-five degree line at some point, and therefore R∗

LOB is
nonempty. Finally, S∗LOB, the set of spreads that appear in any solution to (1) and (2), can
be easily derived from R∗

LOB and (1).

Part Two (Description): One high-frequency trader plays the role of a “liquidity provider.”
The remaining high-frequency traders play the role of a “stale-quote sniper.”

The strategy of the liquidity provider is as follows. At time zero, she submits to each

exchange a limit order to buy one share at the bid b0 = v0 −
s∗LOB

2 and a limit order to sell

one share at the ask a0 = v0 +
s∗LOB

2 . If at any time t one of her standing limit orders is filled
by an investor, then she immediately submits an identical order to replace it. If at any
time t one of her standing buy (sell) orders is filled by the analyst, and if the analyst’s last
trade was an non-infinitesimal length of time in the past, then she immediately submits to
each exchange (i) cancellations for her remaining limit orders, (ii) a limit order to buy one
share at bt+ = bt− − 1 (bt+ = bt− + 1), and (iii) a limit order to sell one share at at+ = at− − 1
(at+ = at− + 1).33

The strategy of a stale-quote sniper is as follows. If at any time t, a standing buy (sell)
order is filled by the analyst at a particular exchange, and if the analyst’s last trade was
an non-infinitesimal length of time in the past, then she immediately submits to the other

exchanges an IOC order to buy (sell) at the price mt− +
s∗LOB

2 (mt− −
s∗LOB

2 ), where mt =
bt+at
2 .

The strategy of an investor who arrives at time t with a private motive to buy (sell) is to

submit immediately an IOC order to buy (sell) one share at the price mt+
s∗LOB

2 (mt−
s∗LOB

2 ).
The strategy of the analyst is as follows. He conducts research with intensity r∗LOB at all

times. If at any time t he observes an upward (downward) jump in the value of the asset,
then he immediately submits to each exchange IOC orders to buy (sell) one share at the

price mt− +
s∗LOB

2 (mt− −
s∗LOB

2 ). He submits no orders otherwise.

Part Three (Verification): We now argue that the investors do not have profitable devia-
tions. Given the behavior of the other traders, the expected difference, conditional on any

33For any continuous time variable Xt, we use the shorthand Xt+ to denote lims→t+ Xs and Xt− to denote
lims→t− Xs.
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investor’s information, between the liquidation value of a share, vT , and the midprice at any

exchange is zero at all times. Moreover, from Assumption 1, the half-spread
s∗LOB

2 does not
exceed θ. Since investors receive a utility benefit of θ from trading, it is optimal for them to
trade. Additionally, since the half-spread is stationary and investors are risk-neutral, they
also do not have an incentive to delay trading.

We now argue that the liquidity provider does not have a profitable deviation. The
arguments are similar to those in Budish, Cramton, and Shim (2013, Proof of Proposition
1). As argued in Section 4.1, she earns zero profits in the equilibrium. It therefore remains
to show that she does not possess a deviation that would yield positive profits. It is not
profitable to deviate by quoting a larger spread, since, because of the limit prices specified
by the other traders, she would then never participate in any trades. It is also not profitable
to deviate by quoting a smaller spread, since that would result in negative expected profits.
Finally, it is also not profitable to deviate by quoting more than a single unit at either the
bid or the ask, since her benefits would be the same (only one unit at each is needed to
satisfy investor demand) but her adverse selection costs would increase (since more units
are exposed to adverse selection from the analyst and stale-quote snipers).

We now argue that the stale-quote snipers do not have profitable deviations. The argu-
ments are also similar to those in Budish, Cramton, and Shim (2013, Proof of Proposition
1). An infinite number of snipers compete with each other for the opportunity to trade
against the same mispriced quotes. Each individual sniper therefore earns zero profits. It
therefore remains to show that none of them possesses a deviation that would yield positive
profits. It is not profitable to attempt to provide liquidity at a larger spread than the liq-
uidity provider, since these orders would never be filled. It is also not profitable to attempt
to provide liquidity at a smaller spread than the liquidity provider, since that would result
in negative expected profits. It is also not profitable to attempt to provide liquidity at
the same spread as the liquidity provider, since these quotes have the same adverse selec-
tion costs (from analyst and stale-quote sniper orders) that the liquidity provider faces in
equilibrium but only half the benefits (from investor orders), and therefore would result in
negative expected profits.

We now argue that the analyst does not have a profitable deviation. By assumption,
the analyst does not send orders to buy (sell) without observing an upward (downward)
jump in the value of the asset. It therefore only remains to check that it is optimal for the
analyst to send orders to each exchange each time the asset jumps.

To see that this is the case, let V (j, k) denote the analyst’s expected continuation profits
if he were to know that he would observe j more jumps and if current midprices differ from
his expectation of the value of the asset by k. For the purposes of this argument, we
let X̂ = X − (X − 1)e−(δH+δE)/µA denote the number of fills that the analyst expects to
receive when he attempts to trade on all X exchanges. If the analyst sends orders to each
exchange each time the asset jumps, then his expected profit from observing j jumps are

X̂j (1 −
s∗LOB

2 ). It therefore suffices to show that V (j,0) ≤ X̂j (1 −
s∗LOB

2 ). We in fact prove

the stronger statement: V (j, k) ≤ X̂ [j (1 −
s∗LOB

2 ) + k
2] for all j ∈ N, k ∈ N. The proof is by

induction on j. The result trivially holds for j = 0 and all k ∈ N, since the analyst never gets
another opportunity to trade (recall that by assumption the analyst can trade only at times
when a jump occurred, and only in the direction of the jump even then). Now, assuming
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that the inequality holds for j − 1 and all k ∈ N, we prove it for j and all k ∈ N. If k = 0,

V (j,0) ≤ max{V (j − 1,1), max
X′∈[1,X̂]

[X ′
(1 −

s∗LOB

2
)] + V (j − 1,0)}

≤ max{X̂ [(j − 1)(1 −
s∗LOB

2
) +

1

2
] , X̂ [(1 −

s∗LOB

2
) + (j − 1)(1 −

s∗LOB

2
)]}

= X̂j (1 −
s∗LOB

2
) ,

as desired. The first step uses the fact that after observing the first jump, the analyst may
either abstain from trading or may take an action that produces X ′ ∈ [1, X̂] fills in expec-
tation. The second step uses the induction hypothesis. The third step uses Assumption 2,
which ensures that s∗LOB ≤ 1. Similarly, if k ≥ 1,

