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Abstract

I study the problem of kidney exchange under strict ordinal preferences and with constraints on the

length of the trading cycles. The assumption of strict ordinal preferences, which is a departure from

the traditional assumption that all compatible kidneys are perfect substitutes for each other, allows the

mechanism I propose to take advantage of the welfare-relevant information that strict preferences carry.

Additionally, individual rationality in this setting incentivizes patient-donor pairs who are compatible

with each other to participate in the kidney exchange, thus increasing the match rate for incompatible

pairs. I show that deterministic mechanisms have poor properties in this environment. Instead, I

explicitly define an individually rational, ordinally efficient and anonymous random mechanism for the

case of pairwise kidney exchange. I then extend the idea behind this mechanism to arrive at a constrained

ordinally efficient mechanism no matter what the ex-post constraints on the outcome are, including

individual rationality, limits on the cycle lengths, maximizing the number of proposed transplantations

etc. Several mechanisms from the existing literature are special cases of this mechanism. Finally, I

show that individual rationality, ex-post efficiency and weak strategyproofness are incompatible for the

cycle-constrained case making the proposed mechanism a second-best mechanism.
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1 Introduction

As of September 2014, the number of patients with end-stage kidney disease and in need of a kidney transplant

exceeded 100,000 on the US waiting list alone. The number has been growing for years. Annually, more than

4,000 patients die while waiting and thousands more become too sick to receive a transplant and have to

withdraw from the list (see, for example, The New York Times Editorial Board 2014). One of the methods

attempted to alleviate the severe kidney shortage, has been the creation of living-donor kidney-exchange

clearinghouses (Roth et al. 2004, 2005a, 2007), which allow otherwise incompatible patient-donor pairs to

trade kidneys amongst themselves.1

The United States National Organ Transplantation Act (NOTA) of 1984 forbids the transfer of human

organs for “valuable considerations.”2 This has two important consequences for kidney exchange. First, it is

illegal to use the price mechanism to guarantee that the post-exchange allocation is socially optimal. Instead,

it falls to the existing clearinghouses, which are in charge of kidney exchanges, to organize efficient trading.

Second, NOTA’s provisions make it impossible for donors to contractually commit to donate a kidney so

kidney exchanges need to be performed simultaneously to avoid donors backing out of a promised donation.

Thus any exchange with k patient-donor pairs requires k donor nephrectomies (i.e., kidney removals) and k

transplantations, each of which requires an operating theatre and a surgical team working simultaneously.

This constraint creates significant logistical challenges which in practice limit the number of pairs who could

participate in each exchange. Since each exchange takes the form of a trading cycle, where the first donor

donates a kidney to the second patient, whose donor donates to the third patient and so on, until a donor

closes the cycle by donating a kidney to the first patient, the length of these trading cycles, as measured by

the number of pairs in them, cannot be too large.

With this motivation, I study the problem of object exchange without monetary transfers (Shapley and

Scarf 1974), with strict ordinal preferences and with constraints on the length of the trading cycles. The

assumption of strict ordinal preferences is the main departure from the existing kidney-exchange literature

which is based on the assumption of binary preferences, as initially postulated by Roth et al. (2005a), so that

all compatible kidneys are viewed as perfect substitutes from the point of view of the transplant patient.3

There is mounting evidence in the transplantation literature, however, that a variety of factors beyond simple

compatibility can impact the short- and long-term survival rates of kidney grafts, including, for example,

age and sex.4 Thus reducing the problem to simple dichotomous compatibility-based preferences disposes

of some welfare-relevant information. Additionally, an individually rational mechanism that takes strict

preferences into account can also induce the participation of patients who are compatible with their related

donor. This would greatly increase the transplantation rates for incompatible pairs: for example, Gentry

et al. (2007) estimate that the rate would almost double. Finding a suitable mechanism in this environment

of great real-life interest has been an open problem until now.

After I show that deterministic mechanisms in this setting have poor properties, my first main result

is to propose a random mechanism that satisfies the following three properties. Firstly, it is individually

rational. This guarantees compatible transplantations and the participation of compatible pairs. Secondly,

1Kidney-exchange clearinghouses have been organized in the US (Wallis et al. 2011), UK (Manlove and O’Malley 2012), the
Netherlands (Keizer et al. 2005; De Klerk et al. 2005), South Korea (Park et al. 1999, 2004), Romania (Lucan 2007), Portugal,
Australia, New Zealand, Canada, Spain (Constantino et al. 2013) and others.

2The buying and selling of kidneys is forbidden almost everywhere in the world (Roth 2007).
3Efficiency in this case reduces to maximizing the number of exchanges performed. While the main efficiency criterion in this

paper is Pareto efficiency defined with respect to the patients’ preferences over kidneys, my most general result, Proposition 8,
allows the addition of other criteria that are ex-post desirable, including maximum-cardinality matchings.

4I discuss this further in Section 2.

2



it is ordinally efficient, where ordinal efficiency is the natural form of efficiency for random environments

with ordinal preferences (Bogomolnaia and Moulin 2001). Thirdly, it is fair where fairness is represented

by anonymity/name-invariance. I explicitly define the mechanism for the kidney-exchange setting, where

each trade can involve no more than two pairs. I call it the 2-cycle probabilistic serial (2CPS) mechanism,

as it is based on Bogomolnaia and Moulin’s (2001) probabilistic serial (PS) mechanism.5 The mechanism

can be extended to a setting including a social endowment of kidneys such as kidneys coming from deceased

or altruistic living donors. I also show that no mechanism can simultaneously satisfy an arbitrary cycle

constraint, individual rationality, ordinal efficiency, and also guarantee that agents truthfully report their

preferences, which, I argue, is the least important desideratum in the setting of kidney exchange.6

For any preference-profile, the 2CPS mechanism selects a lottery over deterministic allocations, in each

of which all trades satisfy individual rationality and the cycle-length cap. The cycle-length constraint and

individual rationality limit the set of deterministic allocations on which a random allocation could place

positive probability. I then consider the general case of arbitrary ex-post constraints. My second main

result is to show how the PS mechanism can be adapted to account for any possible such constraints while

maintaining (constrained) ordinal efficiency and (if the constraints allow it) anonymity. This result is striking

since it includes not only the setting of object exchange with caps on the cycle length but also more general

object-exchange and object-allocation problems, as well as two-sided matching markets such as school-choice

problems or the assignment of medical interns to hospitals. Moreover, any of these markets can include

arbitrary constraints, including not only cycle-length caps and individual rationality but also requiring

maximum-cardinality matchings, quotas, regional caps, the assignment of couples in close proximity to each

other in job-placement services, and other constraints motivated by geographical or diversity considerations.

Another reason to consider strict preferences is related to the participation of compatible patient-donor

couples in kidney exchange programs. Even if the differences in the graft survival and rejection rates between

different kidneys are of secondary importance to actually receiving a kidney, current mechanisms based on

the binary-preference assumption do not provide incentives for compatible pairs to enroll in kidney-exchange

programs. Under these mechanisms, the patient from a compatible pair would always be guaranteed to receive

a compatible kidney but the kidney she might end up receiving can have a worse expected outcome than

the one from her donor. Adding to that the waiting time and other extra costs associated with enrolling

in a kidney exchange, compatible pairs are unlikely to want to participate. However, their involvement

can increase the matching rate among incompatible pairs, significantly improving efficiency: simulations in

Gentry et al. (2007) suggest that the match rate for incompatible pairs would double if known compatible

pairs participate.7 Imposing individual rationality in my setting provides incentives for compatible patient-

donor pairs to enroll by guaranteeing the patient a kidney that is at least as good for her as her donor’s

kidney. Notice that it’s individually rational for compatible patient-donor to participate in an ex-post way:

compatible pairs would never want to back out of a proposed kidney exchange.

I begin by showing that deterministic mechanisms do not perform very well in my environment. Namely,

the mechanism desiderata of basic fairness (represented by anonymity/name-invariance) and efficiency are

5It is notable that this setting is equivalent to the well-known roommate problem (Gale and Shapley 1962). Thus the 2CPS
mechanism is also a general roommate-problem solution with desirable properties.

6Previous models of kidney exchange have been concerned with strategyproofness but blood testing for kidney exchange
has become more standardized and centralized over time, which has made misreporting of compatibility-induced preferences
harder. See Ashlagi and Roth (2014).

7See also Roth et al. (2005b) for a similar estimate. In line with these recommendations, the National Kidney Registry in
the US is actively trying to recruit compatible pairs for participation in their program. There is still, however, a debate in the
medical literature on the ethics of allowing compatible pairs to participate in kidney exchange. See Sönmez and Ünver (2014)
for relevant references and a discussion.
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incompatible with one another, as are individual rationality, efficiency and strategyproofness. I then examine

the performance of Gale’s Top Trading Cycles (TTC) in my setting since TTC is the solution with the best

properties in the absence of cycle constraints.8 If we assume that patients’ preferences are drawn from a

uniform distribution over the space of preference profiles, TTC fails to satisfy the cycle constraints with

probability approaching 1 as the number of patient-donor pairs diverges to infinity. If this weren’t the case,

TTC would have made a good solution: it would have selected a matching that is cycle-constraint compliant

with positive probability and, due to TTC’s desirable properties, the cost of the occasional long cycle might

have been acceptable. However, the result suggests that TTC would not work, even approximately, in my

setting.

Shifting attention to random mechanisms, I show that a couple of likely candidates for a suitable mecha-

nism fail to satisfy ordinal efficiency. Instead, I propose the 2CPS mechanism, which is individually rational

(ensuring compatible transplantations), ordinally efficient, and anonymous, which I argue are the most im-

portant desiderata in this setting.

The 2CPS mechanism is based on a simultaneous-eating algorithm. The algorithm treats all kidneys

as if they are infinitely divisible and all agents as if they are claiming larger and larger shares from the

donors’ kidneys in continuous time starting with their most preferred kidney. The algorithm ends when all

the kidneys have been completely claimed or, equivalently, when all patients have one unit of kidney shares.

Then, for any patient i and kidney from donor j, we treat the share that patient i has claimed from kidney

j as the probability with which patient i receives kidney j. Thus, at the end of the algorithm, there is an

associated probability-share matrix M , where M(i, j) denotes the probability that patient i receives kidney

j. If i = j, we interpret the corresponding diagonal matrix entries to denote the probability that patient i

does not participate in an exchange with other pairs. Since the kidney of any donor i has to be assigned to

exactly one patient (potentially patient i) and each patient i receives exactly one kidney (potentially kidney

i), these relationships have to be true in expectation so we must have∑
j

M(i, j) = 1 and
∑
i

M(i, j) = 1

for each i and j. Matrices that satisfy these conditions are called bistochastic.

Not all bistochastic matrices represent valid lotteries over deterministic matchings, however. To see that,

consider a simple problem with three patient-donor pairs, numbered 1 through 3, participating in a paired

kidney exchange. That is to say, all exchanges are limited to including no more than two patient-donor pairs.

First, consider the matrix

P =

0 1 0

0 0 1

1 0 0

 .

P is not permissible in my setting since it represents a probability-one three-way exchange where donor 1

donates to patient 3, whose willing donor donates to patient 2, whose donor donates to patient 1.9 It is not

hard to see, however, that, with two-pair trading cycles, the probability with which patient i receives kidney

j must equal the probability that patient j receives kidney i. Thus any matrix that represents a lottery over

permissible trades must be symmetric. So for the case of paired kidney exchange we need to consider only

8For example, TTC selects the unique allocation in the core (Roth and Postlewaite 1977) and is the unique mechanism that
is individually rational, Pareto efficient, and strategyproof (Ma 1994).

9Furthermore, it can be shown that P is a possible outcome of Bogomolnaia and Moulin’s (2001) Probabilistic Serial
mechanism, which means that that mechanism is not directly applicable in my setting.
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symmetric bistochastic matrices. But restricting our attention to symmetric bistochastic matrices is also not

enough. To see this, consider the matrix

Q =

 0 1/2 1/2

1/2 0 1/2

1/2 1/2 0

 .

While Q is a symmetric bistochastic matrix, it also does not represent a lottery over two-pair exchanges.

To see that, note that the probability that a patient is left unmatched under Q is zero since the trace of Q

is zero but in any exchange at least one patient is left unmatched. So this is impossible. In contrast, the

matrix R, defined by

R =

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 =
1

3

1 0 0

0 0 1

0 1 0

+
1

3

0 0 1

0 1 0

1 0 0

+
1

3

0 1 0

1 0 0

0 0 1

 ,

represents the lottery that places probability 1/3 on each two pairs trading. The adaptation of the PS

mechanism in my setting needs to output a matrix that represents a permissible lottery like R. I accomplish

this by using a corollary of the celebrated Edmonds’ characterization of the matching polytope (Edmonds

1965), which gives sufficient and necessary conditions for a bistochastic matrix to be the representation of

a lottery over two-way exchanges. The 2CPS is constructed to guarantee that each of the conditions from

Edmonds’ Theorem are satisfied for each interim probability-share matrix, which in turn guarantees that

those conditions are satisfied for the final matrix as well.

I next consider the the case of general ex-post restrictions on the mechanism, including, but not limited

to, having a cap on the number of pairs in each exchange and requiring individual rationality. I show

how to construct a set of constraints on the probability-share matrices that guarantees the following two

things. First, the adaptation of the PS mechanism under those constraints selects a bistochastic matrix that

represents a lottery over allowable deterministic allocations. Second, that lottery is constrained ordinally

efficient. The conditions in question are the minimal set of constraints defining a naturally-defined bounded

convex polytope and are in theory computable given a list of allowable ex-post allocations.

Note that the ex-post restrictions can include requiring the maximum possible number of recommended

transplantations. Adding this restriction can be viewed as a refinement of the efficiency criterion used in

this paper since it also ensures the ex-post satisfaction of the binary-preference efficiency criterion. The

reason for this is that, as Roth et al. (2005a) show, efficiency for binary preferences reduces to maximizing

the number of proposed exchanges. A simple kidney-exchange problem with three patient-donor pairs,

numbered 1 through 3, illustrates this point. Assume that the maximum cycle length is at least 3 so it does

not represent a binding constraint. Let’s assume that all three patients are compatible with the other two

patients’ donors. Also, let patients 1 and 2 find each other’s donors to be most preferable. Then the kidney

exchange which matches pairs 1 and 2 is Pareto optimal. However, it might be preferable to match all three

patient-donor pairs in a cycle of length 3 to avoid leaving patient 3 without a kidney. It is not hard to verify

that the two possible three-way exchanges are also Pareto optimal.

This is the first paper that proposes a variant of the PS mechanism for an object-exchange or an agent-

matching setting, such as the kidney exchange and the roommate problems.10 Additionally, my proof of the

10Yılmaz (2010) considers a modification of the PS mechanism, where the objects to be allocated are a mix of social and
private endowment. If all objects are part of the private endowment, his model can be viewed as a model of pure exchange.
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ordinal efficiency of the mechanisms here is simpler than the proofs used in the preceding literature (e.g.

Bogomolnaia and Moulin 2001; Budish et al. 2013), which are indirect and rely on the characterization of

ordinal efficiency via the acyclicity of a certain relation. The proof I offer is more direct, can be used to

simplify the analogous proofs in the existing literature, and allows me to prove the ordinal efficiency of the

most general class of mechanisms in my setting.

Even though I adopt the language of kidney exchange for the rest of this paper with patient-donor pairs

being the main agents, the theory developed here can find applications in other settings. For example, the

setup in my paper permits a patient to have multiple willing donors. A salient example from a different

sphere of life can be found in housing exchanges: be it public housing, on-campus housing, offices within a

company or an academic department, and prison cells and other rooms in institutional living facilities. For

example, in the case of public housing, all trades should be performed simultaneously to avoid inefficiencies

associated with some families remaining homeless, being forced into a short-term rental, having to move

twice for the same trade, or occupying the same unit simultaneously with another family. Since the difficulty

of finding a moving date that works for everyone involved in the trade increases with the number of agents

involved, it might be infeasible to perform trades with long exchange cycles.11

In a similar vein, there are online platforms offering the possibilities of members exchanging real es-

tate (GoSwap.org, DaytonaHomeTrader.com) or vacation rentals (Intervac-HomeExchange.com, HomeEx-

change.com, ExchangeHolidayHomes.com). In addition to homes and land, GoSwap.org also offers the possi-

bilities of exchanging various vehicles (including planes and boats), as well as businesses. Thus far exchanges

are restricted to two-way swaps. Other platforms with similar constraints include barter exchanges for shoes

(The National Odd Shoe Exchange; oddshoe.org), books (ReadItSwapIt, www.readitswapit.co.uk), and used

goods (Netcycler). More generally, the structure in this paper can be applied to any object-exchange setting

where trades are difficult or expensive to carry through and thus might require significant coordination.

