# Social Ties, Identity and the Delivery of Public Services

### Oriana Bandiera (LSE)

with Robin Burgess (LSE), Erika Deserranno (Kellogg) Imran Rasul (UCL), Munshi Sulaiman (Save the Children)

Yale, April 2018

### Service delivery with socially connected agents

- Many governments and NGOs rely on local agents to deliver public services to remote areas
  - More willing to stay and need less (no?) compensation
  - Embedded in the community -> social ties
- Social ties can:
  - motivate the agents to exert effort (positive)
  - bias targeting (negative)

### This paper

- We design an experiment to identify the effect of social ties on the delivery of a poverty reduction program
  - coverage: how many HHs are treated
  - targeting: which households are treated
- Assess whether targeting bias and coverage can be separated >> provide evidence on the underlying social preferences by exploiting differences in group identity

### Road Map

- 1. Context
- 2. The effect of social ties
- 3. The structure of social preferences
- 4. Conclusion

### Road Map

- 1. Context
- 2. The effect of social ties
- 3. The structure of social preferences
- 4. Conclusion

#### The context

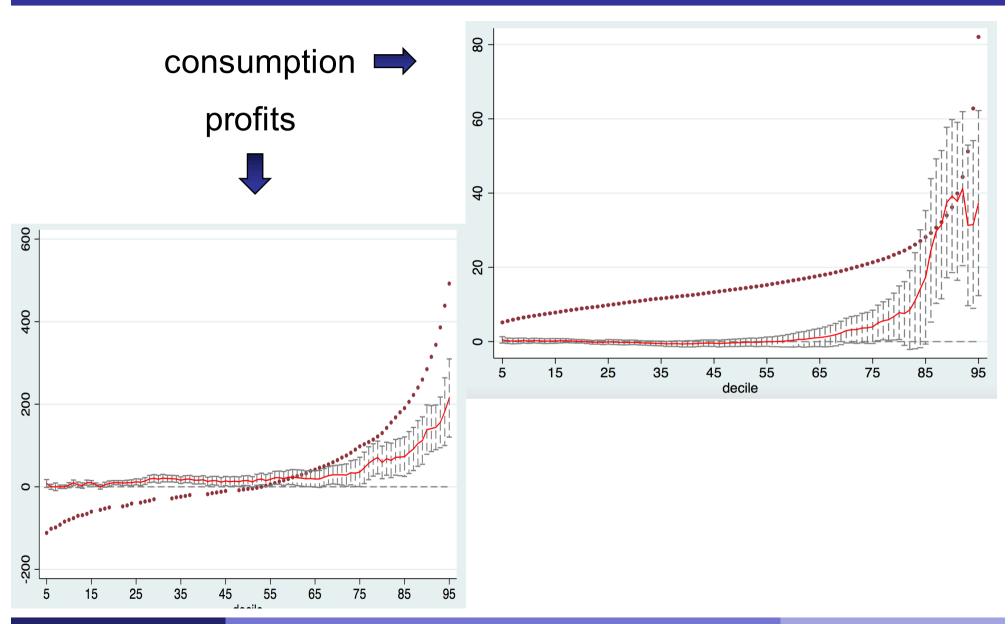
- West Uganda: many poor, mostly in subsistence agriculture
- Low adoption of modern techniques and improved seeds
- Constraints to adoption:
  - 1. farmers lack know-how on modern techniques
  - 2. most seeds are "lemons" [Bold et al. 2017]

### The agriculture extension program: techniques & seeds

- The two are complements but also useful individually
- Techniques encouraged by BRAC and rarely used are:
  - zero tillage (11% at baseline)
  - line sowing (32%)
  - no mixed cropping (10%)
- Seeds are high yielding varieties of staples and commercial crops
  - 33% of farmers had tried them at baseline

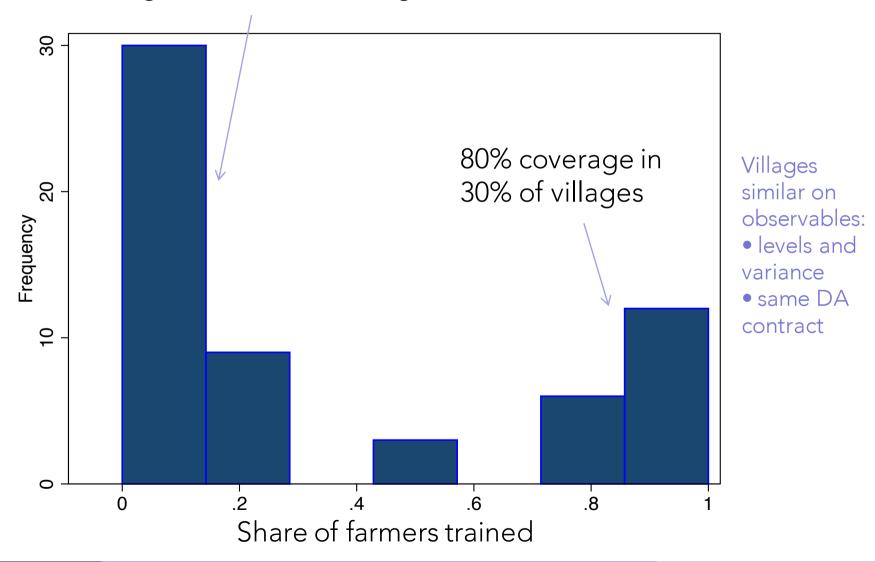
### The agriculture extension program: delivery

- BRAC employs local successful women farmers as DAs to:
  - 1. Train poor women farmers on modern techniques
  - 2. Sell high-quality improved seeds produced in-house
- DAs are given free seeds for own usage (valued \$1) and are trained regularly (reported main reason to accept job)
- DAs buy seeds wholesale from BRAC and resell at a markup (5-10% sale price = 5-10c)


### Program evaluation

- We evaluate the program using an RCT
- 60 treatment villages; 60 control villages
- Random 20% of the farmers (n=4.7K) surveyed at baseline and endline (2 years later)

### The program "works" for the average beneficiary


- 20% increase in # marketable crops, 38% increase in profits
  - → 25% increase in consumption
- no evidence of benefits spreading to non-beneficiaries:
  - profit & consumption inequality increase
  - QTEs show gains concentrated in top quantiles

### Large gains from being trained/given seeds by DA



### Yet, coverage varies substantially across villages

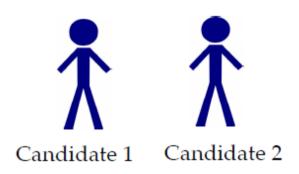
No coverage in 50% of the villages



## Do social ties explain <u>which</u> and <u>how many</u> farmers DA trains/ sells seeds to?

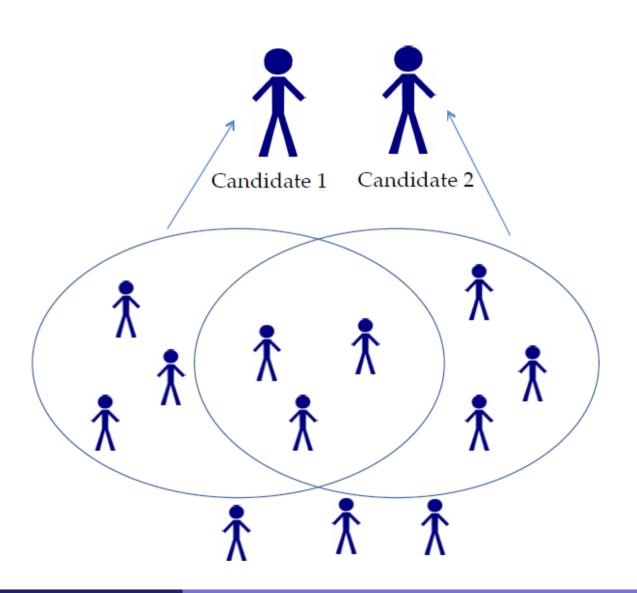
- BRAC wants DAs to:
  - 1. Train as many farmers as possible –up to 20
  - 2. Prioritize the poor
- But DAs' actions are difficult to monitor:
  - Can put low effort
  - Can target connected HHs at expense of most deserving
- Common behaviors in rural development programs: (Anderson & Feder 2007, Alatas et al 2013, Baltzer and Hansen 2011, Basurto et al 2017)

