Skip to main content

Publications

Journal of Economic Perspectives
Abstract

The failure of Silicon Valley Bank on March 10, 2023 brought attention to significant weaknesses across the banking system, leading to a panic that spread to other vulnerable banks. With subsequent failures of Signature Bank and First Republic Bank, the United States had three of the four largest bank failures in its history occur over a two-month period. Several features of the Silicon Valley Bank failure make it an ideal teaching case for explaining the underlying economics of banking (in general) and banking crises (specifically). This paper tries to do that.

Quarterly Journal of Economics
Abstract

More than two million U.S. households have an eviction case filed against them each year. Policymakers at the federal, state, and local levels are increasingly pursuing policies to reduce the number of evictions, citing harm to tenants and high public expenditures related to homelessness. We study the consequences of eviction for tenants using newly linked administrative data from two major urban areas: Cook County (which includes Chicago) and New York City. We document that prior to housing court, tenants experience declines in earnings and employment and increases in financial distress and hospital visits. These pre-trends pose a challenge for disentangling correlation and causation. To address this problem, we use an instrumental variables approach based on cases randomly assigned to judges of varying leniency. We find that an eviction order increases homelessness and hospital visits and reduces earnings, durable goods consumption, and access to credit in the first two years. Effects on housing and labor market outcomes are driven by impacts for female and Black tenants. In the longer run, eviction increases indebtedness and reduces credit scores.

Journal of Finance
Abstract

Much of the extant literature predicts market returns with “simple” models that use only a few parameters. Contrary to conventional wisdom, we theoretically prove that simple models severely understate return predictability compared to “complex” models in which the number of parameters exceeds the number of observations. We empirically document the virtue of complexity in U.S. equity market return prediction. Our findings establish the rationale for modeling expected returns through machine learning.

Econometrica
Abstract

We study how long-lived, rational agents learn in a social network. In every period, after observing the past actions of his neighbors, each agent receives a private signal, and chooses an action whose payoff depends only on the state. Since equilibrium actions depend on higher-order beliefs, it is difficult to characterize behavior. Nevertheless, we show that regardless of the size and shape of the network, the utility function, and the patience of the agents, the speed of learning in any equilibrium is bounded from above by a constant that only depends on the private signal distribution.

Review of Economic Studies
Abstract

This paper is concerned with possible model misspecification in moment inequality models. Two issues are addressed. First, standard tests and confidence sets for the true parameter in the moment inequality literature are not robust to model misspecification in the sense that they exhibit spurious precision when the identified set is empty. This paper introduces tests and confidence sets that provide correct asymptotic inference for a pseudo-true parameter in such scenarios, and hence, do not suffer from spurious precision. Second, specification tests have relatively low power against a range of misspecified models. Thus, failure to reject the null of correct specification does not necessarily provide evidence of correct specification. That is, model specification tests are subject to the problem that absence of evidence is not evidence of absence. This paper develops new diagnostics for model misspecification in moment inequality models that do not suffer from this problem.

Journal of Political Economy
Abstract

We document strong skill matching in Turkish firms’ production networks. Additionally, in the data, export demand shocks from rich countries increase firms’ skill intensity and their trade with skill-intensive domestic partners. We explain these patterns using a quantitative model with heterogeneous firms, quality choices, and endogenous networks. A counterfactual economy-wide export demand shock of 5% leads both exporters and nonexporters to upgrade quality, raising the average wage by 1.2%. This effect is nine times the effect in a scenario without interconnected quality choices. We use the model to study the conditions for the success of export promotion policies.

Journal of Monetary Economics
Abstract

This paper concerns technology escaping from the United States and how much we should be concerned about it. This topic appears frequently in news articles, with the presumption that we should be very concerned. Since technology is non rival, maybe we shouldn't be too concerned. Even after it's escaped, we still have it. But, given security concerns, maybe we should be concerned about some of these technologies escaping. I applaud the authors for bringing rigorous analysis to this contentious issue.

Journal of Econometrics
Abstract

A heteroskedasticity-autocorrelation robust (HAR) test statistic is proposed to test for the presence of explosive roots in financial or real asset prices when the equation errors are strongly dependent. Limit theory for the test statistic is developed and extended to heteroskedastic models. The new test has stable size properties unlike conventional test statistics that typically lead to size distortion and inconsistency in the presence of strongly dependent equation errors. The new procedure can be used to consistently time-stamp the origination and termination of an explosive episode under similar conditions of long memory errors. Simulations are conducted to assess the finite sample performance of the proposed test and estimators. An empirical application to the S&P 500 index highlights the usefulness of the proposed procedures in practical work.

Journal of Econometrics
Abstract

A semiparametric triangular systems approach shows how multicointegrating linkages occur naturally in an  cointegrated regression model when the long run error variance matrix in the system is singular. Under such singularity, cointegrated  systems embody a multicointegrated structure that makes them useful in many empirical settings. Earlier work shows that such systems may be analyzed and estimated without appealing to the associated  system but with suboptimal convergence rates and potential asymptotic bias. The present paper develops a robust approach to estimation and inference of such systems using high dimensional IV methods that have appealing asymptotic properties like those known to apply in the optimal estimation of cointegrated systems (Phillips, 1991). The approach uses an extended version of high-dimensional trend IV (Phillips, 2006, 2014) estimation with deterministic orthonormal instruments. The methods and derivations involve new results on high-dimensional IV techniques and matrix normalization in the limit theory that are of independent interest. Wald tests of general linear restrictions are constructed using a fixed- long run variance estimator that leads to robust pivotal HAR inference in both cointegrated and multicointegrated cases. Simulations show good properties of the estimation and inferential procedures in finite samples. An empirical illustration to housing stocks, starts and completions is provided.

Journal of Econometrics
Abstract

Semiparametric efficient estimation of various multi-valued causal effects, including quantile treatment effects, is important in economic, biomedical, and other social sciences. Under the unconfoundedness condition, adjustment for confounders requires estimating the nuisance functions relating outcome or treatment to confounders nonparametrically. This paper considers a generalized optimization framework for efficient estimation of general treatment effects using artificial neural networks (ANNs) to approximate the unknown nuisance function of growing-dimensional confounders. We establish a new approximation error bound for the ANNs to the nuisance function belonging to a mixed smoothness class without a known sparsity structure. We show that the ANNs can alleviate the “curse of dimensionality” under this circumstance. We establish the root- consistency and asymptotic normality of the proposed general treatment effects estimators, and apply a weighted bootstrap procedure for conducting inference. The proposed methods are illustrated via simulation studies and a real data application.