Skip to main content

Shuping Shi Publications

Publish Date
Discussion Paper
Abstract

To safeguard economic and financial stability policymakers regularly take actions designed to increase resilience to systemic risks and curb speculative market behavior. To assess the effectiveness of such mitigation policies, we introduce a counterfactual approach tailored to accommodate the mildly explosive dynamics that occur during speculative bubbles. We derive asymptotics of the estimated treatment effect under a common factor structure that allows for explosive, I(1), and stationary factors, thereby having applicability to a wide range of prevailing economic conditions. An inferential procedure is proposed for the policy treatment effect that has asymptotic validity and demonstrates satisfactory finite sample performance. An empirical analysis examines the monetary policy of interest rate hikes implemented by the Reserve Bank of New Zealand, beginning in October 2021.This policy exerted a statistically significant cooling effect on all regional housing markets in New Zealand. Our findings show that this policy led to 20%-33% reductions in house prices in five out of six regions seven months after the enactment of the interest rate hike.

Discussion Paper
Abstract

The recent artificial intelligence (AI) boom covers a period of rapid innovation and wide adoption of AI intelligence technologies across diverse industries. These developments have fueled an unprecedented frenzy in the Nasdaq, with AI-focused companies experiencing soaring stock prices that raise concerns about speculative bubbles and real-economy consequences. Against this background the present study investigates the formation of speculative bubbles in the Nasdaq stock market with a specific focus on the so-called ‘Magnificent Seven’ (Mag-7) individual stocks during the AI boom, spanning the period January 2017 to January 2025. We apply the real time PSY bubble detection methodology of Phillips et al. (2015a,b), while controlling for market and industry factors for individual stocks. Confidence intervals to assess the degree of speculative behavior in asset price dynamics are calculated using the near-unit root approach of Phillips (2023). The findings reveal the presence of speculative bubbles in the Nasdaq stock market and across all Mag-7 stocks. Nvidia and Microsoft experience the longest speculative periods over January 2017 – December 2021, while Nvidia and Tesla show the fastest rates of explosive behavior. Speculative bubbles persist in the market and in six of the seven stocks (excluding Apple) from December 2022 to January 2025. Near-unit-root inference indicates mildly explosive dynamics for Nvidia and Tesla (2017–2021) and local-to-unity near explosive behavior for all assets in both periods.

Discussion Paper
Abstract

Australian housing markets experienced widespread and, in some cases, extraordinary growth in prices between 2020 and 2023. Using recently developed methodology that accounts for fundamental economic drivers, we assess the existence and degree of speculative behaviour as well as the timing of exuberance and downturns in these markets. Our findings indicate that speculative behaviour was indeed present in six of the eight capital cities at some time over the period studied. The sequence of events in this nation-wide housing bubble began in the Brisbane market and concluded in Melbourne, Canberra, and Hobart following the interest rate hike implemented by the Reserve Bank of Australia in May 2022. As of March 2023, the housing markets in Sydney, Canberra, and Hobart had broadly regained stable conditions, while Melbourne is more gradually returning to its normal state. In addition, over-corrections against fundamentals are evident in the housing markets of Brisbane, Adelaide, Darwin, and Perth. For regular updates on the housing markets, readers may visit the authors’ website at www.housing-fever.com.

Discussion Paper
Abstract

In the presence of bubbles, asset prices consist of a fundamental and a bubble component, with the bubble component following an explosive dynamic. The general idea for bubble identification is to apply explosive root tests to a proxy of the unobservable bubble. Three notable proxies are the real asset prices, log price-payoff ratios, and estimated non-fundamental components. The rationale for all three proxy choices rests on the definition of bubbles, which has been presented in various forms in the literature. This chapter provides a theoretical framework that incorporates several definitions of bubbles (and fundamentals) and offers guidance for selecting proxies. For explosive root tests, we introduce the recursive evolving test of Phillips et al. (2015b,c) along with its asymptotic properties. This procedure can serve as a real-time monitoring device and has been shown to outperform several other tests. Like all other recursive testing procedures, the PSY algorithm faces the issue of multiplicity in testing that contaminates conventional significance values. To address this issue, we propose a multiple-testing algorithm to determine appropriate test critical values and show its satisfactory performance in finite samples by simulations. To illustrate, we conduct a pseudo real-time bubble monitoring exercise in the S&P 500 stock market from January 1990 to June 2020. The empirical results reveal the importance of using a good proxy for bubbles and addressing the multiplicity issue.

Discussion Paper
Abstract

This paper explores weak identification issues arising in commonly used models of economic and financial time series. Two highly popular configurations are shown to be asymptotically observationally equivalent: one with long memory and weak autoregressive dynamics, the other with antipersistent shocks and a near-unit autoregressive root. We develop a data-driven semiparametric and identification-robust approach to inference that reveals such ambiguities and documents the prevalence of weak identification in many realized volatility and trading volume series. The identification-robust empirical evidence generally favors long memory dynamics in volatility and volume, a conclusion that is corroborated using social-media news flow data.