Essentially, in any setting where trades cannot be executed by a centralized clearinghouse by collecting all

the objects and then redistributing them among the recipients, high coordination costs could limit maximum

trading-cycle length. Of course, as noted above, the most general class of mechanisms I propose can apply

to virtually any matching problem, be it one- or two-sided ones with arbitrary constraints on the possible

outcomes.

1.1 Literature Review

This paper is part of a burgeoning matching literature.12 More precisely, it is situated at the intersection of

kidney exchange13 and random matching. The first economic study of kidney exchange (Roth et al. 2004)

proposed a modification of Gale’s Top Trading Cycles mechanism in a setting with strict ordinal preferences

but without cycle constraints. Subsequent work (starting with Roth et al. (2005a)) has accounted for the cycle

constraints but assumes dichotomous preferences. As noted above, my work combines the two approaches:

I study the kidney-exchange problem with strict ordinal preferences subject to cycle constraints. The only

However, his version of the PS mechanism offers little benefit over Gale’s Top Trading Cycles in that setting.
11A similar feature occurs in commercial real-estate markets. There is anecdotal evidence that some cities’ tradition that the

majority of rental leases should expire on the same date improves the quality of the renter-housing match. This might explain
the longevity of these customs. Examples include New York City’s Moving Day (until WWII), Quebec’s fête du déménagement,
Boston’s Allston Christmas, and Madison’s Hippie Christmas. Conversely, the tight residential real-estate market in the UK
has caused the appearance of so-called “upward chains”, where a home sale transaction would be delayed until the current
owners complete their own purchase of a new home, which could further be delayed for the same reason, etc.

12See Sönmez and Ünver (2011) and Abdulkadiroğlu and Sönmez (2013) for a pair of recent reviews.
13See Sönmez and Ünver (2013) for a recent review of the kidney-exchange literature.
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similar work I am aware of is a trio of papers by Nicoló and Rodŕıguez-Álvarez (2011, 2012, 2013), who

consider a model identical to the one presented here. Two of the papers (Nicoló and Rodŕıguez-Álvarez

2012, 2013) present impossibility results, while Nicoló and Rodŕıguez-Álvarez (2011) proposes a solution for

the kidney-exchange problem but on a very restricted preference domain: namely, the authors assume that

all patients rank all kidneys in the same way, barring incompatibilities.

Some recent work on general random matching mechanisms include Budish et al. (2013); Pycia and Ünver

(2014); Akbarpour and Nikzad (2014); Kesten and Ünver (forthcoming). Budish et al. (2013) is the one that

is closest to my paper. The authors study the feasibility of a class of exogenously-existing constraints that

need to be respected for some assignment problem, such as school choice. If we interpret agents as students

and objects as school seats, these constraints can represent, for example, maximum quotas for a certain type

of students. The focus of their paper is finding a class of constraints such that whenever a bistochastic matrix

satisfies them, one can decompose the matrix as a convex combination of permutation matrices, each one

of which satisfies the same constraints, regardless of the desired lower and upper bound of each constraint.

The authors provide a sufficient condition for such universal implementability, as they call this property.

Namely, if the constraints satisfy a bihierarchical property, then universal implementability obtains. The

main difference with my approach is that I care about a different class of constraints: for example, satisfaction

of individual rationality and the cycle constraints. Furthermore, one of the mechanisms that Budish et al.

(2013) propose is a special case of the most general mechanism defined in Section 7.

Another similarity between their approach and mine is that the main mechanisms proposed in each

paper are based on the Probabilistic Serial mechanism, initially defined by Bogomolnaia and Moulin (2001)

in the simple object-assignment setting. Since their seminal contribution, their work has been generalized

for ordinal preferences allowing indifferences (Katta and Sethuraman 2006), for multi-unit demand (Kojima

2009), for property rights necessitating individual rationality (Yılmaz 2009, 2010), for fractional endowments

(Athanassoglou and Sethuraman 2011), and for combinatorial demand (Nguyen et al. 2014).14

More broadly speaking, the most general result of my paper proposes a desirable mechanism for matching

under arbitrary constraints, which includes two-sided matching markets. Some work related to that includes

three recent papers (Kamada and Kojima forthcoming, 2014a,b) studying two-sided matching markets under

relatively general constraints. Their main concerns, however, are stability concepts under these constraints,

while I do not address stability in this work, in line with the remainder of the kidney-exchange literature.

The paper is organized as follows. Section 2 presents a background on the practice of kidney exchange.

Section 3 presents the model. Section 4 and 5 go over some preliminary observations and results with

those in Section 5 relating to deterministic mechanisms. Section 6 presents the 2-Cycle Probabilistic Serial

mechanism and Section 7 proposes the general mechanism. Section 8 discusses incentives in my setting and

Section 9 concludes.

2 Background on Kidney Exchange

Kidney transplantation is generally the only long-term treatment for end-stage chronic renal disease. Not

only is transplantation associated with longer expected survival rate as compared to dialysis but the quality

of life of renal patients is higher after a kidney graft (Wolfe et al. 1999). Most transplanted kidneys originate

14Other work spurred on by Bogomolnaia and Moulin (2001) include characterizations of ordinal efficiency (McLennan 2002;
Abdulkadiroğlu and Sönmez 2003; Manea 2008; Carroll 2010), the study of the behavior of the PS mechanism in large markets
(Che and Kojima 2010; Kojima and Manea 2010; Liu and Pycia 2013), and axiomatic characterizations of the PS mechanism
and its extensions (Bogomolnaia and Heo 2012; Heo and Yılmaz 2013; Hashimoto et al. 2014; Heo 2014a,b).
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from deceased donors but, since the functional capacity of a single kidney is sufficient for most people, living-

donor transplantations are also possible. Most living-donor transplantations come about when a patient in

need of a kidney transplant finds a donor (often a relative or a friend), who is willing to donate one of her

kidneys to the patient. If the pair is blood-type and tissue-type compatible, the transplantation can take

place. If they are incompatible, however, they still have the opportunity to effect a transplantation if there

exists another mutually incompatible patient-donor pair, such that the donor of each pair is compatible with

the patient of the other pair. In such a case, the patient in the first pair receives a kidney from the donor in

the second pair and vice versa. This is referred to as paired kidney exchange.

Larger exchanges, involving three or more pairs, are also possible. However, the near universal ban on the

buying and selling of kidneys15 means that donors cannot contractually commit to donate a kidney. Thus if

all the surgeries in a kidney exchange are not performed simultaneously, the last donor in the exchange might

back out of the trade since her patient has already received a kidney. That would be extremely damaging to

the designated recipient of her kidney since that patient’s donor has already donated a kidney: that patient,

while still in need of a kidney, would not be able to participate in another kidney exchange unless she finds a

new donor. Simultaneous kidney exchange places significant logistical burden on the participating hospital

(or hospitals), however: a kidney exchange with k pairs requires the availability of 2k operating rooms and

surgical teams working at the same time. This availability is particularly hard to guarantee since living-

donor kidney transplantations are considered elective surgeries which are of secondary priority to emergency

surgeries.

In order to maximize the possible benefit of such kidney exchanges, a number of regional and national

clearing houses have been organized in the US, the UK, the Netherlands and a number of other countries.

Following the seminal work of Roth et al. (2005a), models of kidney exchange assume that all patients have

binary preferences over the available kidneys: each kidney is either compatible (acceptable) or incompatible

(unacceptable) and, furthermore, patients find all compatible kidneys to be perfect substitutes for each other.

In this simplified setting, ex-ante, ordinal and ex-post efficiency coincide and, in fact, any efficiency criterion

reduces to the maximization of the number of potential transplantations. However, there is substantial

medical evidence that a variety of interactions between the donor and patient characteristics may significantly

impact the graft long-term survival rates. For example, the age and gender of living donors have been shown

to affect graft failure rates (Gjertson 2003; Øien et al. 2007).16

Tissue incompatibility stems from the human leukocyte antigen (HLA) system. The HLA antigens are

proteins with important roles in the immune system. There are six major HLA antigens and different people

have different sets of them. It is possible for an individual to develop antibodies for antigens that she does not

possess if she is exposed to them during pregnancy or after blood transfusion, organ or tissue transplantation.

If a potential kidney transplant recipient has an antibody for a HLA antigen present in the kidney donor,

that would cause incompatibility. ABO blood-type incompatibility works in a similar fashion: people who

are of blood type A, for example, have type A antigens and type B antibodies. Thus they can receive blood

or organ donations from donors who were themselves type O (who have neither of the two possible antigens)

or type A.

Recent medical research, however, has made possible the transplantation of organs, including kidneys,

even when there is blood- or tissue-type incompatibility. The process allowing that, called desensitization,

15The Islamic Republic of Iran is the only exception (Fatemi 2012).
16The literature on the effect of deceased donor characteristics on graft survival rates is much more extensive. Some statis-

tically important factors include donor’s age, sex, race, pre-decease health status, cause of death, as well as the mass of the
transplanted kidney (Chertow et al. 1996; Koning et al. 1997; Ojo et al. 2000; Pessione et al. 2003).
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has been described as “risky, technically demanding and costly,” however (Wallis et al. 2011). Additionally,

kidneys transplanted after such a treatment have slightly lower survival rates than similar compatible kidneys.

For more details see Tobian et al. (2008) and Montgomery et al. (2011), for example. Furthermore, there is

evidence in the medical literature that similarity in patient and donor’s HLA antigens affects transplantation

success (Opelz 1997, 1998; Opelz and Döhler 2007; Sasaki and Idica 2010).17

Other factors contributing to the view that patients’ preferences over kidneys aren’t binary are consid-

erations of logistical feasibility (for example, all else held equal, a patient-donor pair prefers being matched

with a pair that is geographically closer) or fairness (the UK national kidney exchange prefers that the

age difference of the two donors in each two-pair kidney exchange is not too great and uses the actual age

difference as a final tiebreaker when determining the proposed matching).

As noted in the introduction, another reason for why studying the model with strict preferences is

valuable has to do with the provision of sufficient incentives to patient-donor pairs who are compatible with

each other to enroll in the kidney exchange program. This would be guaranteed by individual rationality,

the most important desideratum for mechanisms in my setting. In addition to providing incentives for

compatible pairs to participate, it is of paramount importance since it ensures compatible transplantations.

I define individual rationality (together with the other mechanism properties) in Section 3 and discuss its

implications at the beginning of Section 4.

Conditional on recommending only compatible transplantations, I would like my mechanism to be effi-

cient. This is captured by Pareto efficiency in the case of deterministic matchings and by ordinal efficiency

for random matchings. I discuss the connection between these two concepts in Section 6. The third most

important condition is some notion of fairness. Fairness, in addition to efficiency, is one of the fundamental

requirements in the setting of matching without monetary transfers.18 I use the notion of equal treatment of

equals, which in my setting reduces to anonymity. Essentially, it requires that the outcome of a mechanism

depends only on the profile of preferences and not on the identity of the agents. I discuss other possible

justice criteria in Section B.1.

Finally, the least important criterion in my setting is strategyproofness. Early economic models of kidney

exchange were concerned with providing incentives to the patients and their doctors to report their preference

truthfully. Recent work, however, has moved away from this paradigm. Ashlagi and Roth (2014) note:

During the initial startup period [of kidney exchange in the US], attention to the incentives

of patients and their surgeons to reveal information was important. But as infrastructure has

developed, the information contained in blood tests has come to be conducted and reported

in a more standard manner (sometimes at a centralized testing facility), reducing some of the

choice about what information to report and with what accuracy. So some strategic issues have

become less important over time (and indeed current practice does not deal with the provision

of information that derives from blood tests as an incentive issue).

In line with this, the mechanism I propose will satisfy the first three desiderata but will have poor

incentive properties. I discuss this issue in Section 8.

17For a contradictory view, see Delmonico (2004).
18See Roth et al. (2005a); Yılmaz (2011) for some work aimed to achieve fairness in kidney exchanges with binary preferences.
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3 Set-Up

Let A = {1, . . . , n} be a set of n patient-donor pairs. I assume that each patient i has a preference order �i
over the set of kidneys. I will identify each of the kidneys via its donor so each patient can be said to have a

preference order over the set A.19 I will assume that �i represents a strict order so that for any i, j, k ∈ A,

j 6= k implies either j �i k or k �i j but not both. I write j %i k whenever either j = k or j �i k. Denote

all possible strict preference orders over A by P and let P = Pn be all possible preference profiles for the n

patients. I will denote a generic element of P by �. For any A′ ( A, I will denote the preference profile of

all patients not in A′ by (�−A′). For simplicity, when A′ = {i} is a singleton, I will denote the preference

profile by (�−i).
The goal is to study the ways in which the agents can organize a kidney exchange among themselves so

that each donor donates a kidney if and only if her patient has received a kidney in order to avoid a situation

where a donor has given a kidney, but her patient has not received one. Any exchange among the agents

resulting in a final (deterministic) matching can be represented by a bijective function m : A→ A, where

m(i) = j indicates that patient i receives donor j’s kidney. I interpret m(i) = i to mean that patient i either

receives her donor i’s kidney or, equivalently for our purposes, is left unmatched and does not participate in

the kidney exchange. I will denote the set of all such matchings by M. Given a preference profile �, I will

say that a matching m ∈M is efficient if it is not Pareto dominated: i.e., if there does not exist a matching

m′ ∈M such that m′(i) %i m(i) for all i ∈ A and m′(i) �i m(i) for some i ∈ A.

For any k ∈ N, I will say that m satisfies the k-cycle constraint if there do not exist k + 1 distinct

elements of A denoted by a1, . . . , ak+1 such that for i = 1, . . . , k we have m(ai) = ai+1. I will denote the

set of all matchings that satisfy the k-cycle constraint by Mk. Given a preference profile �, I will say that

a matching m ∈ Mk is k-constrained efficient if there does not exist a matching m′ ∈ Mk such that

m′(i) %i m(i) for all i ∈ A and m′(i) �i m(i) for some i ∈ A.

Note that each m ∈M can be represented as a matrix Pm with a generic entry Pm(i, j) defined by

Pm(i, j) =

{
1 if m(i) = j,

0 otherwise.

So Pm(i, j) equals 1 if and only if patient i receives donor j’s kidney under matching m. In all other

cases, Pm(i, j) = 0. Thus the matrix Pm for each m ∈M has exactly one entry equal to 1 in each row and in

each column. Matrices of this kind are called permutation matrices.20 In fact, every permutation matrix

represents some deterministic matching so there is a bijective relationship between the set of permutation

matrices and the set M.

I denote the space of lotteries over deterministic matchings as ∆M and refer to its elements as random

matchings. Each random matching µ ∈ ∆M can in turn be represented as a convex combination of the

matrices corresponding to the elements of M which form the support of µ. It is then easy to see that µ

can be represented as a bistochastic matrix Pµ, where, as usual, I use the term bistochastic matrix to

refer to any non-negative matrix, such that the sum of its entries along any given row or column is 1. Note

then that Pµ(i, j) denotes the probability that patient i receives donor j’s kidney. Note that row i of Pµ

denotes the probabilities with which patient i receives each of the n kidneys. I will refer to this as patient i’s

19In fact, I use each i ∈ A to refer to the patient from patient-donor pair i, to the donor of that pair, or to that donor’s
kidney. The corresponding context makes it clear in case I have not specified what i refers to.

20Note that one can view each such matrix Pm as the adjacency matrix of a directed graph. Then m satisfies the k-cycle
constraint if and only if that directed graph does not have directed cycles of length greater than k.
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probability-share allocation and will denote it by Pµ(i). I similarly define a sub-bistochastic matrix

to be any non-negative matrix, such that the sum of its entries along any given row or column is no more

than 1.

Assume that �i ranks the kidneys in A in the order (a1, a2, . . . , an) from best to worst. Consider p and

q to be two probability-share allocations and let paj and qaj denote the probability with which patient i

receives donor aj ’s kidney. Then I say that p first-order stochastically dominates q with respect to

�i if
j∑
l=1

pal ≥
j∑
l=1

qal (1)

for each j = 1, . . . , n. I will say that p strictly first-order stochastically dominates q with respect to

�i if (1) holds and p 6= q.

I refer to functions f : P → M and g : P → ∆M as a deterministic mechanism and a random

mechanism, respectively. Abusing terminology, I say that a deterministic mechanism f is efficient (resp.

k-constrained efficient) if for all �, f(�) is efficient (k-constrained efficient) with respect to �. A random

mechanism f is ex-post efficient (k-constrained ex-post efficient) if for all �, f(�) places positive

probability only on deterministic matchings that are efficient (k-constrained efficient) with respect to �.

Note that any efficient (k-constrained efficient) deterministic mechanism can be viewed as an ex-post efficient

(k-constrained ex-post efficient) random mechanism.

