Decoupling Markets and Individuals: Rational Expectations Equilibrium Outcomes from Minimally Intelligent Heuristic Traders

Karim Jamala
Michael Maiera
Shyam Sunderb,2

November 3, 2012

aAlberta School of Business, University of Alberta, Edmonton, AB, Canada T6G 2G6
bYale School of Management, Yale University, New Haven, CT 06520-8200

2 To whom correspondence should be addressed. E-mail: shyam.sunder@yale.edu

Classification: Social Sciences, Economic Sciences
Abstract

Attainment of rational expectations equilibria in asset markets calls for the price system to disseminate traders’ private information to others. Markets populated by human traders are known to be capable of converging to rational expectations equilibria. This paper reports comparable market outcomes when human traders are replaced by boundedly-rational algorithmic agents who use a simple means-end heuristic. These algorithmic agents lack the capability to optimize; yet outcomes of markets populated by them converge near the equilibrium derived from optimization assumptions. These findings point to market structure (rather than cognition or optimization) being an important determinant of efficient aggregate level outcomes.

JEL Codes:C92, D44, D50, D70, D82, G14
Keywords: bounded rationality, dissemination of asymmetric information, efficiency of security markets, minimally-rational agents, rational expectations, and structural properties of markets.
Our knowledge of the very narrow limits of human rationality must dispose us to doubt that business firms, investors or consumers possess either the knowledge or computational ability that would be required to carry out the rational expectations strategy.

Herbert Simon (1969)

The claim that the market can be trusted to correct the effect of individual irrationalities cannot be made without supporting evidence, and the burden of specifying a plausible corrective mechanism should rest on those who make this claim.

Tversky and Kahneman (1986)

The principal findings of experimental economics are that impersonal exchange in markets converges in repeated interaction to the equilibrium states implied by economic theory, under information conditions far weaker than specified in the theory.

Vernon Smith (2008)

1. Introduction

A central feature of economic theory is derivation of equilibrium in economies populated by agents who maximize some well-ordered function such as profit or utility. Although it is recognized that actions of economic agents are subject to institutional constraints and feedback (North 1990), exploration of the extent to which equilibrium arises from characteristics of the institutional environment, as opposed to the behavior of individuals, has been limited; Becker’s (1962) derivation of downward slope of demand functions is a notable exception. The normal modeling technique is to ascribe sophisticated computational abilities to a representative agent to solve for equilibrium (Muth 1961). Plott and Sunder (1982) [henceforth PS] have shown that markets with uncertainty and asymmetrically distributed information (with two or three states of the world) disseminate information and converge near rational expectations equilibria when populated with profit-motivated human traders. The present paper examines whether the PS results can also be achieved without profit maximization on the part of traders. Do markets populated by
minimally intelligent traders using the means-end heuristic also yield rational expectations market outcomes?

In Chapter 3 of Sciences of the Artificial, Simon (1969) questioned the plausibility of human agents, with their limited cognitive abilities, forming rational expectations by intuition. Accumulated observational evidence on these cognitive limits of individuals shifted the burden of proof, and led to calls for evidence that markets can overcome such behavioral limitations (Tversky and Kahneman 1986; Thaler 1986).

Laboratory studies of markets populated by asymmetrically-informed profit-motivated human subjects have revealed that their aggregate level outcomes tend to converge near the predictions of rational expectations theory (Plott and Sunder 1982; Plott and Sunder 1988; Forsythe, Palfrey and Plott 1982; Forsythe and Lundholm 1990). However, since complex patterns of human behavior can only be inferred from actions, not observed directly, it is difficult to know from human experiments which elements of trader behavior and faculties are necessary or sufficient for various kinds of markets to attain their theoretical equilibria\(^1\). This difficulty has led some to claim that inability of human beings to optimize by intuition implies that economic theories based on optimization assumptions are prima facie invalid [for example Tversky and Kahneman (1986)].

Such doubts about the achievability of mathematically derived equilibria, when individual agents are not able to perform complex optimization calculations, are understandable. From a constructivist point of view (Smith 2008), rational expectations equilibria place heavy demands on individual cognition to learn others’ preferences or strategies, and to arrive at unbiased estimates

\(^1\) See for example Dickhaut et al. (2012) regarding conditions where markets with human traders are less likely to conform to predicted equilibria.
of underlying parameters of the economy by observing market variables. In theory, disseminating and detecting information in markets calls for bootstrapping—rational assessments are necessary to arrive in equilibrium and such assessments require observation of equilibrium outcomes. Cognitive and computational demands on individuals to arrive at economic equilibria, especially rational-expectations equilibria, are quite high, raising questions about the plausibility of equilibrium models (Simon 1969).

