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How are optimal taxes affected by superstar phenomena? To answer this question, we

extend the Mirrlees model to incorporate an assignment problem in the labor market

that generates superstar effects. Perhaps surprisingly, rather than providing a rationale

for higher taxes, we show that superstar effects provide a force for lower marginal taxes

conditional on the observed distribution of earnings. Superstar effects make the earn-

ings schedule convex, which increases the responsiveness of individual earnings to tax

changes. We show that various common elasticity measures must be adjusted upwards

in optimal tax formulas. Finally, we study a comparative static that does not keep the

observed earnings distribution fixed: when superstar technologies are introduced, in-

equality increases but we obtain a neutrality result, finding optimal taxes unaltered.

1 Introduction

Top earners make extraordinary figures, with differences in pay that, as one moves up the
scale, eclipse any apparent differences in skill. One way economists have sought to ex-
plain this phenomenon is by appealing to superstar effects—to use the term coined by Rosen
(1981) in the seminal contribution on the topic. According to this theory, better workers end
up at better jobs, with greater complementary resources at their disposal, and this magnifies
workers’ innate skill differences. In principle, due to superstar effects, someone barely 5%
more productive, at any given task, may earn 10 times more.

Models with such superstar effects have therefore been widely used to explain the ob-
served income inequality in a variety of labor markets. For example, Gabaix and Landier
(2008) and Terviö (2008) have shown that they are extremely successful in explaining the em-
pirical distribution of CEO compensation.1 Moreover, there are reasons to believe that the
impact of superstar effects on inequality has been growing recently, e.g. due to globalization

∗In memory of Sherwin Rosen. We thank numerous superstar economists for useful comments.
1For recent overviews, see e.g. Edmans and Gabaix (2015) and Garicano and Rossi-Hansberg (2015).
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and the rising importance of information technology, which provide increasing leverage for
highly skilled individuals. This raises the question: should superstars pay superstar taxes?

Our goal is to answer this question by studying the taxation of earnings in the presence
of superstar effects. Following Mirrlees (1971), a vast theoretical and applied literature has
provided insights into the forces that should shape tax schedules. Particular attention has
been given to taxes at the top. Given this focus, the absence of superstar effects in the anal-
yses is, potentially, an important omission. Our first contribution is to incorporate these
effects into the standard optimal tax model.

With earnings in disproportion to inherent skills, it may appear intuitive that superstar
effects tilt the calculus balancing efficiency and equality, exacerbating inequality, and lead-
ing to higher taxes. Perhaps surprisingly, our results are the opposite. Depending on the
exercise, we find that superstar effects are either neutral or provide a force for lower taxes.

It is useful to break up the broader question regarding the taxation of superstars by pos-
ing two distinct and sharper questions, as follows:

Question I. Given a tax schedule and an observed distribution of earnings, how do the
conditions for the efficiency of this tax schedule depend on superstar effects?

Question II. Given a distribution of skills and preferences, how are optimal tax rates af-
fected by superstar effects that may affect the distribution of earnings?

Question I holds the observed distribution of earnings fixed. The motivation for doing so
is that the earnings distribution is an empirical datum to policymakers at any moment. In-
deed, the earnings distribution has been recognized as a key input into optimal tax formu-
las in standard analyses without superstars (Saez, 2001). If anything, what is not directly
observable is the extent to which, in the background, superstar effects shape the observed
distribution. Hence, it is imperative to consider hypothetical scenarios that turn superstar ef-
fects on and off while holding the earnings distribution fixed. Doing so establishes whether
superstar effects matter per se, in addition to their impact on the distribution of earnings.

In contrast, Question II is based on a comparative static, one that envisions a change
in technology holding other primitives fixed. As a result, the distribution of earnings is
no longer held fixed: skill differences are potentiated and inequality rises when superstar
effects emerge. Such a comparative static exercise becomes policy relevant if one wishes
to anticipate future changes in technology driven by superstar phenomena. Indeed, many
current discussions of inequality and technological change are cast in terms of a trend or
adjustment process that is still ongoing, as in the literature on the growing importance of in-
formation technology and automation. For such hypothetical extrapolations, a comparative
static result is precisely what is required.

We obtain three main results, of which the first two are geared towards Question I.
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Result 1. The conditions for the efficiency of a tax schedule are unchanged relative to the
standard Mirrlees model when expressed in terms of two sufficient statistics: the distri-
bution of earnings and the earnings elasticities with respect to individual tax changes.

According to this result, superstar effects do not directly affect whether taxes are optimal
or suboptimal, as long as we condition on the observed distribution of earnings and on the
elasticities of earnings with respect to individual tax changes, at each point in this distri-
bution. These are the same statistics that emerge in the standard Mirrlees setting, where
superstar effects are absent, and the conditions for efficient taxes are identical.

We view this neutrality result as an important conceptual benchmark that stresses that, at
least in theory, with just the right information nothing needs to be changed. As our second
result stresses, in practice, however, things are more challenging. In particular, unless one
obtains the elasticity of earnings off of superstar workers, using individual tax changes that
do not give rise to general equilibrium effects, one must recognize that the required earnings
elasticities are affected by the presence of superstar effects.

Result 2. Superstar effects increase earnings elasticities relative to measures that omit super-
star effects; this provides a force for lower taxes for a given distribution of earnings.

According to this result, typical elasticities must be adjusted upwards and we provide for-
mulas for undertaking such adjustments. As usual, higher elasticities provide a force for
lower tax rates. In particular, the top tax rate should be lower.2

Why is it that superstar effects increase individual earnings elasticities? There are several
forces at work, the most basic of which is based on the Le Chatelier principle. In assignment
models, workers sort into jobs and the equilibrium earnings schedule reflects the earnings
across these different jobs. The availability of different job options tends to make the earn-
ings schedule convex. This, in turn, increases the behavioral response to any tax change.
Intuitively, a worker induced to provide greater effort by way of lower taxes anticipates be-
ing matched with a better job, with better pay, and this further amplifies the incentive for
effort.3 Thus, earnings elasticities that do not correctly capture this reallocation, which we
call “fixed-assignment” elasticities, are too low.

An additional, mechanical bias arises if one starts with earnings elasticities for non-
superstar workers, for whom earnings are proportional to effort. This then identifies what
we call “effort” elasticities. Suppose we try to extrapolate such effort elasticities to workers
in superstar positions. Because earnings are a convex function of effort for superstar work-
ers, any percentage change in effort induces a greater percentage change in earnings. As a
result, the earnings elasticity must also be adjusted upwards relative to the effort elasticity.

2This does not imply that taxes should be low in absolute terms, or lower than current levels. It establishes a
downward force on optimal taxes, coming from superstar effects, compared to an economy with no superstars.

3As we discuss further below, we adopt a broad notion of effort here.
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Finally, we require elasticities with respect to individual tax changes. In contrast, often
one starts with evidence from economy-wide tax changes, or “macro” elasticities, which
induce general equilibrium effects. We show that for progressive tax schedules these general
equilibrium effects create a further bias. In our benchmark cases, the macro elasticity either
coincides with the effort elasticity, or is even further downward biased.

This discussion underscores that properly measuring the earnings elasticity required for
Result 1 demands a number of conditions to be met. First, the tax change cannot be tempo-
rary or unexpected—so that the workers have time for any desired job reallocation. Second,
we must observe a superstar worker—to make sure we estimate an earnings rather than
effort elasticity. Third, tax changes must be individual in nature—to avoid general equilib-
rium effects in the earnings schedule. Otherwise, Result 2 provides the necessary upward
adjustment factors for each of the three elasticity measures discussed above.

Our approach of expressing the optimality conditions in terms of sufficient statistics,
namely the distribution and elasticities of earnings, allows us to use the parametrization
of Gabaix and Landier (2008), who provide an application to CEOs, to inform the required
adjustments. They turn out quantitatively significant. For instance, for an elasticity of .25
that ignores job reassignment, the correct earnings elasticity is 1. As discussed, even greater
adjustments are required for effort and macro elasticities.

Our third result provides a sharp answer to Question II, the comparative static that in-
troduces superstar effects without holding the distribution of earnings fixed.

Result 3. Superstars are neutral with respect to comparative statics: when holding prefer-
ences and the distribution of skills fixed, the conditions for the efficiency of a marginal
tax rate schedule do not depend on whether superstar effects are present.

This exercise considers a change in technology, introducing superstar effects, which gener-
ally increases earnings inequality. The neutrality result is based on the fact that the condi-
tions for Pareto efficiency can be expressed in terms of the primitive distribution of skills
and the elasticity of effort, determined by preferences only and invariant to the presence of
superstar effects, unlike the elasticity of earnings.

This suggests that when superstars are introduced optimal tax rates remain unchanged.
Indeed, this is the case in natural benchmark cases. The only caveat is that when performing
such a comparative static the allocation will generally change, even if taxes do not, and effort
elasticities may depend on where they are evaluated. Likewise, for any given social welfare
function, marginal social welfare weights may depend on where they are evaluated. Nev-
ertheless, when elasticities are constant and marginal social welfare weights are unchanged,
then marginal tax rates are unchanged. In particular, this holds at the top of the distribution
when the welfare weight converges to zero, e.g. with a utilitarian social welfare function.
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How does this last neutrality result relate to our two previous results? Result 1 shows
that the distribution of earnings affects efficient tax schedules. Typically, the higher inequal-
ity that comes with superstar effects will justify higher tax rates. On the other hand, Result 2
shows that superstar effects increase the elasticity of earnings. According to Result 3, these
two opposing effects on optimal taxes precisely cancel out.

Related Literature. We build on the literature on assignment models that generate super-
star effects, surveyed in Sattinger (1993) and more recently Edmans and Gabaix (2015) and
Garicano and Rossi-Hansberg (2015). This positive literature has shown how these models
can explain observed patterns of occupational choice and income inequality. We add a nor-
mative perspective, characterizing optimal redistribution and taxation in a broad class of
models used in the literature. Our baseline model is a general one-to-one assignment model
between workers and jobs that captures, for example, Terviö (2008) and Gabaix and Landier
(2008). Indeed, we inform our elasticity adjustments using the empirical results of Gabaix
and Landier (2008), and provide a fully specified parametric example that is able to match
their evidence. We also extend the analysis to other settings, such as the one-to-many span-
of-control models developed by Lucas (1978) and Rosen (1982), as well as the organizational
hierarchy models in Garicano (2000) and Garicano and Rossi-Hansberg (2015).

Our paper incorporates a richer labor market into the canonical Mirrlees model, which
features the most basic environment where wage differences simply reflect exogenous skill
differences. Recent contributions have enriched the Mirrlees model with worker sorting
across jobs and their general equilibrium effects. In particular, Rothschild and Scheuer (2013)
and Ales et al. (2015b) show how endogenous sectoral wages and assignments affect optimal
income taxes. In these models, relative wages enter incentive constraints. The planner sets
taxes with an eye towards influencing these relative wages so as to relax these constraints,
generalizing the insight from the two-type model by Stiglitz (1982). The same effect is fea-
tured in Scheuer (2014) and Ales et al. (2015a), who focus on occupational choice between
workers and managers and the role of endogenous firm size. The latter paper also works
with a version of the span-of-control model of Lucas (1978) and Rosen (1982), as we do in
one of our extensions, although our adaptation is different in crucial aspects.

While our paper is part of this greater agenda incorporating important features of real-
world labor markets into optimal tax analysis, it is quite distinct. Crucially, we focus on su-
perstar effects, which none of the above papers have considered. Indeed, in all these papers
each individual faces a linear earnings schedule—whereas a convex schedule is the defining
characteristic of superstar phenomena. To isolate the effect of superstars, we purposefully
abstract from Stiglitz effects, the central focus of the above literature over the standard Mir-
rlees model. Moreover, although our model incorporates a richer labor market and features
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an equilibrium-determined wage schedule, our results are not driven by general equilibrium
effects from tax changes, as is the case with Stiglitz effects. Indeed, Results 1 and 2 call for
“partial equilibrium” earnings elasticities with respect to individual tax changes.

We also abstract from externalities and other inefficiencies, such as unproductive rent-
seeking or positive spillovers from innovation. For example, some incomes may result
from contest-like tournaments with winner-takes-all compensation (Rothschild and Scheuer,
2016). Likewise, CEOs may capture the board, due to poor corporate governance, and set
their pay at excessive levels, effectively stealing from stockholders (Piketty et al., 2014). On
the other hand, some top earners, such as innovators, may not capture their full marginal
product. As this literature shows, such inefficiencies call for Pigouvian adjustments to taxes,
but these issues are, once again, conceptually distinct from superstar effects.

Perhaps equally importantly, we also take a fundamentally different approach in deriv-
ing our results. The literature has characterized the effects of richer labor markets on taxes by
computing optimal taxes and comparing them to standard Mirrleesian ones. This involves
fixing primitives, such as preference parameters and the skill distribution, and calibrating
technological parameters using data, e.g. sectoral wage and firm size distributions. Instead,
we take a “sufficient statistics” perspective, writing taxes directly in terms of observable dis-
tributions and elasticities. We relate the relevant elasticities in the presence of superstars to
those that emerge in standard settings. We then show how these elasticities are affected by
superstar effects. The effects of superstars on taxes work exclusively through these statistics.

This approach is inspired by Saez (2001), who expressed optimal tax formulas in terms
of the income distribution and elasticities, and Werning (2007), who developed tests for the
Pareto efficiency of a tax schedule as a function of these statistics. This testing approach
is particularly useful to derive Results 1 and 2, because it allows us to hold the earnings
distribution fixed when characterizing the effects of superstars. In contrast, computing op-
timal taxes for given redistributive motives requires taking into account that the earnings
distribution changes when varying taxes and technology, as we do when deriving Result 3.