V (j, k) ≤
1

2
max{V (j − 1, k − 1), max

X′∈[1,X̂]
[X ′

(1 − k −
s∗LOB

2
)] + V (j − 1, k)}

+
1

2
max{V (j − 1, k + 1), max

X′∈[1,X̂]
[X ′

(k + 1 −
s∗LOB

2
)] + V (j − 1, k)}

≤
1

2
max{X̂ [(j − 1)(1 −

s∗LOB

2
) +

k − 1

2
] ,(1 − k −

s∗LOB

2
) + X̂ [(j − 1)(1 −

s∗LOB

2
) +

k

2
]}

+
1

2
max{X̂ [(j − 1)(1 −

s∗LOB

2
) +

k + 1

2
] , X̂ [(1 −

s∗LOB

2
) + (j − 1)(1 −

s∗LOB

2
) +

k

2
]}

=
X̂

2
[(j − 1)(1 −

s∗LOB

2
) +

k

2
] +

X̂

2
[(1 −

s∗LOB

2
) + (j − 1)(1 −

s∗LOB

2
)]

≤ X̂ [j (1 −
s∗LOB

2
) +

k

2
] ,

as desired. The logic of the steps is almost as in the case of k = 0. The main difference is
that we now consider two cases, since the jump may either increase or decrease the distance
between current midprices and the analyst’s expectation of the value of the asset.

Finally, given that the analyst acts on information by trading after every observed jump,
his expected flow profits from a choice of r are

rλjumpX̂ (1 −
s∗LOB

2
) − c(r).

Therefore, (2) implies the optimality of choosing research intensity of r∗LOB.

Proof of Theorem 2. As is evident from equation (1), the bid-ask spread is ceteris paribus,
(i) nondecreasing in research intensity, (ii) constant in δE , (iii) constant in δH , (iv) constant
in µA, (v) nonincreasing in λinvest, (vi) nondecreasing in λjump, and (vii) nondecreasing in
X. Applying Topkis’ Theorem (Topkis, 1978) to equation (2), we see that research intensity
is ceteris paribus, (i) nonincreasing in the spread, (ii) nondecreasing in δE , (iii) nondecreas-
ing in δH , (iv) nonincreasing in µA, (v) constant in λinvest, (vi) nondecreasing in λjump,
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and (vii) nondecreasing in X. By combining these observations, we establish all claimed
comparative statics for S∗LOB and R∗

LOB except that of R∗
LOB with respect to λjump.

Recall that the set of equilibrium research intensities, R∗
LOB, is the intersection of

RLOB(r̂), given below, with the forty-five degree line:

RLOB(r̂) = arg max
r∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

rλjumpλinvest [X − (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjumpX
− c(r)

⎫⎪⎪
⎬
⎪⎪⎭

By Topkis’ theorem, RLOB(r̂) is nonincreasing in r̂ and nondecreasing in λjump (in the
strong set order). We conclude that R∗

LOB has the claimed comparative static with respect
to λjump.

Proof of Theorem 3. The proof proceeds in three parts. First, we argue that there exists
at least one solution to (4) and (5). Second, we describe the equilibrium strategies of the
traders. Third, we verify that no trader has a profitable deviation.

Part One (Existence): R∗
SD, the set of research intensities that appear in any solution to

(4) and (5), is the intersection of RSD(r̂), given below, with the forty-five degree line:

RSD(r̂) = arg max
r∈[0,1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rλjumpλinvest [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]
− c(r)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

As in the proof of Theorem 1, R∗
SD is nonempty, and S∗SD can be derived from R∗

SD and (4).

Part Two (Description): One high-frequency trader plays the role of a “liquidity provider.”
The remaining high-frequency traders never submit any orders. The strategies of the liq-
uidity provider, investors, and the analyst are analogous to those described in the proof of
Theorem 1. The only differences are that s∗SD and r∗SD assume the roles played by s∗LOB and
r∗LOB.

Part Three (Verification): That the investors do not have profitable deviations is as in the
proof of Theorem 1.

We now argue that the liquidity provider does not have a profitable deviation. As argued
in Section 5.1, the liquidity provider earns zero profits in the equilibrium. It therefore
remains to show that she does not possess a deviation that would yield positive profits. As
in the proof of Theorem 1, it is not profitable to deviate by quoting a larger spread, by
quoting a smaller spread, or by quoting more than a single unit at either the bid or the ask.

All other high-frequency traders also earn zero profits in equilibrium. They also have no
deviations that would yield positive profits. As in the proof of Theorem 1, it is not profitable
to deviate by attempting to provide liquidity at a larger spread, a smaller spread, or the
same spread as the liquidity provider. Finally, it is not profitable to become a stale-quote
sniper, since the selective delay eliminates the possibility of earning trading profits in this
way: the liquidity provider always cancels her mispriced quotes before a stale-quote sniper
could pick them off.

Lastly, the argument for why the analyst does not have a profitable deviation follows
exactly as in the proof of Theorem 1.
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Proof of Theorem 4. The proof proceeds in three parts. First, we argue that there exists
at least one solution to (7) and (8). Second, we describe the equilibrium strategies of the
traders. Third, we verify that no trader has a profitable deviation.

Part One (Existence): R∗
FBA, the set of research intensities that appear in any solution to

(7) and (8), is the intersection of RFBA(r̂), given below, with the forty-five degree line:

RFBA(r̂) = arg max
r∈[0,1]

{
rλjumpλinvestX

λinvest + r̂λjumpX
− c(r)}

As in the proof of Theorem 1, R∗
FBA is nonempty, and S∗FBA can be derived from R∗

FBA and
(7).

Part Two (Description): One high-frequency traders plays the role of a “liquidity provider.”
The remaining high-frequency traders never submit any orders. The strategies of the liq-
uidity provider, investors, and the analyst are analogous to those described in the proof of
Theorem 1. The only differences are that s∗FBA and r∗FBA assume the roles played by s∗LOB

and r∗LOB.

Part Three (Verification): That the investors do not have profitable deviations is as in the
proof of Theorem 1.

We now argue that the liquidity provider does not have a profitable deviation. As
argued in Section 5.2, she earns zero profits in the equilibrium. It therefore remains to show
that she does not possess a deviation that would yield positive profits. As in the proof of
Theorem 1, it is not profitable to deviate by quoting a larger spread, by quoting a smaller
spread, or by quoting more than a single unit at either the bid or the ask.