A random mechanism f is ordinally efficient if for all � there does not exist an element µ in ∆M such

that Pµ(i) first-order stochastically dominates Pf(�)(i) with respect to �i for all i ∈ A and strictly so for

some i ∈ A. A random mechanism f is k-constrained ordinally efficient if for all � we have f(�) ∈ ∆Mk

and there does not exist µ ∈ ∆Mk such that Pµ(i) first-order stochastically dominates Pf(�)(i) with respect

to �i for all i ∈ A and strictly so for some i ∈ A.

If i �i j for some i, j ∈ A, I will say that i finds kidney j unacceptable. Consequently, I say that a

matching m ∈M is individually rational if m(i) %i i for all i ∈ A. Analogously, a random matching µ is

individually rational if the deterministic matchings in its support are all individually rational themselves.

Equivalently, Pµ(i, j) = 0 whenever i finds j unacceptable. A deterministic mechanism (random mechanism)

f is individually rational if for all �, f(�) is an individually rational deterministic matching (random

matching).

I move to defining the incentive and fairness properties of mechanisms. I will define them only for

random mechanisms but the same definitions apply to deterministic mechanisms when viewed as a subset

of the random ones. A random mechanism f is strategyproof if for all preference profiles �, all patients

i and all preference orders �′i, Pf(�)(i) first order stochastically dominates Pf(�′i,�−i)(i) with respect to

�i. I say that a random mechanism f is weakly strategyproof if for all preference profiles � and all

patients i, there does not exist an alternative preference order �′i such that Pf(�′i,�−i)(i) strictly first-

order stochastically dominates Pf(�)(i) with respect to �i.21 It is easy to see that the two notions of

strategyproofness are equivalent for deterministic mechanisms since first-order stochastic dominance is a

total order over deterministic allocations.

A random mechanism f is said to be anonymous if the patient-donor pairs’ names are irrelevant for

the outcome of the mechanism. Formally, start by fixing an arbitrary bijective function π : A → A and

a preference profile �. If �i for some i ∈ A ranks the kidneys from A in the order (a1, . . . , an) (from

21This is not a misnomer. Weak strategyproofness is a very weak property indeed. Balbuzanov (2014) shows that weak
strategyproofness fails to satisfy even a simple intuitive incentive property. Namely, weak strategyproofness is not enough to
guarantee that there exists a von Neumann-Morgenstern utility vector, under which the agent would prefer reporting truthfully.
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best to worst), construct the preference relation �ππ(i) as the preference relation corresponding to the order

(π(a1), . . . , π(an)). I.e.,

π(a1) �ππ(i) · · · �
π
π(i) π(an).

I say that µ is anonymous if for all � the matrices Pf(�) and Pf(�π) are identical up to the permutation

π. In other words, Pf(�)(i, j) = Pf(�π)(π(i), π(j)) for all i, j ∈ A.

I end by noting some relationships between the properties outlined in this section. It is clear that

strategyproofness implies weak strategyproofness. In addition, ordinal efficiency is stronger than ex-post

efficiency. See Bogomolnaia and Moulin (2001) for the full proof but the intuition is clear: if a random

matching µ placed positive probability on an inefficient deterministic matching m then one can shift some of

that probability to a matching that Pareto dominates m and thus improve µ in the ordinal-efficiency sense.

Analogously, k-constrained ordinal efficiency implies k-constrained ex-post efficiency.

4 Preliminary Observations and Results

I start this section with a remark about the connection between transplantation incompatibility and indi-

vidual rationality in my setting from Section 3. Individual rationality can be defined in one of two ways.

First, the method adopted here is to assume that a matching is individually rational only if each patient i

receives a compatible kidney that she ranks higher than kidney i or, failing that, she is left unmatched.22

This guarantees that no patient will receive a kidney that has worse graft survival expectations than her own

donor’s kidney. Under this interpretation individual rationality is a stronger condition than simply ensuring

compatible transplantations. The alternative way to think about individual rationality, however, is to define

it to be equivalent to compatibility. Thus patient i finds a kidney acceptable if and only if that kidney is

compatible for her. In this case it might be possible for an agent to receive a kidney that she ranks lower

than her donor’s kidney. However that might deter compatible pairs from being part of the kidney exchange.

This might hurt overall efficiency as the participation of compatible pairs may significantly improve the

outcome’s efficiency (Roth et al. 2005b; Gentry et al. 2007; Sönmez and Ünver 2014). However, while this is

not the approach I take here, what follows can be modified in a straightforward manner to accommodate it.

One of the strongest assumptions in my set-up is that each donor-patient pair either receives and donates

a kidney, or neither receives nor donates a kidney at the end of the mechanism. This assumption is obviously

justified from the point of view of the bioethics of kidney exchange: it would be unfair for a patient’s donor

to donate a kidney without the patient receiving one since that destroys the patient’s “bargaining chip” in

any future kidney exchanges. And, since each donor can donate at most one kidney, there are n kidneys to be

donated and received and so, conversely, there cannot exist a donor-patient pair which receives a kidney but

does not donate one. This symmetry allows representing all exchanges as permutation matrices and lotteries

over exchanges (what I call random matchings) as bistochastic matrices, which simplifies the analysis.23

I noted above that any random matching can be represented as a bistochastic matrix. The following

celebrated result, shown by Birkhoff (1946) and von Neumann (1953), also provides the converse.

Theorem 1 (Birkhoff-von Neumann Theorem). The convex hull of all n × n permutation matrices equals

the set of all n× n bistochastic matrices.

22Again, being left unmatched could mean either that the patient does not undergo a kidney transplantation or that she
receives her donor’s kidney. In either case, the patient does not participate in any exchanges.

23I allow the existence of “unattached” kidneys (such as kidneys donated by deceased or undirected altruistic donors) in an
extension of the main model below.
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I continue by explicitly considering the case k = 2. Note that for any matching in M2 in which patient

i receives donor j’s kidney, patient j must receive donor i’s kidney in order for the matching to satisfy the

2-cycle constraint. This implies that any permutation matrix representing a matching in M2, and thus

any bistochastic matrix representing a matching in ∆M2, is symmetric: the probability that any patient i

receives donor j’s kidney must equal the probability that patient j receives donor i’s kidney. The converse is

also true for the permutation matrices: it is easy to see that any symmetric permutation matrix represents

a matching in M2. Consider the converse in the case of bistochastic matrices. In particular, consider the

following bistochastic matrix for n = 3:  0 1/2 1/2

1/2 0 1/2

1/2 1/2 0

 (2)

I claim that this matrix cannot be decomposed into a convex combination of symmetric permutation

matrices and, therefore, it cannot represent a random matching in ∆M2. To see that, observe that in

each 3 × 3 symmetric permutation matrix at least one of the diagonal elements is equal to 1. Thus in all

3 × 3 symmetric permutation matrices, the trace is at least 1 and, since this property is preserved under

convex combinations, this must also be the case for any convex combination of 3× 3 symmetric permutation

matrices. Clearly, matrix (2) does not satisfy that property and so it does not represent an element of ∆M2.

In the language of kidney exchange, if the planner can organize only two-way exchanges and if there are

three patient-donor pairs, at least one of them must not be a part of the exchange. At the same time, the

probability that any given patient is not part of the exchange is zero for any random matching represented

by (2). This, however, cannot happen in any lottery over deterministic matchings in which there is always a

patient who is not in the exchange. Consequently, it need not be the case that every symmetric bistochastic

matrix is a convex combination of symmetric permutation matrices (Katz 1970; Cruse 1975). In fact, as

pointed out by Schrijver (2003), Edmonds’ (1965) celebrated matching polytope characterization implies the

following result.

Theorem 2 (Edmonds’ Theorem). A symmetric bistochastic matrix P can be represented as a convex

combination of symmetric permutation matrices if and only if∑
i∈E

∑
j∈E\{i}

P (i, j) ≤ 2p

for all p ∈ N, for all E ⊆ A with |E| = 2p+ 1.

Each of the possible sets E defines a separate constraint that the matrix P must satisfy. I call such sets

Edmonds sets and the corresponding constraints Edmonds constraints.24 I will speak about Edmonds

constraints containing a pair {i, j} or an entry P (i, j) if the corresponding Edmonds set contains both i and

j. Analogously, I will refer to the sum on the left-hand side of the Edmonds constraint as a Edmonds sum.

To illustrate the intuition behind the result, I provide a brief proof of the necessity condition. For the more

involved sufficiency condition, see Edmonds (1965), Balinski (1972) or Cruse (1975).25

Proof of necessity: Assume that a given symmetric bistochastic matrix P (i, j) can be represented as a convex

combination of symmetric permutation matrices. Equivalently, P represents the matching probabilities

24It is worth noting that the Edmonds constraints do not satisfy the bihierarchy condition of Budish et al. (2013). So the
results of this paper are logically independent.

25Schrijver (2003) has a list of additional alternative proofs proposed in the literature.
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induced by a lottery over the deterministic matchings associated with the permutation matrices. Take some

k ∈ N and an Edmonds set E with |E| = 2k + 1. Note that in any deterministic matching, at least one

patient i ∈ E does not receive a kidney from the set E \ {i} since E has odd cardinality. Therefore, since

the Edmonds sum for the associated permutation matrix equals the number of patients in E who receive a

kidney from E other than their own donor’s kidney, the Edmonds constraint is satisfied for all permutation

matrices. Since the bistochastic matrix is a convex combination of the permutation matrices, it also satisfies

the constraint.

Finally, I will call symmetric bistochastic matrices that satisfy the Edmonds constraints 2-implementable.

Generally, I call any bistochastic matrix P that satisfies P = Pµ for some µ ∈ ∆Mk k-implementable.

5 Deterministic Mechanisms with Cycle Constraints

In the setting of kidney exchange, the main desideratum for the mechanism should be individual rationality

in order to guarantee compatible transplantations and, potentially, provide incentives for compatible couples

to participate in the exchange. The other desiderata, in order of importance, are efficiency, anonymity (the

fairness criterion26), and, if possible, good incentive properties. In this section, I consider to what extent

these properties are compatible for deterministic mechanisms when we have cycle constraints.

First, note that without (binding) cycle constraints, Gale’s Top Trading Cycles (TTC), introduced by

Shapley and Scarf (1974), is individually rational, efficient, anonymous and strategyproof (Ma 1994; Miya-

gawa 2002). In addition, TTC is quite simple: at any stage, each patient i “points” to the patient, whose

donor’s kidney is the highest-ranked for i among the kidneys remaining. Note that i could point to herself.

This forms a directed graph and, by finiteness of A, it must have at least one directed cycle. We perform

the trades implied by that cycle and remove the patient-donor pairs involved in that trade. We iterate this

process until all agents have been involved in a trade or have dropped out in cycles of length 1. It should

be noted that the order of elimination of the cycles does not change the outcome of the mechanism; that is

to say, the same cycles are selected, regardless of that order. In fact, the first mechanism proposed for the

kidney-exchange problem was an adaptation of Top Trading Cycle (Roth et al. 2004).

As long as k < n, however, it is possible that TTC’s outcome might fail to satisfy the k-cycle constraint.

Even if n = k + 1, it is conceivable that the only cycle in the mechanism is a cycle that includes all n

agents. A natural question to ask at this stage is indeed how often TTC’s outcome fails to satisfy the k-cycle

constraint. The approach I take to answer this question is inspired by Pittel (1989), who studies the core in

stable-marriage problems by looking at randomly-drawn preferences.27 I look at a random iteration of the

problem by drawing a preference profile from a uniform distribution over P.

Proposition 3. For any k, if the preferences are drawn from a uniform distribution over P, the probability

that TTC selects at least one cycle of length greater than k goes to one as n goes to infinity.28

Of course, preferences in many problems such as kidney-exchange would be correlated and not indepen-

dently drawn from a uniform distribution but, nevertheless, this result suggests that, especially for problems

with large n, TTC would not make for a satisfactory mechanism even approximately since it is vanishingly

unlikely that all the cycles it selects will be sufficiently short. This motivates me to turn to other potential

26I later consider the compatibility of the other desiderata with other possible fairness properties.
27See also Knuth et al. (1990); Pittel (1992) and, more recently, Ashlagi et al. (2014) for papers studying the same question

with similar methods.
28The proofs of all propositions are in the Appendix.
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deterministic mechanisms. However, it turns out that deterministic mechanisms do not have good properties

either. First, there does not exist a deterministic mechanism that is anonymous and efficient.

Proposition 4. If cycle length cannot exceed k > 1, there does not exist an anonymous k-constrained

efficient deterministic mechanism for all n ≥ k + 1.

Proposition 4 suggests a question. Since I view efficiency as being more important than anonymity, if

one insists on using a deterministic mechanism, they must dispense with my fairness criterion. Ma (1994)

characterizes the TTC mechanism as being the unique mechanism that is individually rational, Pareto-

efficient, and strategyproof. One can then ask whether a mechanism similar to TTC can be found that is

individually rational, k-constrained efficient, and strategyproof; i.e., a mechanism that satisfies the three

remaining desiderata. It turns out, however, that these properties are also incompatible.

Proposition 5. If cycle length cannot exceed k > 1, there does not exist an individually rational, k-

constrained efficient, and strategyproof deterministic mechanism for all n ≥ k + 1.29

Since without cycle-length constraints TTC satisfies anonymity, Pareto optimality, individual rationality

and strategyproofness, the results in this section suggest that imposing cycle-length constraints significantly

limits the range of desirable properties of all deterministic mechanisms. Indeed, the best one can do within

the class of deterministic mechanisms is to construct a mechanism that satisfies individual rationality and

k-constrained efficiency. Indeed, a suitably redefined version of the serial dictatorship satisfies these two

conditions.30 One can achieve anonymity by using the analogously modified random serial dictatorship. This

observation and the results above provide a compelling motivation for my consideration of the performance

of random mechanisms in this setting.

6 The 2-Cycle Probabilistic Serial Mechanism

The proposed mechanism is based on the simultaneous eating mechanism (Bogomolnaia and Moulin 2001)

and its extension (Budish et al. 2013). The intuition behind the mechanism is simple: all kidneys are

viewed as infinitely divisible and the patients, each endowed with a claiming-speed function, continuously

claim shares of their most preferred kidney in continuous time. Once all the kidneys have been completely

claimed, we interpret the share each patient has claimed of each kidney as the probability with which that

patient receives the kidney. For the simpler object-assignment setting, the Birkhoff-von Neumann theorem

and its generalization proved by Budish et al. (2013) guarantee that the resulting matrix of probability shares

would be implementable as a lottery over deterministic matchings. In my setting, I need to make sure that

the resulting bistochastic matrix is symmetric and satisfies the Edmonds’ conditions.

Budish et al. (2013) allow the existence of additional exogenously-imposed constraints that need to be

respected for each ex-post assignment at the conclusion of the mechanism. In the school-choice problems,

these constraints can be interpreted as quotas related to affirmative action, for example. In my setting,

I similarly need to respect a set of constraints but they arise in order to guarantee individual rationality

and k-implementability. I note here that the Edmonds constraints are not a special case of the constraints

considered in Budish et al. (2013). However, the approaches of the two mechanisms in the way that they

29The same result was independently discovered by Nicoló and Rodŕıguez-Álvarez (2012). I am indebted to Antonio Miralles
for pointing that out to me.

30For the case k = 2, such a mechanism would, at each step, match the remaining pair that is highest in a given priority order
with their most-preferred mutually compatible remaining pair. This approach can be extended to k > 2. I do not formally
study this mechanism in this paper. See, however, Example 2.
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guarantee the desired constraints is similar: each patient is allowed to claim probability shares of her highest-

ranked kidney among the ones available to her as long as none of the Edmonds constraints corresponding

to that patient and that kidney bind. To make that clear, I proceed by describing the algorithm defining the

outcome of the 2-cycle simultaneous eating (2CSE) mechanism given a preference profile �.

Definition 1. The 2-Cycle Simultaneous Eating mechanism. Time runs continuously starting at

t = 0. For each point in time, there is an associated sub-bistochastic matrix M t, where M0 is the initial

zero matrix. Each patient i has an associated claiming-speed function ei : [0,∞)→ R+ with
∫∞

0
ei(t)dt ≥ 1.

I say that kidney j is available to patient i at time t ≥ 0 if the following three conditions are satisfied:

first, neither of the patients i and j finds the other one’s donor’s kidney unacceptable; second, the row

sums corresponding to patients i and j are strictly less than 1 at time t (i.e., both i and j have remaining

probability shares and remaining demand); third, none of the Edmonds constraints containing i and j bind

at time t. Note that due to the symmetry, if j is available to i at time t, then i is available to j at the same

time. For simplicity, I then say that the pair (i, j) is available.

At each instance of time t, each patient i claims with speed ei(t) the available remaining probability

shares of her highest-ranked reported kidney j (possibly j = i) among the kidneys that are available to i at

that instance. That increases the probability that patient i receives kidney j but, since I am restricted to

cycles of length 2, it must also increase the probability that patient j receives kidney i. In other words, this

action increases both M t(i, j) and M t(j, i). Note that j claiming kidney i’s probability shares would increase

the same two matrix entries. This activity also decreases the remaining probability shares of both i and j.

