Using Social Networks to Propagate Sanitation Technology

Faculty Member: Mushfiq Mobarak

Proposal Description:

Lack of proper sanitation facilities is a key driver of health problems in the developing world, contributing to hundreds of thousands of deaths every year. A Randomized Control Trial (RCT) was conducted to examine the effects of giving subsidies for latrines to people in randomly selected villages, with 25%, 50% or 75% of the villagers getting a subsidy in each village (in addition to a control group).

Beyond the question of comparing treatment and control groups, this project focuses on the spillover effects felt by those who do not receive a subsidy, merely by having other villagers in the same village buy latrines. This question is of crucial importance to policymaking. Every intervention budget is limited, so there is a trade-off between giving small subsidies to large numbers of villagers or large subsidies to a small number. As these decisions would create different social complementarities, being able to quantify these could lead to much more powerful interventions.

Most work on this project will involve data analysis in STATA and translating analysis into clear and ordered graphs, tables, etc. RAs demonstrating superior skill and motivation are encouraged to continue expanding their work with Professor Mobarak in the fall and beyond.

Requisite Skills and Qualifications:

Ability to work with STATA at a basic level is a must. A quantitative background, especially in statistics, data analysis or economics, is a strong plus, as is any experience with Randomized Control Trials. Although learning from and collaborating with more senior researchers is an important part of the job, RAs should also be motivated and independent problem solvers.

HSSRO Application Link: HSSRO Application Link
Award:: Weiliang Tan '18
Project Type: HSSRO
Project Type Year: Summer 2017 Herb Scarf Summer Research Projects

Source URL: https://economics.yale.edu/undergraduate/sro/summer-2017/using-social-networks-propagate-sanitation-technology