Replacing humans by simple algorithms can allow us to decompose the complexity of trader behavior into simpler elements, and establish causal links between specific characteristics of trader behavior and market outcomes. Using the Gode and Sunder (1993) approach, we find and report that in markets with uncertainty and asymmetric information, simple zero-intelligence adaptive algorithmic traders are able to attain outcomes approximating rational expectations equilibria. Since the statistical distribution of these outcomes is centered near the PS observations of markets with human traders, the convergence of their outcomes to equilibrium can be attributed to the minimal levels of intelligence with which the algorithms are endowed. Since this level of intelligence is far less than what is assumed in deriving equilibria, it is reasonable to infer that the convergence of markets to rational expectations equilibria emerge mainly from the properties of the market and simple and plausible decision heuristics, rather than from complex and sophisticated optimization (Smith 2008; Becker 1962; Gigerenzer et al. 1999).

1.1 Background

Economic theory is commonly understood to require individual agents to have sophisticated information processing capabilities and maximization objectives. However an alternative conceptualization of how equilibria are attained is that market structure generates constraints which guide human behavior without making extensive computational demands on
individual problem solving. This conceptualization of structure builds on the work of Becker (1962), Smith (1962), and Gode and Sunder (1993). Becker (1962) showed that the downward slope of demand and the upward slope of supply functions arise from individuals having to act within their budget constraints, even if they choose randomly from their opportunity sets. Smith (1962) reported that classroom double auction markets populated by a mere handful of profit-motivated student traders with minimal information arrive in close proximity of Walrasian equilibrium. Moreover, Smith’s auction markets had little resemblance to the tâtonnement story used to motivate theoretical derivations.

Gode and Sunder (1993) put Becker’s constrained random choice together with Smith’s double auctions and reported the results of computer simulations of simple double auctions populated by “zero intelligence” (henceforth ZI) algorithmic traders who bid or ask randomly within their budget constraints (i.e., buyers do not bid above their private values and sellers do not ask below their private costs). Although these traders do not remember, optimize, seek higher profits, or learn, simulated markets populated by such traders also reach the proximity of their theoretical equilibria, especially in their allocative efficiency. In simple double auctions without uncertainty or information asymmetry, theoretical equilibria are attainable with individuals endowed with only minimal levels of intelligence (not trading at a loss). Jamal and Sunder (1996) extended the results to markets with shared uncertainty with algorithmic agents using means-end heuristic (henceforth M-E,) developed by Newell and Simon (1972).

Substitution of human subjects of traditional laboratory markets by algorithmic agents using M-E heuristic has the advantage of helping us gain precise control of traders’ information processing and decision making (i.e., “cognitive”) abilities. Holding trader “cognition” constant at a specified level allows us to explore the outcome properties of market structures and environment
[also, see Angerer et al. (2010); and Huber et al. (2010)]. In contrast, we can neither observe nor hold invariant the cognitive processes used by human traders. Moreover, use of algorithmic traders enables us to run longer computational experiments, randomize parameters in the experimental setting, and conduct replications without significant additional cost in time or money.

The paper is organized in four sections. The second section describes a simple M-E heuristic used by minimally-intelligent algorithmic traders in a double auction market. In the third section, we implement this heuristic in a market where some traders have perfect insider information (while others have no information) and compare the simulation results with data from the profit-motivated human experiments reported by PS. The fourth section presents implications of the findings and some concluding remarks.

2. Means-End Heuristic

Simon (1955) proposed bounded rationality as a process model to understand and explain how humans, with their limited knowledge and computational capacity behave in complex settings. He postulated that humans develop and use simple heuristics to seek and attain merely satisfactory, not optimal, outcomes. To understand human problem-solving Newell and Simon (1972) developed General Problem Solver (GPS). Newell and Simon (1972) adduced a large body of data which show that GPS is a robust model of human problem-solving in a wide variety of task environments. The key heuristic used by GPS is means-ends analysis (M-E or the heuristic of reducing differences). Gigerenzer et al. (1999) have focused on the usefulness and effectiveness of fast and frugal heuristics like M-E in human life, whereas Tversky and Kahneman (1974) have documented a similar heuristic which they labeled anchor-and-adjust.