In parallel and independent work, Ales and Sleet (2015) pursue a more structural, quanti-
tative approach to optimal taxation in a similar assignment model. Their focus is on how the
social weight placed on profits affects the optimal top marginal tax rate. In some cases, they
also observe a downward force on this tax rate, even though through a different channel,
adjusting the Pareto tail of the inferred skill distribution rather than elasticities. Their goal
of quantifying this force is an important complement to our qualitative analytical results.

The paper is organized as follows. Section 2 introduces our baseline model and Section
3 is devoted to our Results 1, 2 and 3. Section 4 discusses extensions, Section 5 provides a
quantitative illustration and Section 6 concludes. All proofs are relegated to an appendix.
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2 Superstars in an Assignment Model

We first lay out our baseline model, based on a one-to-one assignment setting similar to
Terviö (2008). Assignment models capture the essence of the superstar phenomena intro-
duced by Rosen (1981).4 In Section 4, we discuss other settings, including first- and second-
generation span-of-control models. All our results go through in these more general settings.

2.1 Setup and Equilibrium

Our model blends the canonical Mirrlees model with an assignment model, by introducing
an effort decision in the latter.

Preferences. There is a continuum of measure one of workers with different ability types
θ. The utility function for type θ is U(c, y, θ), where c is consumption and y denotes the effec-
tive units of labor supplied to the market, or ’effort’ for short. The latter is best interpreted
as a catch-all for what a worker brings to the table, including what a worker does while on
the job, e.g. the hours and intensity of their work effort, as well as what they do before they
even reach the job market to make themselves more productive, e.g. their human capital
investment.5 We assume standard conditions on the utility function, including differentia-
bility with Uc > 0, Uy < 0 and the single-crossing property, which requires that the marginal
rate of substitution

MRS(c, y, θ) ≡ −
Uy(c, y, θ)

Uc(c, y, θ)

is decreasing in θ, so that more able agents (higher θ) find it less costly to provide y. The
canonical case studied by Mirrlees (1971) assumes U(c, y, θ) = u(c, 1− y/θ) for some utility
function u over consumption and leisure. Ability is distributed according to c.d.f. F(θ) with
density f (θ) and support Θ.

Technology. There is a unit measure of firms indexed by x, distributed according to c.d.f.
G(x). A single consumption good is produced through one-to-one matching between indi-
viduals and firms. If an individual that provides y units of effort is matched with firm x,
the output of this match is A(x, y), where the function A is non-negative, increasing, twice
differentiable and strictly supermodular: Axy(x, y) > 0.

4Rosen (1981) considered a setting where agents choose the scale of their production subject to given costs.
This model is close in spirit to the span-of-control models that we consider in Section 4.

5As we show in the richer models in Section 4, this can also involve a manager surrounding himself with a
team of more and better workers, presumably an important part of his effort in practice. While our notion of
effort incorporates human capital, by focusing on income taxation we abstract from the optimal tax treatment
of human capital (see e.g. Bovenberg and Jacobs, 2005, and Stantcheva, 2016, for recent work on this issue).
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Following Terviö (2008) and Gabaix and Landier (2008), an important benchmark is when
A is linear in y, so that A(x, y) = a(x)y. Indeed, when A can be expressed as a product
A(x, y) = a(x)γ(y) one can always renormalize y so that γ(y) = y.

An allocation specifies c(θ), y(θ) and a measure-preserving assignment rule, mapping
worker θ to firm x = σ(θ). The resource constraint is then

ˆ
c(θ)dF(θ) ≤

ˆ
A(σ(θ), y(θ))dF(θ). (1)

Labor Markets. Individuals are paid according to a schedule W(y) that is endogenously
determined in equilibrium, but is taken as given by both individuals and firms.

Individuals choose effort y to maximize utility, taking as given the earnings schedule and
a nonlinear tax schedule T(w) set by the government. They solve

max
c,y

U(c, y, θ) s.t. c = W(y)− T(W(y)). (2)

with solution c(θ), y(θ), which by single-crossing are nondecreasing functions of θ.
Firm x maximizes profits, solving

max
y
{A(x, y)−W(y)}. (3)

Denote the solution by Y(x), which is monotone by the supermodularity of A. The necessary
first-order condition is

Ay(x, y) = W ′(y). (4)

Because firms are in fixed supply, they will earn profits. We assume equal ownership of firms
across individuals. Alternatively, we may assume that firm profits accrue to the government,
either because it owns firms directly or because it fully taxes their profits, as in Diamond
and Mirrlees (1971a). These standard assumptions allow us to sidestep distributional effects
from firm ownership, which are not at the heart of the issue of superstar workers.6

Positive Assortative Matching. As we have noted, on the worker side y and θ are posi-
tively related, due to the single-crossing assumption. On the firm side x and y are positively
related, due to supermodularity of A. Together, these two facts imply that there is also a
positive relation between x and θ, captured by an increasing assignment function σ(θ). We
incorporate this fact in the definition of an equilibrium below.

6Profits are possible because we consider a fixed distribution of firms. With endogenous entry of firms, ex
ante or average profits would be dissipated, negating their distributional effects. Such an extension would take
us away from the standard assignment models and is beyond the scope of the present paper.
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Equilibrium Definition. An equilibrium consists of a tax schedule T(w), an earnings sched-
ule W(y), firms’ demands Y(x), workers’ consumption and effort c(θ), y(θ), and an increas-
ing assignment function σ(θ) mapping workers to firms satisfying: (i) Y(x) solves (3) given
W(y); (ii) c(θ), y(θ) solve (2) given W(y) and T(w); (iii) goods market clearing: the resource
constraint (1) holds with equality; and (iv) labor market clearing:

F(θ) = G(σ(θ)), y(θ) = Y(σ(θ)).

Condition (iv) ensures that the match between worker θ and firm x = σ(θ) is consistent
with their supply and demand choices, y(θ) = Y(σ(θ)), and that G(x), the measure of firms
demanding Y(x) or less, coincides with F(θ), the measure of workers supplying y(θ) or less.

2.2 Superstar Effects

Denoting by Γ(y) the inverse of y(θ), (4) becomes

W ′(y) = Ay(σ(Γ(y)), y). (5)

For a given effort schedule y(θ), this condition pins down the earnings schedule W(y) up to
a constant.7 This well-known marginal condition, which obtains in a wide set of assignment
models, is fundamental to superstar effects. To see this, differentiate to obtain

W ′′(y) = Ayx(σ(Γ(y)), y) · σ′(Γ(y)) · Γ′(y) + Ayy(σ(Γ(y)), y). (6)

By supermodularity, the first term is positive, providing a force for the earnings schedule to
be convex in effort. When A is linear in y, then A(θ, y) = a(x)y for some increasing function
a and so W ′(y) = a(σ(Γ(y))) is increasing in y. In this case, output is linear in y at the
firm level, but earnings are convex, W ′′(y) > 0, as individuals with higher y get matched to
higher-x firms, which is reflected in the earnings schedule. This is illustrated in Figure 1.

2.3 Efficient Taxes and Planning Problem

We now turn to the study of Pareto efficient taxes. We first establish a connection between
incentive compatible allocations and allocations that are part of an equilibrium with some
taxes T. This allows us to formulate a planning problem in terms of allocations directly. Our
results in later sections will exploit the optimality conditions of this planning problem.

7In our model, with an equal number of firms and workers, this constant may not be uniquely determined.
With more firms than workers, only the top firms are active and earn positive profits. The lowest active firm
makes zero profits, pinning down the constant. If A(0, 0) = 0, this implies W(0) = 0.
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Figure 1: Convex equilibrium earnings schedule.

Incentive Compatibility and Tax Implementation. For any allocation (c(θ), y(θ)), define
the utility assignment

V(θ) = U(c(θ), y(θ), θ). (7)

An allocation is incentive compatible when

V(θ) = max
θ′

U(c(θ′), y(θ′), θ) ∀θ. (8)

The following lemma relates equilibria with taxes and incentive compatible allocations.

Lemma 1. An allocation (c(θ), y(θ), σ(θ)) is part of an equilibrium for some tax schedule T(w) if
and only if it is resource feasible (1), incentive compatible (7)–(8) and σ(θ) = G−1(F(θ)).

The proof is in Appendix A.1. The key to the ’only if’ part is that, although the earnings
schedule is determined by the labor market and the government cannot tax effort y directly,
it can, for any monotone earnings schedule W(y), create incentives using the tax schedule
to tailor consumption W(y)− T(W(y)) at will, subject only to incentive compatibility.

By single-crossing, the global incentive constraints (7) and (8) are equivalent to the local
constraints

V′(θ) = Uθ(c(θ), y(θ), θ) ∀θ (9)

and the requirement y(θ) is non-decreasing. (10)

Planning Problem. An allocation is (constrained) Pareto efficient if it solves

max
c,y,V

ˆ
V(θ) dΛ(θ) (11)
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subject to (7), (9), (10) and ˆ
(B(θ, y(θ))− c(θ)) dF(θ) ≥ 0 (12)

for some c.d.f. of Pareto weights Λ(θ), where we have introduced the shorthand nota-
tion B(θ, y) ≡ A(σ(θ), y) for the output of type θ under the equilibrium assignment rule
σ(θ) = G−1(F(θ)). The function B inherits the properties of A, i.e. monotonicity and super-
modularity. We call an earnings tax T Pareto efficient if it induces a Pareto efficient alloca-
tion. We consider cases where constraint (10) is not binding, abstracting from bunching.

Observe that, perhaps surprisingly, the Pareto problem for our superstar economy re-
duces to a standard Mirrleesian problem, except for the output function B in the resource
constraint, which summarizes production by agent θ in equilibrium. The Pareto problem sim-
plifies because we are taking into account that the assignment, at the end of the day, must
be positively assorted between y and x. This reflects the fact that in this baseline model the
equilibrium assignment is unaffected by the rest of the allocation c(θ), y(θ).8

However, this does not imply that assignment plays no role. Indeed, off the equilibrium
a single agent θ may deviate and increase y discretely (surpassing its immediate peers and
neighbors in an interval [θ, θ + ε)), in which case this agent will match with a higher-x firm,
i.e. the one corresponding to the rank in y, not θ. Hence, B summarizes output only in
equilibrium, not off equilibrium. In other words, in equilibrium everyone falls in line, but
workers are not predestined and can reach for the stars if they wish. Since agents have
the potential to match with different firms, this shapes competition, the earnings schedule,
incentives and the response of individual earnings to taxes.

3 Results

3.1 Result 1: Neutrality

We now investigate the implications of superstar effects for taxes. We use the first-order
conditions of the Pareto problem (11) to derive a general efficiency test for earnings taxes
T(w) in our assignment model, extending Werning (2007). Since first-order conditions are
necessary, any Pareto efficient allocation needs to pass this test.9

8This is not crucial for our analysis. As we show in Section 4, our results extend to settings where the
equilibrium assignment is endogenous to taxes.

9Under additional assumptions, e.g. with separable utility U(c, y, θ) = u(c)− φ(y, θ), the first-order condi-
tions can be shown to be sufficient and any allocation that passes the test is Pareto efficient.
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3.1.1 Elasticity Concepts

We will derive conditions for Pareto efficiency and express them in terms of elasticities. A
crucial question will be which elasticities will be relevant for the different questions we ask.

The first elasticity concept that will be useful are total earnings elasticities. In particular,
for a given earnings schedule W and tax T, define the earnings function by

w(1− τ, I) ∈ arg max
w

U
(
(1− τ)w− T(w) + I, W−1(w), θ

)
,

where W−1 is the inverse of W. Here, we increase the marginal tax rate by a small amount τ

and the intercept by a small amount I to measure the earnings response. The uncompensated
earnings elasticity is

εu(w) =
∂w

∂(1− τ)

∣∣∣∣
τ=I=0

1− T′(w)

w
. (13)

Income effects on earnings are captured by the parameter

η(w) = − ∂w
∂I

∣∣∣∣
τ=I=0

(1− T′(w)), (14)

and the compensated earnings elasticity is, by the Slutsky equation,

εc(w) = εu(w) + η(w). (15)

Three observations are in order. First, these are elasticities for earnings, so they take into
account the shape of the equilibrium earnings schedule W(y). Their empirical counterparts,
in principle, are therefore elasticities of taxable income (see Keane (2011), Saez et al. (2012) and
Chetty (2012) for recent surveys of the empirical ETI literature).10 Second, these elasticities
are micro, partial equilibrium elasticities that hold the earnings schedule W(y) fixed. At
the macro level, of course, general equilibrium effects imply that the earnings schedule is
endogenous to the tax schedule. Third, these elasticities measure earnings responses under
a given (nonlinear) tax schedule T in place. We will return to a detailed discussion of these
elasticities in Section 3.2 and contrast them with other elasticity concepts.

3.1.2 An Efficiency Test

We denote the equilibrium earnings distribution under a given tax schedule by H(w) with
corresponding density h(w). This allows us to state our first result.

10This is in contrast to pure effort elasticities (for instance, labor supply elasticities as measured by hours).
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Proposition 1. Any Pareto efficient earnings tax T(w) satisfies

T′(w)

1− T′(w)
εc(w)

ρ(w)−
d log

(
T′(w)

1−T′(w)
εc(w)

)
d log w

− η(w)

εc(w)

 ≤ 1 (16)

at all equilibrium earnings levels w, where

ρ(w) ≡ −
(

1 +
d log h(w)

d log w

)
is the local Pareto parameter of the earnings distribution.

