Ranking interfaces are everywhere in online platforms. There is thus an ever growing interest in their Off-Policy Evaluation (OPE), aiming towards an accurate performance evaluation of ranking policies using logged data. A de-facto approach for OPE is Inverse Propensity Scoring (IPS), which provides an unbiased and consistent value estimate. However, it becomes extremely inaccurate in the ranking setup due to its high variance under large action spaces. To deal with this problem, previous studies assume either independent or cascade user behavior, resulting in some ranking versions of IPS. While these estimators are somewhat effective in reducing the variance, all existing estimators apply a single universal assumption to every user, causing excessive bias and variance. Therefore, this work explores a far more general formulation where user behavior is diverse and can vary depending on the user context. We show that the resulting estimator, which we call Adaptive IPS (AIPS), can be unbiased under any complex user behavior. Moreover, AIPS achieves the minimum variance among all unbiased estimators based on IPS. We further develop a procedure to identify the appropriate user behavior model to minimize the mean squared error (MSE) of AIPS in a data-driven fashion. Extensive experiments demonstrate that the empirical accuracy improvement can be significant, enabling effective OPE of ranking systems even under diverse user behavior.
Off-policy evaluation (OPE) aims to accurately evaluate the performance of counterfactual policies using only offline logged data. Although many estimators have been developed, there is no single estimator that dominates the others, because the estimators' accuracy can vary greatly depending on a given OPE task such as the evaluation policy, number of actions, and noise level. Thus, the data-driven estimator selection problem is becoming increasingly important and can have a significant impact on the accuracy of OPE. However, identifying the most accurate estimator using only the logged data is quite challenging because the ground-truth estimation accuracy of estimators is generally unavailable. This paper thus studies this challenging problem of estimator selection for OPE for the first time. In particular, we enable an estimator selection that is adaptive to a given OPE task, by appropriately subsampling available logged data and constructing pseudo policies useful for the underlying estimator selection task. Comprehensive experiments on both synthetic and real-world company data demonstrate that the proposed procedure substantially improves the estimator selection compared to a non-adaptive heuristic. Note that complete version with technical appendix is available on arXiv: http://arxiv.org/abs/2211.13904.
Off-policy evaluation (OPE) aims to estimate the performance of hypothetical policies using data generated by a different policy. Because of its huge potential impact in practice, there has been growing research interest in this field. There is, however, no real-world public dataset that enables the evaluation of OPE, making its experimental studies unrealistic and irreproducible. With the goal of enabling realistic and reproducible OPE research, we present Open Bandit Dataset, a public logged bandit dataset collected on a large-scale fashion e-commerce platform, ZOZOTOWN. Our dataset is unique in that it contains a set of multiple logged bandit datasets collected by running different policies on the same platform. This enables experimental comparisons of different OPE estimators for the first time. We also develop Python software called Open Bandit Pipeline to streamline and standardize the implementation of batch bandit algorithms and OPE. Our open data and software will contribute to fair and transparent OPE research and help the community identify fruitful research directions. We provide extensive benchmark experiments of existing OPE estimators using our dataset and software. The results open up essential challenges and new avenues for future OPE research.
Off-policy Evaluation (OPE), or offline evaluation in general, evaluates the performance of hypothetical policies leveraging only offline log data. It is particularly useful in applications where the online interaction involves high stakes and expensive setting such as precision medicine and recommender systems. Since many OPE estimators have been proposed and some of them have hyperparameters to be tuned, there is an emerging challenge for practitioners to select and tune OPE estimators for their specific application. Unfortunately, identifying a reliable estimator from results reported in research papers is often difficult because the current experimental procedure evaluates and compares the estimators’ accuracy on a narrow set of hyperparameters and evaluation policies. Therefore, we cannot know which estimator is safe and reliable to use in general practice. In this work, we develop Interpretable Evaluation for Offline Evaluation (IEOE), an experimental procedure to evaluate OPE estimators’ sensitivity to the choice of hyperparameters and possible changes in evaluation policies in an interpretable manner. We also build open-source Python software, pyIEOE, to streamline the evaluation with the IEOE protocol. With this software, researchers can use IEOE to compare different OPE estimators in their research, and practitioners can select an appropriate estimator for the given practical situation. Then, using the IEOE procedure, we perform extensive re-evaluation of a wide variety of existing estimators on public datasets. We show that, surprisingly, simple estimators that have fewer hyperparameters are more reliable than other advanced estimators because advanced estimators need environment specific hyperparameter tuning to perform well. Finally, we apply IEOE to real-world e-commerce platform data and demonstrate how to use our protocol in practice.