GPS recognizes knowledge states, differences between knowledge states, operators, goals, sub-goals and problem solving heuristics as entities. GPS starts with an initial (or current) knowledge state, and a goal or desired knowledge state. GPS then selects and applies operators
that reduce the difference between the current state and the goal state. The M-E heuristic for carrying out this procedure can be summarized in four steps: (i) compare the current knowledge state \(a \) with a goal state \(b \) to identify difference \(d \) between them; (ii) find an operator \(o \) that will reduce the difference \(d \) in the next step; (iii) apply the operator \(o \) to the current knowledge state \(a \) to produce a new current knowledge state \(a' \) that is closer to \(b \) than \(a \); and (iv) repeat this process until the current knowledge state \(a' \) is acceptably close to the goal state \(b \). Knowledge states of traders can be represented as aspiration levels (Simon 1956) that adjust in response to experience. The M-E heuristic for a trader thus requires a mechanism for setting an initial aspiration level, and a method for adjusting these levels in light of experience [e.g., Jamal and Sunder (1996)].

2.1 Market Environment

Market environment is defined by four elements: (i) uncertainty, (ii) distribution of information, (iii) security payoffs, and (iv) rules of the market. Following PS we examine markets with either two (X and Y) or three (X, Y, and Z) states of the world, where each state \(S_i \) occurs with a known probability \(\pi_i \). One half of the traders in the markets are informed about the realized state of the world before trading starts each period, while the other half are uninformed. At the beginning of each period, each trader is endowed with two identical securities which pay a single state-contingent dividend \(D_{S_j} \) at the end of the trading period. There are three types of traders and each trader type gets a different dividend in a given state. The rules of the double auction are as follows: after a bid or ask is generated (see section 2.3 for details on bid/ask generation), the highest bid price is compared to the lowest ask price. If the bid price is equal to or greater than the ask price a trade occurs. The recorded transaction price is set to be equal to the midpoint between the bid and ask prices.

2.2 Implementing M-E Heuristic
We implement the M-E heuristic in two steps. First, each agent’s initial knowledge state (aspiration level) is set equal to the expected value of the payoff based on its private information. The second step implements the idea that subjects without perfect information make gradual adjustments by applying weight γ ($0 \leq \gamma \leq 1$) to newest observed price P_t, and weight $(1 - \gamma)$ to the past Current Aspiration Level (CAL_t). This process can be represented as a first-order adaptive process:

$$CAL_{t+1} = (1 - \gamma) CAL_t + \gamma P_t.$$ \[1\]

If CAL_0 is the initial value of CAL_t, by substitution,

$$CAL_{t+1} = (1 - \gamma)^{t+1} CAL_0 + \gamma ((1 - \gamma)^t P_1 + (1 - \gamma)^{t-1} P_2 + \ldots + (1 - \gamma) P_{t-1} + P_t).$$ \[2\]

In the context of markets organized as double auctions (where both buyers and sellers can actively propose prices to transact at), these two elements of the M-E heuristic—setting an initial aspiration level and gradually adapting it in light of observed transaction prices—can be given specific interpretation2. We describe the structure of each market, the implementation of the heuristic in that market, followed by an examination of the simulation outcomes, and a comparison of these outcomes with the previously reported results obtained in laboratory experiments with profit-motivated human subjects.

2.3 Minimally Intelligent Algorithmic Agents

Algorithmic agents use an M-E heuristic to estimate a “current aspiration level” (CAL), and use the CAL to implement a ZI strategy after Gode and Sunder (1993) consisting of bidding randomly below and asking above their aspiration levels. Traders draw a uniformly distributed random number between 0 and an upper limit of 1. If the number drawn is less than or equal to 0.5, the trader generates a bid; if the number drawn is greater than 0.5, it generates an ask. The bid amount is determined by drawing a second random number between a lower bound of 0 and an

2 Previous attempts to model individual human behavior has used processes very similar to equation 2 (23)(24).
upper bound of the individual trader’s CAL. If this bid exceeds the current high bid, it becomes the
new high bid. Correspondingly, if the action is an ask, its amount is determined by generating a
second random number in the range between the lower bound of the traders CAL and the upper
bound of 1. This newly generated ask becomes the new current low ask if it is less than the
existing current low ask. These random draws from uniform distributions are generated
independently. The algorithmic agents are myopic, making no attempt to anticipate, backward
induct, or theorize about the behavior of other traders. They simply use the knowledge of
observable past market events (transaction prices) to estimate their opportunity sets, and choose
randomly from these sets.