Proposition 1, proved in Appendix A.2, reveals three insights. First, for a given tax sched-
ule T, the distribution of earnings h as well as the earnings elasticities εc and εu (which imply
η = εc− εu) are sufficient to evaluate the efficiency test. Conditional on these sufficient statis-
tics, no further knowledge about the structural parameters of the economy and the superstar
technology are required. Among these sufficient statistics, the distribution of earnings is di-
rectly observable; in principle, the elasticity of earnings may be estimated.

Second, condition (16) is the same as in a standard Mirrlees model with linear production
(see Werning, 2007). Of course, as is common with sufficient statistics, the earnings distribu-
tion and elasticities are endogenous in general, and we will later show how they are affected
by superstar effects. Nonetheless, once we have measures for them from the equilibrium
under a given tax schedule, the formula is independent of whether there are superstars or
not. In this sense, superstars are neutral conditional on the sufficient statistics.

Third, the relevant elasticities turn out to be precisely the earnings elasticities defined in
the previous subsection, taking the equilibrium earnings schedule W(y) and the tax T as
given. This is the key channel through which superstar effects enter the test formula.

Intuition. Condition (16) provides an upper bound for Pareto efficient marginal tax rate at w.
The intuition can be grasped by imagining a reduction in taxes at w, and checking whether
the induced behavioral responses lead to an increase in tax revenue; if they do, there is a
local Laffer effect, and the original tax schedule cannot have been Pareto efficient. As in
Werning (2007), this comes down to comparing the (positive) revenue effect from those who
initially earn less than w and increase their earnings to benefit from the tax reduction at w,
and the (negative) effect of those initially above w who reduce their earnings.

If the earnings density falls quickly at w (the local Pareto parameter is positive and large)
the first effect is likely to outweigh the second, and we are more likely to reject Pareto effi-
ciency based on (16). Similar to a high earnings elasticity εc (in front of the brackets), this
reduces the upper bound on the marginal tax at w. On the other hand, if the tax schedule is
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very progressive (T′ increases quickly) or the earnings elasticity increases quickly at w, then
we lose more revenue from the second group than we gain from the first. Hence, a local
Laffer effect becomes less likely, allowing for higher taxes as captured by the second term in
brackets. The same is true if income effects are large (so η is positive and large).

The role of earnings elasticities and the earnings distribution. The usefulness of Propo-
sition 1 is best seen in the simpler case when there are no income effects, so εc and εu coincide,
the elasticity is locally constant and the tax schedule is locally linear at w, with marginal tax
rate τ (such as in the top bracket of the tax schedule).11 Then (16) reduces to

τ

1− τ
ερ ≤ 1 ⇔ τ ≤ 1

1 + ερ
. (17)

The upper bound on τ now only depends on the product of the local Pareto parameter
ρ of the earnings distribution and the earnings elasticity ε.12 For a given tax schedule T in
place and the corresponding equilibrium earnings distribution, both τ and ρ are an empirical
datum. Hence, whether superstar effects make it more or less likely that the efficiency test
(17) is passed, i.e., whether they push for lower or higher taxes, crucially depends on how
they affect the earnings elasticity ε. We explore this next.

3.2 Result 2: Superstars and Earnings Elasticities

We have seen that the test for the efficiency of a tax schedule only depends on the (observ-
able) earnings distribution and the earnings elasticities of superstars under this tax. We now
show how these elasticities differ from standard non-superstar elasticities.

3.2.1 Estimated versus Required Elasticities

To apply the efficiency test, we require earnings elasticities for superstars, as defined in
Section 3.1.1. Suppose, however, that the empirical estimates of earnings elasticities we have
access to do not properly capture superstar effects. This could be for the following reasons:

1. The estimates measure fixed-assignment elasticities, where individuals are unable to
switch matches in response to tax changes, but only vary effort at their current match.
This is likely if the estimates are based on temporary and/or unexpected tax changes.

11We provide examples with such properties in Section 5.
12The upper bound also describes the optimal top tax rate when no social welfare weight is placed on top

earners (Diamond and Saez, 2011). This is satisfied, for example, by the commonly used utilitarian welfare
criterion with marginal utility of consumption declining to zero. With positive social weight λ > 0 attached to
top earners, the optimal top rate is τ = (1− λ)/(1− λ + ερ), i.e. strictly less than the upper bound.
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2. The elasticities are estimated based on samples of non-superstar individuals. For ex-
ample, the estimates could come from individuals lower in the earnings distribution,
where superstar effects may be less prevalent.

3. The estimates are macro elasticities, which measure earnings responses to tax changes
including the general equilibrium effects on the earnings schedule W(y). For instance,
this occurs when identification comes from tax reforms with aggregate effects. In con-
trast, the required elasticities measure earnings responses holding W(y) fixed.

For each of these scenarios, we next show how the estimated elasticities need to be adjusted.

3.2.2 Fixed-Assignment Elasticities

Consider the equilibrium under a given earnings tax T in place, with equilibrium earn-
ings schedule W(y) and effort allocation y(θ). Pick an individual in this equilibrium with
observed earnings w0. We can back out this individual’s effort y0 = W−1(w0) and type
θ0 = Γ(y0). We can always write earnings as w0 = B(θ0, y0)− π(θ0), i.e., as the difference
between output and profits at the firm type θ0 is matched with.

Fixed-Assignment Earnings Schedules. To formalize the idea that the estimated elasticity
of earnings at w0 captures behavioral responses under fixed assignment only, suppose that
it is based on the following “non-superstar” earnings schedule

Ŵ0(y) = B(θ0, y)− π(θ0). (18)

Ŵ0 is the schedule that results from letting the individual with earnings w0 stay at the firm
she is assigned to in the superstar equilibrium. In fact, by (5), Ŵ ′0(y0) = W ′(y0), so Ŵ0(y)
both coincides with and is tangent to the original superstar earnings schedule W(y) at w0,
but otherwise follows the shape of the output function B(θ0, y) of the firm that type θ0 is
matched with in equilibrium. Hence, this is precisely the relationship between effort and
earnings that this individual would perceive when confined to staying with the same firm.

In the case where A is linear in y (and hence B(θ, y) = b(θ)y for some increasing function
b), this is particularly simple: Ŵ0(y) is linear, and given by the line tangent to W(y) at w0:

Ŵ0(y) = w0 + b(θ0)(y− y0) = w0 + W ′(y0)(y− y0).

In this sense, Ŵ0 precisely captures the absence of superstar effects, as it ignores the con-
vexity of the true earnings schedule W and instead describes a standard, linear relationship
between earnings and effort, as illustrated in Figure 2.
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Figure 2: Equilibrium schedule W(y) versus fixed-assignment schedule Ŵ0(y).

In terms of empirical counterparts, one way to interpret the fixed-assignment elasticity is
as a short-run elasticity of taxable income, which does not observe individuals’ behavioral
responses to a tax change for long enough to detect the earnings effect of moving to a better
job.13 Instead, it only measures the earnings effect of a change in effort holding job quality
fixed.14 Of course, just like the correct earnings elasticity, it does not include changes due to
misreporting for tax avoidance/evasion (Slemrod, 1996) or due to retiming or relabelling of
incomes (Goolsbee, 2000) (see Saez et al. (2012) for an overview of these issues).

Adjusting Fixed-Assignment Elasticities. Denote the resulting earnings elasticities and
income effect by ε̂u(w0), η̂(w0) and ε̂c(w0), defined as in (13)–(15) when replacing W by Ŵ0.
The next result shows how they differ from the elasticities required for the test (16):

Proposition 2. For any given earnings level w0 in an equilibrium with earnings tax T, let ε̂c(w0)

and η̂(w0) be the compensated earnings elasticity and income effect, respectively, based on the earn-
ings schedule Ŵ0 defined in (18). Let y0 be such that w0 = W(y0) = Ŵ(y0) and θ0 = Γ(y0).
Then

εc(w0) =
ε̂c(w0)

Φ̂(w0)
> ε̂c(w0) and

η(w0)

εc(w0)
=

η̂(w0)

ε̂c(w0)
,

where
Φ̂(w0) ≡ 1− ε̂c(w0)

Byθ(θ0, y0)Γ′(y0)w0

W ′(y0)2 ∈ [0, 1).

13In the richer matching models discussed in Section 4, it can also be interpreted more broadly as holding
fixed the scale of operations or the team size and team quality of a manager.

14In practice, with many jobs of similar quality, this could be the result of switching to a job that is associated
with more effort, albeit not necessarily located higher up in the chain of job qualities (see e.g. Chetty et al.,
2011, for estimates in a setting where hours are rigid in a given job, but jobs differ in terms of required hours).
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Figure 3: Compensated earnings elasticity with superstar effects (left) and without (right).

Proposition 2, proved in Appendix A.3, shows that we must adjust the compensated
fixed-assignment earnings elasticity upwards to use it for the efficiency test; no adjustment is
required for the income effect ratio η/εc. Observe that Proposition 2 ensures that Φ̂ ≥ 0 at an
equilibrium, implying an upper bound on the possible range for ε̂c. This bound is implied
by the second-order condition for worker optimality.

The intuition for why superstar effects increase the earnings elasticity is based on a direct
application of the Le Chatelier principle (Samuelson, 1947). The equilibrium earnings sched-
ule W(y) is the upper envelope of the non-superstar, fixed-assignment earnings schedules
Ŵ0(y) across all earnings levels w0, as depicted in Figure 2. As a result, it is more convex
than each fixed-assignment schedule. This is particularly transparent when B is linear in y.
Then by (6) the adjustment becomes

Φ̂(w0) = 1− ε̂c(w0)

W ′′(y0)y0
W ′(y0)

W ′(y0)y0
W(y0)

∈ [0, 1). (19)

The fixed-assignment elasticity ignores the convexity of the earnings schedule. As Figure 3
shows, a convex earnings schedule leads to higher compensated response in effort; implying
a higher response in earnings. More generally, the adjustment factor in Proposition 2 cap-
tures the additional convexity of the earnings schedule that is due to the supermodularity
of the output function Byθ > 0 (which is precisely due to superstar effects).

In Section 5, we provide a parametric illustration for these adjustments based on the CEO
application in Gabaix and Landier (2008), which suggests that these effects can be quanti-
tatively important. Moreover, if a large part of a manager’s effort is to affect his scale of
operations or his team size and quality, such as in the richer superstar models in Section
4, the difference between the fixed-assignment and the full earnings elasticity is likely even
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more important than in the baseline model here.
Taken together with Proposition 1, the upwards adjustment of the earnings elasticity

in Proposition 2 provides a force for lower taxes given the earnings distribution. This is
particularly clear when both marginal tax rates and elasticities are locally constant, such as in
the top bracket of earnings, and in the absence of income effects, so (17) applies. Then using
the non-superstar elasticity ε̂ instead of the superstar elasticity ε > ε̂ delivers a less stringent
upper bound to the top marginal tax rate for a given value of ρ. Conversely, realizing that
the earnings distribution is in fact the result of superstar effects leads to a more stringent,
lower upper bound to the top marginal tax rate.

3.2.3 Effort Elasticities

We now turn to the second scenario, with effort elasticities estimated in a setting without
superstar effects where earnings and effort coincide. The question is whether we can extrap-
olate these standard elasticities to superstars.

Suppose individuals work with linear technology and are on a linear part of the tax
schedule, as considered by Hausman (1985) and Saez (2001). Then individuals choose effort
according to

y(1− τ, I) ∈ arg max
y

U((1− τ)y + I, y, θ)

where τ is the marginal tax rate and I is virtual income. The resulting uncompensated effort
elasticity, income effect on effort, and compensated effort elasticity are

ε̃u(y) =
∂y

∂(1− τ)

1− τ

y
, (20)

η̃(y) = −(1− τ)
∂y
∂I

(21)

and
ε̃c(y) = εu(y) + η(y), (22)

respectively. These effort elasticities are only a function of the utility function U—and in gen-
eral of the allocation c, y at which they are evaluated—but do not incorporate the equilibrium
earnings schedule W, in contrast to the earnings elasticities from Section 3.1.1. For instance,
under the quasilinear and iso-elastic preference specification U(c, y, θ) = c − (y/θ)γ, the
uncompensated and compensated effort elasticities coincide and are given by the constant
structural parameter ε̃ = 1/(γ − 1). Empirically this corresponds to taxable income elas-
ticities for non-superstar individuals where effort equals earnings (see e.g. Saez, 2010, for
estimates based on bunching at kink points in the Earned Income Tax Credit schedule) or
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hours elasticities (see e.g. MaCurdy, 1981; Eissa and Hoynes, 1998; Blundell et al., 1998; and
Ziliak and Kniesner, 1999), although of course our notion of effective effort is broader.

The following lemma shows, however, that the effort elasticities are still constrained by
the earnings schedule in equilibrium, by the workers’ optimality conditions. In particular, as
can be seen from Figure 1, in equilibrium the workers’ indifference curves must have greater
curvature than the earnings schedule, i.e. the necessary second-order conditions must be
satisfied. The curvature of the indifference curve equals the reciprocal of the compensated
effort elasticity, leading to the following bound.

Lemma 2. In any equilibrium with earnings schedule W, we must have

ε̃c(y) ≤ 1
W ′′(y)y
W ′(y)

.