All other high-frequency traders also earn zero profits in equilibrium. They also have no
deviations that would yield positive profits. As in the proof of Theorem 1, it is not profitable
to deviate by attempting to provide liquidity at a larger spread, a smaller spread, or the
same spread as the liquidity provider. Finally, it is not profitable to become a stale-quote
sniper, since batching allows the analyst to trade against all mispriced quotes, leaving none
for stale-quote snipers.

Lastly, the argument for why the analyst does not have a profitable deviation follows
exactly as in the proof of Theorem 1.

Proof of Theorem 5. For convenience, we restate here that the sets of equilibrium re-
search intensities R∗

LOB, R∗
SD, and R∗

FBA are defined, respectively, by the intersections of
the following correspondences with the forty-five degree line:

RLOB(r̂) = arg max
r∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

rλjumpλinvest [X − (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjumpX
− c(r)

⎫⎪⎪
⎬
⎪⎪⎭

RSD(r̂) = arg max
r∈[0,1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rλjumpλinvest [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]
− c(r)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

RFBA(r̂) = arg max
r∈[0,1]

{
rλjumpλinvestX

λinvest + r̂λjumpX
− c(r)}
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The proof proceeds in three parts. First, we show S∗FBA ≥ S∗SD and R∗
FBA ≥ R∗

SD. Second,
we show S∗FBA ≥ S∗LOB. Third, we show R∗

SD ≥ R∗
LOB.

Part One (S∗FBA ≥ S∗SD and R∗
FBA ≥ R∗

SD). Define S∗(Ω) and R∗(Ω) as the set of solutions
to the system

s∗ =
2r∗λjumpΩ

λinvest + r∗λjumpΩ
(9)

r∗ ∈ arg max
r∈[0,1]

{rλjumpΩ(1 −
s∗

2
)} (10)

Notice that S∗FBA and R∗
FBA correspond to S∗(Ω) and R∗(Ω) evaluated at Ω = X. Sim-

ilarly, S∗SD and R∗
SD correspond to S∗(Ω) and R∗(Ω) evaluated at Ω = X −

µA
µA+µH (X −

1)e−(δH+δE)/µA . It therefore suffices to show that S∗(Ω) and R∗(Ω) are both nondecreasing
in Ω.

Notice from equation (9) that s∗ is ceteris paribus (i) nondecreasing in r∗ and (ii) non-
decreasing in Ω. Furthermore, applying Topkis’ Theorem to equation (10), r∗ is ceteris
paribus (i) nonincreasing in s∗ and (ii) nondecreasing in Ω. By combining these observa-
tions, we establish that S∗(Ω) is nondecreasing. Next, notice that R∗(Ω) is defined by the
intersection of the following correspondence with the forty-five degree line r = r̂:

R(r̂,Ω) = arg max
r∈[0,1]

{
rλjumpλinvestΩ

λinvest + r̂λjumpΩ
− c(r)}

By Topkis’ Theorem, R(r̂,Ω) is nondecreasing in Ω. Since the correspondence is also
nonincreasing in r̂, this implies that R∗(Ω) is nondecreasing.

Part Two (S∗FBA ≥ S∗LOB). By another application of Topkis’ Theorem, RFBA(r̂) ≥ RLOB(r̂).
Since both correspondences are nonincreasing in r̂, we conclude that R∗

FBA ≥ R∗
LOB. Next,

letting s(r) =
2rλjumpX

λinvest+rλjumpX
, we know that S∗LOB = s(R∗

LOB) and S∗FBA = s(R∗
FBA). Because

s(r) is nondecreasing, we conclude that S∗FBA ≥ S∗LOB.

Part Three (R∗
SD ≥ R∗

LOB). By another application of Topkis’ Theorem, RSD(r̂) ≥ RLOB(r̂).
Since both correspondences are nonincreasing in r̂, we conclude that R∗

SD ≥ R∗
LOB.

Proof of Theorem 6. Our approach is to demonstrate that the outcomes described in the
statement of the theorem constitute the frontier of a relaxed problem. We then show that
outcomes described in the statement of the theorem can be implemented with contracts
that satisfy all original constraints, and therefore they actually constitute the frontier of
the original problem.

Part One (Relaxed Problem). We relax the social planner’s problem in three ways.
First, we eliminate (IC–2). Second, we replace (IR–B) and (IR–S) with the less demanding
condition U ≥ 0, which we denote (IR), where U is defined as the average expected utility
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of investors:

U =
1

2T
∫

T

0
Er [xB,t(JT , IT )ṽT + yB,t(JT , IT ) + θ1{xB,t(JT , IT ) = 1}] dt

+
1

2T
∫

T

0
Er [xS,t(JT , IT )ṽT + yS,t(JT , IT ) + θ1{xS,t(JT , IT ) = −1}] dt

Third, we replace (BB–1), (BB–2), and (IR–H) with the less demanding condition stated
below, which we denote (BB):

Er [xA(JT , IT )ṽT + yA(JT , IT )] +
λinvest

2
∫

T

0
Er [xB,t(JT , IT )ṽT + yB,t(JT , IT )] dt

+
λinvest

2
∫

T

0
Er [xS,t(JT , IT )ṽT + yS,t(JT , IT )] dt ≤ 0

With (IC–2) relaxed, shares of the security are interchangeable with dollars at the rate
ṽT for all parties, with the exception of investors, who derive a utility “bonus” of θ from
xB,t(JT , IT ) = 1 and xS,t(JT , IT ) = −1. It is therefore optimal to set xB,t(JT , IT ) = 1 and
xS,t(JT , IT ) = −1. Furthermore, a sufficient statistic for the “sharing rule” from the social
planner to the analyst is s(JT , IT ) = xA(JT , IT )ṽT + yA(JT , IT ). The relaxed problem can
then be written

max
r(t),s(JT ,IT ),U

{αTλinvestU − (1 − α)∫
T

0
λjump[1 − r(t)]dt}

subject to the constraints

(BB) Er [s(JT , IT )] + Tλinvest (U − θ) ≤ 0,

(IR) U ≥ 0,

(IR–A) ∀JT ∀IT , s(JT , IT ) ≥ 0,

(IC–1) at all t ∈ [0, T ] and conditional on any Jt, the analyst finds it optimal to
conduct research with intensity r(t).