These markets are populated in equal numbers by traders of each payoff type who are (and
are not) informed about the realized state of world. The informed algorithmic traders begin by
setting their initial CAL using the perfect signal they have about the realized state of the world for
any given trader type \(j \):

\[
\text{If realized state } = X, \text{ } CAL_X \text{=} D_X^j \\
\text{If realized state } = Y, \text{ } CAL_Y \text{=} D_Y^j
\]

[3]

The uninformed traders of type \(j \) use their unconditional expected dividend value to set
their initial CAL using the prior state probabilities:

\[
CAL_j = \Pr(X) \times (D_X^j) + \Pr(Y) \times (D_Y^j)
\]

[4]

Since they know the state with certainty, informed traders do not update their CALs in
response to observed transactions; they learn nothing about the state of the world from transaction

\[3\] For 3-state markets, if realized state = Z, \(CAL_z = D_z^j \).

\[4\] For 3-state markets, \(CAL_j = \Pr(X)^*(D_X^j) + \Pr(Y)^*(D_Y^j) + \Pr(X)^*(D_Z^j) \).
prices.5 Uninformed traders of every dividend type, however, update their CALs after each transaction using the M-E heuristic (i.e., first-order adaptive process):

\[\text{CAL}_{t+1} = (1 - \gamma) \text{CAL}_t + \gamma P_t.\] [5]

CAL updating is done with a randomly chosen value of the adaptive parameter \(\gamma\) for the simulation (see Section 2.4 below). Submission of bids and asks continues with the updated CALs serving as constraints on the opportunity sets of traders until the next transaction occurs, and this process is repeated for 10,000 cycles to the end of the period. At the end of each period the realized state is revealed to all traders, dividends are paid to their accounts, and each trader’s security endowment is refreshed for the following period. The uninformed algorithmic traders carry their end-of-period CAL forward and use it as starting point of the following period.6

In the following period, informed traders again get a perfect signal about the state and set their \(\text{CAL} = D_Xj\) (or \(D_Yj\)) depending on whether the signal received is \(X\) or \(Y\). The uninformed traders use their end-of-period CAL from the preceding period as \(\text{CAL}_0\) to trade and to generate \(\text{CAL}_1\) after the first transaction, and so on.

2.4 Experimental Design

We use the market design parameters from the PS (1982) human experiments for our simulations7. We ran 50 replications of four markets numbered 2, 3, 4 and 5 as reported by PS’s

5 The informed traders could, for example, learn that in some states market prices are higher than their own dividend in that state, and thus raised their CAL to that higher level. Human traders, presumably, make this adjustment but our algorithmic traders do not. We should not, therefore, expect the markets with these minimally-intelligent agents to behave identically to the human markets.

6 At this stage, it would have been possible for the agents to keep track of the prices associated with each realized state and use this information in subsequent periods. In the spirit of minimal intelligence, our agents do not do so, and uninformed agents simply carry forward their CAL from the end of one period to the beginning of the next period. The CAL of informed agents responds to a perfect signal about the state realized in each period and is not dependent on experience in previous periods.

7 Parameters are available in Table 1.
(1982) human experiments (three states in Market 5, and two in the other three markets). The participants were freshly endowed with two securities every period. For each of the 50 replications, the adjustment parameter γ was randomly and independently drawn from a uniform distribution $U(0.05, 0.5)$. In each market, there are 12 traders who traded single period securities. A random state of nature—$X, Y, (or Z$ in case of 3-states)—was drawn at the start of each period to match the actual realizations observed in the PS markets. Except for a few initial periods (when no trader was informed), and in some final periods (when all traders were informed), six of these twelve traders had perfect inside information and the other six were uninformed. For consistency and ease of reference we identify these markets using the same numbers as used by PS.

3. Experimental Results – Markets with Asymmetric Insider Information

Figure 1 shows the time chart of prices observed in five asymmetric information periods of a market populated with profit-motivated human traders (heavy blue curve) reported in PS against the background of two theoretical (RE - solid green horizontal line) and Walrasian (PI – dashed brown horizontal line) predictions for respective periods. The red curve plots the median of prices from 50 replications of the same market with M-E heuristic algorithmic traders. The adaptive parameter γ is randomly and independently drawn each period from a uniform distribution $U(0.05, 0.5)$ and is identical across all traders. Six of the twelve traders have perfect inside information and the other six are uninformed. Allocative efficiency and trading volume are shown numerically for each period in Table 2.