### Road Map


- 1. Context
- 2. The effect of social ties
  - i. Empirical Design
  - ii. Balance Checks
  - iii. Results
- 3. The structure of social preferences
- 4. Conclusion

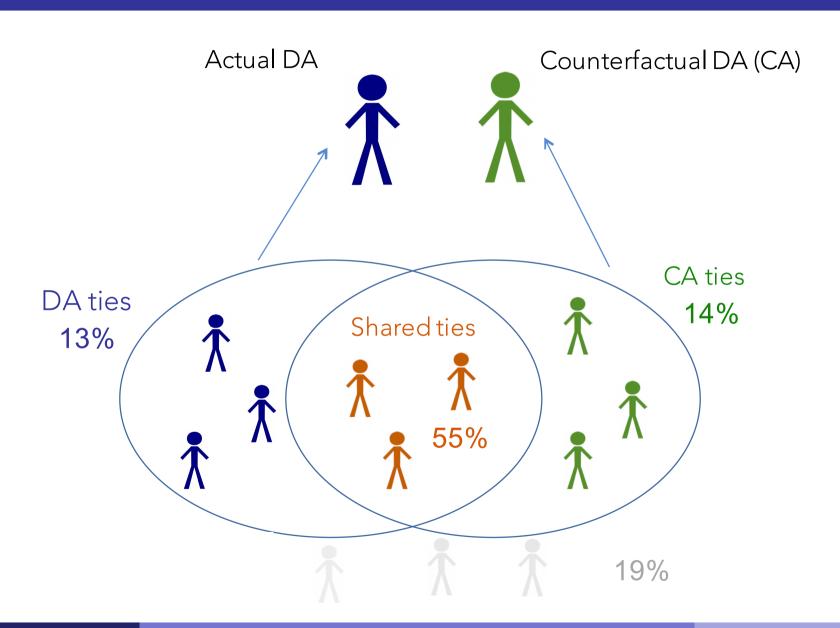
## EMPIRICAL DESIGN

### Identification

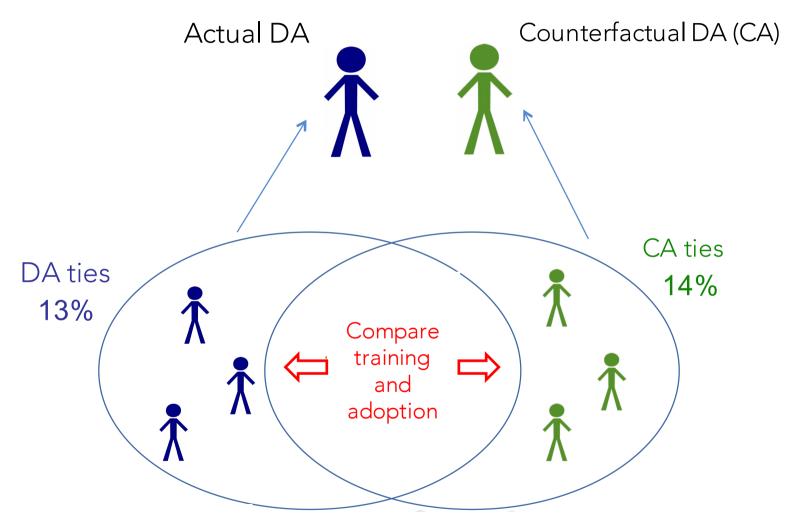

- Identification requires dealing with unobservables that determine tie status and the outcome of interest
- Standard solution is to use within agent variation
  - FE absorb all unobservables
  - including those we are interested in to measure bias
- Our design creates a counterfactual group who are not tied to the agent but are identical to those who are
  - valid counterfactual
  - allows to measure bias

### Step 1: BRAC selects two candidates in 60 treatment villages




- They are approached individually
- They don't know whether anyone else has been approached
- Farmers cannot apply for the DA post

### Step 2: We measure ties btw farmers and the candidates




- Sample: random 20% of farmers (n=2.7k)
- Measures of ties: friend & family, acquaintance, discuss agriculture

### Step 3: We randomly select one of the two as DA



## Step 4: We use farmers tied to the non-chosen candidate as counterfactual



Connection to DA vs CA is exogenous because DA is chosen randomly

## BALANCE CHECKS

## DAs are similar and positively selected by design

|                                           |        |        |                   | р-vaiue |                |
|-------------------------------------------|--------|--------|-------------------|---------|----------------|
|                                           | DA     | CA     | Average<br>farmer | DA = CA | DA =<br>Farmer |
|                                           | (1)    | (2)    | (3)               | (4)     | (5)            |
| Age                                       | 39.283 | 38.610 | 41.677            | 0.696   | 0.063          |
|                                           | (9.36) | (9.40) | (3.14)            |         |                |
| Knows how to read and write (=1 if yes)   | 1.000  | 0.967  | 0.768             | 0.156   | 0.000          |
|                                           | (0.00) | (0.18) | (0.10)            |         |                |
| Completed primary school (=1 if yes)      | 0.617  | 0.533  | 0.467             | 0.360   | 0.024          |
|                                           | (0.49) | (0.50) | (0.13)            | į       |                |
| No. of household members                  | 5.783  | 6.183  | 5.370             | 0.379   | 0.201          |
|                                           | (2.43) | (2.53) | (0.54)            |         |                |
| Acres of land owned                       | 2.949  | 2.873  | 2.041             | 0.864   | 0.009          |
|                                           | (2.51) | (2.31) | (0.74)            |         |                |
| Ever adopted improved seeds (1=yes)       | 0.843  | 0.800  | 0.378             | 0.576   | 0.000          |
|                                           | (0.37) | (0.40) | (0.25)            |         |                |
| No. techniques ever used (out of 3)       | 0.735  | 0.809  | 0.700             | 0.499   | 0.690          |
| •                                         | (0.57) | (0.50) | (0.24)            |         |                |
| Acres of land cultivated                  | 1.583  | 1.763  | 1.159             | 0.430   | 0.004          |
|                                           | (1.09) | (1.36) | (0.26)            |         |                |
| Engaged in commercial agriculture (1=yes) | 0.875  | 1.000  | 0.534             | 0.334   | 0.006          |
|                                           | (0.35) | (0.00) | (0.16)            |         |                |
| No. of observations                       | 60     | 60     | 2,626             |         |                |