Discussion Paper
Abstract

Price bubbles in multiple assets are sometimes nearly coincident in occurrence. Such near-coincidence is strongly suggestive of co-movement in the associated asset prices and likely driven by certain factors that are latent in the financial or economic system with common effects across several markets. Can we detect the presence of such common factors at the early stages of their emergence? To answer this question, we build a factor model that includes I(1), mildly explosive, and stationary factors to capture normal,  exuberant, and collapsing phases in such phenomena. The I(1) factor models the primary driving force of market fundamentals. The explosive and stationary factors model latent forces that underlie the formation and destruction of asset price bubbles, which typically exist only for subperiods of the sample. The paper provides an algorithm for testing the presence of and date-stamping the origination and termination of price bubbles determined by latent factors in a large-dimensional system embodying many markets. Asymptotics of the bubble test statistic are given under the null of no common bubbles and the alternative of a common bubble across these markets. We prove consistency of a factor bubble detection process for the origination and termination dates of the common bubble. Simulations show good finite sample performance of the testing algorithm in terms of its successful detection rates. Our methods are applied to real estate markets covering 89 major cities in China over the period January 2003 to March 2013. Results suggest the presence of three common bubble episodes in what are known as China’s Tier 1 and Tier 2  cities over the sample period. There appears to be little evidence of a common bubble in Tier 3 cities. 

Discussion Paper
Abstract

Housing fever is a popular term to describe an overheated housing market or housing price bubble. Like other financial asset bubbles, housing fever can inflict harm on the real economy, as indeed the US housing bubble did in the period following 2006 leading up to the general financial crisis and great recession. One contribution that econometricians can make to minimize the harm created by a housing bubble is to provide a quantitative `thermometer’ for diagnosing ongoing housing fever. Early diagnosis can enable prompt and effective policy action that reduces long term damage to the real economy.  This paper provides a selective review of the relevant literature on econometric methods for identifying housing bubbles together with some new methods of research and an empirical application. We first present a technical definition of a housing bubble that facilitates empirical work and discuss significant difficulties encountered in practical work and the solutions that have been proposed in the past literature. A major challenge in all econometric identification procedures is to assess prices in relation to fundamentals, which requires measurement of fundamentals. One solution to address this challenge is to estimate the fundamental component from an underlying structural relationship involving measurable variables. A second aim of the paper is to improve the estimation accuracy of fundamentals by means of an easy-to-implement reduced-form approach. Since many of the relevant variables that determine fundamentals are nonstationary and interdependent we use the IVX (Phillips and Magdalinos, 2009) method to estimate the reduced-form model to reduce the finite sample bias which arises from highly persistent regressors and endogeneity. The recursive evolving test of Phillips, Shi and Yu (2015) is applied to the estimated non-fundamental component for the identification of speculative bubbles. The new bubble test developed here is referred to as PSY-IVX. An empirical application to the eight Australian capital city housing markets over the period 1999 to 2017 shows that bubble testing results are sensitive to different ways of controlling for fundamentals and highlights the importance of accurate estimation of these housing market fundamentals.

Discussion Paper
Abstract

While each financial crisis has its own characteristics, there is now widespread recognition that crises arising from sources such as financial speculation and excessive credit creation do inflict harm on the real economy. Detecting speculative market conditions and ballooning credit risk in real time is therefore of prime importance in the complex exercises of market surveillance, risk management, and policy action. This chapter provides an R implementation of the popular real-time monitoring strategy proposed by Phillips, Shi and Yu in the International Economic Review (2015), along with a new bootstrap procedure designed to mitigate the potential impact of heteroskedasticity and to effect family-wise size control in recursive testing algorithms. This methodology has been shown effective for bubble and crisis detection and is now widely used by academic researchers, central bank economists, and fiscal regulators. We illustrate the effectiveness of this procedure with applications to the S&P financial market and the European sovereign debt sector using the psymonitor R package developed in conjunction with this chapter.

Abstract

Causal relationships in econometrics are typically based on the concept of predictability and are established in terms of tests for Granger causality. These causal relationships are susceptible to change, especially during times of financial turbulence, making the real-time detection of instability an important practical issue. This paper develops a test for detecting changes in causal relationships based on a recursive rolling window, which is analogous to the procedure used in recent work on financial bubble detection. The limiting distribution of the test takes a simple form under the null hypothesis and is easy to implement in conditions of homoskedasticity, conditional heteroskedasticity and unconditional heteroskedasticity. Simulation experiments compare the efficacy of the proposed test with two other commonly used tests, the forward recursive and the rolling window tests. The results indicate that both the rolling and the recursive rolling approaches offer good finite sample performance in situations where there are one or two changes in the causal relationship over the sample period, although the performance of the rolling window algorithm seems to be the best. The testing strategies are illustrated in an empirical application that explores the causal impact of the slope of the yield curve on real economic activity in the United States over the period 1985–2013.