8 PS (1982) found that the information structure of their Market 1 was too complex for it to reach rational expectations equilibrium in less than a dozen periods. Accordingly, we have not tried to replicate that information structure and market in these simulations.

9 In this paper we only report periods where one half of the traders in the market are informed and the other half are uninformed. We have also simulated periods where all traders were informed, or all were uninformed. The results are not qualitatively different from human participants reported in PS. Full simulation results, including all periods with informed/uninformed traders are available at http://www.zitraders.com. This website also gives an outline of the code, and allows visitors to see the charts of market behavior dynamically.
Figure 1 indicates: (i) In state X (with low RE price of 0.24), transaction prices of both human traders (blue curve) and algorithmic traders (red curve) approach the RE equilibrium level from above. (ii) In state Y (with higher RE price of 0.35), transaction prices of both human traders and algorithmic traders generally approach and get close to the equilibrium level from below. (iii) As shown in Table 1 for Market 2, in State X (low RE price) periods, average trading volume for human traders across the two periods is 19.5 while the average volume for algorithmic traders is 17.5. The allocative efficiency of human trader markets across the two periods is 63.5%, while efficiency of the simulated markets is 80.3%. Note that allocative efficiency arises from having the appropriate number of securities being acquired by the appropriate type of traders. Efficiency levels (below 100%) arise when the wrong type of traders are holding some of the securities. In State Y (high RE price) periods, human traders’ average volume is 19.3 (vs. 23.7 for algorithmic traders) and human trader efficiency is 100%, while algorithmic traders achieve efficiency levels of 98.7%. The direction and volume of trading is close to the predictions of RE equilibrium.

There are also important differences between the convergence paths for human and simulated markets: convergence of prices to RE predictions with human traders is tighter and progressively faster in later periods; algorithmic simulations exhibit little change from early to later realizations of the same state (X or Y). Efficiency results also show human subjects improving over time (when State is X), whereas markets populated with algorithmic traders show less improvement over time.

Insert Figure 1 and Table 1 about Here

Replication of the additional 2-state markets (Markets 3 and 4) with different parameters (see Figures 2 and 3 and the two middle sections of Table 2) show essentially the same pattern of convergence except that in State Y (with low RE price) human traders have a tendency to converge
quickly to the RE price, especially in later periods (not coming from above or below) whereas the paths with algorithmic traders depend on history in the previous period (because the CAL from the uninformed is carried forward from previous periods). If the previous period is State X (high RE price) the simulation converges from above; if the previous period is State Y (low RE price), the simulation converges from below the RE price. As expected, algorithmic traders adjust slowly and learn myopically without any global awareness of equilibrium prices.

Figure 4 displays data for a three-state market reported by PS with human traders, and an identical market replicated for this paper with algorithmic traders. The solid green horizontal line indicates the rational expectations (dashed brown line for PI) equilibrium price for the respective periods. Allocative efficiency and trading volume for Market 5 are shown numerically for each period in the bottom section of Table 2.

Figure 4 indicates: (i) In state Z (with high RE price of 0.32), for both human (blue line) and algorithmic traders (red line) transaction prices approach and get close to the RE equilibrium level from below. (ii) In state Y (with RE price of 0.245 in the middle of the other two states), transaction prices also generally approach and get close to the equilibrium level from below in both human and simulated markets. The only exception occurs in Period 11 when the market converges from above in both human and simulated markets. It appears that moving from a high equilibrium price state to a lower price state may cause convergences from above. Otherwise, both humans and our simulated traders tend to be conservative and approach the equilibrium price from below. (iii) Trading volume in all three states is generally greater than the predicted volume of 16 trades. For human traders volume tends to range from 15-23 trades, whereas algorithmic traders volume ranges from 14-24 trades. (iv) In all periods of State Z (high RE price), allocative
efficiency for human traders is 100% whereas algorithmic traders achieve 98.8% efficiency. In State Y (middle RE price) periods, allocative efficiency of human traders averages 96.8% (100% efficiency in all periods except the first realization of State Y) whereas algorithmic traders achieve 95.4% efficiency and do not achieve 100% efficiency in any individual period. In State X (low RE price) periods, allocative efficiency of human traders averages 87.7% whereas algorithmic traders achieve 91.5% efficiency.