## Farmers connected to either agent are similar

|                                     | DA ties | CA ties | p-value |
|-------------------------------------|---------|---------|---------|
| Age                                 | 42.11   | 40.85   | 0.214   |
|                                     | (14.86) | (16.24) |         |
| Knows how to read and write         | 0.78    | 0.79    | 0.761   |
|                                     | (0.41)  | (0.40)  |         |
| Completed primary school            | 0.42    | 0.47    | 0.168   |
|                                     | (0.49)  | (0.50)  |         |
| No. of household members            | 5.59    | 5.57    | 0.923   |
|                                     | (2.27)  | (2.22)  |         |
| Acres of land owned                 | 2.47    | 2.55    | 0.840   |
|                                     | (4.57)  | (5.15)  |         |
| Ever adopted improved seeds         | 0.22    | 0.23    | 0.908   |
|                                     | (0.42)  | (0.42)  |         |
| No. techniques ever used (out of 3) | 0.71    | 0.56    | 0.091   |
|                                     | (0.73)  | (0.64)  |         |
| Acres of land cultivated            | 1.22    | 1.26    | 0.719   |
|                                     | (0.94)  | (1.06)  |         |
| Engaged in commercial agriculture   | 0.52    | 0.56    | 0.415   |
|                                     | (0.50)  | (0.50)  |         |
| Distance to DA (km)                 | 1.43    | 2.17    | 0.060   |
|                                     | (3.34)  | (6.84)  |         |

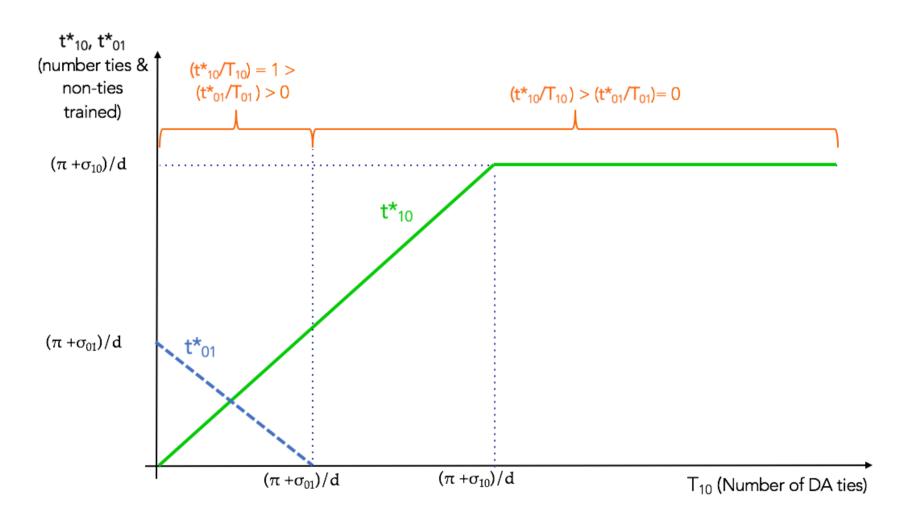
## FRAMEWORK

### Set up

- T number of farmers differ along three dimensions:
  - their ties to the delivery agent  $a \in [0,1]$
  - their ties to the counterfactual agent  $c \in [0,1]$
  - their wealth  $w \in [p,r]$
- The agent maximizes her utility:
  - $\bullet$  a monetary commission  $\pi > 0$  for every farmer she treats
  - social benefit  $\sigma_{acw}$
  - effort cost, increasing and convex in the total number of farmers treated
- The organisation aims to treat the poor

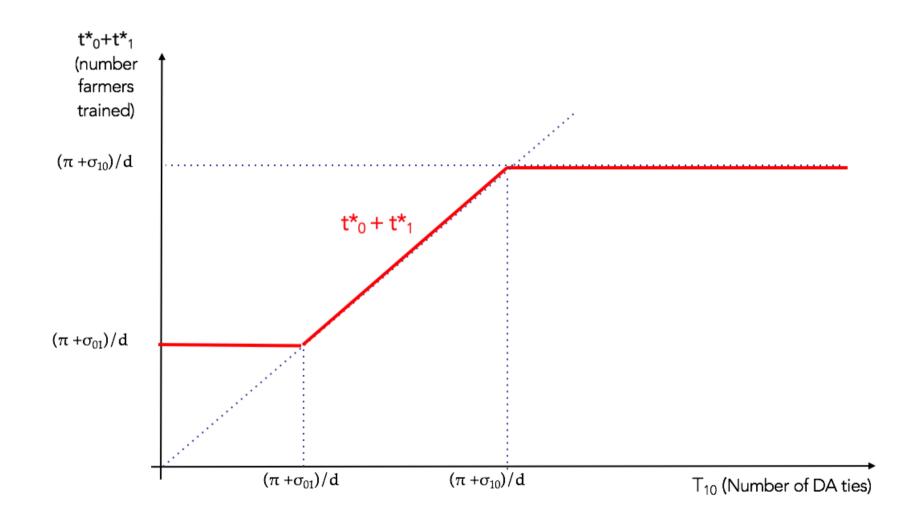
#### Solution

 The agent chooses how many farmers of class w and connection status t to treat to maximize


$$\sum_{w} \sum_{\tau} (\pi + \sigma_{\tau}^{w}) t_{\tau}^{w} - \frac{d}{2} (\sum_{w} \sum_{\tau} t_{\tau}^{w})^{2}$$

solution is

$$t_{\tau}^{w*} = min[t_{\tau}^{w}(\sigma_{\tau}^{w}); wT_{\tau}]$$


- The interest of the agents and the organization's are misaligned when  $\sigma_{10\,r}>\sigma_{01p}$
- agency problem arises because the organisation cannot internalise the agent's preferences when setting the contract regardless of how ties affect utility

### Bias: ties are more likely to be treated, other things equal



$$T_{11} = T_{00} \& \sigma_{10 r} = \sigma_{10 p}$$

## Coverage: number of farmers treated is increasing in the number of DA ties



## RESULTS

### The effect of social ties

$$y_{iv} = \alpha + \gamma^D DA tie_i + \gamma^C CA tie_i + \gamma^S Shared tie_i + X_{iv}\delta + u_{iv}$$

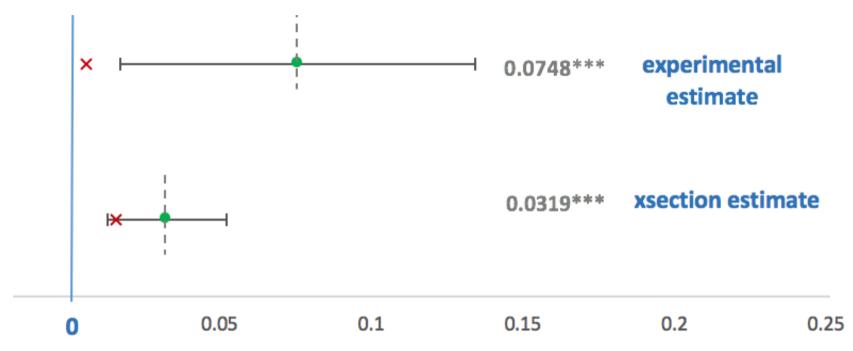
- $y_{iv}$ = 1 if farmer i is trained (adopts seeds) 2 years later
- $X_{iv}$  = distance (in km) from respondent to DA, area FE
- Errors are clustered by connection status & village