The proof is in Appendix A.4. This property will be useful in the following, when char-
acterizing the relationship between effort and earnings elasticities. In particular, whenever
W(y)→ ∞ as y→ b for some bound b < ∞ (as in the example based on Gabaix and Landier
(2008) that we will discuss in Section 5), then the right-hand side of the above inequality
goes to 0, which requires that ε̃c vanishes at the top. Intuitively, for an unbounded earnings
distribution to be consistent with a bounded effort distribution, it must become increasingly
costly for agents to increase effort as they approach the top, otherwise all agents would trade
off a finite effort cost for an infinite earnings benefit. This unbounded cost from effort must
be reflected in the elasticity and is incompatible with elasticities bounded away from zero.

Adjusting Effort Elasticities. How do effort elasticities relate to the earnings elasticities
of a superstar with given earnings w0 and effort y0? For the sake of the argument, it will be
useful to make the case most favorable for an extrapolation of the effort elasticities. Hence,
we assume that (i) A is linear in y: A(x, y) = a(x)y (so the non-superstar counterfactual
indeed involves linear production) and (ii) T is locally linear at w0 (so individuals are indeed
in an income bracket with a constant marginal tax rate, as assumed in the definition of the
effort elasticities). This leads to the following result, proved in Appendix A.5:

Proposition 3. Consider a superstar equilibrium and an individual with earnings w0 and effort
y0 = W−1(w0). Let the compensated effort elasticity ε̃c(y0) and income effect on effort η̃(y0) be
defined as in (22) and (21), respectively. Under conditions (i) and (ii), we have

εc(w0) =
ε̃c(y0)

Φ̃(y0)
> ε̃c(y0) (23)
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η(w0)

εc(w0)
=

η̃(y0)

ε̃c(y0)

1
W ′(y0)y0

W(y0)

<
η̃(y0)

ε̃c(y0)
, (24)

where

Φ̃(y0) =
1

W ′(y0)y0
W(y0)

− ε̃c(y0)

W ′′(y0)y0
W ′(y0)

W ′(y0)y0
W(y0)

∈ [0, 1). (25)

Because the superstar earnings schedule W(y) is convex in effort rather than linear, the
Le Chatelier principle again requires an upward adjustment of the compensated elasticity,
as in Proposition 2. However, there is now an additional correction, which results from
the fact that we must translate the elasticity of y into an elasticity of W(y). This explains
the mechanical term W ′(y)y/w (i.e. the elasticity of the earnings schedule) in (24) and (25).
Since W is a convex function that goes through the origin, its elasticity is bigger than one,
which implies a further upward adjustment of the compensated elasticity, and a reduction of
the income effect. In view of Proposition 1, both of these new adjustments push for lower
taxes for a given earnings distribution. We will gauge the quantitative significance of these
effects in Section 5.

3.2.4 Macro Elasticities

The earnings elasticities required for Proposition 1 measure partial equilibrium behavioral re-
sponses, holding the equilibrium earnings schedule fixed when varying taxes. The third
scenario is one where the estimated elasticities are macro elasticities, which capture the gen-
eral equilibrium effects of tax changes. This occurs when elasticities are estimated using tax
reforms with aggregate effects or using cross-country comparisons.15 These measures in-
clude shifts in the equilibrium earnings schedule W(y) in response to the reform, leading to
an additional earnings response even if an individual were to keep her effort y unchanged.

To fix ideas, consider again a superstar equilibrium for a given tax schedule T, with earn-
ings schedule W(y), and pick some earnings level w0 with associated effort y0 = W−1(w0)

and type θ0 = Γ(y0). Suppose we increase marginal tax rates by τ for everyone. We ask
what is the macro elasticity of earnings at w0, incorporating all equilibrium responses, and
how it compares to the correct, partial equilibrium elasticities from Section 3.1.1.

Macro Earnings Schedules. We make two key observations: First, for any value of τ, the
equilibrium assignment will be the same; i.e., type θ0 will stay matched with the same firm.
The macro elasticity will therefore be akin to the fixed-assignment elasticity from Section

15The former approach includes studies based on time series of aggregate income shares in affected tax
brackets (e.g. Feenberg and Poterba, 1993; Slemrod, 1996; and Saez, 2004) or studies based on panel data (e.g.
Feldstein, 1995; Auten and Carroll, 1999; Gruber and Saez, 2002; and Kopczuk, 2005). For the latter approach,
see e.g. Prescott (2004) and Davis and Henrekson (2005).
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3.2.2, where earnings follow the equilibrium output function B(θ0|y). However, the differ-
ence is that the macro elasticity also incorporates the shift in the earnings schedule, so even
when individual θ0 sticks to effort y0, her earnings will not remain at w0. This shift is due to
the shift in profits π(θ0|τ) of the firm that θ0 is matched with in response to the change in τ.
As a result, the macro earnings response at w0 is determined by the macro earnings schedule

W0(y|τ) = B(θ0, y)− π(θ0|τ). (26)

To keep the underlying general equilibrium effects tractable, we make two simplifying
assumptions for the purpose of this subsection: (i) We again assume A (and hence B) to
be linear in y; and (ii) we abstract from income effects, so preferences are quasilinear in
consumption. Then individual θ0 chooses her earnings as follows:

w0(τ) ∈ arg max
w

{
(1− τ)w− T(w)− φ

(
W−1

0 (w|τ), θ0

)}
(27)

for some disutility of effort function φ(y, θ) that is increasing and convex in y and super-
modular in (y, θ) (to ensure single-crossing). The compensated and uncompensated macro
earnings elasticities then coincide and are defined as

ε(w0) =
dw0

d(1− τ)

∣∣∣∣
τ=0

1− T′(w0)

w0
. (28)

Adjusting Macro Elasticities. This leads to the following result (proven in Appendix A.6):

Proposition 4. 1. Consider a superstar equilibrium and an individual with earnings w0 and
effort y0 = W−1(w0). Let the macro earnings elasticity ε(w0) be as defined in (28), the fixed-
assignment elasticity ε̂(w0) as in Section 3.2.2, and the effort elasticity ε̃(y0) as in (20). Under
conditions (i) and (ii), we have

ε̂(w0) =
ε(w0)

Φ(w0)
(29)

where

Φ(w0) = 1 +
χ(w0)

ε̃(y0)

1
W ′(y0)y0

W(y0)

and χ(w0) =
∂W0(y0|τ)
∂(1− τ)

∣∣∣∣
τ=0

1− T′(w0)

w0
. (30)

2. If the tax schedule is weakly progressive (T′′(w) ≥ 0 ∀w), then χ(w0) ≤ 0, so the macro
elasticity is always smaller than the fixed-assignment elasticity.

As the first part of the Proposition shows, the macro elasticity is closely related to the
fixed-assignment elasticity, with an adjustment χ that captures precisely the shift in the
equilibrium earnings schedule due to general equilibrium effects. The second part shows
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that this adjustment lowers the macro elasticity under a progressive tax schedule. Recall that
Proposition 2 showed that the fixed-assignment elasticity is smaller than the correct earn-
ings elasticity. A fortiori, any estimate based on the macro elasticity will also underestimate
the correct earnings elasticity when there are superstar effects. We will again illustrate this
for a simple parametric example in Section 5.

Intuition. When we increase 1 − τ, everyone increases effort in the absence of income
effects. Due to complementarities at the firm level, this leads to an increase in profits for
each firm, and hence a reduction in earnings holding effort fixed. The assumption of a
progressive tax schedule guarantees that this downward shift of the earnings schedule leads
to a further increase in effort, and hence profits, because marginal tax rates decrease as we
move down the earnings distribution. The general equilibrium effects therefore eventually
imply an additional negative effect on earnings, reducing the macro earnings elasticity.

3.3 Result 3: Comparative Statics

So far, we have been concerned with how of superstars affect the set of Pareto efficient taxes
conditional on a given, observed earnings distribution. In this section, we explore the com-
parative static effects of introducing superstar technology holding other fundamentals fixed.
These primitives include the parameters of the utility function U and the skill distribution
F(θ). We ask whether, for a given skill distribution and preferences, introducing superstar
effects leads to higher or lower taxes.

As in Section 3.1, we begin with a test for the Pareto efficiency of a tax schedule, now
however expressed in terms of fundamentals. We denote by τ(θ) ≡ T′(W(y(θ))) the marginal
tax rate faced by type θ and focus on the canonical Mirrleesian specification U(c, y, θ) =

u(c, y/θ) (see Appendix A.7 for the general case).

Proposition 5. Any Pareto efficient earnings tax T is such that

τ(θ)

1− τ(θ)

ε̃c(θ)

1 + ε̃u(θ)

p(θ)−
d log

(
τ(θ)

1−τ(θ)
ε̃c(θ)

1+ε̃u(θ)

)
d log θ

− η̃(θ)

ε̃c(θ)

y′(θ)θ
y(θ)

 ≤ 1. (31)

for all θ, where

p(θ) = −
(

1 +
d log f (θ)

d log θ

)
is the local Pareto parameter of the skill distribution.

Proposition 5 reveals three insights. First, the formula for the efficiency test (31) does not
feature any parameters related to the superstar technology. This is similar to Proposition 1,
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and so is the intuition for the terms in the test condition. Second, however, it shows that effort
elasticities need to be used when taking the underlying skill distribution as an input. This
is in contrast to our results in Section 2.3, where earnings elasticities were the key sufficient
statistic when using the earnings distribution as an input. Third, the test inequality (31) is
in fact identical to the one that would obtain in a standard Mirrlees model (see Werning,
2007). Of course, the effort elasticities and effort schedule y are endogenous in general, so
superstar effects can affect the equilibrium at which they are evaluated, but we will next
present a natural benchmark case where not even this matters.

An Example. Suppose preferences are quasilinear and iso-elastic, so that η̃ = 0 and ε̃c =

ε̃u = ε̃ is constant, and the tax schedule is locally linear with marginal tax rate τ (as is the
case in the top bracket, for example). Then (31) simplifies to

τ

1− τ

1
1 + 1/ε̃

p(θ) ≤ 1. (32)

The condition puts an upper bound on the marginal tax rate that is decreasing in the effort
elasticity ε̃ and the local Pareto parameter p(θ) of the skill distribution. The bound is inde-
pendent of the equilibrium earnings schedule W(y) and the allocation c(θ), y(θ). In other
words, superstar effects are completely neutral: The shape of the output function A does not
affect the set of Pareto efficient top marginal tax rates given the other fundamentals.

The intuition, which we formalize in Section 5, can be grasped by noting the equivalence
of condition (32) with the efficiency condition (17) expressed in terms of the Pareto parameter
for earnings ρ and the earnings elasticity ε. Superstar effects change both ρ and ε. On the one
hand, they lead to a fatter tail in the earnings distribution and thus a lower Pareto parameter
ρ at the top; on the other hand, they increase the earnings elasticity ε. Neutrality obtains
because both changes precisely cancel out for given primitive parameters ε̃ and p. Hence,
despite the potentially extreme effects of superstar technology on earnings inequality, the
efficiency test does not change for a given skill distribution and utility function.

Optimal Tax Schedules in Terms of Primitives Rather than testing the efficiency of a given
tax schedule, it is also possible to characterize optimal taxes in terms fundamentals, for any
given Pareto weights. This allows us to characterize the comparative static effects of super-
stars on optimal tax schedules. For example, we can ask whether, for given preferences and
skills, the increased role of superstar effects should lead to an increase or decrease in the
top marginal tax rate, for given redistributive preferences. The following result provides a
formula for the case U(c, y, θ) = u(c, y/θ) (see Appendix A.8 for the general case):
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Proposition 6. The optimal tax schedule for any distribution of Pareto weights Λ satisfies

τ(θ)

1− τ(θ)
=

1 + ε̃u(θ)

θ f (θ)ε̃c(θ)

ˆ ∞

θ

(
1− λ(s)Uc(s)

η f (s)

)
exp

(ˆ s

θ

η̃(t)
ε̃c(t)

dy(t)
y(t)

)
dF(s), (33)

where η is the multiplier on (12) and λ is the density corresponding to Λ.

Condition (33) is exactly the same as in a standard Mirrlees model. Thus, our neutrality
result extends to optimal tax schedules given fundamentals, in the sense that superstars do
not change the formula for optimal taxes.16 In a linear tax framework, Diamond and Mir-
rlees (1971b) derived optimality conditions for tax rates, providing a system of equations
expressed in terms of taxes and own- and cross-price elasticities for a finite set of goods.
Notably, they observed that these conditions do not depend on the curvature of technology
(second derivatives of the production function). However, since our non-linear tax frame-
work is different, our Result 3 is not a direct implication of their result.17

4 Richer Models of Superstars

In this section, we demonstrate that our results are not specific to the simple one-to-one
matching model considered so far. They extend to more general settings with superstar
effects, including the first- and second-generation span-of-control models we turn to next.

4.1 Span-of-Control with Identical Workers

Managers and Workers. We begin with the canonical span-of-control model going back
to Lucas (1978) and Rosen (1982), adding an intensive effort margin for managers. There is
a unit mass of managers with skill θ ∼ F who provide effective effort y as before. Rather
than being matched with an exogenous set of firms, managers own the firms and hire a
homogeneous labor input to produce output. There is a unit mass of identical workers who
each supply one unit of labor inelastically at zero cost. A manager who exerts y units of
effective effort and who hires L units of labor produces output according to A(L, y), which
we again assume to be supermodular, so ALy > 0.