Since the Edmonds constraints do not depend on any of the values of M t(i, i), the “pair” (i, i) is available if

and only if i’s row constraint doesn’t bind. This guarantees that any point of time in the mechanism, each

agent has available kidneys whose probability shares she is allowed to claim. Each patient (together with

her associated donor) exits when her demand is met or, equivalently, when her donor’s kidney’s probability

shares are depleted. The algorithm ends when all agents have exited.

The final output of this procedure is a probability-shares matrix M that is symmetric (since whenever

M t(i, j) increases, so does M t(j, i) for all i, j ∈ A), bistochastic (since the procedure ends only when all

patients’ row sums equal 1) and satisfies all the Edmonds constraints (since M t satisfies them for any t).

Hence, M is implementable as a lottery over deterministic matchings that satisfy the 2-cycle constraint.

That lottery is set to be the outcome of the 2CSE mechanism. Since, for our purposes, we are indifferent

between all lotteries represented by a given bistochastic matrix, I write:

2CSE(�, e) = M,

where e denotes the profile of claiming-speed functions. Additionally, M is individually rational with respect

to the reported preferences—this is guaranteed by the first condition defining availability above: no patient

i is allowed to claim probability shares from kidney j if patient j finds kidney i unacceptable. Thus patient i

is prevented from increasing the probability that patient-donor pairs i and j form a paired kidney exchange.

Hence M(i, j) = 0. Following Bogomolnaia and Moulin (2001), whenever all the patients have the same

claiming speeds (which, without loss of generality, I can assume to satisfy ei(t) = 1 for all i and t), I will call

this mechanism the 2-cycle probabilistic serial (2CPS) mechanism.

As an illustration, consider the following example of the 2CPS mechanism in action. Let A = {1, 2, 3, 4}
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and let the preferences be defined by:

�1 : 2 �1 3 �1 4 �1 1,

�2 : 1 �2 3 �2 4 �2 2,

�3 : 1 �3 2 �3 4 �3 3,

�4 : 1 �4 2 �4 3 �4 4.

Since all kidneys are initially available to all agents, between t = 0 and t = 1/4 during the mechanism’s

implementation, patient 2, 3, and 4 claim kidney 1’s probability shares, while 1 claims kidney 2’s probability

shares. This increases M t(1, 3) and M t(1, 4) from 0 to 1/4, while M t(1, 2) increases to 1/2 since 1 and 2

are claiming each other’s donors’ kidneys’ probability shares. The matrix entries in its lower-diagonal part

change correspondingly to preserve its symmetry. Thus at t = 1/4, the probability-share matrix looks like

this:

M1/4 =


0 1/2 1/4 1/4

1/2 0 0 0

1/4 0 0 0

1/4 0 0 0

 .

At this point of time, patient 1 exits since her her unit-demand has been met or, equivalently, kidney

1’s probability shares have been completely claimed. Afterward, 3 and 4’s highest-ranked available kidney

becomes 2, while patient 2’s is 3. So at time t = 3/8, the probability-share matrix looks like this:

M3/8 =


0 1/2 1/4 1/4

1/2 0 1/4 1/8

1/4 1/4 0 0

1/4 1/8 0 0

 .

Notice that at this point of time the Edmonds constraint corresponding to the set E = {1, 2, 3} starts

binding. Hence the pair {2, 3} becomes unavailable, in addition to all the pairs containing 1. In what

follows, 4’s highest-ranked kidney remains 2, while the only kidney available to 2 and 3 is 4. At t = 7/16

the probability-share matrix has taken the following form:

M7/16 =


0 1/2 1/4 1/4

1/2 0 1/4 1/4

1/4 1/4 0 1/16

1/4 1/4 1/16 0

 .

At this time, 2 exits. With only 3 and 4 remaining, it is easy to verify that the final probability-share

matrix and the outcome of the 2CPS mechanism is

M =


0 1/2 1/4 1/4

1/2 0 1/4 1/4

1/4 1/4 0 1/2

1/4 1/4 1/2 0

 =
1

2


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

+
1

4


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

+
1

4


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


The definition of the 2CSE mechanism guarantees that it is individually rational. A fortiori, so is the
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2CPS mechanism. Additionally, since all agents have the same claiming-speed function, it is easy to see that

the 2CPS mechanism is also anonymous. In this section, I will show that the 2CPS mechanism also satisfies

the last desideratum in my setting. Namely, I demonstrate that the 2CSE mechanism (including 2CPS) is

2-constrained ordinally efficient. I start with a brief illustration of the concept of ordinal efficiency and a

discussion of why it is preferable over the weaker ex-post efficiency condition.

The current efficiency criterion used by kidney-exchange clearinghouses involves maximizing the num-

ber of transplantations performed by finding a maximum-cardinality matching on the compatibility graph.

Anonymity could be attained by uniformly randomizing over all maximum-cardinality matchings. Since

Bogomolnaia and Moulin (2001) show that ex-post efficiency is strictly weaker than ordinal efficiency in the

object-assignment setting, it is also worth asking to what extent ex-post and ordinal efficiency are mismatched

in the setting of kidney exchange. For example, I observe in Proposition 4 that there are no anonymous

2-constrained efficient deterministic mechanisms but anonymity can be easily attained by mixing uniformly

over all Pareto optimal matchings for a given preference profile. We consider both of these two approaches

in the following example.

Example 1. Let A = {1, 2, 3, 4, 5} and let the preference profile � be defined by

�1 : 2 �1 3 �1 4 �1 5 �1 1,

�2 : 5 �2 4 �2 1 �2 3 �2 2,

�3 : 4 �3 2 �3 5 �3 1 �3 3,

�4 : 1 �4 5 �4 3 �4 2 �4 4,

�5 : 3 �5 1 �5 2 �5 4 �5 5.

It can be checked easily that every possible matching with cardinality 4 is Pareto optimal and every

Pareto optimal matching has cardinality 4. There are fifteen such matchings so the maximal-cardinality

ex-post efficient random mechanism assigns probability of 1/15 to each one of them. The resulting ex-post

efficient bistochastic matrix is

M =


1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

1/5 1/5 1/5 1/5 1/5

 .

For example, one can calculate that the outcome of the 2CPS mechanism can be represented by

M ′ =


1/5 2/5 0 2/5 0

2/5 1/5 0 0 2/5

0 0 1/5 2/5 2/5

2/5 0 2/5 1/5 0

0 2/5 2/5 0 1/5

 .

Notice that each patient is unambitiously better off under the 2CPS outcome than under the random match-

ing represented by M : each patient i prefers M ′(i) over M(i) in first-order stochastic dominance sense. Thus

the matrix M does not represent an ordinally efficient assignment as it is dominated by M ′.

Example 1 demonstrates that maximum-matching efficiency and ex-post efficiency, while intuitive, turn
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out to not satisfy the simple and theoretically appealing property of ordinal efficiency. Ex-post efficiency

is strictly weaker than ordinal-efficiency in my setting, as well. This is further related to the surprising

observation that the same bistochastic matrix might represent both an ex-post efficient random matching

and a random matching that is not ex-post efficient (Abdulkadiroğlu and Sönmez 2003). So, as Bogomolnaia

and Moulin (2001) remark, ex-post efficiency is quite a subtle concept.

The following example is analogous. Consider the following version of the serial-dictatorship mechanism

for the case k = 2 (cf. footnote 30). Given a priority order over A, at each step, the remaining pair that

is highest in the priority order is matched with their most-preferred mutually-compatible remaining pair.

The two pairs are removed from the problem and the iterative step is repeated. It is easy to see that the

mechanism is Pareto efficient. Looking at a random version of this mechanism with the priority order drawn

from a uniform distribution over all priority orders, I now show that it also fails to satisfy ordinal efficiency.

This result echoes one of the main motivating observations of Bogomolnaia and Moulin (2001).

Example 2. Let A = {1, 2, 3, 4, 5, 6} and let the preference profile � be defined by

�1 : 3 �1 2 �1 1,

�2 : 1 �2 4 �2 6 �2 2,

�3 : 4 �3 1 �3 2 �3 3,

�4 : 5 �4 1 �4 3 �4 6 �4 4,

�5 : 6 �5 2 �5 3 �5 4 �5 1 �5 5,

�6 : 1 �6 1 �6 5 �6 3 �6 6.

The bistochastic matrix that represents the outcome of the random serial dictatorship here is

M =



1/12 11/24 11/24 0 0 0

11/24 1/12 0 0 0 11/24

11/24 0 1/12 11/24 0 0

0 0 11/24 1/12 11/24 0

0 0 0 11/24 1/12 11/24

0 11/24 0 0 11/24 1/12


,

which is dominated by the outcome of the 2CPS mechanism, which can be represented by

M ′ =



0 1/2 1/2 0 0 0

1/2 0 0 0 0 1/2

1/2 0 0 1/2 0 0

0 0 1/2 0 1/2 0

0 0 0 1/2 0 1/2

0 1/2 0 0 1/2 0


Proposition 6. Every 2-cycle simultaneous eating mechanism is 2-constrained ordinally efficient.

The proofs of ordinal efficiency for the PS and the generalized PS (Budish et al. 2013) mechanisms both

require first characterizing ordinal efficiency as being equivalent to the acyclicity of a certain suitably specified

relation (see also Katta and Sethuraman 2006; Kojima 2009; Yılmaz 2010). The idea of the proof above can
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be used to avoid the auxiliary characterization lemma for those settings as well, thus significantly simplifying

those proofs. Conversely, the approach in the previous literature cannot be applied here: the existence of

a cycle in the mentioned relation implies the existence of a Pareto-improving trade in probability shares.

However, the existence of such a trade in my setting does not guarantee that the new, Pareto-improving

profile of probability-share allocations would form a 2-implementable matrix.

6.1 Multiple Donors, Social Endowment and Chains

While, for reason of simplicity of the exposition in this paper, I talk about patients having a single donor,

the model here applies without modification to settings where patients may have multiple willing donors.

Then in each kidney exchange each participating patient receives a kidney and one of her donors donates a

kidney. The preferences over the set A for each patient can be inferred from the preferences over all donors’

kidneys. Namely, if each patient i has a number of donors, denoted i1, i2, . . ., then each patient j has strict

preferences over all the donors denoted by �′j . Then for each i, j, l ∈ A, I say

i �j l if max
�′j
{i1, i2, . . .} �′j max

�′j
{l1, l2, . . .},

where max� S for some set S and some strict preference order � is the unique element satisfying max� S ∈ S
and max� S � s′ for all s′ ∈ S. Note that individual rationality can be interpreted analogously: no patient

receives a kidney that has worse prospects for her than any of her donors’ kidneys.

In this section, I consider what happens if some of the kidneys come from deceased or undirected altruistic

donors. Deceased donors have historically been the most common source of transplantable kidneys, but

transplantation from living altruistic donors is becoming increasingly common. These ”living” kidneys have

two chief advantages. First, kidney grafts from living donors have better survival rates than those from

deceased donors. Second, living donors can act as the first link in an altruistic chain of donations, wherein

the first patient receives the altruistic donor’s kidney, freeing her own donor to give her kidney to another

compatible patient. This patient’s willing donor can then continue the chain. Non-simultaneous chains

avoid the main undesirable feature of non-simultaneous exchange cycles. Namely, if a donor backs out of

the swap after a transplantation has already been performed in an exchange cycle, a patient would lose her

donor’s kidney without receiving one in return. In chains, on the other hand, even if a donor backs out after

her patient receives a kidney, the anticipated next link in the chain is left no worse off than before, as her

donor has not yet given up a kidney. Thus each successive transplantation in a chain can be delayed until a

patient who is particularly compatible with the last transplantee’s donor becomes available. As they need

not be performed simultaneously, chains are particularly helpful in maximizing the number of compatible

transplantations because the short-cycle feasibility constraints are relaxed for them. The longest chain ever

completed included 60 people and 30 transplants (Sack 2012). The longest active chain as of November 2014

is coordinated by the University of Alabama at Birmingham School of Medicine and has so far included 56

people with 28 transplants. See Ashlagi et al. (2011, 2012) for more on transplantation chains.

The importance of chains motivates the study of what happens when some of the kidneys belong to an

unattached donor in my framework. In terms of the model considered here, this translates into the following

modification. While the set of patient-donor pairs remains A = {1, . . . , n}, the set of altruistic donors is

A′ = {n+1, . . . , p}. Each patient in A has a strict preference order over the set A∪A′. The rest of the model

remains the same. I am still interested in a mechanism that is invididually rational, ordinally efficient and

anonymous. But before I define the modified 2CSE mechanism, I consider the question of implementability.
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How does one need to modify Edmonds’ theorem in order to guarantee that a family of probability-share

allocations {P (i)}i∈A can be represented as a lottery over deterministic matchings where each patient-donor

pair is either matched up with another such pair from the set A or receives a single kidney from A′?

To answer that, consider the following way to represent the profile of probability-share allocations as a

symmetric bistochastic matrix:

P =



p11 p12 · · · p1n q1,n+1 q1,n+2 · · · q1p

p21 p22 · · · p2n q2,n+1 q2,n+2 · · · q2p

...
...

. . .
...

...
...

. . .
...

pn1 pn2 · · · pnn qn,n+1 qn,n+2 · · · qnp

qn+1,1 qn+1,2 · · · qn+1,n 1−
∑
qi,n+1 0 · · · 0

qn+2,1 qn+2,2 · · · qn+2,n 0 1−
∑
qi,n+2 · · · 0

...
...

. . .
...

...
...

. . .
...

qp1 qp2 · · · qpn 0 0 · · · 1−
∑
qip


,

Essentially, I treat each kidney i in A′ as an artificial patient-donor pair which is matched with each

patient-donor pair j in A with the same probability with which patient j receives kidney i. Thus P (i, j) =

P (j, i) represents the probability that patient j receives kidney i. At the same time, P (i, l) = 0 for all other

l ∈ A′\{i} denotes that two kidneys inA′ cannot be matched together and P (i, i) is the probability with which

kidney i is left unclaimed. In a similar fashion, one can think of the set of permutation matrices of dimension

p×p as having a one-to-one and onto correspondence with all deterministic matchings with social endowment.

Once one recasts the problem in this fashion, it becomes clear that if one applies the Edmonds’ bounds to

the bordered matrix, they get the same easy sufficient and necessary conditions for implementability in the

social-endowment-augmented random assignment problem. Observe that the Edmonds constraint have no

bite in the lower right quadrant of the representation matrix since all the off-diagonal entries are always zero.

The 2CSE mechanism is modified in a corresponding fashion. The main difference is that in terms of

participation in the mechanism I treat all kidneys in A′ as agents (i.e., patient-donor pairs) except for the

fact that they have no preferences and can claim no probability shares from other patient-donor pairs. Thus

a kidney i ∈ A′ is available to an agent j ∈ A at time t if none of the Edmonds constraints containing i and

j binds for M t and the row corresponding to i is strictly less than 1.31 Then j claiming probability shares

from kidney i increases both M t(i, j) and M t(j, i), which correspond to qij and qji respectively.

As before, it is easy to see that the bistochastic matrix that is the outcome of this mechanism will satisfy

individual rationality. Also, if I endow all patient-donor pairs in A with the same claiming speed (as in the

2CPS), the mechanism would also be anonymous in the sense that after permuting the names of the patient-

donor pairs amongst themselves (i.e., within A) and the names of the other kidneys amongst themselves

(i.e., within A′) the new outcome of the mechanism would be represented by the same matrix with its rows

and columns appropriately permuted. Finally, it is not hard to modify the proof of Proposition 6 to show

that the mechanism is also ordinally efficient.

With this in mind, it is easy to see that if I add a number of kidneys from altruistic donors and all

patient-donor pairs in A find each other unacceptable, the random allocation problem of Bogomolnaia and

Moulin (2001) becomes a special case of the 2-cycle constrained setting from this section. The only difference

31One does not need to specifically worry about individual rationality since if patient j finds kidney i unacceptable, patient
j would never want to claim probability shares from kidney i as she prefers kidney j, which is always available to her.
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is that each agent now has an outside option: being left unmatched.

7 Longer Cycles and Other Constraints

In this section, I consider the feasibility of extending the main results of the previous section not only to

the case k > 2 but also to cases with arbitrary ex-post constraints. More specifically, I look into the set

of constraints that need to be imposed on the simultaneous-eating algorithm that would guarantee that

the algorithm outputs a valid bistochastic assignment matrix that can be decomposed into a lottery over

deterministic permutation matrices, each of which satisfies the desirable ex-post constraints. To fix ideas, I

start by providing a few basic definitions and defining the simultaneous-eating algorithm subject to a set of

constraints Ω before I continue.

