A new self-weighted least squares (LS) estimation theory is developed for local unit root (LUR) autoregression with heteroskedasticity. The proposed estimator has a mixed Gaussian limit distribution and the corresponding studentized statistic converges to a standard normal distribution free of the unknown localizing coefficient which is not consistently estimable. The estimator is super consistent with a convergence rate slightly below the OP (n) rate of LS estimation. The asymptotic theory relies on a new framework of convergence to the local time of a Gaussian process, allowing for the sample moments generated from martingales and many other integrated dependent sequences. A new unit root (UR) test in augmented autoregression is developed using self-weighted estimation and the methods are employed in predictive regression, providing an alternative approach to IVX regression. Simulation results showing good finite sample performance of these methods are reported together with a small empirical application.
This paper develops an asymptotic theory for nonlinear cointegrating power function regression. The framework extends earlier work on the deterministic trend case and allows for both endogeneity and heteroskedasticity, which makes the models and inferential methods relevant to many empirical economic and financial applications, including predictive regression. Accompanying the asymptotic theory of nonlinear regression, the paper establishes some new results on weak convergence to stochastic integrals that go beyond the usual semi-martingale structure and considerably extend existing limit theory, complementing other recent findings on stochastic integral asymptotics. The paper also provides a general framework for extremum estimation limit theory that encompasses stochastically nonstationary time series and should be of wide applicability.
Limit theory involving stochastic integrals is now widespread in time series econometrics and relies on a few key results on function space weak convergence. In establishing weak convergence of sample covariances to stochastic integrals, the literature commonly uses martingale and semimartingale structures. While these structures have wide relevance, many applications in econometrics involve a cointegration framework where endogeneity and nonlinearity play a major role and lead to complications in the limit theory. This paper explores weak convergence limit theory to stochastic integral functionals in such settings. We use a novel decomposition of sample covariances of functions of I(1) and I(0) time series that simplifies the asymptotic development and we provide limit results for such covariances when linear process, long memory, and mixing variates are involved in the innovations. The limit results extend earlier findings in the literature, are relevant in many econometric applications, and involve simple conditions that facilitate implementation in practice. A nonlinear extension of FM regression is used to illustrate practical application of the methods.