Abstract

This paper re-examines changes in the causal link between money and income in the United States for over the past half century (1959 - 2014). Three methods for the data-driven discovery of change points in causal relationships are proposed, all of which can be implemented without prior detrending of the data. These methods are a forward recursive algorithm, a recursive rolling algorithm and the rolling window algorithm all of which utilize subsample tests of Granger causality within a lag-augmented vector autoregressive framework. The limit distributions for these subsample Wald tests are provided. The results from a suite of simulation experiments suggest that the rolling window algorithm provides the most reliable results, followed by the recursive rolling method. The forward expanding window procedure is shown to have worst performance. All three approaches find evidence of money-income causality during the Volcker period in the 1980s. The rolling and recursive rolling algorithms detect two additional causality episodes: the turbulent period of late 1960s and the starting period of the subprime mortgage crisis in 2007.

Abstract

Expansion and collapse are two key features of a financial asset bubble. Bubble expansion may be modeled using a mildly explosive process. Bubble implosion may take several different forms depending on the nature of the collapse and therefore requires some flexibility in modeling. This paper develops analytics and studies the performance characteristics of the real time bubble monitoring strategy proposed in Phillips, Shi and Yu (2014b,c, PSY) under alternative forms of bubble implosion that can be represented in terms of mildly integrated processes which capture various return paths to market normalcy. We propose a new reverse sample use of the PSY procedure for detecting crises and estimating the date of market recovery. Consistency of the dating estimators is established and the limit theory addresses new complications arising from the alternative forms of bubble implosion and the endogeneity effects present in the reverse regression. Simulations explore the finite sample performance of the strategy for dating market recovery and an illustration to the Nasdaq stock market is provided. A real-time version of the strategy is provided that is suited for practical implementation.

Abstract

This paper provides the limit theory of real time dating algorithms for bubble detection that were suggested in Phillips, Wu and Yu (2011, PWY) and Phillips, Shi and Yu (2013b, PSY). Bubbles are modeled using mildly explosive bubble episodes that are embedded within longer periods where the data evolves as a stochastic trend, thereby capturing normal market behavior as well as exuberance and collapse. Both the PWY and PSY estimates rely on recursive right tailed unit root tests (each with a different recursive algorithm) that may be used in real time to locate the origination and collapse dates of bubbles. Under certain explicit conditions, the moving window detector of PSY is shown to be a consistent dating algorithm even in the presence of multiple bubbles. The other algorithms are consistent detectors for bubbles early in the sample and, under stronger conditions, for subsequent bubbles in some cases. These asymptotic results and accompanying simulations guide the practical implementation of the procedures. They indicate that the PSY moving window detector is more reliable than the PWY strategy, sequential application of the PWY procedure and the CUSUM procedure.

Abstract

Identifying and dating explosive bbles when there is periodically collapsing behavior over time has been a major concern in the economics literature and is of great importance for practitioners. The complexity of the nonlinear structure inherent in multiple bubble phenomena within the same sample period makes econometric analysis particularly difficult. The present paper develops new recursive procedures for practical implementation and surveillance strategies that may be employed by central banks and fiscal regulators. We show how the testing procedure and dating algorithm of Phillips, Wu and Yu (2011, PWY) are affected by multiple bubbles and may fail to be consistent. The present paper proposes a generalized version of the sup ADF test of PWY to address this difficulty, derives its asymptotic distribution, introduces a new date-stamping strategy for the origination and termination of multiple bubbles, and proves consistency of this dating procedure. Simulations show that the test significantly improves discriminatory power and leads to distinct power gains when multiple bubbles occur. Empirical applications are conducted to S&P 500 stock market data over a long historical period from January 1871 to December 2010. The new approach identifies many key historical episodes of exuberance and collapse over this period, whereas the strategy of PWY and the CUSUM procedure locate far fewer episodes in the same sample range.

Abstract

Right-tailed unit root tests have proved promising for detecting exuberance in economic and financial activities. Like left-tailed tests, the limit theory and test performance are sensitive to the null hypothesis and the model specification used in parameter estimation. This paper aims to provide some empirical guidelines for the practical implementation of right-tailed unit root tests, focussing on the sup ADF test of Phillips, Wu and Yu (2011), which implements a right-tailed ADF test repeatedly on a sequence of forward sample recursions. We analyze and compare the limit theory of the sup ADF test under different hypotheses and model specifications. The size and power properties of the test under various scenarios are examined in simulations and some recommendations for empirical practice are given. Empirical applications to the Nasdaq and to Australian and New Zealand housing data illustrate these specification issues and reveal their practical importance in testing.