We call any correspondence C : P → 2M \ {∅} a constraint correspondence. I interpret C(�) as

the set of allowable ex-post deterministic matchings for the preference profile �. I say that a constraint

correspondence is anonymous if it is name-invariant. Formally, for an arbitrary bijective function π : A→ A

and a permutation matrix M , let Π(M) be defined from M via Π(M)(i, j) = M(π−1(i), π−1(j)). Then I say

that a constraint correspondence C satisfies anonymity if for all �∈ P one has Π(M(C(�))) = M(C(�π)),

where M(C(�)) is the set of permutation matrices corresponding to each of the elements in C(�). Given

a set of ex-post deterministic matchings C ′ ⊂M and a preference profile �, I say that a random matching

µ ∈ ∆C ′ is C ′-constrained ordinally efficient with respect to � if there does not exist another random

matching µ′ ∈ ∆C ′ such that Pµ′(i) first-order stochastically dominates Pµ(i) with respect to �i for all i ∈ A
and strictly so for some i ∈ A. Given a constraint correspondence C, I define a mechanism f : P → ∆M to

be C-constrained ordinally efficient if every f(�) is C(�)-constrained ordinally efficient with respect to

�.

Let Ω0 be the collection of all ordered pairs (a, b) comprised of a function a : A× A→ R+ and a scalar

b ∈ R+. I interpret each one of these pairs as the representation of a constraint of the form∑
(i,j)∈A×A

a(i, j)M(i, j) ≤ b,

where either b ≥ 0 and a(i, j) ≥ 0 for all (i, j). The simultaneous-eating algorithm will be subject to a subset

Ω of Ω0.

Definition 2. The generalized constrained simultaneous-eating algorithm subject to Ω. Each

patient i has an associated claiming-speed function ei : [0, 1]→ R+ with
∫ 1

0
ei(t)dt = 1. Time runs continu-

ously starting at t = 0. For each point in time there is an associated sub-bistochastic matrix M t where M0 is

the initial zero matrix. I say that kidney j is available to patient i at time t ≥ 0 if none of the constraints in

Ω for which a(i, j) > 0, bind at that time. Note that M0 satisfies all the constraints in Ω and, in particular,

all kidneys that patient i finds acceptable are available to her. At time t, each patient i claims with speed

ei(t) the available remaining probability shares of her favorite reported kidney j among the kidneys that are

available to i at that instance. That increases the probability that i receives j’s kidney—i.e., it increases

M t(i, j). Also note that i = j can be true in this case. The algorithm ends at time t = 1 and the final

matrix is M1.

For simplicity, I refer to the outcome of the generalized constrained simultaneous-eating algorithm subject

to Ω given a preference profile � as GCSE(�, e,Ω). If the claiming-speed functions for all patients are the

same (assumed, without loss of generality, to be ei(t) = 1 for all i ∈ A and t ∈ [0, 1]), we will call the
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resulting mechanism the generalized constrained probabilistic serial mechanism subject to Ω (or GCPS for

short) and will refer to its outcome by GCPS(�,Ω).

Note that the class of constraints Ω0 contains “zero” constraints (such as M(i, j) ≤ 0, which represents

the case where patient i finds kidney j unacceptable and individual rationality is a requirement32), as well as

constraints similar to the Edmonds constraints. Other types of constraints, such as M(i, j)−M(h, l) ≤ 1/2

or M(i, j) + M(h, l) ≥ 1 are not included. The first one of these has the potential to become slack after

binding during the course of the algorithm. This is problematic since patient i would have stopped claiming

shares from kidney j and moved on to her next-best available kidney. If that constraint becomes slack,

however, patient i could benefit from coming back to kidney j and claiming more shares from it, which the

algorithm does not allow. This would jeopardize the efficiency of the outcome. The second one of these

constraints is not initially satisfied for the matrix M0. It is crucial for each matrix M t to satisfy all the

constraints in Ω, however, since my goal is to define Ω in a way guaranteeing that M1 is a valid bistochastic

matrix that is implementable as a lottery over deterministic matchings that satisfy the ex-post constraints.

Now I show that there exists a natural way to define the set of constraints so that they are all within Ω0.

Definition 3. Lower contour set. Given a set C ′ ⊂ Rn×n+ , I say that the set defined by

{M ∈ Rn×n+ |∃M ′ ∈ C ′ : M ′ ≥M}

is the lower contour set of C ′. I denote it by lcs(C ′).

In what follows, I abuse notation in the following way. If C ′ ⊂ M, I use lcs(C ′) to denote the lower

contour set of the set of permutation matrices corresponding to each of the elements in C ′. Similarly,

lcs(∆C ′) denotes the lower contour set of the convex hull of those permutation matrices.

Proposition 7. For any set C ′ ⊂M, there exists an essentially unique33 minimal set of constraints Ω ⊂ Ω0

such that

lcs(∆C ′) =
⋂

(a,b)∈Ω

M ∈ Rn×n+

∣∣∣∣∣∣
∑

(i,j)∈A×A

a(i, j)M(i, j) ≤ b

 .

I denote these constraints by ΩC
′
.

Proposition 8. For any non-empty set of allowable ex-post deterministic matchings C ′ ⊂ M and any

preference profile �, the GCSE mechanism subject to ΩC
′

terminates at an allowable bistochastic matrix that

represents a C ′-constrained ordinally efficient random matching in ∆C ′ with respect to �.

Proposition 9. If C is an anonymous constraint correspondence, the GCPS mechanism subject to ΩC(�)

for any given preference profile � is C-constrained ordinally efficient and anonymous.

In the following discussion, I attempt to unpack the intuition behind Propositions 7, 8 and 9. At first

blush, finding a suitable set Ω guaranteeing that the outcome of the GCSE algorithm subject to Ω is C-

constrained ordinally efficient appears quite difficult. The case k = 2 has a number of benefits. For one,

the permutation matrices (representing the deterministic matchings) and bistochastic matrices (representing

32More formally, this means Pµ(i, j) = 0 for all µ ∈ C(�).
33For the pairs (a, b) with b > 0, the constraints are unique up to rescaling by a positive scalar. For the case b = 0, this is not

the case since multiple sets of constraints can be equivalent here: for example, M(1, 2)+M(1, 3) ≤ 0 and M(1, 2)+2M(1, 3) ≤ 0
are equivalent to each other and also to the pair of constraints M(1, 2) ≤ 0 and M(1, 3) ≤ 0. They all denote the fact that
M(1, 2) = M(1, 3) = 0 for all allowable allocations.
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the random matchings) are all necessarily symmetric when k = 2 which simplifies the constraints that are

sufficient and necessary for implementation.

One consequence of the simplicity of the Edmonds constraint is that any patient always has an acceptable

available kidney at any point during the run of the mechanism’s algorithm, thus vastly simplifying the

individual rationality guarantee. Due to the fact that the Edmonds constraints do not pertain to the trace

entries of the probability-shares matrix, as pointed out above, the only way that a patient would not find

her donor’s kidney available at any point during the run of the algorithm is if that kidney has had its entire

unit mass of probability shares claimed already. But then, by the enforced symmetry of the procedure, this

would imply that the patient has also fulfilled her unit demand. So each patient can always “retreat” to her

donor’s kidney even if all the other acceptable kidneys are unavailable to her. So the algorithm can never

get “stuck.”

So merely applying the Edmonds constraints, which are intended to characterize the convex hull of

symmetric permutation matrices, to the higher-dimensional set of sub-bistochastic matrices, such as the

interim probability-shares matrices at any instance during the running of the 2CSE’s algorithm, is enough

to guarantee that at no point does the algorithm get “stuck”. There is no reason to believe, however, that

constraints characterizing the convex hull of some other set of allowable deterministic matchings would have

the same property, even if those constraints are simple. For example, the case of the object-allocation problem

with unacceptabilities has a simple set of constraints guaranteeing individual rationality: Pµ(i, o) ≤ 0 if agent

i finds object o unacceptable. However, naively attempting to run a simultaneous-eating mechanism with

these constraints would quickly result in problems.

To be more specific, assume that there are two agents, 1 and 2, and two objects, o1 and o2. Agent 1 finds

only object o1 acceptable, while agent 2 finds both of them acceptable but prefers o1. So the only constraint

characterizing the individually rational polytope is Pµ(1, o1) ≤ 0. If one attempts to run a simultaneous-

eating algorithm with this as the only constraint, however, they would not be able to guarantee individual

rationality. To see that, observe that if 2 starts claiming probability shares from her favorite object o1, this

would make the only individually rational allocation (where 1 gets o1 with probability 1) impossible. The

focus of Yılmaz (2010), who studies an individually-rational version of the PS mechanism, is characterizing

the other constraints necessary for guaranteeing individual rationality. Those constraints are derived from

Gale’s Supply-Demand Theorem (Gale 1957) and essentially serve in the same manner as the Edmonds

constraint serve to define the mechanism in the previous section.

This suggests, though, that any case other than the symmetric k = 2 would first require obtaining a

characterization similar to Edmonds’ theorem. Then one would need to find a set of additional constraints

Ω (similar to those from Gale’s theorem) that need to be imposed on the interim probability-shares matrices

in order to guarantee that the bistochastic matrix obtained at the end of the algorithm satisfies the char-

acterization from step one. This would still not be enough, however, as the resulting lottery also needs to

be constrained ordinally efficient. It is easy to see that guaranteeing just implementability is easy: one can

choose any allowable deterministic ex-post matching and set the constraints so that the patients can claim

only shares of the object they receive in that matching. This need not be constrained-ordinally efficient

though. So the constraints need to guarantee that the mechanism’s algorithm always selects a constrained-

ordinally efficient matching.

Consider an implementation of the simultaneous-eating algorithm under a certain set of constraints Ω.

Let the preference profile be � and let D′ be the set of all matrices that represent lotteries over allowable

deterministic matchings in C(�). If at any time during the algorithm, there is an interim probability-share
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matrix M t such that there does not exist M ′ ∈ D′ with M ′ ≥ M t, the algorithm would not output an

allowable bistochastic matrix. This follows from the fact that the interim probability-share matrices are

increasing in t. Thus, at the very least, we need the constraints to guarantee that M t ≤ M ′ for some

M ′ ∈ D′ for all t. This motivates Definition 2. It turns out that constraining the mechanism to the lower

contour set of D′ suffices in all cases: this guarantees that the algorithm terminates at an allowable matrix

and that matrix represents a constrained ordinally efficient allocation.

The key observation summarized in Propositions 7 and 8 is that if D′ is the convex hull of the allowable

permutation matrices, the set lcs(D′) satisfies a handful of nice properties. First, if the GCSE algorithm

is constrained within lcs(D′), the algorithm never gets “stuck” and always outputs a bistochastic matrix

within D′. Second, lcs(D′) is a bounded convex polytope, so it equals the set of all the matrices whose

entries satisfy certain constraints and, importantly, those constraints are well behaved in the sense that they

are of the form ∑
(i,j)∈A×A

a(i, j)M(i, j) ≤ b

for some b ≥ 0 and a(i, j) ≥ 0 for all (i, j).34 In other words, those constraints are from the set Ω0.35

As noted above, the constraints ensure that during the running of the GCSE mechanism’s algorithm, once

a constraint starts binding, it remains binding until the conclusion of the algorithm. Thus, whenever a

constraint starts binding and a kidney becomes unavailable to a patient, that patient can move to the next

highest-ranked available kidney and not worry about coming back to the one whose probability shares she

was just claiming in case the constraint ever becomes slack again. Thus ordinal efficiency is not jeopardized.

I note here that even though the objects in my setting have unit supply and their total supply equals the

demand of the agents, the GCSE mechanism can be generalized in a straightforward manner to the multi-unit

demand and/or supply, as well unequal total demand and supply.

Observe that in Proposition 9 I require that the constraint correspondence is anonymous in order to

guarantee that GCPS is anaonymous. C-constrained ordinal efficiency would be preserved for any constraint

correspondence C. Note that if the constraint correspondence C is generated from individual rationality and

limiting cycle length to be at most k, C-constrained ordinal efficiency is equivalent to k-constrained ordinal

efficiency.

So the main result, Proposition 8, together with Proposition 9 guarantee that GCPS is constrained ordi-

nally efficient, no matter what the set of allowable ex-post deterministic matchings is and possibly anonymous

if the constraint correspondence is anonymous itself. The constraint correspondence is anonymous if the con-

straints placed on the possible ex-post deterministic matchings do not depend on the names of the agents.

It is easy to see that individual rationality and satisfaction of the k-cycle constraints jointly or separately

define an anonymous constraint correspondence. Since individual rationality and the k-cycle constraints

pertain only to the possible ex-post deterministic matchings, a consequence of that result is that for any

k ≥ 2 the GCPS mechanism is individually rational, k-constrained ordinally efficient and anonymous. I show

later that, just as in the case k = 2, there does not exist a mechanism that satisfies k-constrained ordinal

efficiency, individual rationality and weak strategyproofness.

34These exclude the non-negativity constraints but those are automatically satisfied since the interim probability-share matrix
is initially the zero matrix and it is increasing in t.

35Computing these constraints given the set of extreme points is known as the “convex hull problem”. This problem has been
well studied in the computational-geometry literature. See Chazelle (1993); Clarkson et al. (1993); Burnikel et al. (1994); Barber
et al. (1996), as well as Seidel (2004) for a recent survey. Since the polytopes of interest here are all 0/1-polytopes (Ziegler
2000), there is the potential to define specialized algorithms with good performance (potentially even running in polynomial
time).
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Corollary 10. Fix k ≥ 2. If the constraint correspondence C is such that C(�) equals the set of individually

rational matchings inMk, the GCPS subject to ΩC(�) for each preference profile � is k-constrained ordinally

efficient, anonymous and individually rational.

The power of the result is not just confined to considerations of individual rationality and cycle imple-

mentability. Any desired outcome that can be represented as a constraint on the final possible deterministic

matchings can be accommodated here. I next consider a few examples as illustrations of the result’s power.

The first three examples, for instance, show that the ordinal efficiency results of a handful of preceding

papers are implied by Proposition 8 but, furthermore, that the constraints that they use to guarantee im-

plementability are special cases of the constraints defining the lower contour set of permissible matchings.

Example 3. (No constraints.) If C(�) =M, we are back to the realm of pure object-allocation problems

without any additional constraints as in Bogomolnaia and Moulin (2001). The constraints defining the set

lcs(∆C(�)) are simply the sub-bistochasticity conditions: M ∈ lcs(∆C(�)) if and only if∑
j

M(i, j) ≤ 1 and
∑
i

M(i, j) ≤ 1 for all i, j ∈ A, (3)

which are the constraints used in Bogomolnaia and Moulin (2001).

Example 4. (Individual rationality.) If

C(�) = {m ∈M|i �i j ⇒ m(i) = 0},

the only ex-post constraint here is individual rationality. Yılmaz (2010) adapts the simultaneous-eating

algorithm by imposing constraints to guarantee that it would output a matrix that satisfies individual

rationality. In addition to the sub-bistochasticity constraints (3), the following must also be true for any

interim matrix

|UT | − |T | ≥
∑

i∈A\T,j∈UT

M t(i, j) for all T ⊂ A, (4)

where UT ⊂ A is the set of objects that at least one agent in T finds acceptable. Yılmaz’ (2010) result implies

that if a sub-bistochastic matrix satisfies these constraints, then that matrix is in lcs(∆C(�)) because, as

noted above, if an interim matrix is ever not in this set, the outcome of the algorithm would not satisfy

individual rationality. Here I show that the converse is also true. Let M ∈ lcs(∆C(�)) and let M ′ be

a bistochastic matrix representing an individually rational lottery with M ′ ≥ M . For any T ⊂ A, the

agents in T must have received only probability shares in UT by individual rationality. The remainder of the

probability shares of objects in UT must be distributed among agents outside T . Since agents and objects

have unitary demand and supply, respectively, the following must be true:∑
i∈A\T,j∈UT

M ′(i, j) = |UT | − |T |.

Since M(i, j) ≤M ′(i, j), we have ∑
i∈A\T,j∈UT

M(i, j) ≤ |UT | − |T |.

Thus, in addition to the non-negativity constraints, (3) and (4) characterize the set lcs(∆C(�)).
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Example 5. (Individual rationality and constraint on the trading-cycle lengths: k = 2.) Now

consider the case C(�) equals all individually rational matchings in M2. The GCPS in this setting is

individually rational, 2-constrained ordinally efficient and anonymous but differs from 2CPS. The set of

constraints describing the polytope lcs(∆C(�)) for the case n = 3, k = 2 are M(i, j) ≤ 0 if i �i j or j �j i,
the sub-bistochasticity constraints from (3), as well as

M(1, 2) +M(1, 3) +M(2, 3) ≤ 1,

M(1, 2) +M(1, 3) +M(3, 2) ≤ 1,

M(1, 2) +M(3, 1) +M(2, 3) ≤ 1,

M(1, 2) +M(3, 1) +M(3, 2) ≤ 1,

M(2, 1) +M(1, 3) +M(2, 3) ≤ 1,

M(2, 1) +M(1, 3) +M(3, 2) ≤ 1,

M(2, 1) +M(3, 1) +M(2, 3) ≤ 1,

M(2, 1) +M(3, 1) +M(3, 2) ≤ 1.