 $\triangle = (\gamma^D - \gamma^C)$  is the causal effect of social ties

### DA ties are 7.5pp more likely to be trained than CA ties

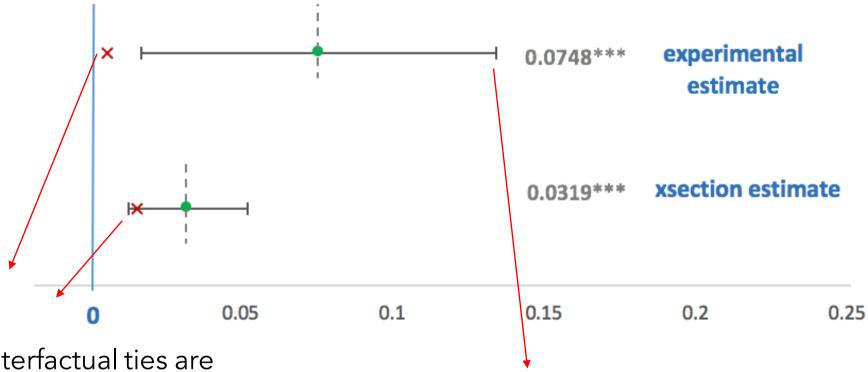
|                                       | (1)                           | (2)                 | (3)                   | (4)                | (5)                                                |
|---------------------------------------|-------------------------------|---------------------|-----------------------|--------------------|----------------------------------------------------|
| by the DA ir                          | Was trained _                 | Adopted             | Average std effect on |                    |                                                    |
|                                       | by the DA in<br>the last year | DA                  | Other BRAC<br>source  | Non BRAC<br>source | adoption of<br>techniques in<br>the last<br>season |
| DA tie - CA tie                       | 0.0748***<br>(0.03)           | 0.0514***<br>(0.02) | 0.0159<br>(0.02)      | -0.0074<br>(0.02)  | 0.2100**<br>(0.09)                                 |
| Observations<br>Mean in Omitted Group | 2,423<br>0.014                | 2,433<br>0.012      | 2,433<br>0.012        | 2,448<br>0.031     | 1,366<br>-                                         |




no compensation

### This is twice as large as the cross-sectional estimate

- experimental: ties vs counterfactual ties
- xsection: ties+ shared ties vs counterfactual ties + no ties

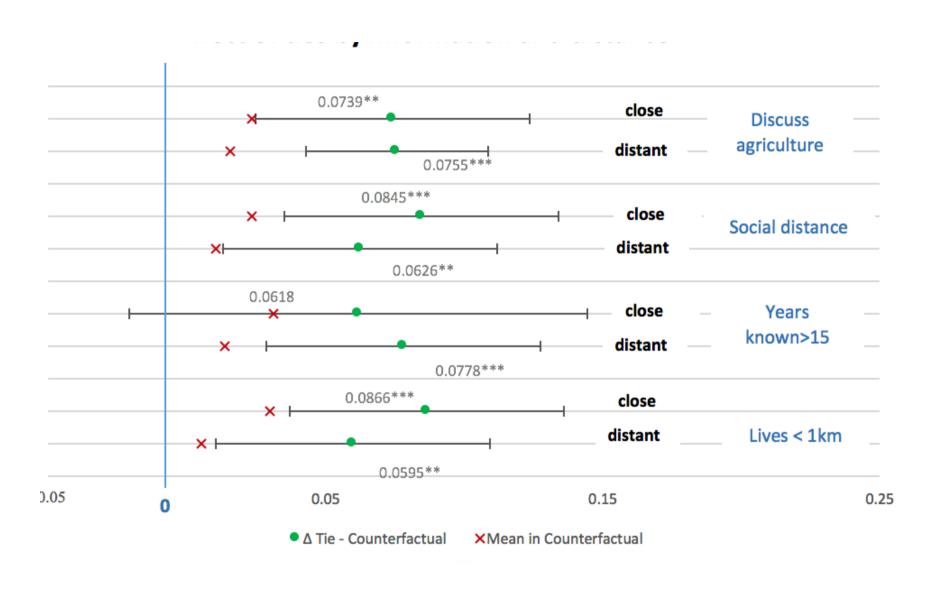

### This is twice as large as the cross-sectional estimate

- experimental: ties vs counterfactual ties
- xsection: ties+ shared ties vs counterfactual ties + no ties



### This is twice as large as the cross-sectional estimate

- experimental: ties vs counterfactual ties
- xsection: ties+ shared ties vs counterfactual ties + no ties

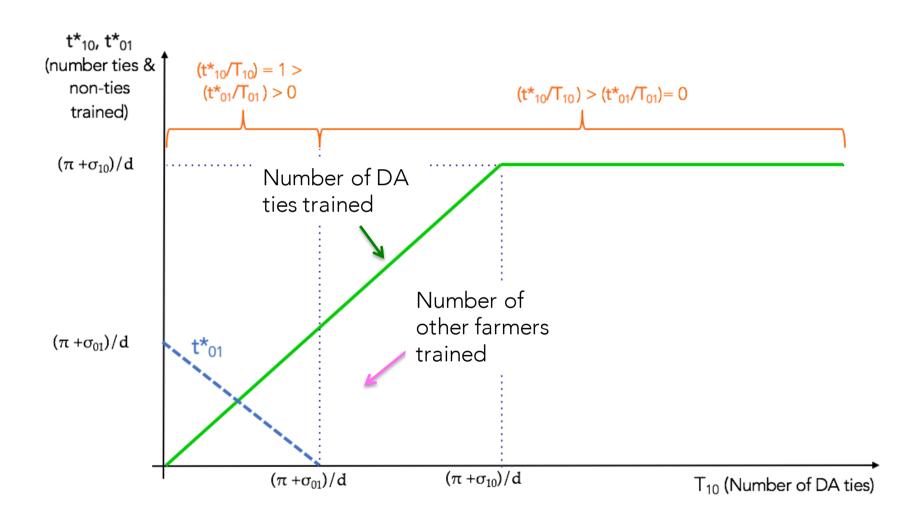



Social ties and public service delivery

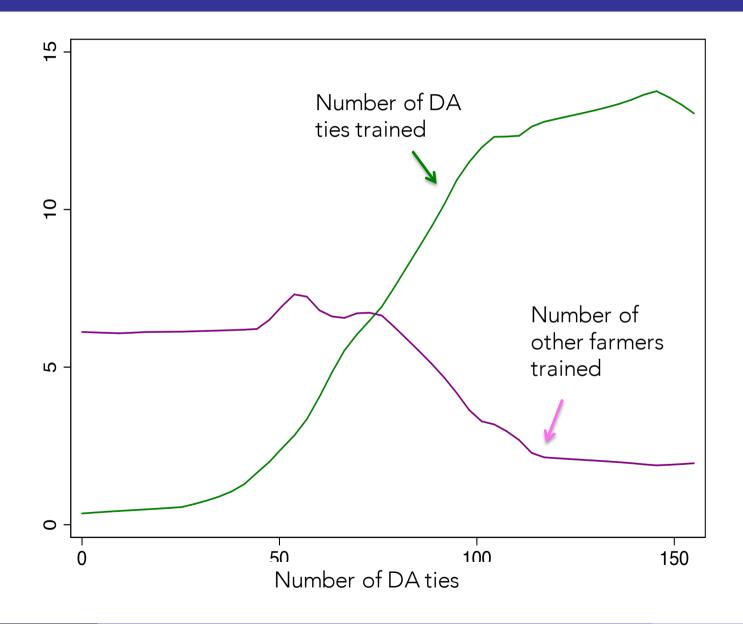
counterfactual ties are treated as no ties

shared ties are negatively selected OR the DA puts a negative weight on connections to the CA H0: ties=shared ties p=.07

