Skip to main content

Jun Yu Publications

Journal of Econometrics
Abstract

A heteroskedasticity-autocorrelation robust (HAR) test statistic is proposed to test for the presence of explosive roots in financial or real asset prices when the equation errors are strongly dependent. Limit theory for the test statistic is developed and extended to heteroskedastic models. The new test has stable size properties unlike conventional test statistics that typically lead to size distortion and inconsistency in the presence of strongly dependent equation errors. The new procedure can be used to consistently time-stamp the origination and termination of an explosive episode under similar conditions of long memory errors. Simulations are conducted to assess the finite sample performance of the proposed test and estimators. An empirical application to the S&P 500 index highlights the usefulness of the proposed procedures in practical work.

International Economic Review
Abstract

This study provides new mechanisms for identifying and estimating explosive bubbles in mixed-root panel autoregressions with a latent group structure. A postclustering approach is employed that combines k-means clustering with right-tailed panel-data testing. Uniform consistency of the k-means algorithm is established. Pivotal null limit distributions of the tests are introduced. A new method is proposed to consistently estimate the number of groups. Monte Carlo simulations show that the proposed methods perform well in finite samples; and empirical applications of the proposed methods identify bubbles in the U.S. and Chinese housing markets and the U.S. stock market.