16In particular, for the case without income effects, the revenue-maximizing top marginal tax rate (when the

social welfare weight put on top earners is zero) is τ =
(

1 + 1
1+1/ε̃ p

)−1
, independent of superstar effects. See

also Ales and Sleet (2015) for the case where the planner puts the same weight on profits as on tax revenue.
One might view this result as consistent with the fact that top tax rates have remained relatively constant over
the past 30 years compared to the considerable increase in income inequality.

17See Scheuer and Werning (2015) for a connection between the Mirrlees (1971) and the Diamond and Mir-
rlees (1971b) optimal tax formulas.
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Denoting the wage per unit of labor by ω, a manager’s earnings (profits) are A(L, y)−
ωL. The government imposes a nonlinear earnings tax T on these profits as well as a (lump-
sum) tax on workers’ incomes ω. Managers hire labor to maximize profits taking the wage
as given, so their earnings are

W(y|ω) = max
L

A(L, y)−ωL (34)

with optimal labor demand L(y|ω) conditional on any given wage ω.

Superstar Effects. Superstar effects arise here because more talented managers, who exert
higher effort y, hire more workers, thereby increasing their scale.18 Indeed, by the envelope
theorem,

W ′(y|ω) = Ay(L(y|ω), y) > 0

and
W ′′(y|ω) = AyL(L(y|ω), y)L′(y|ω) + Ayy(L(y|ω), y).

The first term is positive by supermodularity of A and because L′(y|ω) > 0 by Topkis’s
theorem, providing a force for the managers’ earnings schedule to again be convex.

Ales et al. (2015) consider a similar model, but with the difference that output is given by
θγ A(L, y) and focusing on the case where A exhibits constant returns to scale. Then, because
of the latter property, earnings are linear in effort for any given manager and, in this sense,
there are no superstar effects. On the other hand, the direct “scale of operations” effect of
manager skill on output, governed by the parameter γ, introduces a direct role for talent,
separate from effective effort, which we have abstracted from here.19

Pareto Problem. For the purpose of this section, it is convenient to index managers by
the quantiles of the skill distribution t = F(θ), which is without loss of generality. Manager
t’s preferences are simply U(c, y, F−1(t)). Let cw denote the consumption of workers and
Ψ({y}) the equilibrium aggregate output in the economy for a given effort schedule y(t) for
managers. We characterize this functional in Appendix B.1 and prove the following result:

Lemma 3. For any given cw, the Pareto problem for managers in this economy is the same as our
original Pareto problem (11) subject to (8) and (12) from Section 2.3 when we replace

´
B(t, y(t))dt

by Ψ({y}). Moreover, Ψ({y}) satisfies, for any ω and t,

∂Ψ({y})
∂y(t)

= W ′(y(t)|ω).

18Similarly, in Rosen (1981), individuals can directly increase the scale of their production.
19The constant returns to scale assumption is not required for all of their results and they also explore taxes

that may distort firm sizes (such as nonlinear taxes on labor input), which we rule out here.
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Since all our results are based on the necessary first-order conditions of the Pareto prob-
lem and the partial derivative of aggregate output with respect to effort coincides with the
marginal earnings in equilibrium at any effort level by Lemma 3, Propositions 1 to 6 imme-
diately extend to the earnings tax for managers in this model.

4.2 Span-of-Control with Heterogeneous Workers

We next demonstrate how our results extend to modern, richer models of organizational
hierarchies, including those developed by Garicano and Rossi-Hansberg (2004, 2006) and,
most recently, Fuchs et al. (2015).20 Higher-skilled managers not only leverage their talent by
hiring more workers, they are also matched with teams of higher-skilled workers, generating
yet an additional source of superstar effects. Moreover, these models allow for endogenous
sorting of individuals into hierarchical layers.

Knowledge-based Hierarchies. As in Garicano and Rossi-Hansberg (2004) and Fuchs
et al. (2015), we consider the simplest possible setting in which hierarchies consist of two
layers, managers and workers (or producers).21 In fact, we closely follow the setup in Fuchs
et al. (2015) where individuals use time and knowledge to solve problems, with the only
addition that we incorporate an intensive effort margin to generate a role for taxes.

There is free entry of risk-neutral firms. Each firm hires one manager and n workers,
where n may be non-integer. There is also a continuum of heterogeneous individuals of
unit mass indexed by their talent t who are each endowed with one unit of time and can
become either managers or workers. As in the preceding subsection, we associate t with
the quantiles of the skill distribution F, so t ∼ U(0, 1). Individuals provide effective effort
y and have preferences U(c, y, F−1(t)). For the purposes of this subsection, w.l.o.g. we also
normalize effective effort such that y ∈ [0, 1].

Workers and Managers. Each worker is faced with a problem of random difficulty x ∼
U(0, 1), distributed independently across problems. She manages to solve the problem on
her own if her effective effort exceeds the problem’s difficulty level. Formally, if her effective
effort is yp, she can solve the problem whenever x < yp, thus with probability yp. If she fails,
she can seek help from a manager. It costs a manager h units of her time to help a worker
with an unsolved problem. Hence, if a manager is matched with workers who provide effort

20See also Garicano and Rossi-Hansberg (2015) for a recent survey of this literature.
21Extending our results to more layers, such as in Garicano and Rossi-Hansberg (2006), is straightforward.
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yp, her time constraint implies that she can help n of them, where n is such that

1 = hn(1− yp) ⇒ n =
1

h(1− yp)
. (35)

Due to this time constraint, a manager can increase his team size only by matching with
more talented workers, who put more effort and solve more problems on their own.22

A manager with effort ym can solve a problem for which a worker asks for help if x < ym.
A solved problem generates output 1 and an unsolved problem produces 0. Hence, if a
manager provides effective effort ym and helps one worker of effort yp with an unsolved
problem, expected output is

ym − yp

1− yp
.

In turn, if a manager of effort ym is matched with n workers of effort yp, expected output is

A(ym, yp) = nyp + n(1− yp)
ym − yp

1− yp
= nym =

ym

h(1− yp)
,

where the last step uses the time constraint (35). Observe that A is strictly supermodular
and weakly convex in both arguments.

Equilibrium. As before, equilibrium will involve an earnings schedule W(y) that is taken
as given by both firms and individuals. For concreteness, denote by Wm(ym) the earnings
of managers who exert effort ym and by wp(yp) those of workers (producers) with effort yp.
Expected profits for a firm with a manager of effort ym and workers of effort yp are

Π = n(A(ym, yp)− wp(yp))−Wm(ym) =
ym − wp(yp)

h(1− yp)
−Wm(ym) (36)

and firms choose ym and yp to maximize Π given the earnings schedule and thus wp(yp) and
Wm(ym). The government imposes a nonlinear earnings tax T(w) paid by all individuals.

In this model, it is straightforward to see that the equilibrium for any given T and hence
effort schedule y that is monotone increasing is exactly as described in Lemma 1 and Corol-
lary 1 in Fuchs et al. (2015): there is a partition of the talent space into three intervals
[0, t1], (t1, t2), and [t2, 1], such that (i) individuals in [0, t1] become workers matched with
managers, (ii) individuals in (t1, t2) are unmatched and work on problems on their own as
self-employed producers, (iii) individuals in [t2, 1] become managers and are matched with

22By single-crossing preferences, the effort schedule y is again increasing in talent t in equilibrium. Moreover,
note that we are restricting attention to assignments where all workers who are matched with a given manager
have the same talent. This is without loss as there will be positive assortative matching in equilibrium.
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Figure 4: Equilibrium sorting and matching.

workers, and (iv) there is strictly positive assortative matching between workers in [0, t1]

and managers in [t2, 1]. Figure 4 illustrates this pattern.
In other words, the lowest skill types become workers, trying to solve the easiest prob-

lems. The highest skill types become managers, providing help with the unsolved problems
left by workers. Those with intermediate skill may remain unmatched, working as self-
employed on problems without help from managers.

We show in Appendix B.1 that, in contrast to the models we have considered so far, the
effort schedule y, and hence the tax schedule T, now affects the equilibrium assignment of
workers to managers. When workers matched with a manager put more effort, they leave
fewer problems unsolved and the manager runs out of time less quickly. This manager
can therefore help more workers, and the rate at which we move to lower skilled workers
assigned to marginally worse managers increases.

Superstar Effects. Superstar effects are different in this framework compared to the pre-
vious subsection: Here, better managers get matched with more workers, even though all
managers face the same time constraint, precisely because they get to supervise better work-
ers, who put more effort, and who each require less time to get help. In addition, there are
now also superstar effects for workers, as better workers get matched with better managers,
who can help them with more problems, boosting their productivity. Formally, we show in
Appendix B.1 that both Wm(ym) and wp(yp) are convex in equilibrium.

Pareto Problem. Let Ψ({y}) again denote the equilibrium aggregate output in the econ-
omy under the equilibrium assignment for any given (monotone) effort schedule, which we
define formally in Appendix B.1. Then we can prove the following result:

Lemma 4. The Pareto problem for this economy is the same as our original Pareto problem (11) sub-
ject to (8) and (12) from Section 2.3 when we replace

´
B(t, y(t))dt by Ψ({y}). Moreover, Ψ({y})

satisfies, for all t,
∂Ψ({y})

∂y(t)
= W ′(y(t)).
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By the same arguments as in the previous subsection, and despite the richer effects of
taxes on equilibrium matching in this model, Lemma 4 implies that our results again extend
to the earnings tax for both workers and managers in this model.

4.3 A General Production Function Approach

Both of our previous extensions concluded that, in equilibrium, there exists an aggregate
production function Ψ({y}) that maximizes total output, given effort choices {y}, and the
property that marginal earnings W ′(y(t)) equal the derivative of Ψ with respect to y(t). This
suggests starting at the end of this line of reasoning, in a more general and abstract manner.

To pursue this, we simply postulate that there exists an aggregate production function
Φ(M), where M denotes a positive measure over the set of possible effort levels Y. Typically,
Φ(M) will be defined by maximizing output over all feasible allocations, given the distri-
bution of effort M. We also assume that the equilibrium measure M maximizes aggregate
profits

Φ(M)−
ˆ

W(y)dM.

This may be taken as a defining property of competitive equilibria.
Starting with a distribution of types t ∈ [0, 1], an allocation y : [0, 1] → Y induces a

particular measure My. Define Ψ({y}) ≡ Φ(My). It then follows that in equilibrium {y}
maximizes

Ψ({y})−
ˆ

W(y(t))dt.

A necessary condition is that
∂Ψ({y})

∂y(t)
= W ′(y(t)), (37)

the desired marginal condition. Our results then follow for this more general formulation.23

It is worth pointing out that this approach allows for arbitrary effects of taxes on the equi-
librium assignment. This is because taxes can distort the effort schedule y(t), which in turn
affects matching. However, the marginal condition (37) implies a form of efficiency condi-
tional on a given effort schedule, as (private) marginal earnings coincide with the (social)
marginal product. In other words, taxes distort the assignment through their effect on ef-
fort, but not conditional on effort. Distortions conditional on effort could arise, for instance,
when part of the matching surplus is untaxed, as in Jaffe and Kominers (2014). These issues
are not inherently related to superstar effects. They would emerge, more broadly, in any Roy
model with untaxed activities, such as household production or an informal sector.

23As this extension makes clear, our results are not limited to cases where superstar workers are managers
as in the previous two subsections.
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5 Quantitative Illustration

In this section, we illustrate the quantitative importance of superstar effects for taxes and the
elasticity adjustments we provide. We do so by adapting the CEO application in Gabaix and
Landier (2008). Their framework is based on the one-to-one matching model of Section 2,
but takes the distribution of effort y as given (“talent” in their terminology). We begin with
providing two examples with endogenous effort that deliver this distribution in equilibrium.

5.1 Two Examples Based on Gabaix-Landier

Individual CEOs produce CSβy when matched with a firm of size S and supplying effort
y, for some parameter β > 0. Firm size is a function of the rank, 1− x, according to Zipf’s
law: S = C̃(1− x)−1; the distribution of x is uniform on [0, 1]. It follows that A(x, y) = (1−
x)−βy for some normalization of C. Gabaix-Landier find that the CEO earnings distribution
features a Pareto tail: Letting n denote the rank of a CEO in the earnings distribution (i.e., n
equals 1 minus the c.d.f.) and letting ρ denote the Pareto parameter, we have near the top

w(n) = κn−1/ρ. (38)

We can restate problem (3) for firm x as maximizing (1− x)−βy(n)− w(n), implying

y′(n) = nβw′(n) = −κ

ρ
nβ− 1

ρ−1,

where we used that in equilibrium n = 1− x. For some constant of integration b,

y(n) = b− κ

βρ− 1
nβ− 1

ρ . (39)

When βρ > 1, effort is bounded above by b. Otherwise, effort is unbounded above. Com-
bining equations (38) with (39) gives the increasing and convex earnings schedule

W(y) =

κ̃ (b− y)
−1

βρ−1 if βρ > 1

κ̃ (y− b)
1

1−βρ if βρ < 1
(40)

for some constant κ̃ > 0, in the range of equilibrium values y ∈ [y(1), y(0)].
For some purposes, the Gabaix-Landier specification (38)–(40) is all we need. Indeed,

given our sufficient statistic approach, many of results do not require all primitives. How-
ever, to describe a full economy, it remains to specify preferences and a skill distribution
consistent with (38)–(40). Our next two examples do precisely this, by picking preferences
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and then backing out the distribution of skills.
On the one hand, Gabaix-Landier provide empirical support for β = 1 and ρ = 3, imply-

ing βρ > 1 and a bounded effort distribution. On the other hand, the standard Mirrlees case
has β = 0, implying βρ < 1 in the neighborhood of this benchmark model. We therefore
span both cases: our first example is tailored to βρ < 1 and the second to βρ > 1.