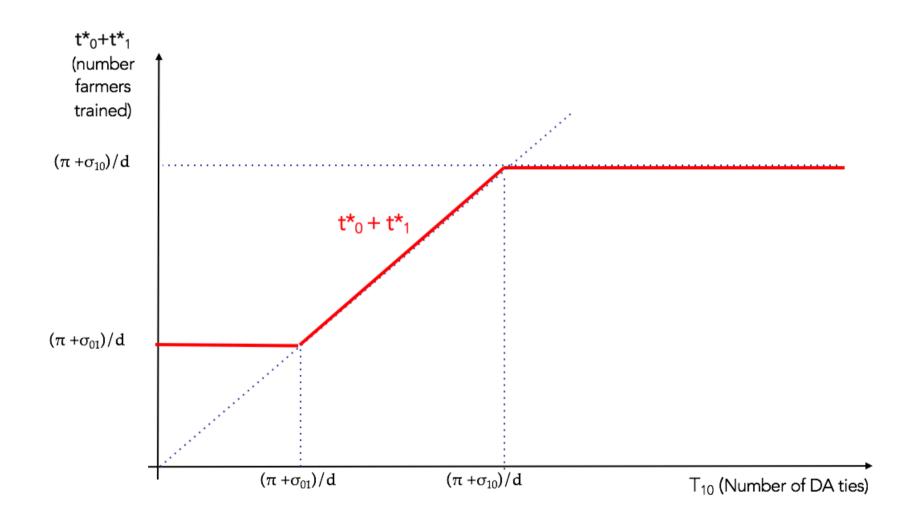
### The DA favors her ties regardless of social or physical distance



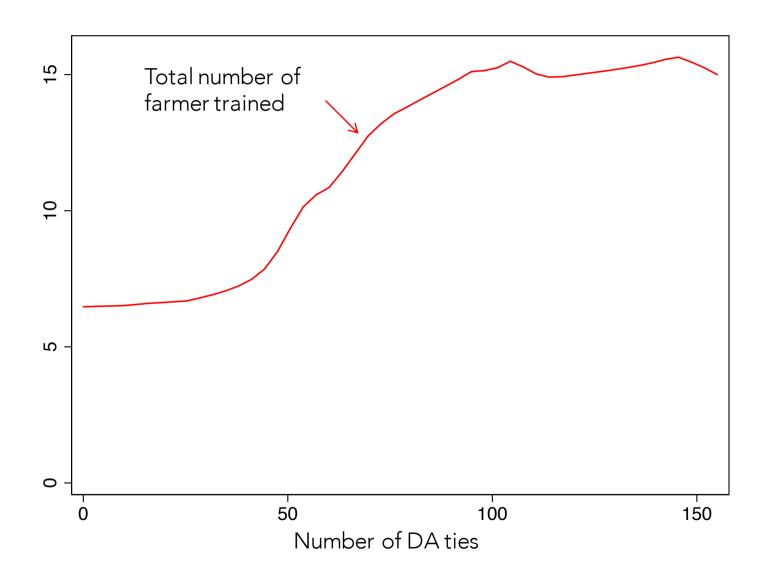

### The effect of social ties on coverage and targeting


### Explore effect of social ties on:

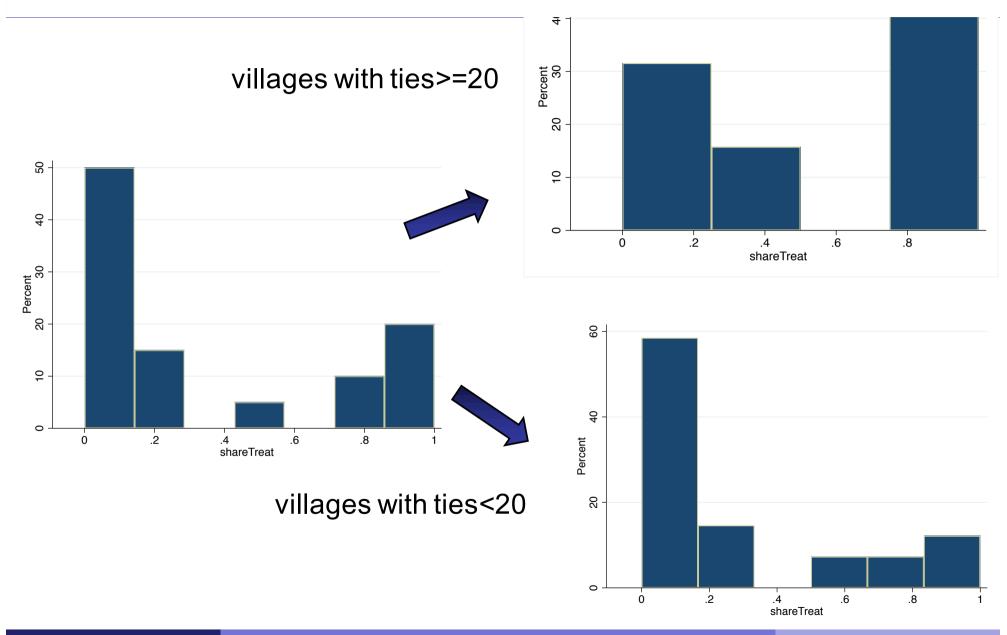
- Number of farmers trained (coverage)
- Pro-poor targeting


## Coverage by tie status, in theory

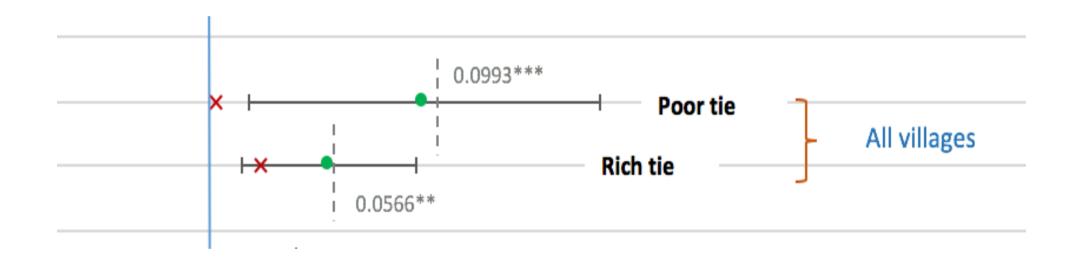



# Coverage by tie status, data




# Total coverage, theory




# Total coverage, data



# Number of DA ties explains variation in coverage



# Targeting is biased



H0: Rich Tie=Poor Counterfactual p=.03

### Treated beneficiaries are 2X richer than ideal beneficiaries

Compare actual allocation chosen by the DA to alternative allocations

| Targeting method          | Actual | Randomly<br>chosen from<br>the poorest<br>25% | Poorest | Ratio of actual<br>to random<br>targeting of<br>poorest farmers |
|---------------------------|--------|-----------------------------------------------|---------|-----------------------------------------------------------------|
| Share of trained who are  |        |                                               |         |                                                                 |
| DA ties                   | 0.24   | 0.13                                          | 0.11    | 1.8                                                             |
| CA ties                   | 0.06   | 0.11                                          | 0.13    | 0.5                                                             |
| Shared ties               | 0.62   | 0.63                                          | 0.62    | 1.0                                                             |
| Baseline food consumption |        |                                               |         |                                                                 |
| median                    | 11.9   | 7.8                                           | 5.6     | 1.5                                                             |
| mean                      | 17.2   | 8.3                                           | 5.8     | 2.1                                                             |

# Road Map

- 1. Context
- 2. The effect of social ties
- 3. The structure of social preferences
  - i. Empirical Design
  - ii. Balance Checks
  - iii. Results
- 4. Conclusion

### Uncovering social preferences

Can we reduce the bias while keeping the motivation effect?

