Skip to main content

Kai Hao Yang Publications

Econometrica
Abstract

A signal is privacy‐preserving with respect to a collection of privacy sets if the posterior probability assigned to every privacy set remains unchanged conditional on any signal realization. We characterize the privacy‐preserving signals for arbitrary state space and arbitrary privacy sets. A signal is privacy‐preserving if and only if it is a garbling of a reordered quantile signal. Furthermore, distributions of posterior means induced by privacy‐preserving signals are exactly mean‐preserving contractions of that induced by the quantile signal. We discuss the economic implications of our characterization for statistical discrimination, the revelation of sensitive information in auctions and price discrimination.

American Economic Review
Abstract

A monotone function interval is the set of monotone functions that lie pointwise between two fixed monotone functions. We characterize the set of extreme points of monotone function intervals and apply this to a number of economic settings. First, we leverage the main result to characterize the set of distributions of posterior quantiles that can be induced by a signal, with applications to political economy, Bayesian persuasion, and the psychology of judgment. Second, we combine our characterization with properties of convex optimization problems to unify and generalize seminal results in the literature on security design under adverse selection and moral hazard.