Example Economy A (βρ < 1). Our first example adopts a standard parametrization of
the Mirrlees model. Utility is quasilinear and iso-elastic,

U(c, y, θ) = c− 1
γ

(y
θ

)γ
,

with γ > 1. The compensated and uncompensated elasticity of effort is 1/(γ− 1).
Consider the equilibrium under a tax schedule with constant marginal tax rate τ (or the

top bracket of a nonlinear schedule). Appendix B.2 shows that (38)–(40) hold for a skill
distribution with a Pareto tail, so that F(θ) ≈ 1 − (θ/θ)α for high θ, where α > 0 is the
Pareto parameter. In addition,

ρ =
γ− 1

γ

α

αβ + 1
, (41)

so that the Pareto parameter ρ is decreasing in β for fixed γ and α, which illustrates that
superstar effects induce a fatter tail and hence a more unequal earnings distribution in this
sense. Note that equation (41) implies βρ < 1.24

Example Economy B (βρ > 1). This second example is most suitable for the benchmark
parameterization in Gabaix-Landier. Utility is given by

U(c, y, θ) = c− 1
γ

(
a− θ

b− y

)γ

,

with a, b, γ > 0. This utility satisfies standard assumptions: it is decreasing and concave in
y ≤ b and satisfies the single-crossing property. We will see that it also has other, necessary
features within the case βρ > 1. Notably, disutility of effort goes to infinity as y → b, which
is crucial (in view of Lemma 2) to rationalize bounded effort with unbounded earnings.

Consider the equilibrium under a constant marginal tax rate τ. Appendix B.2 shows that
(38)–(40) hold for skill distribution F(θ) = 1− (a− θ)α for θ ≤ a, with αβ > 1. In addition,

ρ =
γ + 1

γ

α

αβ− 1
, (42)

24An alternative to backing out the skill distribution that implies (38)–(40) exactly is to assume a Pareto
distribution throughout; then, as shown in the appendix, (38)–(40) hold approximately at the top.
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which is decreasing in β, so that earnings inequality is again increasing in β. Note that (42)
implies βρ > 1. In particular, we can always find α and γ so that ρ = 3 and β = 1, consistent
with Gabaix-Landier’s favored parameterization.

5.2 Illustrating Results 1 and 2

We now use the specifications of the earnings and effort distribution (38) and (39) and earn-
ings schedule (40) implied by Gabaix-Landier, as well as our examples that generate them
from primitives, to inform the elasticity adjustments in Section 3.2 and their tax implications.

Fixed-Assignment Elasticities. By (40), the elasticities of the earnings schedule and the
marginal earnings schedule are

W ′(y)y
W(y)

=
1

βρ− 1
y

b− y
and

W ′′(y)y
W ′(y)

=
βρ

βρ− 1
y

b− y
.

Substituting this in the adjustment factor (19) for the fixed-assignment elasticity gives

εc(w) =
ε̂c(w)

1− βρε̂c(w)
. (43)

By Proposition 2, in equilibrium ε̂c(w) is restricted so that the denominator is positive.
Recall that Gabaix-Landier’s preferred parameterization has β = 1 and ρ = 3; this re-

quires ε̂c ≤ 1
βρ = 1

3 to be consistent with an equilibrium. Equation (43) implies potentially
considerable upward adjustments in fixed-assignment elasticities. For instance, if ε̂c = 1/4,
then the correct earnings elasticity is in fact εc = 1. The blue line in the left panel of Figure 5
displays εc as a function of ε̂c ∈ [0, 1/3). As a robustness check, the red line depicts the same
relationship for the case β = 1/2, i.e. half the size of the superstar effects found by Gabaix-
Landier. In this case, equilibrium requires ε̂c ≤ 2/3 and the adjustments remain significant.
For example, if ε̂c = 1/3, the correct earnings elasticity is εc = 2/3, twice as high.

For the case of no income effects (as in our examples), the right panel in Figure 5 plots
the upper bound to the top marginal tax rate implied by the efficiency condition (17) as a
function of the elasticity ε̂. The black line is based on (erroneously) using the unadjusted
elasticity ε̂ instead of ε in (17), whereas the blue line uses the (correct) adjustment (43) for
β = 1 and the red line for β = 1/2 (and ρ = 3 in both cases). For example, if ε̂ = 1/4, then
τ ≤ 57% based on the unadjusted elasticity, but τ ≤ 45% based on the correct adjustment
for β = 1/2 and τ ≤ 25% for β = 1.25

25Diamond and Saez (2011) argue that the Pareto coefficient for the general population converges to ρ = 1.5
at the top, rather than ρ = 3 found by Gabaix and Landier (2008) for CEOs (the latter value is also found by Ales
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Figure 5: Unadjusted and adjusted earnings elasticities (left panel) and upper bound on top
tax rate using unadjusted and adjusted earnings elasticities (right panel).

Effort Elasticities. Using (39) and (40), the required adjustment (23) and (25) for the effort
elasticity at any point in the distribution simplifies to

εc =
ε̃c

βρ−1

βρn
1
ρ−β−1

− βρε̃c
. (44)

The adjustment now depends on the rank n (and we omitted the dependence of εc and ε̃c on
n to simplify notation). Note that for the bottom (n = 1) the effort elasticity adjustment is the
same as the fixed-assignment elasticity adjustment (43); this reflects the fact that W ′(y)y

W(y) = 1
for the lowest worker. The adjustment is larger, for a given ε̃c, for lower n as we move up
the distribution towards the top; this is because W ′(y)y

W(y) increases with y.
If βρ < 1, then at the top, as n→ 0,

εc =
ε̃c

1− βρ− βρε̃c > ε̃c, (45)

since Lemma 2 ensures that the denominator is positive. We see that the adjustment is in-
creasing in the superstar parameter β and vanishes if β = 0. For a given earnings distribu-
tion and hence parameter ρ, this implies a lower upper bound on the set of Pareto efficient
top marginal tax rates τ (based on, for instance, (17) in the absence of income effects).

If βρ > 1, as supported by Gabaix-Landier, then, since βρn
1
ρ−β → ∞ as n → 0, the

and Sleet, 2015, in their empirical analysis). In that case, and using their preferred elasticity of .25, Diamond
and Saez (2011) find a top tax rate of 73% to be revenue-maximizing. If this elasticity ignores superstar effects
and β = 1, however, the correct elasticity is .4 and the revenue-maximizing top tax rate falls to 62%.
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Figure 6: Adjusted earnings elasticities for effort elasticities at bottom, median and top 10%.

adjustment becomes unbounded for any given ε̃c. Erroneously using such an unbounded
earnings elasticity in (17) would appear to imply that only a zero top tax rate can be Pareto
efficient. Figure 6 illustrates this. It shows the relationship between the earnings elasticity
and the effort elasticity (44) at a given rank n, for the bottom, median and top 10% and
β = 1, ρ = 3. But the adjustment explodes as we move to effort elasticities of higher-ranked
individuals; this reflects the fact that W ′(y)y

W(y) is unbounded. Conversely, any given earnings
elasticity requires lower and lower effort elasticities as we move up the earnings distribution.
Indeed, this is illustrating Lemma 2. Recall that, when βρ > 1, holding ε̃c fixed as n → 0 is
incompatible with an equilibrium. Instead, we require

ε̃c(y) ≤ 1
W ′′(y)y
W ′(y)

=
βρ− 1

βρ

b− y
y

,

so ε̃c(y) must vanish towards the top at least at the rate of (b − y)/y. The specification in
Example B features precisely this property and

ε̃(y) =
1

γ + 1
b− y

y
→ 0 as y→ b.

Naively using this effort elasticity in the efficiency test (17), we would erroneously con-
clude that the upper bound to the set of Pareto efficient top marginal tax rates is 100%. How-
ever, substituting in (44) reveals that the earnings elasticity is in fact constant and equals

ε =
1

γ(βρ− 1)− 1
> 0. (46)
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Using this correct elasticity, the efficiency test for the top marginal tax rate (17) implies a
well-defined upper bound on τ strictly less than 1 greater than 0.

Macro Elasticities. Our examples also deliver simple expressions for the macro elasticity
adjustments from Proposition 4. For the iso-elastic preferences in Example A with a Pareto
skill distribution, Appendix B.2 shows that, at the top, the general equilibrium correction in
(30) converges to

χ = − βρ

(γ− 1)(1− βρ)
,

which is negative as predicted by the second part of Proposition 4. Combining this with (29),
(30), (43) and (45) allows us to derive the macro elasticity at the top

ε = ε̂
(

1 +
χ

ε̃
(1− βρ)

)
=

1
γ− 1

.

Thus, the macro elasticity at the top coincides with the effort elasticity. In sum, the relation-
ships between the four elasticity concepts are therefore ε̃ = ε < ε̂ < ε . Similar results can be
shown to apply for Example B, where at the top one finds that ε̄ < ε̃ = 0 < ε̂ < ε.

5.3 Illustrating Result 3

We finally illustrate Result 3 using our examples. To do so, we return to the efficiency con-
dition (17), expressed in terms of the Pareto parameter for earnings ρ and the earnings elas-
ticity ε. Writing both parameters in terms of primitives, we obtain in Example A

ρ =
γ− 1

γ

α

αβ + 1
and ε =

1 + αβ

γ− 1
;

while in Example B
ρ =

γ + 1
γ

α

αβ− 1
and ε =

αβ− 1
γ + 1

.

Superstar effects change both ρ and ε. The Pareto parameter ρ of the earnings distribution
is decreasing in β, i.e. superstar effects lead to fatter tails in the earnings distribution; the
earnings elasticity is increasing in β, given the primitive parameters α and γ. The neutrality
property in Result 3 obtains because both these changes precisely cancel out: in condition
(17), the term ερ = α/γ is independent of β, and we obtain the equivalent condition (32).
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6 Conclusion

This paper extends the Mirrlees optimal taxation model by incorporating an assignment
problem between workers and firms. As first shown by Rosen (1981), assignment models
are able to produce superstar effects, where innate skill differences are greatly magnified
in terms of earnings. Despite their potential to dramatically increase inequality, our results
show that these effects do not provide a basis for higher taxation. Depending on the inter-
pretation, they are either neutral or provide a force for lower taxes.

It is worth clarifying that this force does not imply that taxes should be low or lower
than current tax rates. Other forces or considerations, unrelated to superstars, may be at
play shaping the optimal level of taxes. These include the “Stiglitz effects” and the ineffi-
ciencies, for example from rent-seeking, discussed in the introduction. Some top incomes
may be due to luck, providing insurance motives for taxes. All these issues arise even in
standard Mirrlees models without superstar effects. To isolate the role of superstars, we
have, therefore, ignored them here.

One may argue that superstars at the top of the earnings distribution have very low labor
supply elasticities, because their pay and effort are so high or because they are intrinsically
motivated. Of course, this argument for higher taxes at the top is again unrelated to the
presence of superstar effects and is also present in a standard Mirrleesian model. Whatever
the effort elasticity of top earners, our Result 2 shows that this elasticity needs to be adjusted
upwards when accounting for superstar effects. For instance, our Example B in Section 5
features an effort elasticity that converges to zero at the top, yet the correct earnings elasticity
is a positive constant.
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A Appendix: Omitted Proofs

A.1 Proof of Lemma 1

Take any allocation satisfying conditions (1), (7) and (8). Take any W(y) solving (5) and define T by

T(W(y(θ))) = c(θ)−W(y(θ)),

for all observed equilibrium earnings levels {W(y(θ)) : θ ∈ Θ} (set T sufficiently high otherwise, for
all off-equilibrium earning levels).

Conversely, any equilibrium implies a resource-feasible incentive-compatible allocation (c(θ), y(θ))
with σ(θ) = G−1(F(θ)). In particular, given T and the equilibrium earnings schedule W, y(θ) must
solve

max
y

U(W(y)− T(W(y)), y, θ).

and imply the allocation c(θ) = W(y(θ))− T(W(y(θ))). Thus,

U(c(θ), y(θ), θ) = max
y

U(W(y)− T(W(y)), y, θ) ≥

U(W(y(θ′))− T(W(y(θ′))), y(θ′), θ) = U(c(θ′), y(θ′), θ),

which establishes incentive compatibility, (7) and (8).

A.2 Proof of Proposition 1

Pareto problem. The Pareto problem (11) s.t. (7), (9) and (12) can be rewritten as

max
c,V

ˆ
V(θ)dΛ(θ)

s.t.
V ′(θ) = Uθ(e(V(θ), y(θ), θ), y(θ), θ) ∀θ

and ˆ
(B(θ, y(θ))− e(V(θ), y(θ), θ))dF(θ) ≥ 0,

where e(V, y, θ) is the inverse function of U(c, y, θ) w.r.t. its first argument. The corresponding La-
grangian is, after integrating by parts,
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L =

ˆ
V(θ)dΛ(θ) + η

ˆ
[B(θ, y(θ))− e(V(θ), y(θ), θ)] dF(θ)

−
ˆ

µ′(θ)V(θ)dθ −
ˆ

µ(θ)Uθ(e(V(θ), y(θ), θ), y(θ), θ)dθ,

where µ(θ) are the multipliers on the incentive constraints and η on the resource constraint.