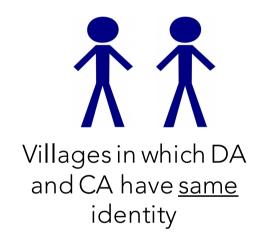
Answer depends on whether social preferences are

- Independent:  $d\sigma_{10}/d\sigma_{01}=0$  or
- Contagious:  $d\sigma_{10}/d\sigma_{01}>0$
- Parochial:  $d\sigma_{10}/d\sigma_{01}$ <0

Theory: different comparative statistics wrt  $\sigma_{01}$ 

Data: use variation in  $\sigma_{01}$  to uncover structure of social preferences

# EMPIRICAL DESIGN


## Group identity as a variation in $\sigma_0$

- Group identity is a key determinant of social preferences
  - Social identity theory (Tajfel and Turner 1979)
  - Lab evidence (Chen and Li 2008, Goette et al 2006, Bernhard et al 2006)
- Which group?
  - our identification comes from the comparison of ties to counterfactual ties -> group 0
  - common group trait: tied to CA → use variation in CA identity to measure preferences for group 0

### Use variation in identity alignment between DA & CA

Compare two types of villages:

Shared identity villages



Different identity villages



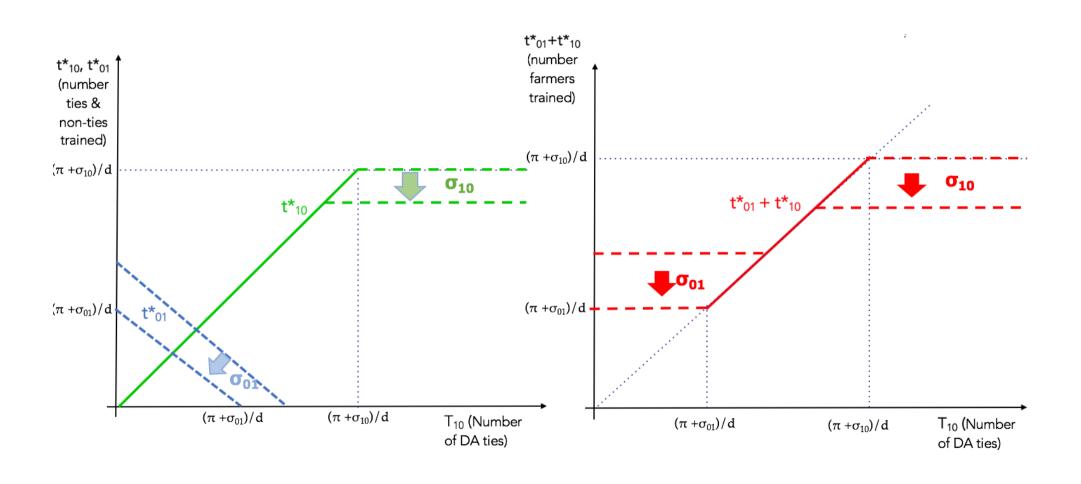
Analysis in 3 steps

## Step 1: Identify conflictual identity in our setting

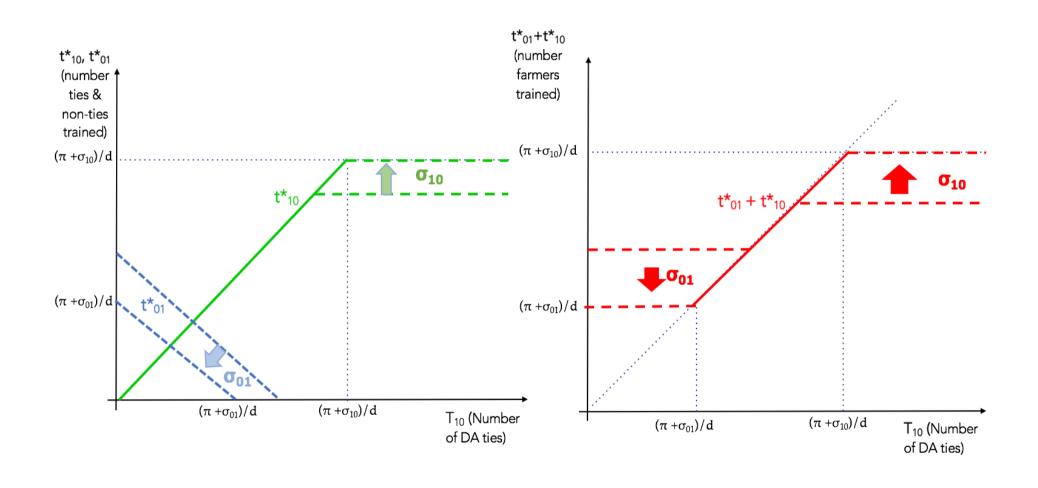
| Source of disagreement in the community? (respondent: village leader)                                                             |     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|
| Politics                                                                                                                          | 61% |  |  |  |
| Religion                                                                                                                          | 33% |  |  |  |
| Land                                                                                                                              | 7%  |  |  |  |
| Ethnicity/Tribe                                                                                                                   | 0%  |  |  |  |
| Beside being a citizen of Uganda, which specific group do you feel you belong to first and foremost? (respondent: village leader) |     |  |  |  |
| Politics                                                                                                                          | 95% |  |  |  |
| Other                                                                                                                             | 5%  |  |  |  |

Politics is divisive; 2 main parties: NRM (incumbent) and FDC (runner-up)

=> Same identity = same political affiliation


### Step 2: Measure whether DA and CA share same identity

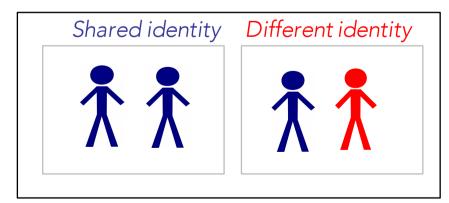
- We ask DA and CA whether they have same political affiliation (self-reported)
- We also ask them to take an Implicit Association Test (IAT) that tells us if they are biased towards NRM or FDC
  - 54% biased towards NRM
  - 46% biased towards FDC
- DA and CA support same party in 49% of the villages (as self-reported) and in 51% (based on IAT)
  - No overlap with religion and tribe