If the preference profile � is

�1:2 �1 3 �1 1,

�2:1 �2 3 �2 2,

�3:1 �3 2 �3 3,

then

GCPS(�,ΩC(�)) =

 0 1/2 1/2

1/2 1/2 0

1/2 0 1/2

 ,

while the 2CPS selects

2CPS(�) =

 0 2/3 1/3

2/3 1/3 0

1/3 0 2/3

 .

Example 6. (Bihierarchical constraints.) Budish et al. (2013) define a class of constraints called bi-

hierarchical constraints and generalize the probabilistic serial mechanism for those constraints. Even though

their paper allows multi-unit supply of objects, as noted above, the GCPS mechanism readily generalizes to

that case. A set of bihierarchical constraints includes maximum quotas placed on all rows (agent demand)

and all columns (object supply). In the case of single-unit demand and supply, these reduce to (3). Addi-

tionally, the constraints may also include constraints placed on some subcolumns such that for any j the

constraints ∑
i∈A′

M(i, j) ≤ b′ and
∑
i∈A′′

M(i, j) ≤ b′′

must satisfy either A′ ⊂ A′′, A′′ ⊂ A′ or A′ ∩A′′ = ∅.

In the case of school choice, for example, the subcolumnar constraints can be interpreted as not allowing

too many students with certain domicile neighborhood or background characteristics into a given school.

In my language, the constraint correspondence C here is constant. For any �, the set C(�) equals all
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matchings inM that are represented by permutation matrices that satisfy all the bihierarchical constraints.

Analogously to Example 4, the results of Budish et al. (2013) imply that if an interim sub-bistochastic matrix

satisfies the bihierarchical constraints, then it is in the set lcs(∆C(�)). The converse is straightforward as

well: if M ∈ lcs(∆C(�)), then there exists some assignment matrix M ′ ≥M that satisfies the bihierarchical

constraints. Since M ≤M ′ and all constraints are from the set Ω0, M must satisfy them as well.

Maximum-cardinality matchings are currently essentially, as noted above, the main efficiency criterion for

kidney-exchange clearinghouses. Thus the GCPS mechanism allows generalizing the workhorse mechanism

introduced by Roth et al. (2005a), whose main consideration is maximizing the number of patients receiving

kidneys, by adding any other applicable constraints and, crucially, by respecting any strict preferences that

the agents might have over the available kidneys.

For the case k = 3, another salient anonymous constraint correspondence requires all three-way exchanges

to have a back arc. That is to say, if a cycle 1→ 2→ 3→ 1 is selected with positive probability, it is required

that at least one of patients 1, 2, or 3 finds kidney 3, 1, or 2, respectively, acceptable. Then if one of the

patients becomes too sick to undergo a transplantation and the proposed three-way exchange cannot go

through, then there is a chance that the remaining two agents would be able to form a two-way exchange.

This is known as failure-aware kidney exchange (Dickerson et al. 2013).

Another important class of problems that can be accommodated by the GCSE mechanism are two-sided

matching problems. The constraints in that case divide the agents in two groups and make it impossible for

any agent in either group to be matched with any other agent in that group. The simple marriage problem

(or the one-to-one two-sided matching problem) can be accommodated under 2CPS as it is a special case of

the roommate problem. However, since Proposition 8 can be extended to allow for multi-unit demand and

supply, it holds for many-to-many two-sided markets as well.

8 Incentives and Impossibility Results

In this section, I discuss the incentive properties of the 2CPS and GCPS mechanisms.

Proposition 11. The 2CPS mechanism is not weakly strategyproof for n ≥ 3.

Proof. Consider the following counterexample for A = {1, 2, 3}:

�1 : 3 �1 2 �1 1,

�2 : 1 �2 2 �2 3,

�3 : 1 �3 2 �3 3.

Under these preferences, the 2CPS mechanism matches couple 1 with couple 2 with probability 1/3 and

with couple 3 with probability 2/3. However, if patient 1 instead reported kidney 2 as unacceptable, the

2CPS will match couples 1 and 3 with probability 1, thus strictly improving 1’s probability-share allocation

in FOSD manner.

The 2CPS mechanism fails to be even weakly strategyproof. Since I allow the presence of unaccept-

abilities, these poor incentive properties are not surprising since most interesting mechanism will fail weak

strategyproofness when one allows unacceptabilities (for example, in the object-allocation setting, the PS

mechanism is not weakly strategyproofness if one allows for unacceptabilities).
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I next present an impossibility result that shows that the 2CPS mechanism is indeed a second best

mechanism in the sense that there does not exist a mechanism that is individually rational, 2-constrained

ex-post efficient, and weakly strategy proof.

Proposition 12. There does not exist a random mechanism that is individually rational, 2-constrained

ex-post efficient and weakly strategy proof whenever n ≥ 4.

I end with the impossibility result for general cycle-length constraints.

Proposition 13. For any k > 2, there does not exist a random mechanism that is individually rational,

k-constrained ex-post efficient and weakly strategyproof whenever n ≥ k + 1.

I next argue that Proposition 13 is tight in the sense that there are mechanisms that respect the k-cycle

constraints and satisfy any two of the three axioms, as well as a mechanism (in this case, Top Trading Cycles)

which satisfies the three axioms but does not satisfy the k-cycle constraints. Clearly the GCSE mechanism

is individually rational and k-constrained ex-post efficient. The no-trade mechanism is individually rational

and (weakly) strategyproof.

Finally, consider the following example of a mechanism that satisfies the k-cycle constraints, constrained

ex-post efficiency and weak strategyproofness. Let there be some priority order over A and let each agent

i point at the agent who has i’s highest-ranked object. Starting with the agent, call her 1, who is highest

in the priority order, one of three things can occur. One possibility is that 1 is part of a cycle of length no

longer than k, in which case we perform the trades implied by that cycle, remove all agents and objects in

that cycle, and move to the next step. Another possibility is that 1 is part of a cycle of length longer than

k. In that case, considering the chain starting at 1, we take the k-th agent in that chain and close the cycle

by giving her 1’s object. So for example, if k = 2 and 1 points at 2 who points at 3 who points back at 1,

the first selected trading cycle here would have 1 receiving 2’s object and 2 receiving 1’s object, even if that

is individually irrational for her. The last possibility is that 1 is not part of a cycle. Then starting with the

chain anchored at 1, we should reach some cycle. For example, in a very simple case we could have

1→ 2→ 3→ 2.

If k = 4 here, we can “break the cycle” in a strategyproof way by considering who agent 3’s second highest

choice is. If that is 4 for example, we implement the trade implied by the cycle 1 → 2 → 3 → 4 → 1. It is

not hard to prove that this mechanism is k-constrained ex-post efficient and strategyproof. It is, however,

obviously not individually rational.

9 Conclusion

In this paper, I propose a mechanism that is suitable for the setting of kidney exchange with strict ordinal

preferences. The mechanism is individually rational so it recommends compatible transplantations and

provides sufficient incentives for compatible patient-donor pairs to enter the kidney-exchange program. It is

also ordinally efficient and anonymous. I also provide a method to generalize the mechanism to an arbitrary

matching setting with arbitrary constraints: regardless of what the set of acceptable ex-post allocations is,

the mechanism would select an ordinally efficient lottery over that set and would do that in an anonymous

way if the constraints allow it. The settings include one-sided (such as object-exchange and object-assignment

problems) and two-sided matching markets (such as school-choice problems and the assignment of workers
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to institutions). The constraints can include individual rationality, cycle constraints, maximal-cardinality

matchings, and various quotas, caps etc.

One question I haven’t addressed until now is the problem of considering ordinal versus cardinal pref-

erences. For example, the United Network for Organ Sharing/Organ Procurement and Transplantation

Network’s (UNOS/OPTN) guidelines for deceased donors’ kidney allocation changed recently to address

considerations of differential survival rates of kidneys.36 Their system computes a Kidney Donor Profile

Index, which indicates how long a kidney is likely to function once transplanted. The goal is to maximize

the net life-years benefit of transplanted kidneys over the life expectancy under dialysis treatment. So why

shouldn’t the matching algorithm simply select an allocation that maximizes the sum of expected gained

life-years? The answer is multi-fold. First, these cardinal preferences would be hard to estimate. See Free-

man (2007) for a discussion, for example. Any proposal for estimating these would necessarily involve ad-hoc

assumptions: for example, Freeman (2007) mentions that for the purposes of quality-of-life adjustment, the

social planner needs to decide how much is a year with a functioning renal graft worth in terms of years on

dialysis. Furthermore, the expected life-year benefit for a given patient-donor pair is hard to determine with

much precision, or at least harder than defining ordinal preferences for the patient over the available kidneys.

Second, maximizing total gained life-years creates fairness issues. Specifically, younger and healthier patients

receive preferential treatment since a kidney is likelier to extend their lives more than older patients’. One

can account for that by making suitable adjustments. For example, the system adopted by UNOS/OPTN

makes adjustments to give preferential treatment to patients who have been on the waiting list for a long

time. But, again, any such adjustment would necessarily be ad-hoc. I believe that the mechanism proposed

here does a better job of balancing utility and justice, as desired by UNOS (Wallis et al. 2011). Finally, a

utility-maximizing system would introduce a new set of incentive-compatibility issues. For example, doctors

could falsify their patients’ medical records to make them appear healthier (to inflate the estimate of ex-

pected life-years they can gain from a kidney) or sicker (if that gives them a waitlist priority). For accounts

of a series of similar cases in the liver- and heart-transplantation programs in the US and Germany, see

Snyder (2010); Pondrom (2013); Roth (2014).

There is significant potential for future work extending and refining the results presented here. Extending

the 2CPS mechanism or the GCPS mechanism to the case of non-strict ordinal preferences would be valuable.

I note here that the techniques from network flow theory used by Katta and Sethuraman (2006) (and adapted

in Yılmaz (2009) and Budish et al. (2013)) cannot be extended in a straightforward manner to my setting.

The main issues is that the Edmonds constraints are not nested within each other so constructing an auxiliary

network representing the constraints would not help here.

Understanding the properties of the general mechanism from Proposition 8 would also be valuable. Ex-

amples include finding a natural fairness property it satisfies. Also, that mechanism embeds Bogomolnaia

and Moulin’s (2001) PS and Budish et al.’s (2013) Generalized PS mechanisms, which are weakly strate-

gyproof. However, it also includes those mechanisms with unacceptabilities, where weak strategyproofness

fails (Yılmaz 2010). A natural question to ask is: what conditions guarantee weak strategyproofness. For

that matter, what conditions guarantee stronger incentive criteria, such as convex strategyproofness as de-

fined in Balbuzanov (2014)?37 Finally, this paper assumes a hard cap on the possible length of trading cycles.

It would be interesting to see if one can arrive at a better mechanism by relaxing the requirement that the

mechanism satisfies the cycle constraints with probability 1. A mechanism that has better properties and

36See Roth (2013) for more details.
37Convex strategyproofness requires that for a given ordinal preference relation, there exists a compatible von Neumann-

Morgenstern utility vector such that an agent with that utility vector prefers reporting truthfully.
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fails to satisfy the cycle-length constraints “relatively seldom” could be acceptable in the sense that the extra

cost of the occasional long trading cycles might be outweighed by the benefit of a better overall mechanism.38

As noted in Section B.2, the 2CSE mechanism does not fully characterize all possible ordinally efficient

random allocations. It would be valuable to know what properties characterize the allocations that can be

selected by that mechanism. Conversely, does there exist a mechanism parameterized by a certain vector

that selects all possible ordinally efficient allocations by varying the parameter? Another open area is finding

a “better” fairness condition that the 2CPS mechanism satisfies (see Section B.1). While anonymity implies

that patients’ names do not matter, there are anonymous mechanisms that are arguably unfair.39 However,

since the 2CPS affords all agents the same initial conditions and is procedurally fair, I expect that it would

satisfy some stronger fairness conditions.

38For recent work on matching mechanisms that satisfy desirable properties in an approximate manner see Budish (2011)
and Akbarpour and Nikzad (2014).

39For example, consider an object-allocation setting with two agents {1, 2} with multi-unit demand and two objects {a, b},
where being assigned both objects is preferred to having either one of them. Let f be a mechanism that gives both objects to
the agent whose preferences are {a, b} � a � b whenever the preferences are different and flips a fair coin for who gets what if
the preferences are the same. The mechanism is clearly anonymous but it can be argued that it is unfair in the sense that one
agent receives an “unreasonably large” share of the endowment under certain preferences.
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C. Noël, M.-N. Peraldi, C. Pouteil-Noble, P. Tuppin, and C. Hiesse (2003): “Multivariate

analysis of donor risk factors for graft survival in kidney transplantation,” Transplantation, 75, 361–367.

Pittel, B. (1989): “The average number of stable matchings,” SIAM Journal on Discrete Mathematics, 2,

530–549.

——— (1992): “On likely solutions of a stable marriage problem,” The Annals of Applied Probability, 2,

358–401.

Pondrom, S. (2013): “Trust is everything,” American Journal of Transplantation, 13, 1115–1116.
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A Omitted Proofs

Proof of Proposition 3: I consider the following algorithm for the implementation of the TTC mechanism:

at each step, we identify and remove only one trading cycle.

Fix the set of patient-donor pairs A = {1, 2, . . . , n} and the maximum allowed cycle length k, and consider

the directed graph induced by each patient pointing at her highest-ranked kidney. I would like to estimate

the probability that there exist no directed cycles of length less than or equal to k in that graph. The

probability that patient 1 is pointing at a kidney other than kidney 1 is n−1
n . If this is the case, I assume

without loss of generality that patient 1 is pointing at kidney 2. Then the probability that patient 2 is

pointing at a kidney other than 1 and 2 is n−2
n . Again without loss of generality, I assume that patient 2 is

pointing at kidney 3 if she is not pointing at 1 or 2.

We can continue in a similar fashion: at each stage, the probability that patient m ≤ k is not pointing

at one of the kidneys 1, 2, . . . ,m (and thus being part of a cycle of length no greater than k) is n−m
n . The

probability that patient k+1 points at kidney 1 (thus closing a cycle of length k+1) or at any of the kidneys

k+ 2, . . . , n is n−k
n . Each subsequent patient k+ l may point at any of the kidneys 1, 2, . . . , l, k+ l+ 1, . . . , n

without being part of a cycle of length no longer than k. The probability that this happens is also n−k
n .

Since these events are independent, the joint probability of this happening is:

p(n) :=


(
n−1
n

) (
n−2
n

)
· · ·
(
n−k+1
n

) (
n−k
n

)n−k+1
if n > k,

0 if n ≤ k.

Note that patient k + l may not be a part of a short cycle even if she is pointing at kidney k + l − 1 in

case, for example, patient k + l − 1 is part of a long cycle herself. So p(n) underestimates the probability

that there are no short cycles in the first stage of the algorithm. Therefore the probability that there is at

least one cycle of length k or less is no greater than 1− p(n).

Assume that there exists a short cycle. I remove all the kidneys and patients in a randomly chosen cycle

of length no greater than k from the mechanism and from the remaining patients’ preferences. Let’s say

there are n′ remaining patient-donor pairs. Consider the next step in the algorithm. It is easy to see that

the induced distribution over the reduced preferences satisfy the same properties as the original problem.

Thus, recursively, the probability that the reduced problem has at least one short cycle is less than 1−p(n′).
Denoting the remainder after dividing n by k by remainder(n, k), the overall probability that the TTC

mechanism selects only short cycles is less than

q(n) = (1− p(n))(1− p(n− k)) . . . (1− p(remainder(n, k))),

where I have conservatively assumed that at each stage of the algorithm, one can find a cycle of length

exactly k.

We use the well-known fact that

lim
n→∞

(
n− k
n

)n
= e−k.

Thus all sufficiently large n satisfy p(n) ≥ 1
2e
−k, which implies 1− p(n) ≤ 1− 1

2e
−k. Therefore

lim
n→∞

q(n) = lim
n→∞

(1− 1

2
e−k)n = 0,
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which is what I wanted to show.

Proof of Proposition 4: Assume that such a mechanism indeed exists and call it f and let A = {1, 2, . . . , n}.40

I consider the cases k = 2 and k ≥ 3 separately. I start with the case k = 2. Let the preference profile � be

�1 : 2 �1 n �1 3 �1 4 . . . �1 n− 1 �1 1,

�2 : 3 �2 1 �2 4 �2 5 . . . �2 n �2 2,

...

�n−1 : n �n−1 n− 2 �n−1 1 �n−1 2 . . . �n−1 n− 3 �n−1 n− 1,

�n : 1 �n n− 1 �n 2 �n 3 . . . �n n− 2 �n n.