First-order conditions. The first-order condition for V is (using eV = 1/Uc)

−µ′Uc − µUθc = η f −Ucλ ≤ η f ,

where we dropped arguments. Define µ̂ ≡ Ucµ/η, so

µ̂′ =
Ucµ′

η
+

µ

η

[
Ucθ + Uccc′ + Ucyy′

]
.

Substituting this yields

−µ̂′ + µ̂
Uccc′ + Ucyy′

Uc
≤ f .

Note that

Uccc′ + Ucyy′

Uc
=

Ucc
c′
y′ + Ucy

Uc
y′ =

−UccUy + UcyUc

U2
c

y′ = − ∂

∂c

[
−

Uy

Uc

]
y′ = −MRScy′

since c′/y′ = −Uy/Uc = MRS by the local incentive constraints. Hence, the first-order condition for
V implies

− µ̂′ − µ̂MRScy′ ≤ f . (47)

The first-order condition for y is (using ey = MRS)

By −MRS
MRS

f =
µ̂

Uc

Uθc MRS + Uθy

MRS
.

Recall that, using (5), the necessary condition for (2) implies

τ(θ) ≡ T′(W(y(θ))) = 1− MRS(c(θ), y(θ), θ)

By(θ, y(θ))
,

so this becomes
τ

1− τ
f =

µ̂

Uc

Uθc MRS + Uθy

MRS
.

Also,
−Uθc

Uy

Uc
+ Uθy = Uc

UyθUc −UcθUy

U2
c

= −Uc
∂

∂θ

[
−

Uy

Uc

]
= −Uc

∂MRS
∂θ

,

so the first-order condition for y finally becomes

τ

1− τ
f = −µ̂

∂ log MRS
∂θ

. (48)
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Elasticities. To rewrite these conditions for Pareto efficiency in terms of elasticities, we compute the
earnings elasticities defined in Section 3.1.1. Recall the earnings function w(1− τ, I) defined by

max
w

U((1− τ)w− T(w) + I, W−1(w), θ)

with first-order condition

MRS((1− τ)w− T(w) + I, W−1(w), θ) = (1− τ − T′(w))W ′(W−1(w)).

This implies the uncompensated earnings elasticity (dropping arguments)

εu =
∂w

∂(1− τ)

∣∣∣∣
τ=I=0

1− T′

w
=

W ′/w−MRSc

MRSc +
MRSy
MRS −

W ′′
W ′ +

T′′
1−T′W

′
. (49)

Moreover,

η ≡ −(1− T′)
∂w
∂I

∣∣∣∣
τ=I=0

=
MRSc

MRSc +
MRSy
MRS −

W ′′
W ′ +

T′′
1−T′W

′

and

εc = εu + η =
W ′/w

MRSc +
MRSy
MRS −

W ′′
W ′ +

T′′
1−T′W

′
. (50)

As a result, for later use,
εc − εu

εc =
η

εc = MRSc
w

W ′
(51)

and
1

wεc =
1

W ′

(
MRSc +

MRSy

MRS
− W ′′

W ′

)
+

T′′

1− T′
. (52)

Identification. To relate the first-order conditions to the equilibrium earnings distribution, note
that, for an equilibrium earnings schedule w(θ) = W(y(θ)), the earnings distribution H satisfies
H(w(θ)) ≡ F(θ) and therefore

f (θ) = h(w(θ))w′(θ).

The individuals’ problem for a given earnings tax T(w) is

max
w

U(w− T(w), W−1(w), θ)

with first-order condition

MRS(w− T(w), W−1(w), θ) = (1− T′(w))W ′(W−1(w)).

Differentiating this w.r.t. w yields

w′(θ) =
−∂ log MRS/∂θ

1
W ′

(
MRSc +

MRSy
MRS −

W ′′
W ′

)
+ T′′

1−T′

= −∂ log MRS
∂θ

wεc(w) (53)

by (52). Next, define ˆ̂µ(w) ≡ µ(w−1(w)) where w−1(w) is the inverse of w(θ), so

µ̂′(θ) = ˆ̂µ′(w(θ))w′(θ).
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Using this and w′(θ) = W ′(y(θ))y′(θ) in (47) yields

− ˆ̂µ′(w)− ˆ̂µ(w)
∂MRS(w)

∂c
1

W ′(W−1(w))
≤ h(w). (54)

Similarly, we can rewrite (48) using (53) as

µ̂ =
τ

1−τ hw′

− ∂ log MRS
∂θ

=
τ

1− τ
hwεc(w)

and so
ˆ̂µ(w) =

T′(w)

1− T′(w)
εc(w)wh(w). (55)

Test Inequality. Taking logs of (55) and differentiating w.r.t. log w yields

ˆ̂µ′(w)w
ˆ̂µ(w)

=
d log ˆ̂µ(w)

d log w
=

d log
(

T′(w)
1−T′(w)

εc(w)
)

d log w
+

d log h(w)

d log w
+ 1. (56)

Returning to (54), multiply through by w/ ˆ̂µ(w)

−
ˆ̂µ′(w)w

ˆ̂µ(w)
− ∂MRS

∂c
w

W ′
≤ h(w)

w
ˆ̂µ(w)

.

Substitute (55) on the RHS and (56) on the LHS, and use (51) for the income effect, to get

T′(w)

1− T′(w)
εc(w)

−d log
(

T′(w)
1−T′(w)

εc(w)
)

d log w
− d log h(w)

d log w
− 1− η(w)

εc(w)

 ≤ 1.

A.3 Proof of Proposition 2

We obtain the fixed-assignment elasticities as a special case of (49) and (50) replacing W by Ŵ0 and
evaluating at w0, y0. Using Ŵ ′0(y0) = W ′(y0), this yields

ε̂u =
W ′/w0 −MRSc

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′

,

η̂ =
MRSc

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′

and

ε̂c = ε̂u + η̂ =
W ′/w0

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′

. (57)

This immediately implies η̂/ε̂c = MRScw0/W ′ = η/εc and hence the second part of the proposition.
For the first, use the fact that, by (6),

W ′′(y0) = Byθ(θ0, y0)Γ′(y0) + Byy(θ0, y0) = Byθ(θ0, y0)Γ′(y0) + Ŵ ′′0 (y0).
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Hence, we can write

εc =
W ′/w0

MRSc +
MRSy
MRS + T′′

1−T′W
′ − Ŵ ′′0

W ′ −
ByθΓ′

W ′

=

(
1
ε̂c −

ByθΓ′w0

W ′2

)−1

=
ε̂c

Φ̂
.

Finally, note that the workers’ first-order condition can be written as(
W ′(1− T′)−MRS

)
Uc = 0,

so the necessary second-order condition for a maximum is

MRSc +
MRSy

MRS
+

T′′

1− T′
W ′ − W ′′

W ′
≤ 0.

This implies

W ′/w0

ε̂c ≥ W ′′ − Ŵ ′′0
W ′

=
ByθΓ′

W ′
and hence ε̂c ByθΓ′w0

W ′2
≤ 1 ⇔ Φ̂ ≥ 0.

A.4 Proof of Lemma 2

The individual’s problem is maxy U((1− τ)W(y), y, θ).(
(1− τ)W ′(y)−MRS(W(y), y, θ)

)
Uc(W(y), y, θ) = 0.

The second-order condition is (after using the first-order condition and dropping arguments)

(1− τ)W ′′ −
(

MRScW ′ + MRSy
)
≤ 0

or, using (58),
W ′′y
W ′
≤ MRScy +

yMRSy

MRS
=

1
εc .

A.5 Proof of Proposition 3

The effort elasticities can be obtained from (49), (50) and (51) as a special case for W(y) = y and
T′(w) = τ. Then we have

ε̃c =
1/y

MRSc +
MRSy
MRS

and
η̃

ε̃c = MRScy. (58)

Comparing the former with (50) and following the same steps as in the proof of Proposition 2 yields
(23) and (25). Comparing the latter with (51) yields (24). The inequalities follow, first, from W ′′ > 0
since W is convex by (6) when A is linear in y. Second, W ′y/w < 1 again by convexity of W(y) and
W(0) = 0 because 0 ≤W(0) ≤ A(x, 0) = 0. Finally, Φ̃ > 0 follows from Lemma 2.
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A.6 Proof of Proposition 4

Under the assumption that B(θ, y) = b(θ)y, we have W−1
0 (w|τ) = (w + π(θ0|τ))/b(θ0), so the first-

order condition corresponding to (27) is

(1− τ − T′(w))b(θ0) = φy

(
w + π(θ0|τ)

b(θ0)
, θ

)
,

which yields (using b = W ′ and φy = MRS)

ε(w0) =
dw0

d(1− τ)

∣∣∣∣
τ=0

1− T′(w0)

w0
=

W ′/w0
MRSy
MRS + T′′

1−T′W
′

(
1− w0

W ′y
MRSyy
MRS

∂π(θ0|τ)
∂(1− τ)

∣∣∣∣
τ=0

1− T′

w0

)
.

The first result follows from observing that (i) the term in front of the brackets equals ε̂ when utility
is quasilinear in c and B is linear in y (by comparison with (57)), (ii) MRSyy/MRS = 1/ε̃ by (58), and
(iii), by (26),

∂π(θ0|τ)
∂(1− τ)

∣∣∣∣
τ=0

= − ∂W0(y0|τ)
∂(1− τ)

∣∣∣∣
τ=0

.

For the second part, write the problem of an individual of type θ as

y(θ|τ) ∈ arg max
y

(1− τ)b(θ)y− T(b(θ)y− π(θ|τ))− φ(y, θ). (59)

By Topkis’s theorem, we know that (i) y is increasing in 1− τ for each θ when holding π fixed, and
that (ii) y is increasing in π for each θ holding τ fixed when T′′ ≥ 0. Next, from the firms’ problem
(3) and by the envelope theorem, π′(θ|τ) = b′(θ)y(θ|τ) ∀θ and, since profits are zero for the lowest
firm,

π(θ|τ) =
ˆ θ

θ
b′(s)y(s|τ)ds. (60)

Hence, π is increasing in 1− τ for each θ if y(θ|τ) is increasing in 1− τ for each θ. Therefore, the fixed
point of (59) and (60), i.e., the schedules y(θ|τ) and π(θ|τ) that satisfy (59) and (60) simultaneously
given τ, involves a profit schedule such that ∂π(θ|τ)/∂(1− τ)|τ=0 > 0 if T′′ ≥ 0. This implies χ < 0.

A.7 Proof of Proposition 5

Recall the first-order conditions for V and y from Appendix A.2, given by (47) and (48), and rewrite
them as

− µ̂MRScy′ = −µ̂
η̃

ε̃c
y′

y
= f − λUc/η + µ̂′ ≤ f + µ̂′ (61)

and

µ̂ =
τ

1− τ
θ f
(
−MRSθθ

MRS

)−1

=
τ

1− τ
θ f ξ, (62)

where we used η̃/ε̃c = MRScy and defined ξ(θ) ≡ (−∂ log MRS(c(θ), y(θ), θ)/∂ log θ)−1 ≥ 0. Take
logs of (62) and differentiate w.r.t. log θ

µ̂′θ

µ̂
=

d log
(

τ
1−τ

)
d log θ

+ 1 +
d log f
d log θ

+
d log ξ

d log θ
.
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Multiplying (61), dropping the Pareto weights, by θ/µ̂ yields

τ

1− τ
ξ

[
−

d log
(

τ
1−τ

)
d log θ

− 1− d log f
d log θ

− d log ξ

d log θ
− η̃

ε̃c
y′θ
y

]
≤ 1.

If preferences are such that U(c, y, θ) = u(c, y/θ), then, defining l = y/θ,

MRS(c, y, θ) = − ul(c, y/θ)

θuc(c, y/θ)

and it can be shown with some algebra that

−MRSθθ

MRS
= 1 + y

MRSy

MRS
.

Using (58), this implies ξ = ε̃c/(1 + ε̃u) as claimed in the text.

A.8 Proof of Proposition 6

For general Pareto weights Λ, (61) is the differential equation

−µ̂
η̃

ε̃c
y′

y
= f − λUc/η + µ̂′,

which we can solve for µ̂:

µ̂(θ) =

ˆ ∞

θ

(
1− λ(s)Uc(s)

η f (s)

)
exp

(ˆ s

θ

η̃(t)
ε̃c(t)

dy(t)
y(t)

)
dF(s).

Substituting this in (62) yields the result.
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B Online Appendix

B.1 Proofs for Section 4

B.1.1 Proof of Lemma 3

By the same arguments as in Section 2.3, the Pareto problem for the nonlinear profit tax on managers
and the lump-sum tax on workers is

max
c(t),y(t),cw,ω

λwu(cw) +

ˆ
λ(t)U

(
c(t), y(t), F−1(t)

)
dt

s.t.
U
(

c(t), y(t), F−1(t)
)
≥ U

(
c(t′), y(t′), F−1(t)

)
∀ t, t′ (63)

ˆ
c(t)dt + cw ≤

ˆ
A(L(y(t)|ω), y(t))dt (64)

ˆ
L(y(t)|ω)dt = 1, (65)

where cw is the consumption of workers, u is their utility of consumption, c(t) is the consumption
allocated to managers of talent t, λw and λ(t) are the respective Pareto weights, and the last equation
(65) is the labor market clearing condition. Observe that the wage ω only appears in the last two
constraints (64) and (65). This allows us to rewrite the Pareto problem as follows:

max
c(t),y(t),cw

λwu(cw) +

ˆ
λ(t)U

(
c(t), y(t), F−1(t)

)
dt (66)

s.t. (63) and ˆ
c(t)dt + cw ≤ Ψ({y}), (67)

where
Ψ({y}) ≡ max

ω

ˆ
A(L(y(t)|ω), y(t))dt s.t.