### Step 3: Testing for the structure of social preferences

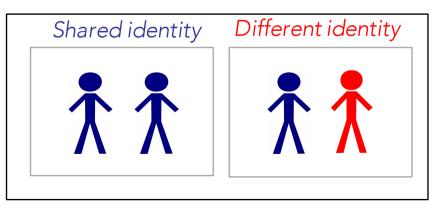
- Define  $p_1$  ( $p_0$ ) the probability that farmers in group 1 (0) is trained
- Define  $T_1$  ( $T_0$ ) coverage of group 1(0)
- We now split villages in two
  - those where DA and CA have <u>same</u> political identity
  - those where DA and CA have <u>different</u> political identity
- Compare
  - $\frac{\text{bias}}{\text{p_1 -p_0}}$  and  $\frac{\text{p_1 -p_0}}{\text{D}}$
  - coverage  $(T_D T_S)_1 \text{ vs } (T_D T_S)_0$
- Different preferences have different implications for bias and coverage

### Contagious altruism: divided identity reduces coverage of ties



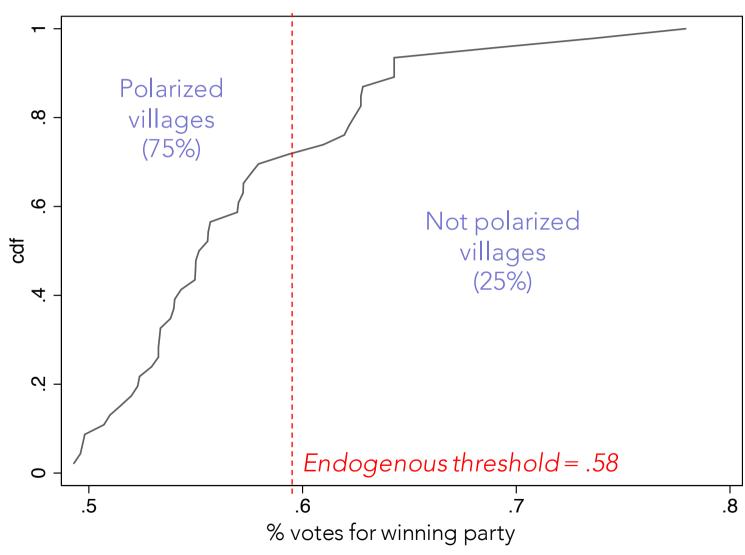

### Parochial altruism: divided identity increases coverage of ties




### Correlated unobservables

- Divided identity btw DA and CA may be correlated with more political/religious competition which itself affects delivery.
  - 1. Control for % votes for main party (using 2016 election data) or population share of main religion (using our census data)
  - 2. Estimate for polarised and non polarised villages separately (with endogenous polarisation threshold) akin to "close elections id strategy)

Non-polarized villages




<u>Polarized villages</u>



# Politics is polarised in most villages

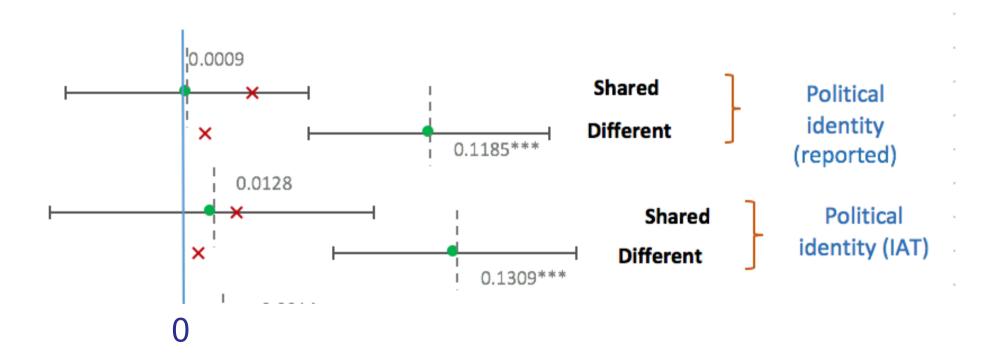




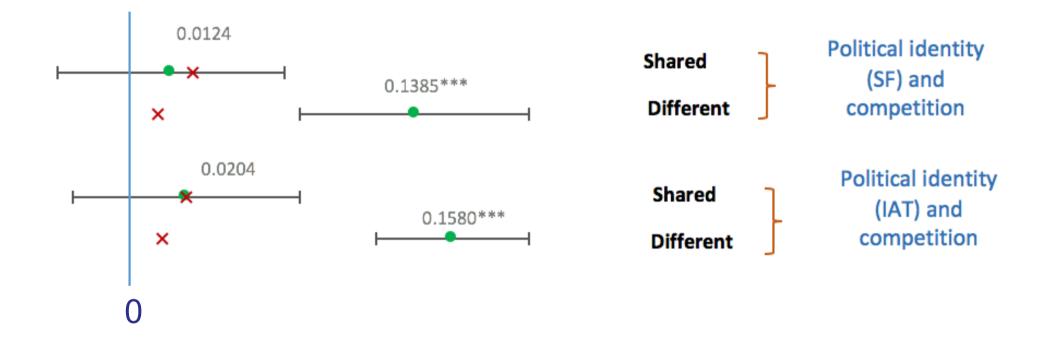
# In line with this, DA-CA identity alignment is not correlated with village traits

|                                         | Politics                                   |                                         |         |
|-----------------------------------------|--------------------------------------------|-----------------------------------------|---------|
|                                         | DA and<br>CA have<br>different<br>identity | DA and<br>CA have<br>shared<br>identity | p-value |
| Minutes to the BRAC branch (walking)    | 107.098                                    | 95.447                                  | 0.472   |
|                                         | (60.14)                                    | (56.83)                                 |         |
| Minutes to closest market (walking)     | 69.381                                     | 77.761                                  | 0.540   |
|                                         | (50.09)                                    | (48.82)                                 |         |
| Minutes to main road (walking)          | 1.844                                      | 2.479                                   | 0.636   |
|                                         | (3.36)                                     | (6.02)                                  |         |
| Road usable during rainy season (1=yes) | 0.584                                      | 0.487                                   | 0.375   |
|                                         | (0.39)                                     | (0.41)                                  |         |
| Microfinance (=1 if available)          | 0.054                                      | 0.054                                   | 0.993   |
|                                         | (0.20)                                     | (0.21)                                  |         |
| Farmer cooperative (=1 if available)    | 0.215                                      | 0.362                                   | 0.134   |
|                                         | (0.31)                                     | (0.39)                                  |         |
| SACCOs (=1 if available)                | 0.466                                      | 0.366                                   | 0.382   |
|                                         | (0.44)                                     | (0.39)                                  |         |
| Electricity (=1 if available)           | 0.460                                      | 0.409                                   | 0.667   |
|                                         | (0.43)                                     | (0.43)                                  |         |
| Television broadcast (=1 if available)  | 0.665                                      | 0.687                                   | 0.863   |
| N                                       | (0.46)                                     | (0.46)                                  |         |
| Newspapers (=1 if available)            | 0.147                                      | 0.091                                   | 0.479   |
| M 1 1                                   | (0.33)                                     | (0.23)                                  |         |
| Mobile coverage (=1 if available)       | 0.789                                      | 0.658                                   | 0.276   |
| N. C 111                                | (0.39)                                     | (0.48)                                  |         |
| No. of villages                         | 26                                         | 27                                      |         |