Consider the following permutation: π : A → A defined by π(i) = i + 1(modn). For simplicity, in

what follows I omit the modulo notation. Note that the permuted preference profile �π is the same as the

original preference profile �. Thus Pf(�)(i, j) = Pf(�π)(i, j). By anonymity, we also have Pf(�)(i, j) =

Pf(�π)(π(i), π(j)) and hence

Pf(�)(i, j) = Pf(�)(i+ 1, j + 1). (5)

Note that since f is 2-constrained efficient and there are no unacceptabilities, the matching f(�) can have

at most one patient who is unmatched. In fact, if n is odd, there is exactly one patient who is unmatched.

Let that be i and so Pf(�)(i, i) = 1. But then, by (5), Pf(�)(i + 1, i + 1) = 1 as well, which implies that

there are at least two people who are unmatched, which is a contradiction.

If n is even instead, all agents must be matched. If patient 1 does not receive either of her two highest-

ranked kidneys 2 and n, by (5) none of the agents receives one of her two highest-ranked kidneys. But such

a matching is dominated by the feasible matching where pairs 1 and 2, 3 and 4 etc. are matched together,

since there each patient receives either her highest- or second highest-ranked kidney. This implies that

patient 1 must receive either kidney 2 or kidney n. In the first case, (5) implies Pf(�)(2, 3) = 1, which is

impossible since cycles are of length no greater than 2. Similarly, if patient 1 receives kidney n, we must

have Pf(�)(1, 2) = 1, which is similarly impossible. This completes the case k = 2.

In the general case k ≥ 3, I consider the cases n−k being odd and even. If n−k is even, let the preference

profile � be

�1 : 2 �1 n �1 n− k + 2 �1 3 �1 4 . . . �1 n− 1 �1 1,

�2 : 3 �2 1 �2 n− k + 3 �2 4 �2 5 . . . �2 n �2 2,

�3 : 4 �3 2 �3 n− k + 4 �3 5 �3 6 . . . �3 1 �3 3,

...

�k : k + 1 �k k − 1 �k 1 �k k + 2 �k k + 3 . . . �k k − 2 �k k,
...

�n : 1 �n n− 1 �n n− k + 1 �n 2 �n 3 . . . �n n− 2 �n n.

In other words, patient i’s preference order is i + 1, i − 1, 1 + i − k, i + 2, i + 3, i + 4, . . . , i − 2, i) from

40For maximum generality, the following proof assumes that there are no unacceptabilities in the patients’ preferences.
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most to least preferred, where all the operations are defined modulo n. Consider the same permutation as

above: π : A → A defined by π(i) = i + 1(modn). By an analogous argument to above, (5) holds. As

above, it is again impossible to have any agent left unmatched. Therefore f(�) must match all the agents.

Now assume that some cycle in the decomposition of f(�) contains a segment (· · · − i − (i + 1) − · · · ).
This implies Pf(�)(i, i + 1) = 1 and hence Pf(�)(i + 1, i + 2) = 1. So the cycle must contain the segment

(· · ·−i−(i+1)−(i+2)−· · · ). Inductive reasoning suggests that the cycle must be (1−2−· · ·−n−1), which

is impossible since cycles are constrained to be of length at most k. Thus no cycle contains the segment

(· · ·− i− (i+1)−· · · ). Analogously, one can show that no cycle contains the segment (· · ·− (i+1)− i−· · · ).
Examining the preferences, one can then see that in f(�) no agent can do better than her third best option.

But this is Pareto-dominated by the feasible matching

{(1− 2− · · · − k− 1), ((k+ 1)− (k+ 2)− (k+ 1)), ((k+ 3)− (k+ 4)− (k+ 3)), . . . , ((n− 1)− n− (n− 1))},

in which patients 1, 2, . . . , k−1, k+1, k+3, . . . , n−1 receive their highest-ranked kidney, k receives her third

choice and everyone else—their second choice. But this contradicts the fact that f is k-constrained efficient!

Finally, if n− k is odd, let the preference profile � be

�1 : 2 �1 n �1 n− k + 3 �1 3 �1 4 . . . �1 n− 1 �1 1,

�2 : 3 �2 1 �2 n− k + 4 �2 4 �2 5 . . . �2 n �2 2,

�3 : 4 �3 2 �3 n− k + 5 �3 5 �3 6 . . . �3 1 �3 3,

...

�k−1 : k �k−1 k − 2 �k−1 1 �k−1 k + 1 �k−1 k + 2 . . . �k−1 k − 3 �k−1 k − 1,

�k : k + 1 �k k − 1 �k 2 �k k + 2 �k k + 3 . . . �k k − 2 �k k,
...

�n : 1 �n n− 1 �n n− k + 2 �n 2 �n 3 . . . �n n− 2 �n n.

The preferences are the same as above, except patient i’s third highest-ranked kidney is 2 + i− k(modn)

rather than 1 + i− k as above. The exact same arguments as above guarantee that all agents are matched

and that in f(�) no agent can be doing better than her third best option. But any such matching is Pareto

dominated by the feasible matching

{(1− 2− · · · − (k − 1)− 1), (k − (k + 1)− k), ((k + 2)− (k + 3)− (k + 2)), . . . , ((n− 1)− n− (n− 1))},

where, just like above, each agent receives her first, second or third best-choice. Contradiction!

Proof of Proposition 5: Assume that such a mechanism indeed exists, call it f and let A = {1, 2, . . . , k+ 1}.
What follows holds for all n > k since one can add additional patients who find no kidney or only each
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other’s donors’ kidneys acceptable. Consider the following preference profile �:

�1 : 2 �1 3 �1 . . . n �1 1,

�2 : 3 �2 4 �2 . . . 1 �2 2,

...

�n : 1 �n 2 �n . . . n− 1 �n n.

For each patient i, construct the preference �′i by making only her top choice in �i acceptable. Using

notation modulo n, this means:

�′i: i+ 1 �′i i �′i i+ 2 . . .

We first need to consider the case k = 2 and n = 3. There are three 2-efficient and individually rational

matchings for the profile �. Due to the symmetry of the problem, I can assume without loss of generality

that f(�) = {(1− 2), (3)}, where a cycle of the form (α− β − . . .− ω) means that patient α receives kdiney

β, and so on until patient ω receives kidney α. Note that by strategyproofness, f(�′1,�2,�3) must also be

{(1− 2), (3)}. Otherwise, patient 1 would be able to unilaterally deviate from that profile to �, which gives

her her top choice. Finally, consider f(�′1,�′2,�3). The only possible individually rational matching here is

{(1), (2− 3)}. But that implies that patient 2 has a profitable deviation from (�′1,�2,�3) to (�′1,�′2,�3).

Contradiction!

For the case of general k, consider the profile �0:= (�′1, . . . ,�′n−1,�n). I argue that the only indivdually

rational and k-efficient matching is the single cycle (2−3−. . .−n). First, it is clear that 1 remains unassigned

by f . If she were assigned, she must receive kidney 2, who because of f(�0) being individually rational must

receive kidney 3, and so on, until n − 1 receives kidney n and, to close the cycle, n must receive kidney 1.

This cycle is of length n = k + 1, however, which is impossible. Thus the best the other patients can do is

for 2 through n − 1 to receive their top-choice kidneys, and n to receive her second highest-ranked kidney.

Indeed, this is implementable in a cycle of length k: (2− 3− . . .− n). Hence, since f is k-efficient, we must

have

f(�0) = {(1), (2− 3− . . .− n)}.

Now consider the profile obtainable from �0 by changing the preferences of patient 2 from �′2 to �2.

Call that profile �∗. I will argue that f(�∗) = f(�0). Note that due to f being strategyproof, agent 2

must receive her top choice (kidney 3) under f(�∗). Otherwise she can unilaterally deviate back to �0 and

receive her top choice. Then, completely analogously to the above, one can show that 1 ends up unassigned

under f(�∗) and thus the unique k-efficient allocation is {(1), (2− 3− . . .− n)}.
Now define �1:= (�′1,�2,�′3, . . . ,�′n). Analogously to the case �0, due to the symmetry of the problem,

one can show that

f(�1) = {(3), (1− 2− 4− . . .− n)}.

Similarly to the above, one can show that by changing the preferences of patient n from �′n to �n in �1,

the matching that f selects for the resulting preference profile must remain unchanged. But that profile is

�∗ and f(�0) 6= f(�1). Contradiction!

Proof of Proposition 6: Fix a profile of preferences and claiming-speed functions (�, e). Assume that the

probability-share matrix M corresponding to 2CSE(�) is weakly Pareto dominated with respect to first-

order stochastic dominance by a 2-implementable matrix M ′. Note that this implies that M ′ is individually
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rational with respect to �. I will show that M = M ′.

Note that a pair (i, j) can become unavailable during the mechanism in one of two ways: one (or both)

of patients i and j exits the mechanism, or an Edmonds constraint containing {i, j} starts binding. Let

T 1 be the set of all times, at which a patient i ∈ A exits the mechanism’s procedure under (�, e) and

M(i) 6= M ′(i). Let T 2 be the set of all times, at which an Edmonds constraint corresponding to a set E

starts binding during the procedure and there exists {i, j} ⊂ E such that M(i, j) 6= M ′(i, j). Since there are

finitely many such events, let t∗ = minT 1 ∪ T 2. Assume toward contradiction that the set T 1 ∪ T 2 is not

empty and so t∗ > 0 is well-defined. Consider the event that occurred at t∗ (if there is more than one event

occurring at that time, pick any one of them).

First, I consider the case in which the event is some patient i exiting. Since M(i) 6= M ′(i) and since,

therefore, M ′(i) is strictly better than M(i) in FOSD sense for i, there must exist kidneys j and l such that

M(i, j) > M ′(i, j) ≥ 0 and 0 ≤M(i, l) < M ′(i, l) and l �i j.

If i = j, this implies that i had claimed probability shares of kidney i when she exited even though she

prefers kidney l. Note that l does not find i unacceptable since M ′(i, l) > 0 and M ′ represents an individually

rational matching with respect to the preference profile. So the pair (i, l) must have become unavailable at a

time earlier than t∗. This is possible if an Edmonds constraint corresponding to an Edmonds set containing

{i, l} activated or l exited. Either way, though, this is impossible since the time of those events must be

included in T 1 ∪ T 2.

So i 6= j must hold. Then, analogously to the above, there exists some patient h such that h �j i and

M(h, j) < M ′(h, j). Since M(i, j) > 0, either i claimed some of kidney j’s probability shares when she

prefers l, or j claimed kidney i’s probability shares when she prefers h. But then, analogously to above, one

of the pairs (i, l) and (h, l) must have become unavailable earlier than. Using the same reasoning as above,

this is impossible.

Therefore the first case is impossible. So I consider the case in which the event occurring at t∗ is the

activation of an Edmonds constraint. Let the corresponding Edmonds set be E with i, j ∈ E, i 6= j and

M(i, j) 6= M ′(i, j). Note that M ′ is 2-implementable. So we have∑
a

∑
b∈E\{a}

M ′(a, b) ≤ 2p =
∑
a

∑
b∈E\{a}

M(a, b),

where |E| = 2p+ 1. I can assume that M(i, j) > M ′(i, j) since if M(i, j) < M ′(i, j) instead, the inequality

above implies that there exists some other pair i′, j′ ∈ E such that M(i′, j′) > M ′(i′, j′). As in the first case,

this implies that there exist h, l ∈ A such that

M(i, l) < M ′(i, l),M(j, h) < M ′(j, h), l �i j and h �j i.

The rest of the analysis proceeds as above, leading to a contradiction. So the set T1 ∪ T2 is empty and

therefore M = M ′.

Proof of Proposition 7: Start by fixing the number of agents to n and their preference profile to �. Let

the set of permutation matrices that represent the permissible ex-post deterministic matchings in C(�) be

C ′ := {M1, . . . ,Mp}. Their convex hull co(C ′) is the set of bistochastic matrices that are decomposable as

a convex combination of matrices in C ′. Define the set D to be the lower contour set of co(C ′).
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It is clear that co(C ′) ⊂ D. Next I will show that D is the convex hull of finitely many points and, hence,

is bounded convex polytope in Rn×n. First, I claim that

D = co

(
p⋃
i=1

Ei

)
, (6)

where Ei is the set of all matrices each of whose entries equals either zero or the corresponding entry in

Mi ∈ C ′. In other words

Ei = {M ∈ Rn×n+ |∀a, b ∈ A : M(a, b) = 0 or M(a, b) = Mi(a, b)}.

Note that if M ∈ Ei, then M ≤ Mi. It is easy to show that co(Ei) = {M ∈ Rn×n+ |Mi ≥ M}. To start

showing (6), take a matrix M that is in the convex hull on the right-hand side of (6). This means that I can

represent M in the following way:

M =

q∑
i=1

πiM
i,

where
∑q
i=1 πi = 1 and πi ≥ 0 for all i. Also for each M i, there exists j ∈ {1, . . . , p} such that M i ∈ Ej and

so there exists a corresponding matrix M
i ∈ C ′ such that M

i ≥M i. Then

M ≤
q∑
i=1

piM
i ∈ co(C ′).

Therefore M ∈ D. To show the other set inclusion for (6) assume that M ∈ D. Then there exists some

M ′ ∈ co(C ′) with M ′ =
∑p
i=1 πiMi such that M ′ ≥M . Define for each α, β ∈ {1, . . . , n}:

γ(α, β) =

{
0 if M(α, β) = 0,

M(α, β)/M ′(α, β) otherwise.

Define Mi entry-by-entry via Mi(α, β) = γ(α, β)Mi. Clearly, Mi ≤Mi and so

Mi ∈ co(Ei) ⊂ co

(
p⋃
i=1

Ei

)
.

Also, it is easy to verify that M =
∑p
i=1 πiMi. Thus M ∈ co (

⋃p
i=1 Ei), which is the second set inclusion

I wanted to show. Therefore, by (6), D is the convex hull of finitely many points and, hence, a bounded

convex polytope in Rn×n. So D can be represented as the intersection of finitely many closed halfspaces in

Rn×n.

Some matrix entries might be zero for all of the elements of D. Let there be q such entries. For the

remainder of the proof, I will consider the elements of D as vectors with all entries which are zero for all

elements from D removed. In other words, I will view D as a subset of Rn2−q rather than Rn×n. I will show

that the convex polytope D is fully dimensional when viewed in this space. To do that, it is enough to show

that D has a non-empty interior.41 Consider the following element of D:

N =

p∑
i=1

1

p
Mi.

41See Section 2.3 in Ziegler (2007) for the relevant definitions and result.
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Note that all of N ’s coordinates are positive because for all n2 − q coordinates, there exists some Mi for

which that coordinate is equal to 1. Also it’s clear that N ∈ co(C ′) ⊂ D. Consider then the element 1
2N .

It’s clear that 1
2N < N and so N ∈ D. Also there exists some ε such that for every x in the open ball with

radius ε around 1
2N (i.e., Bε(

1
2N)), x ≥ 0 holds but also x ≤ N and hence x ∈ D. Thus 1

2N lies in the

interior of D and D is fully dimensional in Rn2−q.

Since the convex polytope D is fully dimensional, it can be uniquely minimally defined (up to rescaling

by a positive scalar) as all elements x in Rn2−q that satisfy Ax ≤ b for some matrix A and a vector b. I will

write each of the individual constraints as Ai · x ≤ bi, where Ai is a row in A. Note that since D contains

0, bi ≥ 0 holds for all i. Furthermore, if some Ai satisfies Ai ≤ 0, then the corresponding bi must equal zero

(otherwise, that would violate the minimality of the constraint set). Note that the corresponding constraint

indicates that a coordinate or a sum of coordinates from each element of D must be non-negative. I will

show that all the remaining constraints have positive coefficients. Indeed, take some Ai such that Ai ·x ≤ bi
is valid for all elements of D, and some coordinates of Ai are strictly positive and some strictly negative.

By full dimensionality of D, there exists some y ∈ D such that Ai · y = bi but Aj · y < bj for all j 6= i.42

Then it is easy to see that one can find some x 6= z distinct from y such that z ≥ x ≥ y with Ai · z = bi but

Aj · z < bj for all j 6= i, while Ai · x > bi. In other words, z ∈ D while x /∈ D. But by the way I defined

D, there exists some w ∈ co(C ′) such that w ≥ z and, since z ≥ x, w ≥ x must hold and hence x ∈ D.

Contradiction! Therefore all constraints, other than the ones guaranteeing non-negativity, are of the form∑
(i,j)∈A×A

a(i, j)M(i, j) ≤ b

for some b > 0 and a(i, j) ≥ 0 for all (i, j).

Proof of Propositions 8 and 9: Note that the notation from the proof of Proposition 7 carries through here.

I start by revisiting the definition of the GCSE mechanism.

