Skip to main content

Xiaohong Chen Publications

Publish Date
Discussion Paper
Abstract

This paper develops a new method informed by data and models to recover information about investor beliefs. Our approach uses information embedded in forward-looking asset prices in conjunction with asset pricing models. We step back from presuming rational expectations and entertain potential belief distortions bounded by a statistical measure of discrepancy. Additionally, our method allows for the direct use of sparse survey evidence to make these bounds more informative. Within our framework, market-implied beliefs may differ from those implied by rational expectations due to behavioral/psychological biases of investors, ambiguity aversion, or omitted permanent components to valuation. Formally, we represent evidence about investor beliefs using a novel nonlinear expectation function deduced using model-implied moment conditions and bounds on statistical divergence. We illustrate our method with a prototypical example from macro-finance using asset market data to infer belief restrictions for macroeconomic growth rates.

Abstract

In complicated/nonlinear parametric models, it is generally hard to determine whether the model parameters are (globally) point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of parameters in econometric models defined through a likelihood or a vector of moments. The CSs for the identified set or for a function of the identified set (such as a subvector) are based on inverting an optimal sample criterion (such as likelihood or continuously updated GMM), where the cutoff values are computed via Monte Carlo simulations directly from a quasi posterior distribution of the criterion. We establish new Bernstein-von Mises type theorems for the posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR statistics in partially identified models, allowing for singularities. These results imply that the Monte Carlo criterion-based CSs have correct frequentist coverage for the identified set as the sample size increases, and that they coincide with Bayesian credible sets based on inverting a LR statistic for point-identified likelihood models. We also show that our Monte Carlo optimal criterion-based CSs are uniformly valid over a class of data generating processes that include both partially- and point-identified models. We demonstrate good finite sample coverage properties of our proposed methods in four non-trivial simulation experiments: missing data, entry game with correlated payoff shocks, Euler equation and finite mixture models. Finally, our proposed procedures are applied in two empirical examples.

Abstract

In complicated/nonlinear parametric models, it is generally hard to know whether the model parameters are point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of full parameters and of subvectors in models defined through a likelihood or a vector of moment equalities or inequalities. These CSs are based on level sets of optimal sample criterion functions (such as likelihood or optimally-weighted or continuously-updated GMM criterions). The level sets are constructed using cutoffs that are computed via Monte Carlo (MC) simulations directly from the quasi-posterior distributions of the criterions. We establish new Bernstein-von Mises (or Bayesian Wilks) type theorems for the quasi-posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR in partially-identified regular models and some non-regular models. These results imply that our MC CSs have exact asymptotic frequentist coverage for identified sets of full parameters and of subvectors in partially-identified regular models, and have valid but potentially conservative coverage in models with reduced-form parameters on the boundary. Our MC CSs for identified sets of subvectors are shown to have exact asymptotic coverage in models with singularities. We also provide results on uniform validity of our CSs over classes of DGPs that include point and partially identified models. We demonstrate good finite-sample coverage properties of our procedures in two simulation experiments. Finally, our procedures are applied to two non-trivial empirical examples: an airline entry game and a model of trade flows.