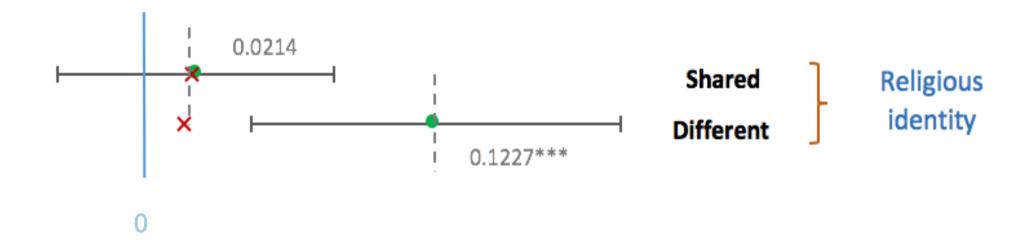
## and neither are the traits of the DA


|                                           | Politics                                   |                                         |         |
|-------------------------------------------|--------------------------------------------|-----------------------------------------|---------|
|                                           | DA and<br>CA have<br>different<br>identity | DA and<br>CA have<br>shared<br>identity | p-value |
| No. of villages                           | 26                                         | 27                                      |         |
| DA traits                                 |                                            |                                         |         |
| Age                                       | 38.731<br>(9.81)                           | 39.519<br>(8.10)                        | 0.752   |
| Completed primary school                  | 0.577 (0.50)                               | 0.667<br>(0.48)                         | 0.510   |
| No. of household members                  | 5.500<br>(1.73)                            | 6.481<br>(2.89)                         | 0.138   |
| Acres of land owned                       | 2.760<br>(2.13)                            | 3.389<br>(2.92)                         | 0.377   |
| Ever adopted improved seeds (1=yes)       | (0.86)<br>(0.36)                           | (0.79)<br>(0.41)                        | 0.573   |
| No. techniques ever used (out of 3)       | (0.61)<br>(0.50)                           | (0.41)<br>(0.80)<br>(0.58)              | 0.259   |
| Acres of land cultivated                  | 1.481<br>(0.93)                            | 1.833<br>(1.22)                         | 0.241   |
| Engaged in commercial agriculture (1=yes) | 0.923<br>(0.27)                            | 0.667<br>(0.48)                         | 0.020   |

# There is variation in ties in both sets of villages


|                       | Political identity |         | p-value |
|-----------------------|--------------------|---------|---------|
|                       | Different          | Same    |         |
| # DA Ties             | 5.577              | 3.667   | 0.350   |
|                       | (8.60)             | (5.81)  |         |
| # Counterfactual Ties | 8.769              | 5.185   | 0.200   |
|                       | (10.35)            | (9.72)  |         |
| # Shared ties         | 21.462             | 25.519  | 0.408   |
|                       | (15.04)            | (20.11) |         |

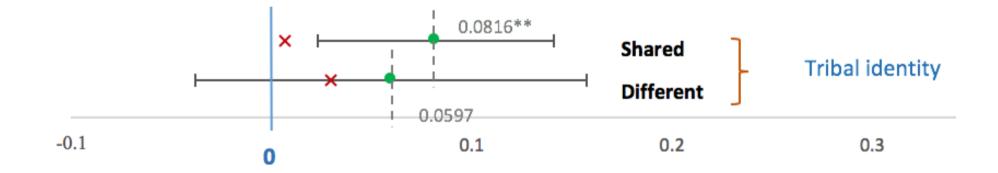
# **RESULTS**


### Bias larger when the outgroup has different political identity

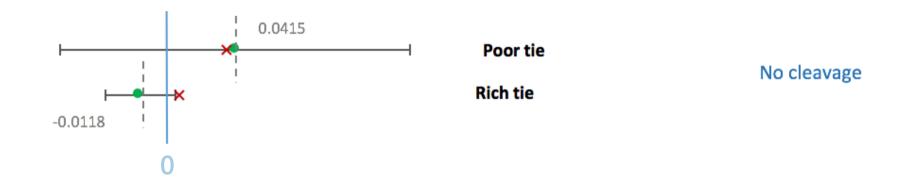


### also restricting to polarised villages

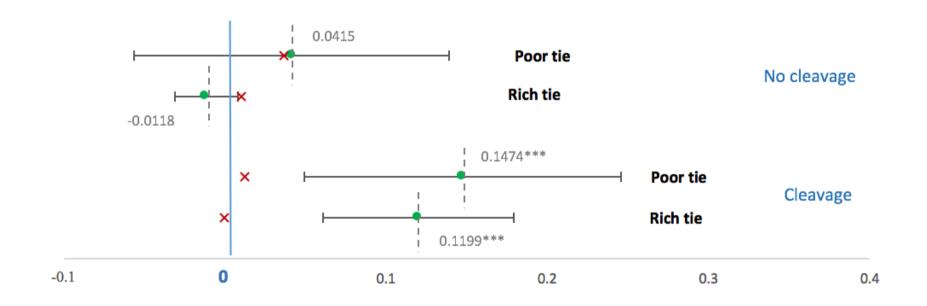



### Bias larger when the outgroup has the same religious identity

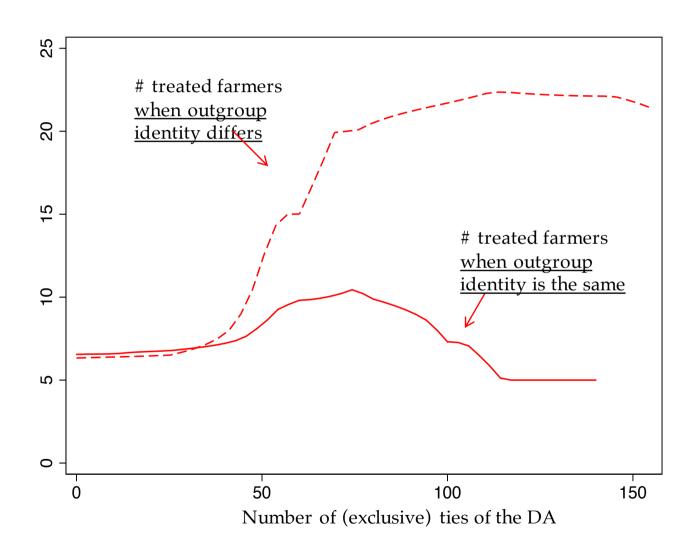



# also restricting to polarised villages




# Whilst non-conflictual identity makes no difference




### With shared identity, DAs target the poor regardless of ties



### With different identity, DAs target their ties regardless of wealth



# Total coverage and bias go hand in hand



### Conclusions

- o The effect of social ties depends on whether outgroup has a distinct identity over a conflictual dimension (here politics and religion)
- If yes, social ties increase coverage but worsen targeting
- o If not, there is no bias but no coverage effect either
- → social preferences are interdependent: motivation to help one's friends comes from the existence of "enemies"

# Implications for future research

### 1. Diversity

- Established channel: diversity lowers cooperation
- New channel: diversity reduces cooperation across groups but increases cooperation within group

#### 2. Network structure

- Current focus: number of links of potential DA
- New focus: "negative" links can matter as much
- I.e. it's not just whether you are connected to the delivery agent, but also who else you are and are \*not\* connected to

# Policy implications

- Appointing agents with a large network is only effective if they have a motive to help – in this case the desire to exclude the outgroup
- Appointing one delivery agent per group might backfire if agents are solely motivated to help the in-group to spite the out-group

Do we have to rely on negative preferences?

 Evidence from other settings indicates that higher powered incentives can mute the effect of ties (beneficial crowding out)