Note that (BB) must hold with equality at the optimum; otherwise it would be possible
to increase U and improve the social planner’s objective. Using that equality, we can rewrite
(IR) as Er[s(JT , IT )] ≤ Tλinvestθ. We can also write the planner’s objective as

αTλinvestθ − αEr[s(JT , IT )] − (1 − α)Tλjump + (1 − α)λjump∫

T

0
r(t)dt,

which, by dropping constant terms, is equivalent to

(1 − α)λjump∫

T

0
r(t)dt − αEr [s(JT , IT )] .

Following arguments made in Holmström and Milgrom (1987) and Breuer (1995), (IC–1)
is equivalent to the following condition: s(JT , IT ) can be written in the form s(JT , IT ) = s0+
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∑t∈J+T∪J−T s(t), and for all t ∈ [0, T ], r(t) ∈ arg maxr̂∈[0,1]{s(t)λjumpr̂ − c(r̂)}. (See Appendix
D for details.) Taking all this into account, the social planner’s problem becomes

max
r(t),s0,s(t)

⎧⎪⎪
⎨
⎪⎪⎩

(1 − α)λjump∫

T

0
r(t)dt − αEr

⎡
⎢
⎢
⎢
⎢
⎣

s0 + ∑
t∈J+T∪J−T

s(t)

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

subject to the constraints

(IR) Er[s0 +∑t∈J+T∪J−T s(t)] ≤ Tλinvestθ,

(IR–A) ∀JT ∀IT , s0 +∑t∈J+T∪J−T s(t) ≥ 0,

(IC–1) ∀t ∈ [0, T ], r(t) ∈ arg maxr̂∈[0,1]{s(t)λjumpr̂ − c(r̂)}.

It follows from (IC–1) that for all t, r(t)c′(r(t)) = r(t)λjumps(t).
34 Additionally, (IR–A)

implies s0 ≥ 0. Moreover this must hold with equality; otherwise the planner could induce
the same research intensity with a less expensive scheme. Evaluating the expectation, (IR)

is equivalent to s0 + ∫
T
0 r(t)λjumps(t)dt ≤ Tλinvestθ, which, combining the previous observa-

tions, can be rewritten as ∫
T
0 r(t)c

′(r(t))dt ≤ Tλinvestθ. The social planner’s objective can
be rewritten in a similar way, so that the problem becomes

max
r(t) ∫

T

0
[(1 − α)λjumpr(t) − αr(t)c

′
(r(t))] dt

subject to ∫

T

0
r(t)c′(r(t))dt ≤ Tλinvestθ

By Assumption 4, rc′(r) is a convex function. Jensen’s inequality (Jensen, 1906) there-
fore implies that the optimum can be achieved with a constant function. The social planner’s
problem therefore reduces to the following static optimization:

max
r∈[0,1]

{(1 − α)λjumpr − αrc
′
(r)}

subject to rc′(r) ≤ λinvestθ

Let r̄ = max{r ∈ [0,1] ∶ rc′(r) ≤ λinvestθ}. Notice that r = 0 is an optimum for α = 1 and
r = r̄ is an optimum for α = 0. Then by the maximum theorem, any r ∈ [0, r̄] is optimal
for some α ∈ [0,1]. Furthermore, given any r ∈ [0, r̄], the flow rate of aggregate investor
expected utility can be recovered as

U = θ −
rc′(r)

λinvest
,

34By Assumption 4, c(⋅) is strictly convex and C1. Therefore this maximization problem has a unique
solution, which satisfies one of the three conditions (i) r(t) = 0 and c′(0) ≥ λjumps(t), (ii) c′(r(t)) = λjumps(t),

or (iii) r(t) = 1 and c′(1) ≤ λjumps(t). It is never optimal for the social planner to set s(t) ≥ c′(1)
λjump

because

she could induce the same research intensity with a less expensive scheme. This leaves cases (i) and (ii), for
either of which the claimed equality holds.
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which establishes that the outcomes described in the statement of the theorem constitute
the frontier of the relaxed problem.

Part Two (Implementation). In this step we complete the proof by arguing that any
outcome described in the statement of the theorem can be implemented by a contract
satisfying all constraints.

Let r ∈ [0, r̄], and let U = θ−
rc′(r)
λinvest

. Then consider the contract described below. At every
time t, the analyst engages in research with intensity r. Furthermore, the analyst reports
Ĵ+T = J+T and Ĵ−T = J−T . One high-frequency trader is identified as the budget breaker; the
other high-frequency traders never receive any payments. The shares and dollars transferred
to the analyst, investors, and the budget breaker are computed as follows. If the analyst

reports a jump at time t, then
c′(r)
λjump

dollars are transferred from the budget breaker’s account

to the analyst’s account. If an investor arrives at time t with a desire to buy, one share

is transferred from the budget breaker’s account to his account, and v̂t +
rc′(r)
λinvest

dollars are
transferred in the opposite direction. If an investor arrives at time t with a desire to sell,

one share is transferred from his account to the budget breaker’s account, and v̂t −
rc′(r)
λinvest

dollars are transferred in the opposite direction.
It is straightforward to verify that this contract implements constant research intensity

r and average expected utility of investors U . Moreover, it can be verified that this contract
satisfies all original constraints. Verification of (BB–1), (BB–2), (IR–B), (IR–S), (IR–A),
and (IC–2) is immediate. (IR–H) holds since the flow profits of the budget breaker are zero:

λinvest
rc′(r)

λinvest
− rλjump

c′(r)

λjump
= 0.

It is also easy to see that (IC–1) holds, since r = arg maxr̂ {r̂λjump
c′(r)
λjump

− c(r̂)}.

Proof of Proposition 9. As demonstrated in the proof of Theorem 6, the research inten-
sity in an optimal point on the frontier satisfies

r∗ ∈ arg max
r∈[0,1]

{(1 − α)λjumpr − αrc
′
(r)}

subject to rc′(r) ≤ λinvestθ

For the comparative statics with respect to α and λjump, the claims about research intensity
follow immediately from Topkis’ Theorem. Furthermore, the claims about investor utility

follow from the relationship U∗ = θ − r∗c′(r∗)
λinvest

.
For the comparative statics with respect to θ and λinvest, there are two cases. First, the

constraint might be binding. In this case, a small increase in either θ or λinvest adds slack to
the constraint, which allows for a small increase in r∗, while U∗ remains constant at zero.
Second, the constraint might not be binding. In this case, a small increase in either θ or
λinvest does not affect r∗, but raises U∗.