ˆ
L(y(t)|ω)dt = 1. (68)

Hence, Ψ({y}) is the equilibrium aggregate output in the economy for any given effort schedule y(t)
for managers. With this decomposition, and for any given cw, we see that the Pareto problem (66)
subject to (63) and (67) is the same as our original Pareto problem (11) subject to (8) and (12) from
Section 2.3 when we replace

´
B(t, y(t))dt by Ψ({y}).

The first-order condition corresponding to (68) is
ˆ

AL(L(y(t)|ω), y(t))
∂L(y(t)|ω)

∂ω
dt− η

ˆ
∂L(y(t)|ω)

∂ω
dt = 0,

where η is the multiplier on the labor market clearing constraint (65). The first-order condition corre-
sponding to (34) is

AL(L(y(t)|ω), y(t)) = ω ∀t.

Hence η = w. Next,

∂Ψ({y})
∂y(t)

= Ay(L(y(t)|ω), y(t)) + AL(L(y(t)|ω), y(t))L′(y(t)|ω)− ηL′(y(t)|ω)

= Ay(L(y(t)|ω), y(t)) = W ′(y(t)|ω).
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B.1.2 Proof of Lemma 4

By property (iv) in Section 4.2, for a given threshold t1 and effort schedule y, managers of type tm will
be matched with workers of type tp = P(tm), where the matching function P(t) satisfies

h
ˆ t1

P(t)
(1− y(s))ds =

ˆ 1

t
ds ∀t ≤ 1. (69)

This constraint requires that, for any manager type t ≤ 1, the total time available to managers in the
interval [t, 1] equals the total time required to help with the problems left unsolved by workers in the
interval [P(t), t1]. Conditional on t1 and a y-schedule, there is a unique function P(t) that satisfies
this constraint, namely, the function that solves the differential equation

P′(t) =
1

h(1− y(P(t)))
∀t ≤ 1, (70)

with initial condition P(1) = t1, where (70) follows from differentiating (69) w.r.t. t. Observe that this
then also uniquely pins down the manager cutoff t2, namely such that P(t2) = 0.

As discussed in Section 4.2, (70) implies that the effort schedule y, and hence the tax schedule T,
now affects the equilibrium assignment of workers to managers: P′(t) is increasing in y(P(t)).

We can also verify that the equilibrium earnings schedule is convex. The firm’s first-order condi-
tion for ym in (36) implies

W ′m(y(t)) =
1

h(1− y(P(t)))
, (71)

which is increasing along the y-schedule among managers. The first-order condition for yp yields

w′p(yp) =
ym − wp(yp)

1− yp
.

Moreover, by free entry, firms make zero profits, so

wp(yp) = ym −Wm(ym)h(1− yp).

Substituting this and using the equilibrium assignment function P, we obtain

w′p(y(P(t))) = Wm(y(t))h, (72)

which is also increasing along the y-schedule. Of course, the earnings schedule is linear in the inter-
mediate segment with the self-employed between y(t1) and y(t2), if it exists, leading to an overall
earnings schedule W(y) that is weakly convex.26

To prove Lemma 4, note that, by the same arguments as in Section 2.3, the Pareto problem for the
earnings tax T can now be written as:

max
c,y,P,t1,t2

ˆ 1

0
λ(t)U(c(t), y(t), F−1(t))dt

26Conditional on an effort schedule y and the thresholds t1 and t2, the overall earnings schedule W(y) is
entirely pinned down by (71) and (72) as well as the indifference conditions Wm(y(t2)) = y(t2) and wp(y(t1)) =
y(t1) at the thresholds.
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s.t. ˆ 1

0
c(t)dt ≤

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt, (73)

(63), (70) and P(1) = t1, P(t2) = 0. The first integral on the right-hand side of (73) is total output
produced by matched agents (integrating over managers), and the second is total output produced
by the self-employed.

A key observation is again that P, t1 and t2 only enter constraints (70) and (73), which allows us
to decompose the Pareto problem as follows:

max
c,y

ˆ 1

0
λ(t)U(c(t), y(t), F−1(t))dt (74)

s.t. (63) and ˆ 1

0
c(t)dt ≤ Ψ({y}), (75)

where

Ψ({y}) = max
P,t1,t2

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt (76)

s.t. (70) and P(1) = t1, P(t2) = 0. Hence, Ψ({y}) is again aggregate output in the economy under
the equilibrium assignment for any given (monotone) effort schedule y.27 The Pareto problem (74)
s.t. (63) and (75) is therefore again identical to our original Pareto problem (11) subject to (8) and
(12) from Section 2.3 when we replace

´
B(t, y(t))dt by Ψ({y}). Since all our results are based on

the first-order conditions of the planning problem, they all go through if the partial derivative of this
aggregate output w.r.t. y(t) coincides with the marginal earnings in equilibrium at that effort level.

To see why this is indeed the case, we write the Lagrangian corresponding to (76), integrating by
parts, as

L =

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt +
ˆ t2

t1

y(t)dt−
ˆ 1

t2

µ′(t)P(t)dt−
ˆ 1

t2

µ(t)
h(1− y(P(t)))

dt.

For any t ∈ (t2, 1), we therefore immediately have ∂Ψ({y})/∂y(t) = 1/[h(1− y(P(t)))]. Together
with (71), this implies ∂Ψ({y})/∂y(t) = W ′m(y(t)) for the managers as desired.

As for workers, let M(t) denote the inverse of P(t), with

M′(t) = h(1− y(t)) ∀t ∈ [0, t1] (77)

and M(t1) = 1, M(0) = t2. Using this, it is convenient to rewrite the output from matched agents by
integrating over workers rather than managers:

ˆ 1

t2

y(t)
h(1− y(P(t)))

dt =
ˆ P(1)

P(t2)

y(M(t))
h(1− y(t))

h(1− y(t))dt =
ˆ t1

0
y(M(t))dt.

Hence, we can rewrite Ψ as

Ψ({y}) = max
M,t1,t2

ˆ t1

0
y(M(t))dt +

ˆ t2

t1

y(t)dt

27By single-crossing and (63), any incentive compatible effort schedule y must be monotone, so we will
evaluate Ψ only for monotone schedules.
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s.t. (77) and and M(t1) = 1, M(0) = t2. The corresponding Lagrangian is

L =

ˆ t1

0
y(M(t))dt +

ˆ t2

t1

y(t)dt + µ(t1)M(t1)− µ(0)M(0)−
ˆ t1

0
µ′(t)M(t)dt

−
ˆ t1

0
µ(t)h(1− y(t))dt + ξ1(M(t1)− 1) + ξ2(M(0)− t2).

The first-order condition for M(t), t ∈ (0, t1), is µ′(t) = y′(M(t)), the first-order condition for M(0)
is µ(0) = ξ2, and the first-order condition for t2 is y(t2) = ξ2. Hence, µ(0) = y(t2) and

µ(t) =
ˆ t

0
y′(M(s))ds + y(t2).

For any t ∈ (0, t1) we therefore have

∂Ψ({y})
∂y(t)

= hµ(t) = h
ˆ t

0
y′(M(s))ds + hy(t2).

In addition, we have Wm(y(t2)) = y(t2), which pins down Wm entirely:

Wm(y(t)) =
ˆ t

t2

W ′m(y(s))y
′(s)ds + y(t2) =

ˆ t

t2

y′(s)
h(1− y(P(s)))

ds + y(t2)

or

Wm(y(M(t))) =
ˆ t

0

y′(M(s))
h(1− y(s))

h(1− y(s))ds + y(t2) =

ˆ t

0
y′(M(s))ds + y(t2).

Hence, ∂Ψ({y})/∂y(t) = hWm(y(M(t))). Together with (72), this shows that ∂Ψ({y})/∂y(t) =
w′p(y(t)) for workers as desired.

Finally, as for the self-employed, trivially ∂Ψ({y})/∂y(t) = 1 = W ′(y(t)).

B.2 Proofs for Section 5

B.2.1 Example A

Exact Earnings Schedule and Approximate Pareto Skill Distribution. We begin with Example A
in Section 5 and construct the skill distribution F(θ) as claimed in the text. Taking W(y) as given by
(40), individuals solve

max
y

(1− τ)W(y)− 1
γ

(y
θ

)γ
.

The first-order condition is

(1− τ)
κ̃

1− βρ

(
κβρ

1− βρ
+ y
) 1

1−βρ−1

= yγ−1θ−γ,

where we used the fact that b is set such that profits of the lowest firm x = 0 are zero, so A(0, y(1)) =

y(1) = w(1) = κ and hence b = κβρ/(βρ− 1), and κ̃ = κ
βρ

βρ−1 |βρ− 1|
−1

βρ−1 . The second-order condition
for a maximum is satisfied if γ(1− βρ) > 1. Substituting y(n) from (39) for y yields

θ = (1− τ)−
1
γ

(
κ

1− βρ

) γ−1
γ
(

n
β

γ−1

(
n−

1−βρ
ρ − βρ

)) γ−1
γ

.
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This implicitly defines n = 1− F(θ) given θ and hence F(θ). Rewriting this as

θ = (1− τ)−
1
γ

(
κ

1− βρ

) γ−1
γ
(

n−
γ(1−βρ)−1
(γ−1)ρ − βρn

β
γ−1

) γ−1
γ

reveals that, if γ(1− βρ) > 1, then for sufficiently small for n ≈ 0 (i.e., at the top of the skill distribu-
tion)

θ ≈ (1− τ)−
1
γ

(
κ

1− βρ

) γ−1
γ

n−
γ(1−βρ)−1

γρ .

Hence, n = 1− F(θ) ≈ (θ/θ)α for some θ, with

α =
γρ

γ(1− βρ)− 1
.

In other words, θ has a Pareto tail with parameter α > 0. Conversely, solving for ρ yields (41) and,
since α > 0, we indeed must have γ(1− βρ) > 1.

Exact Pareto Skill Distribution and Approximate Earnings Schedule. We next derive the equi-
librium earnings schedule for Example A when F(θ) = 1− (θ/θ)α, that is, F is a Pareto distribution
for all θ ≥ θ. We do so by guessing and verifying a schedule of the form W(y) = kyδ + w0 for some
parameters k, δ, w0. Taking τ and W(y) as given, individuals solve

max
y

(1− τ)kyδ − 1
γ

(y
θ

)γ
.

The first-order condition yields the y-schedule

y(θ) = θ
γ

γ−δ (δk(1− τ))
1

γ−δ (78)

as well as its inverse Γ(y) = y
γ−δ

γ (δk(1− τ))−
1
γ . Note that we require δ < γ, which we will verify

below. We know from the assignment condition (5) that W ′(y) = By(Γ(y), y), so using B(θ, y) =

θ−αβθαβy, this becomes

δky = yαβ γ−δ
γ (δk(1− τ))−

αβ
γ θ−αβ.

Matching coefficients requires δk = (δk(1− τ))−
αβ
γ θ−αβ and δ− 1 = αβ γ−δ

γ . Solving this yields

δ = γ
αβ + 1
αβ + γ

as claimed in the text and
k =

1
γ

αβ + γ

αβ + 1
(1− τ)−

αβ
γ+αβ θ

− αβγ
γ+αβ .

Observe that we indeed have δ < γ because γ > 1 by assumption. Using these expressions for δ and
k in (78) yields the equilibrium effort schedule y(θ). Finally, w0 is determined such that profits of the
lowest firm x = 0 are zero, so B(θ, y(θ)) = y(θ) = W(y(θ)) = ky(θ)δ + w0.

Using n = 1− F and (78), we can write y(n) = Cn−
αβ+γ

α(γ−1) = Cnβ− 1
ρ for some constant C, where

the second step used (41). Hence, (39) holds approximately for small enough n. Again using (41), we

have δ = 1/(1− βρ), so W(y) = ky
1

1−βρ + w0. For large enough y, this approximates (40). This finally
implies that (38) also holds approximately.
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B.2.2 Example B

We guess and verify an earnings schedule of the form W(y) = k(b− y)−δ for some constants k, δ > 0.
Taking τ and W(y) as given, individuals solve

max
y

(1− τ)k(b− y)−δ − 1
γ

(
a− θ

b− y

)γ

with first-order condition
(b− y)δ−γ

(1− τ)δk
= (a− θ)−γ. (79)

From the equilibrium condition (5) and B(θ, y) = (a− θ)−αβy, we have

W ′(y) = By(Γ(y), y) = (a− Γ(y))−αβ,

so
kδ(b− y)−δ−1 = [(1− τ)δk]−

αβ
γ (b− y)

(δ−γ)αβ
γ .

Matching coefficients requires kδ = [(1− τ)δk]−
αβ
γ and δ + 1 = (γ− δ) αβ

γ , which we can solve for δ:

δ = γ
αβ− 1
αβ + γ

and similarly for k:

k = (1− τ)−
αβ

γ+αβ
γ + αβ

γ(αβ− 1)
.

Note that, since we assumed αβ > 1, we have δ, k > 0. Using this in (79), effort is given by

y(θ) = b− (1− τ)−
1

γ+1 (a− θ)
γ+αβ
γ+1 = b− (1− τ)−

1
γ+1 n

γ+αβ
α(γ+1) = b− (1− τ)−

1
γ+1 nβ− 1

ρ ,

where the last step used (42). Hence, we match (39) for some appropriate κ. The same is true for (40)
and hence (38).
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