Table 2 shows volume and efficiency numerically. Again, it is clear that, outcomes of markets with profit-motivated human and minimally intelligent algorithmic traders exhibit the same central tendencies of convergence towards the predictions of rational expectations models. Apparently, the structural constraints of the market rules, and Newell and Simon’s (1972) simple means-end heuristics are sufficient to yield this result even as the number of states in the market increases from 2 states to 3.

3.1 Price Changes, Volume and Efficiency

To assess price convergence to the rational expectations equilibrium, we report results of a procedure used by Gode and Sunder (1993) who regressed the root mean squared deviation between transaction and RE equilibrium prices on the natural logarithm of the transaction sequence number within a period. If prices move towards RE levels over time, the slope coefficient of this regression should be less than zero. Four panels of Figure 5 show the behavior of this root mean square deviation over time for the four human and simulated market pairs. Results of ordinary least squares regressions of MSD on log of transaction sequence number in human and simulated markets are shown in two triplets in each panel (slope, p-value, and R^2) respectively. Three of the four human (with the exception of Market 2), as well as all four simulated markets exhibit significant convergence to RE equilibrium, and the zero-slope hypothesis is rejected in favor of negative slope alternative at $p < 0.000$ for the seven of the eight
markets. About 80% of the reduction in the deviation from RE equilibria being explained by log of transaction sequence number. Figure 3 shows that root mean squared deviation of transaction from RE equilibrium prices tends towards 0.

Across all 32 periods of the four markets, the difference between the trading volume and efficiency (Table 2, charted in Figures 6 and 7) of human and simulated markets is not statistically different (average volume of simulated market is about one trade greater than for human markets with t-statistic of 1.35 and the average efficiency of simulated markets is 1.6% lower than that of markets with human traders (t-statistic of -1.08). There is no significant difference between the volumes and efficiency of markets with human traders as opposed to algorithmic traders. The inference is not that these simple algorithms capture all or even most of the behavior of the humans; that is not true. However, when seen through the perspective of aggregate market outcomes—prices, allocations, trading volume, and efficiency—these differences get attenuated to a point of statistical insignificance.

4. Discussion and Concluding Remarks
We have presented evidence that individual behavior, modeled by simple means-end heuristics and zero-intelligence, yields outcomes centered around the equilibrium levels derived from strong assumptions about optimization by individual agents. Even if this key assumption of theory is descriptively invalid, it does not necessarily undermine the validity and predictive value of the theory at the aggregate level. Our findings are consistent with Gigerenzer et al. (1999) who built on Simon’s bounded rationality paradigm by proposing that individuals use “fast and frugal” heuristics to successfully accomplish complex tasks.

The computational or other “cognitive” abilities of our algorithmic traders do not exceed, indeed are far weaker than, the documented faculties of human cognition. Yet, these simulated markets with insider trading based on asymmetric access to information converge to the close proximity of
rational expectations equilibria and attain high allocative efficiency. Contrary to claims made in behavioral economics literature (Tversky and Kahneman 1974; Thaler 1985), we find that individuals using a simple means-end heuristic (analogous to Tversky and Kahneman’s (1974) anchor and adjust heuristic) in a market setting generate outcomes close to the rational expectations equilibrium. We interpret the results to suggest that, even in these relatively complex market environments (compared to Gode and Sunder (1993)(1997) and Jamal and Sunder (1996)), allocative efficiency of markets remains largely a function of their structure, not intelligence or optimizing behavior of agents. Stress on understanding the role of market structure, rather than human cognition, may help advance our understanding of links between economic theory and market outcomes.

Acknowledgements

Conversations with Martin Shubik on the subject are gratefully acknowledged. Authors are responsible for the paper.
References

Figure Legends

Figure 1 shows the price paths in Market 2 of Plott and Sunder (1982) for periods where participants have different information (heavy blue line for mean price in markets with human traders; medium red line for median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is an observed transaction price in the simulated markets plotted by transaction sequence number. The green straight line and the brown broken line depict the rational expectation (RE) and prior information (PI) predicted equilibrium prices for the respective periods (the two prices are identical under State Y).