Proof of Corollary 7. In the limit order book, selective delay, and frequent batch auction
equilibria, the average expected utility of investors is determined by the spread through
U = θ − s

2 . Therefore, by Theorem 6, an equilibrium outcome of one of these trading
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mechanisms lies on the frontier if and only if the equilibrium spread, s∗, is related to the
equilibrium research intensity, r∗, through the equation

r∗c′(r∗) = λinvest
s∗

2
. (11)

In fact, the equilibrium research intensities r∗LOB, r∗SD, and r∗FBA are characterized,
respectively, by the intersections of the following functions with the forty-five degree line
(note that with the addition of Assumption 3, the problem is concave, and so the argmax
is now unique):

rLOB(r̂) = arg max
r∈[0,1]

⎧⎪⎪
⎨
⎪⎪⎩

rλjumpλinvest [X − (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjumpX
− c(r)

⎫⎪⎪
⎬
⎪⎪⎭

rSD(r̂) = arg max
r∈[0,1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rλjumpλinvest [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]
− c(r)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

rFBA(r̂) = arg max
r∈[0,1]

{
rλjumpλinvestX

λinvest + r̂λjumpX
− c(r)}

And with Assumption 4, we then obtain the following equations:35

r∗LOBc
′
(r∗LOB) =

r∗LOBλjumpλinvest [X − (X − 1)e−(δH+δE)/µA]

λinvest + r∗LOBλjumpX

r∗SDc
′
(r∗SD) =

r∗SDλjumpλinvest [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r∗SDλjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

r∗FBAc
′
(r∗FBA) =

r∗FBAλjumpλinvestX

λinvest + r∗FBAλjumpX

In addition, from equations (1), (4), and (7), we also have

s∗LOB =
2r∗LOBλjumpX

λinvest + r∗LOBλjumpX

s∗SD =
2r∗SDλjump [X −

µA
µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r∗SDλjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

s∗FBA =
2r∗FBAλjumpX

λinvest + r∗FBAλjumpX

Comparing these expressions to the condition for being on the frontier, equation (11), we
find that the selective delay equilibrium and the frequent batch auction equilibrium lie on

35By Assumptions 3 and 4, c(⋅) is strictly convex, C1, and limr→1 c(r) = ∞. Therefore this maximization
problem has a unique solution, which is either a corner solution at zero or an interior solution. These
equalities hold in either case.
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the frontier. Furthermore, the limit order book equilibrium lies on the frontier if and only
if (X − 1)e−(δH+δE)/µA = 0. Since δH and µA are both assumed to be “on the order of ε,”
this is the case if and only if either X = 1 or δE is infinitely larger than ε.

Proof of Corollary 8. Suppose that (r,U) is an outcome on the frontier in which r ∈

[0, r̄′]. By Theorem 6, U = θ −
rc′(r)
λinvest

.

Then consider frequent batch auctions with X ′′ = λinvestc
′(r)

λjump[λinvest−rc′(r)] exchanges. While

Assumption 1 and 2 may not hold when the number of exchanges is X ′′, their role was
only to ensure that the spread did not exceed min{1,2θ}. We therefore suppose for the
moment that this is the case, and we verify it later. Given Assumptions 3 and 4, we can
then follow arguments from the proof of Corollary 7 to see that frequent batch auctions
with X ′′ exchanges will implement a research intensity r∗ that satisfies

r∗c′(r∗) =
r∗λjumpλinvestX

′′

λinvest + r∗λjumpX ′′ = rc
′
(r)

By strict convexity of c(⋅), this uniquely pins down r∗ = r. Furthermore, the spread will be

s∗ =
2rλjumpX

′′

λinvest + rλjumpX ′′ =
2rc′(r)

λinvest
, (12)

which implies that the average expected utility of investors in this equilibrium is U . It only
remains to verify that s∗ ≤ min{1,2θ}. However, this follows immediately from equation
(12) and the fact that r ∈ [0, r̄′]. We conclude that the outcome (r,U) can be implemented
by frequent batch auctions with X ′′ exchanges.

Finally, it can be shown through similar methods that the outcome (r,U) can be im-
plemented by a selective delay with X ′ exchanges, where

X ′
=
X ′′ − µA

µA+µH e
−(δH+δE)/µA

1 − µA
µA+µH e

−(δH+δE)/µA
.

B Additional Results

In this appendix, we augment the results discussed in the main text with some additional re-
sults that may be of interest. Appendices B.1 and B.2 discuss how the equilibrium outcomes
prevailing under a selective delay and frequent batch auctions depend upon the parameters
of the model. Appendix B.3 discusses another alternative trading mechanism that has been
proposed: implementing a minimum resting time for quotes. We find that this generates
equilibrium outcomes identical to those prevailing under a limit order book. Appendix B.4
discusses the implications of consolidating data centers of all exchanges to a single loca-
tion. We find that this generates equilibrium outcomes identical to those prevailing under
frequent batch auctions.
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B.1 Selective Delay Comparative Statics

This section uses the characterization of equilibrium outcomes under a selective delay given
in Theorem 3 to study how these outcomes vary with the parameters of the model. Formally,
let S∗SD and R∗

SD denote the set of equilibrium spreads and research intensities that occur
in equilibria of the form described in Theorem 3. The comparative statics of these sets
with respect to the parameters of the model are given by the following theorem, and for
additional convenience are also summarized in Table 3.

Theorem 10. Within the set of parameters that satisfy Assumptions 1 and 2, the selec-
tive delay equilibrium sets of bid-ask spreads, S∗SD, and research intensities, R∗

SD, have the
following comparative statics (in the strong set order):

(i) S∗SD is nondecreasing in δE, nondecreasing in δH , nonincreasing in µA, nonincreasing
in λinvest, nondecreasing in λjump, and nondecreasing in X.

(ii) R∗
SD is nondecreasing in δE, nondecreasing in δH , nonincreasing in µA, nondecreasing

in λinvest, nondecreasing in λjump, and nondecreasing in X.