Each patient i has an associated claiming-speed function ei : [0, 1] → R+ with
∫ 1

0
ei(t)dt = 1. Time

runs continuously starting at t = 0. For each point in time there is an associated sub-bistochastic matrix

M t where M0 is the initial zero matrix. I say that kidney j is available to patient i at time t ≥ 0 if none

of the constraints defining the convex polytope D for which a(i, j) > 0, bind at that time. Note that M0

is in D and satisfies all the constraints defining D and, in particular, all kidneys that could be available

for patient i are initially available to her. At time t, each patient i claims with speed ei(t) the available

remaining probability shares of her favorite reported kidney j among the kidneys that are available to i at

that instance. That increases the probability that i receives j’s kidney—i.e., it increases M t(i, j). Also note

that i = j can hold in this case. Note that the constraints defining D cannot be violated so M t ∈ D for all

t and therefore there exists some implementable individually rational bistochastic matrix M ′ ∈ co(C ′) such

that M ′ ≥ M t for all t. This means that for all agents who have not met their unit demand yet (i.e., for

all agents for whom M t(i) 6= M ′(i) yet), there exists a kidney j such that M t(i, j) < M ′(i, j). Note that if

patient i consumes some of kidney j, the new interim matrix would still be less than M ′(i, j) and thus no

constraint defining D would be violated. So all constraints involving the pair (i, j) are slack at time t. Thus

kidney j is available to patient i at time t. Therefore for each patient there exist at least one kidney which

42See, for example, Corollary 8.2a in Schrijver (1986) regarding fully dimensional polytopes. It states that given a constraint
Ai · x ≤ bi, for each other constraint Aj · x ≤ bj , there exists some xj ∈ D such that Ai · xj = bi but Aj · xj < bj . Then an
equal-weight convex combination of all xj ’s would satisfy the desired conditions.
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is available to her at any point of time during the algorithm. In other words, at no point of time, does the

algorithm become “stuck” without available kidneys’ probability shares for one or more of the patients. Thus

the algorithm ends at time t = 1 and the final matrix M1 must satisfy all agents’ unit demands. Therefore

the sum of all the entries in the matrix is n and therefore M t must be a bistochastic matrix. Finally, since

each M t is in D, the bistochastic matrix M1 must be in co(C ′).

Therefore M1 can be decomposed into allowable permutation matrices. I implicitly define the mechanism

f by setting f(�) such that Pf(�) = M1 for each possible preference profile �. By giving all agents the

same claiming-speed function, f can be made anonymous since the constraint correspondence is anonymous

itself. It remains to be shown that the f as defined is C-constrained ordinally efficient.

Assume that the bistochastic matrix M1 is weakly Pareto dominated with respect to first-order stochastic

dominance by some M ′ ∈ co(C ′). I will show that M1 = M ′.

Let T be the set of times at which a constraint defining the polytope D starts binding and there exists

some (i, j) such that a(i, j) belonging to that constraint is strictly positive and M1(i, j) 6= M ′(i, j). Note

that the non-negativity of all the constraint coefficients guarantees that once a constraint starts binding, it

will bind for the rest of the mechanism. This follows from the fact that all coefficients of the matrix M t are

non-decreasing in t by construction of the mechanism’s algorithm. Since there are finitely many such events,

set t∗ = minT .

So at time t∗ in the mechanism’s algorithm, a constraint defining the polytope D starts binding. Note

that by a logic analogous to the one above, the all-positive coefficients and M t being non-decreasing in t

guarantee that the constraint must also bind for t = 1. In other words:∑
(i′,j′)∈A×A

a(i′, j′)M1(i′, j′) = b.

Since M ′ ∈ co(C ′), we also have ∑
(i′,j′)∈A×A

a(i′, j′)M ′(i′, j′) ≤ b.

So ∑
(i′,j′)∈A×A

a(i′, j′)M1(i′, j′) ≥
∑

(i′,j′)∈A×A

a(i′, j′)M ′(i′, j′),

while a(i, j) > 0 and M1(i, j) 6= M ′(i, j) hold. I can assume that M1(i, j) > M ′(i, j) since if M1(i, j) <

M ′(i, j), the inequality above implies that there exists some other pair (i′′, j′′) with a(i′′, j′′) > 0 and

M1(i′′, j′′) > M ′(i′′, j′′).

Since patient i must strictly prefer M ′(i) over M1(i), there must exist kidney l such that

M1(i, j) > M ′(i, j) ≥ 0 and 0 ≤M1(i, l) < M ′(i, l) and l �i j.

But then since M1(i, j) > 0, agent i must have consumed probability shares from kidney j during the

mechanism even though she prefers kidney l. So when i was consuming j’s probability shares, kidney l must

have already become unavailable to i. But j becomes unavailable to i at time t∗. So l must have become

unavailable to patient i strictly earlier than t∗. But M1(i, l) 6= M ′(i, l), which contradicts the choice of

t∗.
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Proof of Proposition 12: It is enough to show the statement of the proposition for n = 4. If n > 4, I can

simply consider the example that follows with all additional agents finding the original 4 agents unacceptable

and vice versa. I start with the following simple Lemma.

Lemma 1. Let f be some 2-constrained ex-post efficient, individually rational, and weakly strategyproof

random mechanism. Then for all n, if

∀l ∈ A :j �i l

∀l ∈ A :i �j l,

we must have

Pf(�)(i, j) = Pf(�)(j, i) = 1.

Proof. Let � be such that

∀l ∈ A :2 �1 l

∀l ∈ A :1 �2 l,

Define �′1 and �′2 to be such that patient 1 finds only kidney 2 acceptable and vice versa. Formally:

�′1: 2 �′1 1 . . .

�′2: 1 �′2 2 . . .

Note that individual rationality and ex-post efficiency require that

Pf(�′1,�′2,�−{1,2})(1, 2) = 1.

By weak strategyproofness, agent 2 cannot improve her probability-share allocation in FOSD sense when

deviating to a false report. Thus she must receive kidney 1 with probability one under (�′1,�−1). Otherwise,

she could unilaterally deviate to �′2 and receive her first-best outcome. An analogous argument guarantees

that pairs 1 and 2 are matched in a two-way exchange with probability 1 under � as well, which is what I

wanted to show.

Toward contradiction, assume that such a mechanism exists. Call it f and consider the preference profile

� for A = {1, 2, 3, 4} defined by

�1 : 2 �1 4 �1 3 �1 1,

�2 : 3 �2 1 �2 4 �2 2,

�3 : 4 �3 2 �3 1 �3 3,

�4 : 1 �4 3 �4 2 �4 4.

Note that the set of 2-constrained Pareto optimal matchings are the two matchings {(1, 2), (3, 4)} and

{(1, 4), (2, 3)}, where a cycle of the form (α−β− . . .−ω) means that patient α receives kdiney β, and so on

until patient ω receives kidney α. Thus, since the f is 2-constrained ex-post efficient, f(�) can place positive

probability only on these two matchings. In particular, this implies that Pf(�)(i, i) = 0 for i ∈ {1, 2, 3, 4}.

46



Now consider the preference profile �∗, which is the same as � except for 1’s preferences:

�∗1: 2 �∗1 1 �∗1 4 �∗1 3.

With this profile, there are only two 2-constrained efficient and individually rational matchings: {(1, 2), (3, 4)}
and {(1), (2, 3), (4)}. (Note that {(1), (2, 4), (3)} is dominated by the first of these two matchings.) Thus,

when applied to �∗, the mechanism must select some lottery over these two matchings. Consider a deviation

by patient 4 to

�′4: 3 �4 1 �4 2 �4 4

from the profile �∗. Note that by Lemma 1, this deviation guarantees her

Pf(�∗1 ,�2,�3,�′4)(4, 3) = 1.

But then, by weak strategyproofness, patient 4 must receive kidney 3 with probability 1 under �∗ as

well (otherwise, she has a strictly first-order stochastically dominant deviation to �′4). In other words, the

mechanism must assign probability 1 to the matching {(1, 2), (3, 4)} under �∗. But then 1 gets her top

choice for sure and, in particular, by weak strategyproofness, f(�) must place probability 1 on the matching

{(1, 2), (3, 4)}.
By a completely analogous argument considering a potential deviation by patient 2, however, f(�) must

place probability 1 on the matching {(1, 4), (2, 3)}. Contradiction!

Proof of Proposition 13: The proof is virtually identical to the proof of Proposition 5. I omit the details.

B Further discussion of the properties of the 2CSE/2CPS mech-

anisms

B.1 Justice

So far I have considered anonymity as a minimal fairness desideratum for any kidney-exchange mechanism.

As far as fairness requirements go, anonymity is relatively weak. In this section I consider the compatibility

of other justice criteria with the 2CSE (and 2CPS) mechanism, as well as with the other desiderata of the

mechanism.

An important fairness criterion that is often considered in the literature (Moulin 1995) is non-envy. I say

that a random mechanism f satisfies no envy if for every i ∈ A, the probability-share allocation Pf(�)(i)

first-order stochastically dominates Pf(�)(j) for all j ∈ A with respect to �i. A random mechanism f satisfies

weak no envy if for every i ∈ A, there does not exist j ∈ A such that the probability-share allocation

Pf(�)(j) first-order stochastically dominates Pf(�)(i) with respect to �i. A random mechanism f satisfies

no justified envy if for all pairs of patients i, j ∈ A such that Pf(�)(j) does not first-order stochastically

dominate Pf(�)(i) with respect to �j there exist some l ∈ A such that Pf(�)(j, l) > 0 and i �i l. It is clear

that non-envy implies both weak non-envy and no justified envy.

As first noted by Yılmaz (2010), it is easy to see that non-envy is incompatible with individual ratio-

nality. A simple example would be an agent set A = {1, 2} where both patients rank kidney 1 the highest.

Then, by individual rationality, both patients must be left unmatched with probability 1. But then patient
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1’s probability-share allocation strictly first-order stochastically dominates patient 2’s with respect to 2’s

preferences. To get around this issue, Yılmaz (2010) proposes no justified envy as a refinement of non-envy

that is suited for settings where individual rationality is of prime importance. Intuitively, no justified envy

requires that if patient i has a cause to envy patient j’s probability-share allocation, then i must with positive

probability receive kidneys that j finds unacceptable. In other words, if i’s probability-share allocation does

not FOSD dominate another patient j’s probability-share allocation with respect to i’s preferences, then

there is some kidney l such that j finds l unacceptable but i receives l with positive probability.

So does 2CPS satisfy no justified envy? It turns out that the answer is generally no. But, moreover, I

show that no justified envy is incompatible with 2-constrained ordinal efficiency.

Example 7. Let A = {1, 2, 3, 4, 5} and let the preference profile � be defined by

�1 : 2 �1 3 �1 4 �1 5 �1 1,

�2 : 5 �2 4 �2 1 �2 3 �2 2,

�3 : 4 �3 2 �3 5 �3 1 �3 3,

�4 : 1 �4 5 �4 3 �4 2 �4 4,

�5 : 3 �5 1 �5 2 �5 4 �5 5.

One can calculate that the outcome of the 2CPS mechanism is
1/5 2/5 0 2/5 0

2/5 1/5 0 0 2/5

0 0 1/5 2/5 2/5

2/5 0 2/5 1/5 0

0 2/5 2/5 0 1/5

 ,

but this does not satisfy the no-justified-envy condition. More specifically, patient 1 envies patient 5’s

allocation.

We next show that 2-constrained ordinal efficiency and no justified envy are incompatible.

Proposition 14. There is no 2-constrained ordinally efficient mechanism, whose outcomes always satisfy

no justified envy.

Proof. Consider the preferences from Example 7. Assume that f is a mechanism that is 2-constrained

ordinally efficient, which satisfies no justified envy. Since there are no unacceptabilities in �, this implies

that Pf(�)(i) first-order stochastically dominates Pf(�)(j) with respect to �i for all i and j. Then, denoting

M := Pf(�), the following hold:

M(1, 2) ≥M(5, 2) = M(2, 5)

≥M(3, 5) = M(5, 3)

≥M(4, 3) = M(3, 4)

≥M(1, 4) = M(4, 1)

≥M(2, 1) = M(1, 2),
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where the inequalities follow from the stochastic dominance between the rows, and the equalities follow from

the symmetry of M due to its representing 2-constrained ordinally efficient matching. Therefore all these

matrix entries are equal. Denote their value by a. Repeating the same logic, the following hold:

a+M(1, 3) ≥M(4, 2) + a = a+M(2, 4)

≥M(1, 5) + a = a+M(5, 1)

≥M(2, 3) + a = a+M(3, 2)

≥M(5, 4) + a = a+M(4, 5)

≥M(3, 1) + a = a+M(1, 3).

Thus let

b : = M(1, 3) = M(3, 1) = M(2, 4) = M(4, 2) = M(1, 5)

= M(5, 1) = M(2, 3) = M(3, 2) = M(4, 5) = M(5, 4).

So the matrix M equals
M(1, 1) a b a b

a M(2, 2) b b a

b b M(3, 3) a a

a b a M(4, 4) b

b a a b M(5, 5)

 .

Consider M(1). By no justified envy

M(1, 2) +M(1, 3) ≥M(5, 2) +M(5, 3)⇒ a+ b ≥ a+ a⇒ b ≥ a (7)

holds.

Note that since M must satisfy the Edmonds constraints, a + b ≤ 2/5 (from the Edmonds constraint

corresponding to the set E = A), 2a + b ≤ 1 and a + 2b ≤ 1 (from the Edmonds constraint corresponding

to the sets E with |E| = 3), where the first inequality clearly implies the other two. In fact, 2-constrained

ordinal efficiency implies a + b = 2/5 since remaining unmatched is every patient’s lowest-ranked outcome.

Thus by (7), b ≥ 1/5 but it is easily checked then that in such a case the matrix M is dominated in first-order

stochastic dominance sense by the matrix
1/5 2/5 0 2/5 0

2/5 1/5 0 0 2/5

0 0 1/5 2/5 2/5

2/5 0 2/5 1/5 0

0 2/5 2/5 0 1/5

 ,

which is clearly 2-implementable as it is, from Example 7, the outcome of the 2CPS mechanism for these

preferences. Contradiction!
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B.2 A note on welfare

Bogomolnaia and Moulin (2001) proposed their simultaneous eating mechanism as a way to characterize

all ordinally efficient object-assignment allocations given a preference profile. They show that by varying

the profile of claiming-speed functions of the agents, the mechanism can output any given ordinally efficient

outcome. Yılmaz (2010) shows a similar result for his individually rational version of the PS mechanism.

So a natural next question is to ask whether the 2CSE mechanism satisfies the same properties. In other

words, for a given a preference profile � and a random matching µ that is ordinally efficient with respect to

�, does there exist some profile of claiming-speed functions e such that

Pµ = 2CSE(�, e)?

We can answer that in the negative as the following example shows.

Example 8. Let n = 3 with preferences � defined by

3 �1 2 �11,

3 �2 1 �22 and

1 �3 2 �33.

Consider a random matching µ with

Pµ =

0 1 0

1 0 0

0 0 1

 .

It is not hard to see that this random matching is 2-constrained ordinally efficient: the only way that

Pµ(1) can be improved in first-order stochastic dominance fashion is if one increases the probability that

patient-donor pairs 1 and 3 are matched together but that must increase the probability that 2 is left

unmatched, which cannot be part of a first-order stochastic dominance improvement since being unmatched

is patient 2’s worst outcome. The same logic holds for Pµ(2) and Pµ(3) too. Thus µ is 2-ordinally efficient.

Note though that in any 2-cycle simultaneous eating mechanism, at least one of P2CSE(�,e)(1, 3) and

P2CSE(�,e)(2, 3) must be positive since kidney 3 is patient 1 and 2’s top choice, kidney 1 is patient 3’s top

choice, and initially all kidneys are available to all patients.

In addition to providing an answer to my question, example 8 also suggests the reason for why 2CSE fails

to hit all ordinally efficient outcomes. More specifically, the example shows that there exist deterministic

2-efficient matchings in which none of the agents receives her top choice.43 Since deterministic 2-efficient

matchings are also ordinally efficient and, by construction of the 2CSE mechanism, at least one patient

receives her highest-ranked kidney with positive probability (barring unacceptabilities), this means that

it’s impossible for all ordinally efficient random matchings to be outcomes of the 2CSE mechanism for

some e. This raises two questions in turn. First, does there exist an ordinally efficient mechanism that is

parameterized by some vector such that the mechanism selects all possible ordinally efficient allocations by

varying the parameter? Second, can the bistochastic matrices that 2CSE selects be characterized?44

43This is in contrast to the fact that, in the object-allocation setting, any Pareto optimal allocation can be achieved via a
serial dictatorship (Abdulkadiroğlu and Sönmez 1998), which means that at least one agent receives her favorite object.

44See Heo and Yılmaz (2013); Heo (2014a) for some results characterizing the possible matrix outcomes of an extension of
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the PS mechanism.
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