Skip to main content

Zhijie Xiao Publications

Publish Date
Discussion Paper
Abstract

Economic and financial time series data can exhibit nonstationary and nonlinear patterns simultaneously. This paper studies copula-based time series models that capture both patterns. We propose a procedure where nonstationarity is removed via a filtration, and then the nonlinear temporal dependence in the filtered data is captured via a flexible Markov copula. We study the asymptotic properties of two estimators of the parametric copula dependence parameters: the parametric (two-step) copula estimator where the marginal distribution of the filtered series is estimated parametrically; and the semiparametric (two-step) copula estimator where the marginal distribution is estimated via a rescaled empirical distribution of the filtered series. We show that the limiting distribution of the parametric copula estimator depends on the nonstationary filtration and the parametric marginal distribution estimation, and may be non-normal. Surprisingly, the limiting distribution of the semiparametric copula estimator using the filtered data is shown to be the same as that without nonstationary filtration, which is normal and free of marginal distribution specification. The simple and robust properties of the semiparametric copula estimators extend to models with misspecified copulas, and facilitate statistical inferences, such as hypothesis testing and model selection tests, on semiparametric copula-based dynamic models in the presence of nonstationarity. Monte Carlo studies and real data applications are presented.

Abstract

Parametric copulas are shown to be attractive devices for specifying quantile autoregressive models for nonlinear time-series. Estimation of local, quantile-specific copula-based time series models offers some salient advantages over classical global parametric approaches. Consistency and asymptotic normality of the proposed quantile estimators are established under mild conditions, allowing for global misspecification of parametric copulas and marginals, and without assuming any mixing rate condition. These results lead to a general framework for inference and model specification testing of extreme conditional value-at-risk for financial time series data.

Abstract

This paper studies efficient estimation of partial linear regression in time series models. In particular, it combines two topics that have attracted a good deal of attention in econometrics, viz. spectral regression and partial linear regression, and proposes an efficient frequency domain estimator for partial linear models with serially correlated residuals. A nonparametric treatment of regression errors is permitted so that it is not necessary to be explicit about the dynamic specification of the errors other than to assume stationarity. A new concept of weak dependence is introduced based on regularity conditions on the joint density. Under these and some other regularity conditions, it is shown that the spectral estimator is root-n-consistent, asymptotically normal, and asymptotically efficient.

Abstract

This paper studies the asymptotic properties of a nonstationary partially linear regression model. In particular, we allow for covariates to enter the unit root (or near unit root) model in a nonparametric fashion, so that our model is an extension of the semiparametric model analyzed in Robinson (1988). It is proven that the autoregressive parameter can be estimated at rate N even though part of the model is estimated nonparametrically. Unit root tests based on the semiparametric estimate of the autoregressive parameter have a limiting distribution which is a mixture of a standard normal and the Dickey-Fuller distribution. A Monte Carlo experiment is conducted to evaluate the performance of the tests for various linear and nonlinear specifications.

Keywords: Nonparametric, Prial Linear, Semiparametric, Unit root

JEL Classification: C12, C14, C22

Journal of Economic Surveys
Abstract

The immense literature and diversity of unit root tests can at times be confusing even to the specialist and presents a truly daunting prospect to the uninitiated. In consequence, much empirical work still makes use of the simplest testing procedures because it is unclear from the literature and from recent reviews which tests if any are superior. This paper presents a survey of unit root theory with an emphasis on testing principles and recent developments. The general framework adopted makes it possible to consider tests of stochastic trends against trend stationarity and trend breaks of a general type. The main tests are listed, and asymptotic distributions are given in a simple form that emphasizes commonalities in the theory. Some simulation results are reported, and an extensive list of references and an annotated bibliography are provided.

Keywords: Autoregressive unit root; Brownian motion; Functional central limit theorem; Integrated process; LM principle; Model selection; Moving average unit root; Nonstationarity; Quasi-differencing; Stationarity; Stochastic trend

Abstract

A new model of near integration is formulated in which the local to unity parameter is identifiable and consistently estimable with time series data. The properties of the model are investigated, new functional laws for near integrated time series are obtained, and consistent estimators of the localizing parameter are constructed. The model provides a more complete interface between I(0) and I(1) models than the traditional local to unity model and leads to autoregressive coefficient estimates with rates of convergence that vary continuously between the O(/n) rate of stationary autoregression, the O(n) rate of unit root regression and the power rate of explosive autoregression. Models with deterministic trends are also considered, least squares trend regression is shown to be efficient, and consistent estimates of the localising parameter are obtained for this case as well. Conventional unit root tests are shown to be consistent against local alternatives in the new class.