Figure 2 shows the price paths in Market 3 of Plott and Sunder (1982) for periods where participants have different information (heavy blue line for mean price in markets with human traders; medium red line for median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is an observed transaction price in the simulated markets plotted by transaction sequence number. The green straight line and the brown broken line depict the rational expectation (RE) and prior information (PI) predicted equilibrium prices for the respective periods (the two prices are identical under State Y).

Figure 3 shows the price paths in Market 4 of Plott and Sunder (1982) for periods where participants have different information (heavy blue line for mean price in markets with human traders; medium red line for median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is an observed transaction price in the simulated markets plotted by transaction sequence number. The green straight line and the brown broken line depict the rational expectation (RE) and prior information (PI) predicted equilibrium prices for the respective periods (the two prices are identical under State Y).

Figure 4 shows the price paths in Market 5 of Plott and Sunder (1982) for periods where participants have different information (heavy blue line for mean price in markets with human traders; medium red line for median of 50 replications of simulated markets with algorithmic traders). Each black dot in the “cloud” is an observed transaction price in the simulated markets plotted by transaction sequence number. The green straight line and the brown broken line depict the rational expectation (RE) and prior information (PI) predicted equilibrium prices for the respective periods (the two prices are identical under States Y and Z).

Figure 5 charts the progression of mean squared deviation of observed prices from RE equilibrium prices with respect to transaction sequence numbers (heavy blue line for price in markets with human traders; medium red line for algorithmic traders). In human Market 4, the first five root mean squared deviations exceed 0.02 (for a maximum of 0.145 for transaction 3), and are out-of-scale chosen for the y-axis. Ordinary Least Squares regression ($MSD = \alpha + \beta \log \text{Transaction No.}$) estimates of β, p-value and R^2 for human and algorithmic markets are shown numerically in boxes inside each chart (e.g., in market 5: $\beta = -0.00082$, p-value = 0.000 and $R^2 = 0.90$ for human markets).
Plott and Sunder (1982) conducted an experiment with profit oriented human traders to ascertain whether they traded at prices (and quantities) predicted by rational expectations models. Table 1 shows the parameters used in the experiment and the predictions about price and which trader type should hold securities in these markets. Our simulation uses the same parameters as those used in the PS experiment.

*Allocation code: I, II, and III for all traders of types I, II, and III respectively. I\textsubscript{i} for informed traders of type I, I\textsubscript{u} for uninformed traders of type I, and similarly for informed and uninformed traders of types II and III.

<table>
<thead>
<tr>
<th>Market</th>
<th>Corresponding Market</th>
<th>State</th>
<th>Probability</th>
<th>Dividends For Each Trader Type</th>
<th>RE Predictions Price</th>
<th>PI Predictions Price</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Type I</td>
<td>Type II</td>
<td>Type III</td>
</tr>
<tr>
<td>2</td>
<td>Plott and Sunder 1982 Market 2</td>
<td>X</td>
<td>0.333</td>
<td>0.1</td>
<td>0.2</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>0.667</td>
<td>0.35</td>
<td>0.3</td>
<td>0.175</td>
</tr>
<tr>
<td>3</td>
<td>Plott and Sunder 1982 Market 3</td>
<td>X</td>
<td>0.4</td>
<td>0.4</td>
<td>0.3</td>
<td>0.125</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>0.6</td>
<td>0.1</td>
<td>0.15</td>
<td>0.175</td>
</tr>
<tr>
<td>4</td>
<td>Plott and Sunder 1982 Market 4</td>
<td>X</td>
<td>0.4</td>
<td>0.375</td>
<td>0.275</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>0.6</td>
<td>0.1</td>
<td>0.15</td>
<td>0.175</td>
</tr>
<tr>
<td>5</td>
<td>Plott and Sunder 1982 Market 5</td>
<td>X</td>
<td>0.35</td>
<td>0.12</td>
<td>0.155</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Y</td>
<td>0.25</td>
<td>0.17</td>
<td>0.245</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z</td>
<td>0.4</td>
<td>0.32</td>
<td>0.135</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Table 2: Number of Transactions (Efficiency Levels in Percentages) by Market and Period

