Skip to main content

Liangjun Su Publications

Journal of Econometrics
Abstract

This paper considers a linear panel model with interactive fixed effects and unobserved individual and time heterogeneities that are captured by some latent group structures and an unknown structural break, respectively. To enhance realism, the model may have different numbers of groups and/or different group memberships before and after the break. With preliminary nuclear norm regularized estimation followed by row- and column-wise linear regressions, we estimate the break point based on the idea of binary segmentation and the latent group structures together with the number of groups before and after the break by sequential testing K-means algorithm simultaneously. It is shown that the break point, the number of groups and the group memberships can each be estimated correctly with probability approaching one. Asymptotic distributions of the estimators of the slope coefficients are established. Monte Carlo simulations demonstrate excellent finite sample performance for the proposed estimation algorithm. An empirical application to real house price data across 377 Metropolitan Statistical Areas in the US from 1975 to 2014 suggests the presence both of structural breaks and of changes in group membership.

Journal of Econometrics
Abstract

This paper studies high-dimensional vector autoregressions (VARs) augmented with common factors that allow for strong cross-sectional dependence. Models of this type provide a convenient mechanism for accommodating the interconnectedness and temporal co-variability that are often present in large dimensional systems. We propose an ℓ1-nuclear-norm regularized estimator and derive the non-asymptotic upper bounds for the estimation errors as well as large sample asymptotics for the estimates. A singular value thresholding procedure is used to determine the correct number of factors with probability approaching one. Both the LASSO estimator and the conservative LASSO estimator are employed to improve estimation precision. The conservative LASSO estimates of the non-zero coefficients are shown to be asymptotically equivalent to the oracle least squares estimates. Simulations demonstrate that our estimators perform reasonably well in finite samples given the complex high-dimensional nature of the model. In an empirical illustration we apply the methodology to explore dynamic connectedness in the volatilities of financial asset prices and the transmission of ‘investor fear’. The findings reveal that a large proportion of connectedness is due to the common factors. Conditional on the presence of these common factors, the results still document remarkable connectedness due to the interactions between the individual variables, thereby supporting a common factor augmented VAR specification.