Table 3: summary of predictions of Theorem 10

δE δH µA λinvest λjump X

S∗SD + + − − + +

R∗
SD + + − + + +

Proof of Theorem 10. As is evident from equation (4), the bid-ask spread is ceteris
paribus, (i) nondecreasing in research intensity, (ii) nondecreasing in δE , (iii) nondecreasing
in δH , (iv) nonincreasing in µA, (v) nonincreasing in λinvest, (vi) nondecreasing in λjump,
and (vii) nondecreasing in X. Applying Topkis’ Theorem to equation (5), we see that re-
search intensity is ceteris paribus, (i) nonincreasing in the spread, (ii) nondecreasing in δE ,
(iii) nondecreasing in δH , (iv) nonincreasing in µA, (v) constant in λinvest, (vi) nondecreasing
in λjump, and (vii) nondecreasing in X. By combining these observations, we establish all
claimed comparative statics except those of R∗

SD with respect to δE , δH , µA, λjump, and X.
Recall that the set of equilibrium research intensities, R∗

SD, is the intersection of RSD(r̂),
given below, with the forty-five degree line:

RSD(r̂) = arg max
r∈[0,1]

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

rλjumpλinvest [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]

λinvest + r̂λjump [X −
µA

µA+µH (X − 1)e−(δH+δE)/µA]
− c(r)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

By Topkis’ theorem, RSD(r̂) is nonincreasing in r̂, nondecreasing in δE , nondecreasing in
δH , nonincreasing in µA, nondecreasing in λjump, and nondecreasing in X. We conclude
that R∗

SD has the claimed comparative statics with respect to these parameters.

Intuition for the comparative statics with respect to δE , δH , µA, λinvest, and λjump is
analogous to that under the limit order book discussed in Section 4.2. Intuition for the
comparative statics with respect to X is as follows. The addition of another exchange
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increases the number of venues at which the analyst may trade after observing a jump,
which increases the returns to research and incentivizes a higher research intensity. The
higher research intensity increases the adverse selection faced by the liquidity provider, who
quotes a larger spread in response.36

B.2 Frequent Batch Auctions Comparative Statics

This section uses the characterization of equilibrium outcomes with frequent batch auctions
given in Theorem 4 to study how these outcomes vary with the parameters of the model.
Formally, let S∗FBA and R∗

FBA denote the set of equilibrium spreads and research intensities
that occur in equilibria of the form described in Theorem 4. The comparative statics of
these sets with respect to the parameters of the model are given by the following theorem,
and for additional convenience are also summarized in Table 4.

Theorem 11. Within the set of parameters that satisfy Assumptions 1 and 2, the frequent
batch auction equilibrium sets of bid-ask spreads, S∗FBA, and research intensities, R∗

FBA,
have the following comparative statics (in the strong set order):

(i) S∗FBA is nonincreasing in λinvest, nondecreasing in λjump, and nondecreasing in X.

(ii) R∗
FBA is nondecreasing in λinvest, nondecreasing in λjump, and nondecreasing in X.

Table 4: summary of predictions of Theorem 11

λinvest λjump X

S∗FBA − + +

R∗
FBA + + +

Proof of Theorem 11. As is evident from equation (7), the bid-ask spread is ceteris
paribus, (i) nondecreasing in research intensity, (ii) nonincreasing in λinvest, (iii) nonde-
creasing in λjump, and (iv) nondecreasing in X. Applying Topkis’ Theorem to equation (8),
we see that research intensity is ceteris paribus, (i) nonincreasing in the spread, (ii) con-
stant in λinvest, (iii) nondecreasing in λjump, and (iv) nondecreasing in X. By combining
these observations, we establish all claimed comparative statics except those of R∗

FBA with
respect to X and λjump.

Recall that the set of equilibrium research intensities, R∗
FBA, is the intersection of

RFBA(r̂), given below, with the forty-five degree line:

RFBA(r̂) = arg max
r∈[0,1]

{
rλjumpλinvestX

λinvest + r̂λjumpX
− c(r)}

36This is in contrast to under the limit order book, in which there is an ambiguous relationship between
research intensity and X. The crucial difference is that with a selective delay, increased adverse selection by
the analyst is the only channel through which the costs of the liquidity provider rise. On the other hand,
in the limit order book, the costs of the liquidity provider also rise as a result of increased adverse selection
from stale-quote snipers. These additional costs push the spread even higher, possibly to the point that the
returns to research—and therefore equilibrium research intensity—would actually decline. With a selective
delay, this additional cost is absent, and research intensity is unambiguously nondecreasing in X.
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By Topkis’ theorem, RFBA(r̂) is nonincreasing in r̂, nondecreasing in λjump, and nonde-
creasing in X. We conclude that R∗

FBA has the claimed comparative statics with respect to
λjump and X.

Intuition for the comparative statics with respect to λinvest and λjump is analogous to
that under the limit order book discussed in Section 4.2. Intuition for the comparative
statics with respect to X is analogous to that under a selective delay discussed in Appendix
B.1. However, in contrast to before, there are no comparative statics with respect to δE ,
δH , and µA. This is because these parameters control the fraction of quoted orders that the
analyst expects to convert into fills. With frequent batch auctions, the analyst converts all
orders, and therefore changes in these parameters have no effect.

B.3 Minimum Resting Time

Another proposal that has received significant attention from policymakers is the imple-
mentation of a minimum resting time for quotes, or a requirement that limit orders cannot
be cancelled until, at the earliest, some fixed amount of time after submission. A half-
second minimum resting time received strong consideration from the European Parliament
for inclusion in MiFID II, before eventually being dropped from the legislation (Stafford,
2013). A similar proposal was also considered by the Australian Securities & Investments
Commission (ASIC), but ultimately rejected (Medcraft, 2013). Minimum resting times have
received mention from policymakers in the United States as well (SEC, 2010).37

Those who support this type of policy intervention seem to do so because they view
it as a way of “slowing down” high-frequency traders, which they believe would improve
outcomes for ordinary traders. On the other hand, many oppose this policy because it
“slows down” the “good” high-frequency traders (i.e. liquidity providers) without doing
the same to the “bad” high-frequency traders (i.e. stale-quote snipers), which they believe
would worsen outcomes by raising spreads.

However, in this model, a minimum resting time would have no effect whatsoever on
equilibrium behavior, relative to that under a limit order book. In the limit order book,
the liquidity provider never successfully cancels her mispriced quotes before they are hit by
an analyst or a stale-quote sniper. Therefore, a prohibition against canceling orders soon
after submission would not change the incentives of any traders in any way. Formally, the
equilibrium of the limit order book identified in Theorem 1 remains an equilibrium under
a minimum resting time.

B.4 Data Center Consolidation

A trend toward data center consolidation has been another recent trend affecting modern
financial markets (TABB Group, 2014). A notable example of this phenomenon are the
BATS and Direct Edge Exchanges who plan to consolidate into a single data centers in
Secaucus, NJ in 2015 (BATS, 2014).