<table>
<thead>
<tr>
<th>Market 2</th>
<th>Period</th>
<th>7(X)</th>
<th>8(Y)</th>
<th>9(X)</th>
<th>10(Y)</th>
<th>11(Y)</th>
<th>Avg.(X)</th>
<th>Avg.(Y)</th>
<th>Avg. (All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Data</td>
<td>22 (57)</td>
<td>19 (100)</td>
<td>17 (70)</td>
<td>19 (100)</td>
<td>20 (100)</td>
<td>19.5 (63.5)</td>
<td>19.3 (100)</td>
<td>19.4 (85.4)</td>
<td></td>
</tr>
<tr>
<td>Simulation (50 Reps)</td>
<td>19 (78)</td>
<td>25 (99)</td>
<td>17 (83)</td>
<td>25 (99)</td>
<td>21 (98)</td>
<td>17.5 (80.3)</td>
<td>23.7 (98.7)</td>
<td>21.2 (91.4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market 3</th>
<th>Period</th>
<th>7(X)</th>
<th>8(Y)</th>
<th>9(X)</th>
<th>10(Y)</th>
<th>Avg.(X)</th>
<th>Avg.(Y)</th>
<th>Avg. (All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Data</td>
<td>15 (79)</td>
<td>19 (100)</td>
<td>14 (89)</td>
<td>14 (98)</td>
<td>15 (100)</td>
<td>15 (99)</td>
<td>17.7 (100)</td>
<td>14.6 (90.6)</td>
</tr>
<tr>
<td>Simulation (50 Reps)</td>
<td>14 (87)</td>
<td>12 (81)</td>
<td>25 (100)</td>
<td>12 (81)</td>
<td>25 (100)</td>
<td>12 (80)</td>
<td>25.0 (100)</td>
<td>12.8 (83.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market 4</th>
<th>Period</th>
<th>7(X)</th>
<th>8(Y)</th>
<th>9(X)</th>
<th>10(Y)</th>
<th>11(X)</th>
<th>12(Y)</th>
<th>13(X)</th>
<th>Avg.(X)</th>
<th>Avg.(Y)</th>
<th>Avg. (All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Data</td>
<td>17 (92)</td>
<td>23 (100)</td>
<td>17 (95)</td>
<td>12 (93)</td>
<td>20 (100)</td>
<td>14 (94)</td>
<td>21 (100)</td>
<td>18 (94)</td>
<td>21 (100)</td>
<td>21.3 (100)</td>
<td>15.6 (93.6)</td>
</tr>
<tr>
<td>Simulation (50 Reps)</td>
<td>14 (90)</td>
<td>25 (100)</td>
<td>12 (81)</td>
<td>14 (88)</td>
<td>25 (100)</td>
<td>12 (80)</td>
<td>24 (100)</td>
<td>12 (81)</td>
<td>24 (100)</td>
<td>24.5 (100)</td>
<td>12.8 (83.9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Market 5</th>
<th>Period</th>
<th>7(X)</th>
<th>8(Y)</th>
<th>9(X)</th>
<th>10(Y)</th>
<th>11(X)</th>
<th>12(Y)</th>
<th>13(Z)</th>
<th>Avg.(X)</th>
<th>Avg.(Y)</th>
<th>Avg. (Z)</th>
<th>Avg. (All)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Data</td>
<td>15 (82)</td>
<td>16 (94)</td>
<td>17 (87)</td>
<td>20 (100)</td>
<td>23 (100)</td>
<td>21 (100)</td>
<td>18 (87)</td>
<td>18 (100)</td>
<td>16 (100)</td>
<td>16.3 (87.7)</td>
<td>19.0 (96.8)</td>
<td>19.7 (100)</td>
</tr>
<tr>
<td>Simulation (50 Reps)</td>
<td>14 (93)</td>
<td>16 (95)</td>
<td>22 (99)</td>
<td>23 (99)</td>
<td>24 (98)</td>
<td>16 (87)</td>
<td>21 (97)</td>
<td>13 (87)</td>
<td>22 (99)</td>
<td>14.3 (91.5)</td>
<td>20.3 (95.4)</td>
<td>23.3 (98.8)</td>
</tr>
</tbody>
</table>

Plott and Sunder (1982) conducted an experiment with profit oriented human traders to ascertain whether they traded at prices (and quantities) predicted by rational expectations models. Table 2 shows the number of transactions and efficiency levels attained by human traders, as well as simulated algorithmic traders who use a simple linear heuristic to update aspiration levels. The number of transactions and efficiency of markets with simulated and human traders are qualitatively comparable across state realizations in the four markets.
Market 2 of Plott and Sunder (1982)

Price vs. Transaction Number

- Humans
- Algorithms Median
- RE Pred.
- PI Pred.