37Despite the attention that minimum resting times have received, there have been few studies of the
topic. An exception is Brewer, Cvitanić, and Plott (2012).
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The model also allows us to speak to the consequences of this development. Data center
consolidation might manifest itself within this model as the introduction of correlation
across exchanges of communication latency.

Formally, suppose that the correlation structure of communication latency presented in
Section 3.2 were instead replaced with the following correlation structure. Let Li,t denote
the amount of latency for an order submitted by trader i to any exchange at time t. We
assume the following correlation structure: Li,t = Li′,t′ if i = i′ and ∣t− t′∣ is an infinitesimal;
they are otherwise independent.

If the model were adjusted in this way, then equilibrium outcomes would be identical to
those that prevail under frequent batch auctions, characterized in Theorem 4. The intuition
is the same: an analyst becomes able to trade against all mispriced quotes before high-
frequency traders react. Whereas batching makes this possible by synchronizing the time
of trade across exchanges, data center consolidation makes this possible by synchronizing
the time of order arrival across exchanges.

C Benefits of Price Efficiency

This appendix discusses rationales for the social value of price efficiency. First, price effi-
ciency may be a positive externality for economic agents outside the financial system. The
literature has identified a number of channels through which this may be the case, which
are summarized in Appendix C.1.

Second, if investors are risk-averse, then they may prefer information to be incorporated
into prices as soon as possible in order to reduce the amount of uncertainty that is resolved
after they trade. In the baseline version of the model, this effect is not explicitly modeled
because investors are risk-neutral. However, in Appendix C.2, we consider an extension in
which risk-averse investors prefer higher price efficiency in addition to lower spreads.

C.1 Positive Externality

Price efficiency may be a positive externality for agents in the economy outside the finan-
cial system. By conveying information to real-world decision-makers, price efficiency can
improve economic efficiency. The literature has identified several channels through which
price efficiency may influence economic efficiency.38 Spurred by Baumol (1965), the liter-
ature has tended to focus on two such channels: the incentive channel and the learning
channel.

The incentive channel is that higher price efficiency assists a board of directors in gauging
a manager’s performance, thus enabling them to provide better incentives for the manager,
and thereby raising the manager’s effort. Diamond and Verrecchia (1982), Fishman and
Hagerty (1989), and Holmström and Tirole (1993) provide theoretical models of this channel.
Kang and Liu (2008) and Ferreira, Ferreira, and Raposo (2011) find empirical evidence
consistent with the predictions of these models.

The learning channel is that higher price efficiency provides better feedback to firm
managers, thus enabling them to make better decisions. Dow and Gorton (1997) and Sub-

38See Bond, Edmans, and Goldstein (2012) for a review of the literature on the effects of financial markets
on the real economy.
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rahmanyam and Titman (1999) provide theoretical models of this channel. Chen, Goldstein,
and Jiang (2007), Bakke and Whited (2010), Kau, Linck, and Rubin (2008), and Luo (2005)
find empirical evidence consistent with the operation of this channel.

In addition, higher degrees of price efficiency may be especially valuable for promoting
efficient investment by “equity-dependent” firms (i.e. firms able to raise funds only through
the issue of equity). Such a firm may be discouraged from undertaking an investment in the
event that its stock price falls far below its fundamental value.39 Higher degrees of price
efficiency reduce the probability that this effect prevents a productive investment.

There may also be several other channels through which price efficiency might raise
economic efficiency beyond those specifically discussed above. In particular, the information
contained in prices may be used by other real-world decision-makers, including employees,
customers, credit-rating agencies, regulators, and blockholders, all of whom take actions
that may influence the efficiency of resource allocation.40

C.2 Risk-Averse Investors

Risk averse investors may also prefer higher price efficiency. In this section, we present
an alternate version of the model that features risk averse investors. In this version, the
equilibrium utility of investors is determined not only by the spread, as in the baseline
model, but also by price efficiency.

The only differences between the primitives of this version and those of the baseline
model are in terms of the utility functions of investors. The first difference is that investors
face a delay cost: an investor who arrives at time t with a need either to buy or to sell
receives infinite disutility if this need is not satisfied by some time t′ ≃ t.41 The equivalence
relation t ≃ t′ (read “t is infinitely close to t′ ”) is defined to be the case if and only if t − t′

is an infinitesimal.
The second difference is that investors who satisfy their need to transact receive the

utility u(vT − p) if they buy at price p, and u(p − vT ) if they sell at price p, where u is an
increasing and concave function.

Suppose a particular trading mechanism gives rise to an equilibrium in which (i) there
is a constant spread s∗, (ii) there is a constant research intensity r∗, (iii) all investors fill
their demand within an infinitesimal interval after arrival, and (iv) jumps are observed by
the analyst are incorporated into prices within an infinitesimal interval after arrival, and
the midprice does not otherwise change. We demonstrate that in such an equilibrium, the
utility of investors is not only a nonincreasing function of the equilibrium spread, but also
a nondecreasing function of the equilibrium level of research intensity (which, as we have
seen, is directly tied to price efficiency).

39Baker, Stein, and Wurgler (2003) and Chen, Goldstein, and Jiang (2007) find empirical evidence of this
effect.

40For example, Faure-Grimaud and Gromb (2004) argue that higher levels of price efficiency increase the
incentives of blockholders to take actions that increase the value of the company. Additionally, several
papers have documented a relationship between price efficiency and economic efficiency without identifying
a particular channel. Examples include Durnev, Morck, and Yeung (2004) and Wurgler (2000).

41Rather than infinite disutility, we only need the delay cost to be sufficiently large relative to the amount of
risk aversion that delaying trade is never optimal. However, we make this assumption in order to circumvent
a tedious discussion of what would constitute a “sufficiently large” delay cost.
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In such an equilibrium, the expected utility of an investor who arrives at time t with a

need to buy is U bt (s
∗, r∗) = E [u (vT − ṽt −

s∗
2 ) ∣ r∗]. Similarly, the expected utility of an

investor who arrives at time t with a need to sell is U st (s
∗, r∗) = E [u (ṽt − vT −

s∗
2 ) ∣ r∗].

By symmetry of the jump process, U bt (s
∗, r∗) = U st (s

∗, r∗) = Ut(s∗, r∗).

Theorem 12. Ut(s
∗, r∗) is nonincreasing in s∗ and nondecreasing in r∗.

Proof of Theorem 12. The effect of s∗ follows immediately from u being nondecreasing.
As we argue below, the effect of r∗ follows from the concavity of u. In what follows, J
represents the random variable that denotes the number of unobserved jumps between time
zero and time t. Furthermore, fjump represents the probability mass function that places
probability 1

2 on both −1 and +1.

Ut(s
∗, r∗) = E [u(vT − ṽt −

s∗

2
) ∣ r∗]

= E [u(vT − vt + vt − ṽt −
s∗

2
) ∣ r∗]

=
∞
∑
d=−∞

⎡
⎢
⎢
⎢
⎢
⎣

∞
∑
j=0

⎡
⎢
⎢
⎢
⎢
⎣

j

∑
k=−j

u(d + k −
s∗

2
)P(vt − ṽt = k ∣ J = j)

⎤
⎥
⎥
⎥
⎥
⎦

P(J = j ∣ r∗)
⎤
⎥
⎥
⎥
⎥
⎦

P(vT − vt = d)

In the above, d indexes vT − vt, the net change in value between t and T ; j indexes the
number of unobserved jumps between 0 and t; and k indexes vt− ṽt, the net change in value
due to unobserved jumps between 0 and t. We use the fact that vT − vt and vt − ṽt are
independent random variables.

We first note that P(vt − ṽt = k ∣ J = j) = f∗jjump(k), where f∗jjump denotes the jth convo-

lution power of fjump. For any j, f∗jjump is a mean-preserving spread of f
∗(j−1)
jump . Therefore,

f∗jjump is nonincreasing in j in the sense of second-order stochastic dominance. Thus, by the

concavity of u, for any fixed d, ∑
j
k=−j u (d + k − s∗

2 )P(vt − ṽt = k ∣ J = j) is nonincreasing in
j.

For a given r∗, J follows a Poisson distribution with mean t(1 − r∗)λjump. This distri-
bution is nonincreasing in r∗ in the sense of first-order stochastic dominance. Combining this

observation with the above paragraph allows us to conclude that∑∞j=0 [∑
j
k=−j u (d + k − s∗

2 )P(vt − ṽt = k ∣ J = j)]P(J =

j ∣ r∗) is nondecreasing in r∗ for any fixed d. Then, finally, we conclude that Ut(s
∗, r∗) is

nondecreasing in r∗.

D Implementation of Repeated Principal-Agent Problem

In this section, we demonstrate that (IC–1) is equivalent to the condition that s(JT , IT )
can be written in the form s(JT , IT ) = s0(IT ) + ∑t∈J+T∪J−T s(t), where for all t ∈ [0, T ],

r(t) ∈ arg maxr̂∈[0,1]{s(t)λjumpr̂ − c(r̂)}. The analysis relies heavily on Holmström and
Milgrom (1987) and closely follows arguments made in Breuer (1995).
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D.1 Implementation in the Single Period Problem

Consider a risk-neutral principal who interacts with a risk-neutral agent over the time
interval [0, 1

N ]. At each time τ ∈ [0, 1
N ], the agent chooses the arrival rate of a Poisson

process as r1(τ) ∈ [0, 1
N ] at the cost ∫

1/N
0 c(r1(τ))dτ . Let x1 be the random variable that

is the number of arrivals. Suppose that no information about x1 is available to either party
until time 1

N . The function r1(τ) is implementable by the sharing rule s(x1) if

r1(τ) ∈ arg max
r̂1

{Er̂1 [s(x
1
)] − ∫

1/N

0
c(r̂1(τ))dτ}

Notice that

Er1 [s(x
1
)] = e−

1
N ∫

1/N
0 r1(τ)dτ

∞
∑
k=0

( 1
N ∫

1/N
0 r1(τ)dτ)

k

k!
s(k)

= s(0) + e−
1
N ∫

1/N
0 r1(τ)dτ

∞
∑
k=1

( 1
N ∫

1/N
0 r1(τ)dτ)

k

k!
[s(k) − s(0)]

so the implementation condition can be rewritten as

r1(τ) ∈ arg max
r̂1

⎧⎪⎪
⎨
⎪⎪⎩

Ne−
1
N ∫

1/N
0 r̂1(τ)dτ

∞
∑
k=1

( 1
N ∫

1/N
0 r̂1(τ)dτ)

k

k!
[s(k) − s(0)] − ∫

1/N

0
c(r̂1(τ))dτ

⎫⎪⎪
⎬
⎪⎪⎭

D.2 Implementation in the Multiple Period Problem

Now suppose that the principal and agent interact over the time interval [0,1]. At each
time τ ∈ [0,1], the agent chooses the arrival rate of a Poisson process as r(τ) ∈ [0,1] at
the cost ∫

1
0 c(r(τ))dτ . Let xn denote the random variable that is the number of arrivals in

the interval [
(n−1)
N , nN ]. Let Xn = (x1, . . . , xn). Suppose that no information about xn is

released to either party until the time n
N . Let rn(τ) be the restriction of r(τ) to the domain

[
(n−1)
N , nN ].

Theorem 4 of Holmström and Milgrom (1987) implies that the sharing rule s(XN)

implements r(τ) if and only if it can be written in the form

s(XN
) =

N

∑
n=1

sn(x
n
),

where each rn(τ) is implementable by sn(x
n) in the single-period problem.

D.3 Implementation in the Continuous Time Limit

We treat continuous time as the discrete time limit (as N →∞) of the multiple period prob-
lem discussed above. As N →∞, the condition for single-period implementation converges

54



to
r ∈ arg max

r̂∈[0,1]
{[s(1) − s(0)]r̂ − c(r̂)} .

Let X∗ denote the set of times in [0,1] at which an arrival occurred. As N → ∞, the
information contained in XN converges to X∗. Thus, taking the limit of the multiple period
problem as N →∞, the sharing rule s(X∗) implements r(τ) if and only if it can be written
in the form

s(X∗
) = s0 + ∑

τ∈X∗
ŝ(τ), (13)

where for all τ ∈ [0,1],

r(τ) ∈ arg max
r̂∈[0,1]

ŝ(τ)r̂ − c(r̂). (14)

Of course, s0 and ŝ(τ) could possibly be functions of exogenous random variables (e.g. in
the context of Section 6, the investor arrival history) rather than constants. However, it will
not be optimal to condition on these random variables, and so we ignore this possibility.
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